1 Sudakov Minoration

Suppose that \((T, \rho)\) is a finite metric space and let \(\{X_t, t \in T\}\) be a stochastic process indexed by \(T\) satisfying

\[
P\{|X_s - X_t| \geq u\} \leq 2 \exp\left(\frac{-u^2}{2\rho^2(s, t)}\right) \quad \text{for all } u > 0.
\]

(1)

Then for every \(t_0 \in T\), we have

\[
E \sup_{t \in T} |X_t - X_{t_0}| \leq C \int_0^\infty \sqrt{\log M(\epsilon, T)} d\epsilon.
\]

(2)

There is also a lower bound for the above expectation in terms of packing numbers. This is called Sudakov minoration. Suppose that \(X_t\) has mean zero and that \(E(X_t - X_s)^2 = \rho^2(s, t)\) for all \(s, t \in T\), then

\[
E \sup_{t \in T} (X_t - X_{t_0}) \geq c \sup_{\epsilon > 0} \left(\epsilon \sqrt{\log N(\epsilon, T)}\right)
\]

(3)

for a positive constant \(c\). Here \(N(\epsilon, T)\) is the \(\epsilon\)-packing number of \(T\).

The proof of Sudakov Minoration goes via Slepian’s lemma:

Lemma 1.1 (Slepian). Let \((X_1, \ldots, X_n)\) and \((Y_1, \ldots, Y_n)\) denote multivariate normal random vectors with mean 0. Suppose that

\[E(X_i - X_j)^2 \geq E(Y_i - Y_j)^2\]

for all \(i \neq j\).

Then \(E \max_i X_i \geq E \max_i Y_i\).

Proof of (3). Fix \(\epsilon > 0\). Let \(t_1, \ldots, t_n\) be a maximal \(\epsilon\)-packing subset of \(T\) where \(n = N(\epsilon, T)\). Then

\[
E \sup_{t \in T} (X_t - X_{t_0}) \geq E \sup_{1 \leq i \leq n} (X_{t_i} - X_{t_0}).
\]
Let \(g_1, \ldots, g_n \) be independent normal random variables with mean 0 and variance \(\epsilon^2/2 \). We then have
\[
E \left((X_t - X_{t_0} - (X_{t_j} - X_{t_0}))^2 \right) = \rho^2 (t_i, t_j) \geq \epsilon^2 = E(g_i - g_j)^2
\]
for all \(i, j \). Thus by Slepian’s lemma, we have
\[
E \max_i (X_t - X_{t_0}) \geq E \max_{1 \leq i \leq n} g_i = \frac{\epsilon}{\sqrt{2}} E \max_{1 \leq i \leq n} z_i
\]
where \(z_1, \ldots, z_n \) are independent standard normal random variables. The proof is now complete by noting that the expectation of the maximum of \(n \) i.i.d standard normals is bounded from below by a constant multiple of \(\sqrt{\log n} \).

\[\square\]

2 Dudley’s Entropy Bound Revisited

In the last class, we proved (2) where we assumed that \(T \) is finite and the integral of the square root of the metric entropy is from 0. But, from the proof, it should be clear that we actually proved upper bounds for

\[P \left(\max_{t \in T_N} |X_t - X_{t_0}| \geq a \right) \leq C \exp \left(-\frac{a^2}{CD^2} \right) \quad (4)\]

whenever

\[a \geq C \int_{D/2}^{D/2 - N^{-1}} \sqrt{\log M(\epsilon, T)} \, de.\]

Let us go over the proof of (4) once again. Let us not assume that \(T \) is finite anymore. For each \(i \geq 1 \), let \(T_i \) denote a \(\delta_i = D2^{-i} \)-cover of \(T \) with diameter \(D \). We, in fact, proved

\[P \left(\max_{t \in T_N} |X_t - X_{t_0}| \geq a \right) \leq C \exp \left(-\frac{a^2}{CD^2} \right) \]

whenever

\[a \geq C \int_{D/2}^{D/2 - N^{-1}} \sqrt{\log M(\epsilon, T)} \, de.\]

Let us go over the proof of (4) once again. Let us not assume that \(T \) is finite anymore. For each \(i \geq 1 \), let \(T_i \) denote a \(\delta_i = D2^{-i} \)-cover of \(T \) with cardinality \(M(\delta_i) \). For each \(i = 1, \ldots, N \), let \(\pi : T_i \to T_{i-1} \) be such that for each \(t \in T_i \), we have \(\rho(t, \pi(t)) \leq \delta_{i-1} \). Such a map can be constructed because \(T_{i-1} \) is a \(\delta_{i-1} \)-cover of \(T \).

Now for each \(i = 0, \ldots, N \), define the map \(\gamma_i : T_N \to T_i \) by

\[\gamma_0(t) \equiv t_0; \quad \gamma_i := \pi_{i+1} \pi_{i+2} \ldots \pi_N, \quad 1 \leq i \leq N - 1 \quad \text{and} \quad \gamma_N := \text{identity}.\]

Now for each \(t \in T_N \), we can write

\[|X_t - X_{t_0}| = |X_{\gamma_N(t)} - X_{\gamma_0(t)}| \leq \sum_{i=1}^{N} |X_{\gamma_i(t)} - X_{\gamma_{i-1}(t)}|\]
It thus follows that
\[\max_{t \in T_N} |X_t - X_{t_0}| \leq \sum_{i=1}^{N} \max_{t \in T_i} |X_{\gamma_i(t)} - X_{\gamma_{i-1}(t)}| \]

Also because \(\gamma_{i-1}(t) = \pi_i(\gamma_i(t)) \) for \(t \in T_N \), we can write
\[\max_{t \in T_N} |X_t - X_{t_0}| \leq \sum_{i=1}^{N} \max_{t \in T_i} |X_t - X_{\pi_i(t)}| \] \quad (5)

Now suppose \(b_1, \ldots, b_N \) be nonnegative numbers with \(\sum_{i=1}^{N} b(i) \leq 1 \). From (5), we obtain the following series of upper bounds
\[
\mathbb{P} \left(\max_{t \in T_N} |X_t - X_{t_0}| \geq a \right) \leq \mathbb{P} \left(\sum_{i=1}^{N} \max_{t \in T_i} |X_t - X_{\pi_i(t)}| \geq a \sum_{i=1}^{N} b_i \right) \\
\leq \sum_{i=1}^{N} \mathbb{P} \left(\max_{t \in T_i} |X_t - X_{\pi_i(t)}| \geq a b_i \right) \\
\leq \sum_{i=1}^{N} \sum_{t \in T_i} \mathbb{P} \left(|X_t - X_{\pi_i(t)}| \geq a b_i \right) \\
\leq \sum_{i=1}^{N} \sum_{t \in T_i} 2 \exp \left(-\frac{a^2 b_i^2}{2 \delta_{i-1}^2 (t, \pi_i(t))} \right) \\
\leq 2 \sum_{i=1}^{N} M(\delta_i) \exp \left(-\frac{a^2 b_i^2}{2 \delta_{i-1}^2} \right) \\
\leq 2 \sum_{i=1}^{N} \exp \left(\log M(\delta_i) - \frac{a^2 b_i^2}{2 \delta_{i-1}^2} \right). \quad (6)
\]

Suppose that \(\beta_1, \ldots, \beta_N \) are fixed nonnegative numbers with \(\beta_1 + \cdots + \beta_N \leq 1/2 \) and let
\[b_i = \max \left(\beta_i, \frac{2 \delta_{i-1} \sqrt{\log M(\delta_i)}}{a} \right) \]

We can use this sequence \(b_1, \ldots, b_N \) provided \(\sum_{i=1}^{N} b_i \leq 1 \). Because \(\sum_{i=1}^{N} \beta_i \leq 1/2 \), it is enough to ensure that
\[a \geq 4 \sum_{i=1}^{N} \delta_{i-1} \sqrt{\log M(\delta_i)}. \]
This condition is satisfied if \(a \) is greater than a constant multiple of \(\int \sqrt{\log M(\epsilon)} d\epsilon \) because

\[
\sum_{i=1}^{N} \delta_{i-1} \sqrt{\log M(\delta_i)} = D \sqrt{\log M(D/2)} + \frac{D}{2} \sqrt{\log M(D/4)} + \cdots + \frac{D}{2^{N-1}} \sqrt{\log M(D2^{-N})}
\]

\[
\leq 4 \left[\int_{D/4}^{D/2} \sqrt{\log M(\epsilon)} d\epsilon + \int_{D/8}^{D/4} \sqrt{\log M(\epsilon)} d\epsilon + \cdots + \int_{D2^{-N-1}}^{D2^{-N}} \sqrt{\log M(\epsilon)} d\epsilon \right]
\]

\[
\leq 4 \int_{D2^{-N-1}}^{D2^{-N}} \sqrt{\log M(\epsilon)} d\epsilon.
\]

We have thus shown that for \(a \) satisfying

\[
a \geq 16 \int_{D2^{-N-1}}^{D/2} \sqrt{\log M(\epsilon)} d\epsilon,
\]

we have

\[
P \left(\max_{t \in T} |X_t - X_{t_0}| \geq a \right) \leq 2 \sum_{i=1}^{N} \exp \left(-\frac{a^2 b_i}{2 \delta_{i-1}^2} \right) = 2 \sum_{i=1}^{N} \exp \left(-\frac{2^{2i} a^2 b_i^2}{8D^2} \right)
\]

To convert this into an exponential bound in \(a \), we use the fact that \(b_i \geq \beta_i \) and \(\beta_i \) is an arbitrary nonnegative sequence adding up to \(\leq 1/2 \). We get

\[
P \left(\max_{t \in T} |X_t - X_{t_0}| \geq a \right) \leq 2 \sum_{i=1}^{N} \exp \left(-\frac{2^{2i} a^2 \beta_i^2}{8D^2} \right)
\]

It makes sense to choose \(\beta_i \) in a way that the right hand side above can be summed. Taking \(\beta_i = C 2^{-i} \sqrt{i} \) where \(C \) is chosen so that \(\sum_i \beta_i \leq 1/2 \), we get

\[
P \left(\max_{t \in T} |X_t - X_{t_0}| \geq a \right) \leq 2 \sum_{i=1}^{N} \exp \left(-\frac{2^{2i} a^2 \beta_i^2}{8D^2} \right)
\]

\[
\leq 2 \sum_{i=1}^{\infty} \exp \left(-\frac{C^2 a^2 i}{8D^2} \right)
\]

\[
\leq 2 \exp \left(-\frac{C^2 a^2}{8D^2} \right)
\]

\[
= \frac{2 \exp \left(-\frac{C^2 a^2}{8D^2} \right)}{1 - \exp \left(-\frac{C^2 a^2}{8D^2} \right)}
\]

The denominator is bounded away from 0 because the condition (7) implies that

\[
a \geq 16 \int_{D2^{-N-1}}^{D/2} \sqrt{\log M(\epsilon)} d\epsilon \geq 16 \int_{D/4}^{3D/8} \sqrt{\log M(\epsilon)} d\epsilon \geq 2 \sqrt{\log 2D}.
\]
We have thus shown that for \(a \) satisfying (7), we have the tail bound
\[
P \left(\sup_{t \in T} |X_t - X_{t_0}| \geq a \right) \leq \frac{2}{1 - 2^{-C^2/2}} \exp \left(\frac{-a^2}{CD^2} \right)
\]
for a universal constant \(C \).

3 Special Case

The rest of the stuff in today’s lecture is from Van de Geer’s book.

Fix \(n \geq 1 \) and let \(W_1, \ldots, W_n \) be independent standard normal variables. Let \(\mathcal{X} \) denote a non-empty set and let \(z_1, \ldots, z_n \) be fixed points in \(\mathcal{X} \). Suppose \(\mathcal{G} \) denote a class of real-valued functions on \(\mathcal{X} \). Define the (pseudo)metric \(\rho \) on \(\mathcal{G} \) by
\[
\rho(g, h) := \left(\frac{1}{n} \sum_{i=1}^{n} (g(z_i) - h(z_i))^2 \right)^{1/2}
\]
and let \(D \) denote the diameter of \(\mathcal{G} \) under \(\rho \). For each \(g \in \mathcal{G} \), define the random variable
\[
X_g := \frac{\sum_{i=1}^{n} W_i g(z_i)}{\sqrt{n}}.
\]
For \(g, h \in \mathcal{G} \), it is clear that \(X_g - X_h \) is normally distributed with mean 0 and variance \(\rho^2(g, h) \). We therefore have
\[
P \{ |X_g - X_h| \geq x \} \leq 2 \exp \left(\frac{-x^2}{2\rho^2(g, h)} \right) \quad \text{for } x > 0
\]
We want an upper bound for
\[
P \left(\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \geq a \right).
\]
Note that we are not assuming that \(\mathcal{G} \) is finite. Let \(\mathcal{G}_i \) be a \(\delta_i = D2^{-i} \) be a \(\delta_i \)-cover for \(\mathcal{G} \). From (4), we know how to bound
\[
P \left(\sup_{g \in \mathcal{G}_N} |X_g - X_{g_0}| \geq a \right).
\]
We can use Cauchy-Schwarz inequality to bound \(\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \) in terms of \(\sup_{g \in \mathcal{G}_N} |X_g - X_{g_0}| \). Indeed, fix \(g \in \mathcal{G} \) and let \(h \in \mathcal{G}_N \) be such that \(\rho(g, h) \leq \delta_N \).
Clearly
\[|X_g - X_{g_0}| \leq |X_h - X_{g_0}| + |X_g - X_h| \]
\[\leq |X_h - X_{g_0}| + \frac{1}{\sqrt{n}} \left| \sum_{i=1}^{n} W_i(g(z_i) - h(z_i)) \right| \]
\[\leq |X_h - X_{g_0}| + \rho(g, h) \sqrt{\sum_{i=1}^{n} W_i^2} \]
\[\leq |X_h - X_{g_0}| + \delta N \sqrt{\sum_{i=1}^{n} W_i^2}. \]

It therefore follows that
\[\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \leq \sup_{g \in \mathcal{G}} |X_g - X_{g_0}| + \delta N \sqrt{\sum_{i=1}^{n} W_i^2}. \]

Thus when
\[\frac{1}{n} \sum_{i=1}^{n} W_i^2 \leq \tau^2, \]
we have
\[\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \leq \sup_{g \in \mathcal{G}} |X_g - X_{g_0}| + \delta N \tau \sqrt{n}. \]

As a result,
\[\mathbb{P} \left(\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \geq a, \frac{1}{n} \sum_{i=1}^{n} W_i^2 \leq \tau^2 \right) \leq \mathbb{P} \left(\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \geq a - \delta N \tau \sqrt{n} \right). \]

Dudley’s bound (4) now gives
\[\mathbb{P} \left(\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \geq a, \frac{1}{n} \sum_{i=1}^{n} W_i^2 \leq \tau^2 \right) \leq C \exp \left(-\frac{(a - \delta N \tau \sqrt{n})^2}{C \beta^2} \right) \quad (8) \]
provided
\[a \geq \delta N \tau \sqrt{n} + C \int_{D/2-N-1}^{D/2} \sqrt{\log M(\epsilon, \mathcal{G})} d\epsilon. \]

We now need to choose \(N \). Because we need an upper bound for the right hand side of (8) that decreases exponentially in \(a \), it is reasonable to take \(a \geq 2\delta \tau \sqrt{n} \). Subject to this constraint, it is sensible to take \(N \) as small as possible because then the entropy integral will be small. We thus take
\[N := \min \{ i \geq 1 : a \geq 2\delta_i \tau \sqrt{n} \}. \]
Note here that, by the Cauchy-Schwarz inequality, \(\sup_{g \in G} |X_g - X_{g_0}| \leq D \tau \sqrt{n} \) on the set \{ \(\sum W_i^2 / n \leq \tau^2 \) \}.

For this choice of \(N \), we have \(a \geq 2 \delta_N \tau \sqrt{n} \) and
\[
a < 2 \delta_{N-1} \tau \sqrt{n} = 8D^{-N-1} \tau \sqrt{n}.
\]
Thus
\[
\delta_N \tau \sqrt{n} + C \int_{D^{-2N-1}/2}^{D/2} \sqrt{\log M(\epsilon, \mathcal{G})} d\epsilon \leq \frac{a}{2} + C \int_{a/(8\tau \sqrt{n})}^{D/2} \sqrt{\log M(\epsilon, \mathcal{G})}.
\]
We have thus shown that
\[
P \left(\sup_{g \in \mathcal{G}} |X_g - X_{g_0}| \geq a, \frac{1}{n} \sum_{i=1}^{n} W_i^2 \leq \tau^2 \right) \leq C \exp \left(- \frac{a^2}{CD^2} \right)
\] (9)
provided
\[
a \geq C \int_{a/(8\tau \sqrt{n})}^{D/2} \sqrt{\log M(\epsilon, \mathcal{G})}.
\] (10)
Note the presence of \(a \) in the right hand side of the above inequality as well.

4 Convergence Rates of Least Squares Estimators

Consider the regression model: \(Y_i = g_0(z_i) + W_i \) for \(i = 1, \ldots, n \) where \(Y_1, \ldots, Y_n \) are real-valued observations, \(g_0 \in \mathcal{G} \) is an unknown regression function, \(z_1, \ldots, z_n \) are given covariates in a space \(\mathcal{Z} \) and \(W_1, \ldots, W_n \) are independent standard normal random variables.

A least squares estimator for \(g_0 \) satisfies
\[
\hat{g}_n := \arg\min_{g \in \mathcal{G}} \sum_{i=1}^{n} (Y_i - g(z_i))^2.
\]

We would like to obtain convergence rates for \(\hat{g}_n \) as an estimator for \(g_0 \). The important property of \(\hat{g}_n \) is:
\[
\sum_{i=1}^{n} (Y_i - \hat{g}_n(z_i))^2 \leq \sum_{i=1}^{n} (Y_i - g_0(z_i))^2.
\]

Writing \(Y_i = g_0(z_i) + W_i \) and simplifying, we obtain
\[
\sum_{i=1}^{n} (\hat{g}_n(z_i) - g_0(z_i))^2 \leq 2 \sum_{i=1}^{n} W_i (\hat{g}_n(z_i) - g_0(z_i)).
\] (11)
Under the notation:

\[
(W, \hat{g}_n - g_0)_n := \frac{1}{n} \sum_{i=1}^{n} W_i (\hat{g}_n(z_i) - g_0(z_i)),
\]

we can rewrite (11) as

\[
\rho^2(\hat{g}_n, g_0) \leq 2 \langle W, \hat{g}_n - g_0 \rangle.
\]

This inequality is referred to as the Basic Inequality by Van de Geer.

We now prove an upper bound for

\[
\begin{align*}
\star = \mathbb{P} \left\{ \rho(\hat{g}_n, g_0) > \delta, \frac{1}{n} \sum_{i=1}^{n} W_i^2 \leq \tau^2 \right\} \leq \sum_{s \geq 0} \mathbb{P} \left\{ 2^s \delta < \rho(\hat{g}_n, g_0) \leq 2^{s+1} \delta, ||W||_n \leq \tau \right\}.
\end{align*}
\]

Note that, when \(||W||_n \leq \tau \), the basic inequality (13) implies (via the Cauchy-Schwarz inequality) that

\[
\rho^2(\hat{g}_n, g_0) \leq 2 \langle W, \hat{g}_n - g_0 \rangle_n \leq 2 \|W\|_n \rho(\hat{g}_n, g_0) \leq 2\tau \rho(\hat{g}_n, g_0)
\]
and hence \(\rho(\hat{g}_n, g_0) \leq 2\tau \) whenever \(||W||_n \leq \tau \). It follows that there are only a finite number of terms in the right hand side of (14). In fact, the terms in the sum equal zero when \(2^s \delta > 2\tau \).

By the basic inequality,

\[
\star \leq \sum_{s \geq 0} \mathbb{P} \left\{ (W, \hat{g}_n - g_0)_n > 2^{2s-1} \delta^2, \rho(\hat{g}_n, g_0) \leq 2^{s+1} \delta, ||W||_n \leq \tau \right\}.
\]

For \(\eta > 0 \), if we denote by \(B(g_0, \eta) \) the closed ball \(\{ g \in \mathcal{G} : \rho(g, g_0) \leq \eta \} \), then

\[
\star \leq \sum_{s \geq 0} P_s \text{ where } P_s = \mathbb{P} \left(\sup_{g \in B(g_0, 2^{s+1} \delta)} \sum_{i=1}^{n} W_i (g(z_i) - g_0(z_i)) > n \ 2^{2s-1} \delta^2, ||W||_n \leq \tau \right).
\]

We now apply (9) with \(a = \sqrt{n}2^{2s-1} \delta^2, \mathcal{G} = B(g_0, 2^{s+1} \delta) \) so that \(D = 2^{s+2} \delta \) to obtain

\[
P_s \leq C \exp \left(\frac{-n2^{4s-2} \delta^4}{C2^{2s+4} \delta^2} \right) = C \exp \left(\frac{-n2^{2s} \delta^2}{C} \right)
\]
provided

\[
\sqrt{n}2^{2s} \delta^2 \geq C \int_{2^{2s} \delta^2 / (16\tau)}^{2^{s+1} \delta} \sqrt{\log M(\epsilon, B(g_0, 2^{s+1} \delta))} \, d\epsilon.
\]

(15)
If (15) is satisfied for all \(s \) such that \(2s\delta \leq 2\tau \), then
\[
\star \leq C \sum_s \exp \left(-\frac{n2^{2s}\delta^2}{C} \right). \tag{16}
\]
Let us now give a sufficient condition on \(\delta \) so that (15) is satisfied for all \(s \) such that \(2s\delta \leq 2\tau \). Let the function \(\Psi \) be such that
\[
\Psi(u) \geq \int_{u^2/(2^\delta \tau)}^u \sqrt{\log M(\epsilon, B(g_0, u), \epsilon)} d\epsilon \tag{17}
\]
for \(0 < u \leq 4\tau \) (we may assume that \(\Psi \) is only defined for \(0 < u \leq 4\tau \)). Then, in order to ensure (15), we need \(\delta > 0 \) to be such that \(\sqrt{n}u^2 \geq C\Psi(u) \) for all \(u = 2^{s+1}\delta \leq 4\tau \).

Suppose that we assume that \(\Psi(u)/u^2 \) is decreasing on \((0, 4\tau] \). Then, if \(\sqrt{n}u^2 \geq C\Psi(u) \) holds for \(u = \delta \), then it holds for all \(u = 2^{s+1}\delta \leq 4\tau \). This is because
\[
\frac{\Psi(2^{s+1}\delta)}{2^{s+2}\delta^2} \leq \frac{\Psi(\delta)}{\delta^2} \leq \frac{\sqrt{n}}{C}.
\]
We have thus shown that
\[
P \{ \rho(\hat{g}_n, g_0) > \delta, ||W||_n \leq \tau \} \leq C \sum_s \exp \left(-\frac{n2^{2s}\delta^2}{C} \right) \tag{18}
\]
provided
\[
\sqrt{n}\delta^2 \geq C\Psi(\delta) \tag{19}
\]
where \(\Psi \) is a function defined on \((0, 4\tau] \) such that (17) is true and such that \(\Psi(u)/u^2 \) is decreasing on \((0, 4\tau] \). Finally, suppose that it is also true that \(\sqrt{n}\delta \geq B \) for a constant \(B \), then note that the right hand of the above inequality is bounded from above by a constant times \(\exp(-n\delta^2/C) \).

Example 4.1 (Finite dimensional class). Suppose that the class of functions \(\mathcal{G} \) is finite dimensional with dimension \(d \). Then it is possible to show that
\[
M(B(g_0, u), \epsilon) \leq \left(\frac{Cu}{\epsilon} \right)^d.
\]
Then
\[
\int_{u^2/(2^\delta \tau)}^u \sqrt{\log M(\epsilon, B(g_0, u), \epsilon)} d\epsilon \leq \int_0^u \sqrt{d \log \frac{u}{\epsilon}} d\epsilon \leq u\sqrt{d} \int_1^\infty \frac{\sqrt{\log(Ct)}}{t^2} dt = Cuv\sqrt{d}.
\]
We can thus take \(\Psi(u) = Cu\sqrt{d} \) and then \(\delta = C\sqrt{d/n} \) would satisfy \(\sqrt{n}\delta^2 \geq C\psi(\delta) \). We thus have
\[
P \{ \rho(\hat{g}_n, g_0) > \delta, ||W||_n \leq \tau \} \leq \exp \left(-\frac{n\delta^2}{C} \right),
\]
whenever $\delta \geq C\sqrt{d/n}$. The right hand side does not depend on τ so we may let $\tau \to \infty$ on the left hand. This will lead to the risk bound $\mathbb{E}\rho(\hat{g}_n, g_0) \leq C\sqrt{d/n}$.