1 Covering and Packing Numbers

Let \(T \) be a subset of a metric space \((X, \rho)\). By an \(\epsilon \)-packing subset of \(T \), we mean a finite set \(t_1, \ldots, t_n \) of points in \(T \) for which \(\rho(t_i, t_j) > \epsilon \) whenever \(i \neq j \). The \(\epsilon \)-packing number, \(N(\epsilon, T) \), of \(T \) is defined as the largest \(n \) for which there exists an \(\epsilon \)-packing subset of size \(n \).

By an \(\epsilon \)-cover of \(T \), we mean a finite set of points \(x_1, \ldots, x_m \) in \(X \) for which
\[
\sup_{t \in T} \min_{1 \leq i \leq m} \rho(t, x_i) \leq \epsilon.
\]
The \(\epsilon \)-covering number, \(M(\epsilon, T) \), of \(T \) is defined as the smallest \(m \) for which there exists an \(\epsilon \)-cover of \(T \) of size \(m \).

Lemma 1.1. For every \(\epsilon > 0 \), we have
\[
M(\epsilon, T) \geq N(\epsilon, T) \leq M(\epsilon/2, T).
\]

Proof. If \(n = N(\epsilon, T) \), then there exists a maximal set of points \(t_1, \ldots, t_n \) with \(\rho(t_i, t_j) > \epsilon \). Because of maximality, every other point \(t \in T \) should be within \(\epsilon \) of some \(t_i \) and thus \(t_1, \ldots, t_n \) form an \(\epsilon \)-cover of \(T \) which implies that \(M(\epsilon, T) \leq n = N(\epsilon, T) \).

Conversely, for every \(\epsilon \)-packing subset \(t_1, \ldots, t_n \) of \(T \), the closed balls \(B(t_i, \epsilon/2), i = 1, \ldots, n \) are disjoing and hence every \(\epsilon/2 \)-cover of \(T \) must have one point in each of the balls \(B(t_i, \epsilon/2) \). As a result, an \(\epsilon/2 \)-cover of \(T \) must have at least \(n \) points. This implies that \(M(\epsilon/2, T) \geq N(\epsilon, T) \). \(\square \)

Lemma 1.2 (Volumetric Argument). Let \(T = \mathcal{X} \) denote the ball in \(\mathbb{R}^d \) of radius \(\Gamma \) centered at the origin. Then, under the usual Euclidean metric, we have
\[
M(\epsilon, T) \geq \left(\frac{\Gamma}{\epsilon} \right)^d \quad \text{and} \quad N(\epsilon, T) \leq \left(1 + \frac{2\Gamma}{\epsilon} \right)^d.
\]

Proof. For every \(\epsilon \)-cover of \(T \), the whole set \(T \) is clearly contained in the union of the balls of radius \(\epsilon \) with centers in the cover. Therefore, the volume of \(T \)
must be smaller than the sum of the volumes of these balls. Thus the number of points in the \(\epsilon \)-cover must be at least \((\frac{\Gamma}{\epsilon})^d \). Therefore, \(M(\epsilon, T) \geq (\frac{\Gamma}{\epsilon})^d \).

For every \(\epsilon \)-packing subset of \(T \), the balls of radius \(\epsilon/2 \) with centers in the packing set are all disjoint and their union is contained in the ball of radius \(\Gamma + (\epsilon/2) \) centered at the origin. Consequently, the sum of the volumes of these balls is smaller than the volume of the ball of radius \(\Gamma + (\epsilon/2) \) centered at the origin. Therefore, the number of points in the \(\epsilon \)-packing subset is at most \((1 + (2\Gamma/\epsilon))^d \). Thus \(N(\epsilon, T) \geq (1 + (2\Gamma/\epsilon))^d \). \(\square \)

2 Smooth Functions

2.1 One Dimension

Fix \(\alpha > 0 \). Let \(\beta \) denote the largest integer that is STRICTLY smaller than \(\alpha \). For example, if \(\alpha = 5 \), then \(\beta = 4 \) and if \(\alpha = 5.2 \), then \(\beta = 5 \).

The class \(\mathcal{S}_\alpha \) is defined to consist of functions \(f \) on \([0, 1]\) that satisfy all the following properties:

1. \(f \) is continuous on \([0, 1]\).
2. \(f \) is differentiable \(\beta \) times on \((0, 1)\).
3. \(|f^{(k)}(x)| \leq 1\) for all \(k = 0, \ldots, \beta \) and \(x \in [0, 1] \) where \(f^{(0)}(x) := f(x) \).
4. \(|f^{(\beta)}(x) - f^{(\beta)}(y)| \leq |x - y|^\alpha - \beta \) for all \(x, y \in (0, 1) \).

Let \(\rho \) denote the supremum metric on \(\mathcal{S}_\alpha \) defined by

\[
\rho(f, g) := \sup_{x \in [0, 1]} |f(x) - g(x)| = \sup_{x \in (0, 1)} |f(x) - g(x)|. \tag{1}
\]

Theorem 2.1. There exist positive constants \(\epsilon_0, C_1 \) and \(C_2 \) depending on \(\alpha \) alone such that for all \(0 < \epsilon \leq \epsilon_0 \), we have

\[
M(\epsilon, \mathcal{S}_\alpha) \leq \exp \left(C_1 \epsilon^{-1/\alpha} \right) \quad \text{and} \quad N(\epsilon, \mathcal{S}_\alpha) \geq \exp \left(C_2 \epsilon^{-1/\alpha} \right).
\]

We will use the Taylor’s theorem in the proof. For every \(f \in \mathcal{S}_\alpha \) and \(x, x+h \in (0, 1) \), we can write

\[
f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \cdots + \frac{h^{\beta-1}}{(\beta-1)!} f^{(\beta-1)}(x) + \frac{h^\beta}{\beta!} f^{(\beta)}(y).
\]
Thus if
\[R_f(x, h) := f(x+h) - f(x) - hf'(x) - \frac{h^2}{2!} f''(x) - \cdots - \frac{h^{\beta-1}}{(\beta-1)!} f^{(\beta-1)}(x) - \frac{h^\beta}{\beta!} f^{(\beta)}(x), \]
then
\[|R_f(x, h)| = \frac{h^\beta}{\beta!} |f^{(\beta)}(x) - f^{(\beta)}(y)| \leq \frac{|h|^\alpha}{\beta!}. \]
Thus for every function \(f \) in \(S_\alpha \) and \(x, x + h \in (0, 1) \), we have
\[
f(x + h) = \sum_{k=0}^{\beta} \frac{h^k}{k!} f^{(k)}(x) + R_f(x, h) \quad \text{with } |R_f(x, h)| \leq |h|^\alpha / (\beta!). \quad (2)
\]
Moreover, for every \(f \in S_\alpha \) and \(0 \leq i \leq \beta \), the derivative \(g = f^{(i)} \in S_{\alpha-i} \) and hence using the above, we obtain
\[
f^{(i)}(x + h) = \sum_{k=0}^{\beta-i} \frac{h^k}{k!} f^{(i+k)}(x) + R_{f^{(i)}}(x, h) \quad \text{with } |R_{f^{(i)}}(x, h)| \leq |h|^{\alpha-i} / (\beta!). \quad (3)
\]

Proof of Theorem 2.1. Throughout, \(C(\alpha) \) will be a generic positive constant that depends on \(\alpha \) alone and whose value might be different in different appearances.

Let us first prove the upper bound on \(M(\epsilon, S_\alpha) \). Fix \(\epsilon > 0 \).

Fix \(x \in (0, 1) \). Suppose that two functions \(f \) and \(g \) in \(S_\alpha \) satisfy
\[
|f^{(k)}(x) - g^{(k)}(x)| \leq \epsilon_k \quad \text{for all } k = 0, \ldots, \beta
\]
for some \(\epsilon_0, \ldots, \epsilon_\beta > 0 \). What then is a good upper bound on \(|f(x+h) - g(x+h)| \) for some \(h \) such that \(x + h \in (0, 1) \)? Write
\[
|f(x+h) - g(x+h)| = \left| \sum_{k=0}^\beta \frac{h^k}{k!} \left(f^{(k)}(x) - g^{(k)}(x) \right) + R_f(x, h) - R_g(x, h) \right|
\]
\[
\leq \sum_{k=0}^\beta \frac{|h|^k \epsilon_k}{k!} + 2|h|^{\alpha} / \beta!.
\]
Therefore if \(|h| \leq \epsilon^{1/\alpha} \) and \(\epsilon_k = \epsilon^{1-(k/\alpha)} \), then
\[
|f(x+h) - g(x+h)| \leq \epsilon \left(\sum_{k=0}^\beta \frac{1}{k!} + \frac{2}{\beta!} \right) = C(\alpha) \epsilon
\]
whenever (4) is satisfied and \(|h| \leq \epsilon^{1/\alpha} \).
The upshot is that if we consider a grid of points \(\epsilon^{1/\alpha} \)-apart in \((0, 1)\) and then, at each grid point, cover the \(k \)th derivative of functions in \(S_\alpha \) to within \(\epsilon_k = \epsilon^{1-(k/\alpha)} \), then we would end up with an \(C(\alpha)\epsilon \) cover in the supremum metric for \(S_\alpha \).

Let \(x_1, \ldots, x_s \) be an \(\epsilon^{1/\alpha} \)-grid of points in \((0, 1)\) so that \(s \leq C(\alpha)\epsilon^{-1/\alpha} \). Define, for each \(f_0 \in S_\alpha \),

\[
G(f_0) := \left\{ f \in S_\alpha : \left[\frac{f^{(k)}(x_i)}{\epsilon_k} \right] \leq \left[\frac{f_0^{(k)}(x_i)}{\epsilon_k} \right] \text{ for all } i = 1, \ldots, s \text{ and } k = 0, \ldots, \beta \right\},
\]

where \([x]\) denotes the largest integer that is less than or equal to \(x \). From the above argument, the number of distinct sets \(G(f_0) \) as \(f_0 \) ranges over \(S_\alpha \) is an upper bound on the \(C(\alpha)\)-covering number of \(S_\alpha \). Clearly, \(G(f_0) \) only depends on the numbers \([f_0^{(k)}(x_i)/\epsilon_k] \) for \(i = 1, \ldots, s \) and \(k = 0, \ldots, \beta \) and so the number of distinct sets \(G(f_0) \) is at most the cardinality of

\[
I := \left\{ \left[\frac{f^{(k)}(x_i)}{\epsilon_k} \right], i = 1, \ldots, s \text{ and } k = 0, \ldots, \beta : f \in S_\alpha \right\}.
\]

Let us assume that \(x_1 < \cdots < x_s \). We can start counting from \(x_1 \). What is the number of possible values of the vector \([f^{(k)}(x_1)/\epsilon_k], k = 0, \ldots, \beta \) as \(f \) ranges over \(S_\alpha \)? Since \(|f^{(k)}(x_1)| \leq 1\), clearly this number is bounded from above by:

\[
\frac{1}{\epsilon_0} \frac{1}{\epsilon_1} \cdots \frac{1}{\epsilon_\beta} \leq \left(\frac{1}{\epsilon} \right)^{\beta+1}.
\]

The above number is actually smaller than \(\epsilon^{-\beta-1} \) but this bound is good enough for us. Now we come to \(x_2 \). Given the values of \([f^{(k)}(x_1)/\epsilon_k], k = 0, \ldots, \beta \), what is the number of possible values of the vector \([f^{(k)}(x_2)/\epsilon_k], k = 0, \ldots, \beta \)? Suppose, for each \(0 \leq k \leq \beta \),

\[
A_k := \left[\frac{f^{(k)}(x_1)}{\epsilon_k} \right] \quad \text{so that } A_k\epsilon_k \leq f^{(k)}(x_1) < (A_k + 1)\epsilon_k.
\]

We fix \(0 \leq i \leq \beta \) and use (3) with \(x = x_1, h = x_2 - x_1 \) to get:

\[
\left| f^{(i)}(x_2) - \sum_{k=0}^{\beta-i} \frac{h^k}{k!} f^{(i+k)}(x_1) \right| \leq \frac{|h|^{\alpha-i}}{\beta!}.
\]

As a result

\[
\left| f^{(i)}(x_2) - \sum_{k=0}^{\beta-i} \frac{h^k}{k!} A_{i+k} \right| \leq \left| f^{(i)}(x_2) - \sum_{k=0}^{\beta-i} \frac{h^k}{k!} f^{(i+k)}(x_1) \right| + \sum_{k=0}^{\beta-i} \frac{h^k}{k!} (f^{(i+k)}(x_1) - A_{i+k})
\]

\[
\leq \frac{|h|^{\alpha-i}}{\beta!} + \sum_{k=0}^{\beta-i} \frac{|h|^{k}}{k!} \epsilon_{i+k}.
\]
Because \(x_1, \ldots, x_s \) form a \(\epsilon^{1/\alpha} \)-grid, we have \(|h| = |x_2 - x_1| \leq C(\alpha)\epsilon^{1-\alpha} \). It can then be checked that

\[
|f(i)(x_2) - \sum_{k=0}^{\beta-i} h^k A_{i+k}| \leq C(\alpha) \frac{\epsilon}{\epsilon^{1/\alpha}} = C(\alpha)\epsilon_i.
\]

Thus given the values of \([f^{(k)}(x_1)/\epsilon_k] \) for \(k = 0, \ldots, \beta \), the derivative \(f(i)(x_2) \) takes values in an interval of length at most \(C(\alpha)\epsilon_i \). Therefore, \([f(i)(x_2)/\epsilon_i] \) takes at most a constant, \(C(\alpha) \), number of values.

We have thus proved that given the values of \([f^{(k)}(x_1)/\epsilon_k] \) for \(k = 0, \ldots, \beta \), the number of possible values of \((f^{(k)}(x_2)/\epsilon_k), k = 0, \ldots, \beta\) is at most \(C(\alpha)\epsilon_i \). Therefore, \([f(i)(x_2)/\epsilon_i] \) takes at most a constant, \(C(\alpha) \), number of values.

The exact same conclusion holds if \(x_1 \) and \(x_2 \) are replaced by \(x_j \) and \(x_j+1 \) for any \(1 \leq j \leq s-1 \). Combining this with (6), we obtain that the cardinality of \(I \), defined in (5), is at most

\[
|I| \leq \left(\frac{1}{\epsilon}\right)^{\beta+1} (C(\alpha))^s \leq \left(\frac{1}{\epsilon}\right)^{\beta+1} (C(\alpha))^{C(\alpha)\epsilon^{-1/\alpha}} \leq \exp\left((\beta+1)\log(1/\epsilon) + \epsilon^{-1/\alpha}C(\alpha)\log C(\alpha)\right) \leq \exp\left(C(\alpha)\epsilon^{-1/\alpha}\right).
\]

This completes the proof of \(M(\epsilon,\mathcal{S}_\alpha) \leq \exp(C(\alpha)\epsilon^{-1/\alpha}) \).

We now prove the lower bound on \(N(\epsilon,\mathcal{S}_\alpha) \). There exists a function \(f_0 \) defined on the whole real line \(\mathbb{R} \) such that

1. \(f_0(x) = 0 \) for \(x \notin (0,1) \) and \(f_0(x) > 0 \) for \(x \in (0,1) \).
2. \(f_0 \) restricted to the interval \([0,1]\) lies in \(\mathcal{S}_\alpha \).
3. \(f_0(1/2) = \max_{0 \leq x \leq 1} f_0(x) > 0 \).

For example, one can take \(f_0(x) = ce^{-x/\beta}e^{-1/(1-x)} \) for \(0 < x < 1 \) and \(0 \) outside \((0,1)\) and choose the constant \(c \) so that \(f_0 \in \mathcal{S}_\alpha \). Given such a function, consider points

\[
0 < a_1 < b_1 < a_2 < b_2 < \cdots < a_s < b_s < 1
\]

where \(b_i - a_i = \epsilon^{1/\alpha} \) and \(s \geq C(\alpha)\epsilon^{-1/\alpha} \). For each \(j = 1, \ldots, s \), define

\[
g_i(x) := (b-a)^\alpha f_0 \left(\frac{t-a}{b-a} \right).
\]
It is easy to check that \(g_i \in \mathcal{S}_\alpha \) and \(g_i \) is supported on \((a_i, b_i)\). Now for \(\tau \in \{0,1\}^s \), define the function

\[
u_\tau(x) := \sum_{i=1}^s \tau_i g_i(x).
\]

Once again, it is straightforward to see that \(\nu_\tau \in \mathcal{S}_\alpha \) for each \(\tau \in \{0,1\}^k \). Moreover, if \(\tau, \tau' \in \{0,1\}^s \) with \(\tau_j \neq \tau'_j \), then

\[
\rho(\nu_\tau, \nu_{\tau'}) \geq g_j \left(\frac{a_j + b_j}{2} \right) = (b_j - a_j)\alpha f_0(1/2) \geq f_0(1/2)\epsilon = C(\alpha)\epsilon.
\]

In other words, \(\nu_\tau, \tau \in \{0,1\}^s \) forms a \(C(\alpha)\epsilon \)-packing subset of \(\mathcal{S}_\alpha \) in the metric \(\rho \). This proves \(N(\epsilon, \mathcal{S}_\alpha) \geq \exp(C(\alpha)s) \geq \exp(C_2\epsilon^{-1/\alpha}) \). The proof of Theorem 2.1 is complete.

Distances between functions in \(\mathcal{S}_\alpha \) can also be measured by the \(L_p \) metric as opposed to the supremum metric (the supremum metric is also known as the \(L_\infty \) metric). The \(L_p \) metric is defined by:

\[
\|f - g\|_p := \left(\int_0^1 |f(x) - g(x)|^p \, dx \right)^{1/p} \quad \text{for } p \geq 1.
\]

Because the \(L_p \) metric is less than or equal to the supremum metric, \(\rho \), it follows from Theorem 2.1 that \(M(\epsilon, \mathcal{S}_\alpha, L_p) \leq \exp(C_1\epsilon^{-1/\alpha}) \). In fact, it is also true that \(N(\epsilon, \mathcal{S}_\alpha, L_p) \geq \exp(C_2\epsilon^{-1/\alpha}) \). This can be seen using the Varshamov-Gilbert lemma together with the lower bound construction in the proof of Theorem 2.1.

Recall that the Varshamov-Gilbert lemma states that there exists a subset \(W \) of \(\{0,1\}^s \) with cardinality, \(|W| \geq \exp(s/8) \) and such that the Hamming distance \(\Delta(\tau, \tau') := \sum_{i=1}^s \{ \tau_i \neq \tau'_i \} > s/4 \) for all \(\tau, \tau' \in W \) with \(\tau \neq \tau' \). Consider the finite class of functions \(\nu_\tau, \tau \in W \) where \(\nu_\tau \) are from the proof of Theorem 2.1. By construction, it is easy to see that for every \(\tau, \tau' \in W \) with \(\tau \neq \tau' \), we get

\[
\|\nu_\tau - \nu_{\tau'}\|_p^p = \Delta(\tau, \tau')\|g_1\|_p^p \geq \frac{s}{4}\|g_1\|_p^p
\]

and

\[
\|g_1\|_p^p = \int_{a_1}^{b_1} (b_1 - a_1)^{p \alpha} f_0\left(\frac{t-a_1}{b_1-a_1}\right) \, dt = (b_1 - a_1)^{p \alpha} \int_0^1 f_0^p(x)(b_1-a_1) \, dx = C(\alpha)(b_1-a_1)^{p \alpha+1}.
\]

Thus for \(\tau, \tau' \in W \) with \(\tau \neq \tau' \),

\[
\|\nu_\tau - \nu_{\tau'}\|_p \geq C(\alpha)s(b_1 - a_1)^{p \alpha+1} \geq C(\alpha)\epsilon^{-1/\alpha} \epsilon^{(p \alpha+1)/\alpha} = C(\alpha)\epsilon^p
\]

which implies that \(\|\nu_\tau - \nu_{\tau'}\|_p \geq C(\alpha)\epsilon \) whenever \(\tau, \tau' \in W \) with \(\tau_i \neq \tau'_i \). This proves that \(N(\epsilon, \mathcal{S}_\alpha, L_p) \geq \exp(C_2\epsilon^{-1/\alpha}) \).

6
2.2 Multidimensions

Once again, $\alpha > 0$ and β is the largest integer that is strictly smaller than α.

For a vector $p = (p_1, \ldots, p_d)$ consisting of nonnegative integers p_1, \ldots, p_d, let $< p > := p_1 + \cdots + p_d$. Let

$$D^p := \partial^{< p >} / \partial x_1^{p_1} \cdots \partial x_d^{p_d}$$

and $h^p = h_1^{p_1} h_2^{p_2} \cdots h_d^{p_d}$.

where $h = (h_1, \ldots, h_d)$. We also use $|h|$ for $\sqrt{h_1^2 + \cdots + h_d^2}$.

The class $S_{\alpha,d}$ is defined to consist of all functions f on $[0, 1]^d$ that satisfy:

1. f is continuous on $[0, 1]^d$.
2. All partial derivatives D^p of f exist on $(0, 1)^d$ for $< p > \leq \beta$.
3. $|D^p f(x)| \leq 1$ for all p with $< p > \leq \beta$ and $x \in [0, 1]^d$.
4. $|D^p f(x) - D^p f(y)| \leq |x - y|^\alpha / \beta$ for all p with $< p > = \beta$ and $x, y \in (0, 1)^d$.

Once again, we consider the supremum metric defined by $\rho(f, g) := \sup_{x \in [0, 1]^d} |f(x) - g(x)|$.

Theorem 2.2. There exist positive constants ϵ_0, C_1 and C_2 depending only on α and the dimension d such that for all $0 < \epsilon \leq \epsilon_0$, we have

$$M(\epsilon, S_{\alpha,d}) \leq \exp(C_1 \epsilon^{-d/\alpha})$$

and

$$N(\epsilon, S_{\alpha,d}) \geq \exp(C_2 \epsilon^{-d/\alpha})$$

The analogue of Taylor’s formula (2) is now

$$f(x+h) = \sum_{k=0}^\beta \sum_{p:<p>=k} \frac{h^p D^p f(x)}{k!} + R_f(x, h) \quad \text{with } |R_f(x, h)| \leq |h|^\alpha / \beta!$$

and the analogue of (3) would be

$$D^q f(x+h) = \sum_{k=0}^{\beta-<q>} \sum_{p:<p>=k} \frac{h^p D^{p+q} f(x)}{k!} + R(x, h) \quad \text{with } |R(x, h)| \leq |h|^{\alpha-<q>} / \beta!$$

With these, the proof of Theorem 2.2 would proceed just like the proof of Theorem 2.1.

3 Application to Regression

Considering the problem of estimating a function $f \in S_{\alpha}$ from observations:

$$(x_1, y_1), \ldots, (x_n, y_n)$$

where

$$y_i = f(x_i) + \xi_i \quad i = 1, \ldots, n.$$
We assume that \(x_1, \ldots, x_n \) are independent and uniformly distributed on \([0, 1]\). Also, we assume that \(\xi_1, \ldots, \xi_n \) are independent normal random variables with mean zero and variance one. Finally, we assume that \(\xi_1, \ldots, \xi_n \) and \(x_1, \ldots, x_n \) are independent.

For each \(f \in S_\alpha \), let \(P_f \) denote the distribution of the data \(z := ((x_1, y_1), \ldots, (x_n, y_n)) \) when the true function is \(f \). Clearly, \(P_f \) has the density \(p_f \) on \([0, 1]^n \times \mathbb{R}^n\) given by

\[
p_f(z) := \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(y_i - f(x_i))^2}{2} \right).
\]

Let \(L(f, g) \) denote the loss function (for the moment, assume that it is arbitrary). Let \(F \) be a finite subset of \(S_\alpha \) and consider the estimator:

\[
\hat{f} := \arg\min_{f \in F} \sum_{i=1}^n (y_i - f(x_i))^2.
\]

Here is simple technique for bounding the risk of this estimator. For every \(g \in F \), we have

\[
L(f, \hat{f}) = \log \left(e^{L(f, \hat{f})} \right)
\leq \log \left(e^{L(f, \hat{f})} \frac{p_f(z)}{p_g(z)} \right)
\leq \log \left(\sum_{u \in F} e^{L(f, u)} \sqrt{p_u(z) \frac{p_f(z)}{p_g(z)}} \right)
\leq \log \left(\sum_{u \in F} e^{L(f, u)} \frac{p_u(z)}{p_g(z)} \right) + \frac{1}{2} \log \left(\frac{p_f(z)}{p_g(z)} \right)
\]

Taking expectations on both sides with respect to \(z \sim P_f \), we have

\[
E_f L(f, \hat{f}) \leq E_f \log \left(\sum_{u \in F} e^{L(f, u)} \sqrt{p_u(z) \frac{p_f(z)}{p_g(z)}} \right) + \frac{1}{2} D(P_f || P_g).
\]

Because \(\log \) is concave, we can take the expectation on the right hand side inside the log to obtain:

\[
E_f L(f, \hat{f}) \leq \log \left(\sum_{u \in F} e^{L(f, u)} E_f \sqrt{p_u(z) \frac{p_f(z)}{p_g(z)}} \right) + \frac{1}{2} D(P_f || P_g).
\]

Suppose now that we choose the loss function to be

\[
L(f, u) = -\log E_f \sqrt{p_u(z) \frac{p_f(z)}{p_g(z)}}.
\]
We then get
\[E_f L(f, \hat{f}) \leq \log |F| + \frac{1}{2} D(P_f || P_g). \]
Because \(g \in F \) was arbitrary, we get the risk bound:
\[E_f L(f, \hat{f}) \leq \log |F| + \frac{1}{2} \min_{g \in F} D(P_f || P_g). \]
This further implies (by taking a supremum over \(f \in \mathcal{S}_\alpha \) on both sides)
\[
\sup_{f \in \mathcal{S}_\alpha} E_f L(f, \hat{f}) \leq \log |F| + \frac{1}{2} \sup_{f \in \mathcal{S}_\alpha} \min_{g \in F} D(P_f || P_g). \tag{10}
\]
In this problem, it is easy to see that
\[
\mathbb{E}_f \sqrt{p_f(z) p_u(z)} = \left(\int_0^1 \exp \left(-\frac{(u(x) - f(x))^2}{4} \right) dx \right)^n
\]
and
\[
D(P_f || P_g) = \frac{n}{2} \int_0^1 (f(x) - g(x))^2 dx.
\]
The loss function (9) therefore equals
\[
L(f, u) = -n \log \left(\int_0^1 \exp \left(-\frac{(u(x) - f(x))^2}{4} \right) dx \right).
\]
The bound (10) can now be written as
\[
\sup_{f \in \mathcal{S}_\alpha} -E_f \log \left(\int_0^1 \exp \left(-\frac{(f(x) - \hat{f}(x))^2}{4} \right) dx \right) \leq \frac{\log |F|}{n} + \frac{1}{4} \inf_{f \in \mathcal{S}_\alpha} \sup_{g \in F} \int_0^1 (f(x) - g(x))^2 dx.
\]
If we now fix \(\epsilon > 0 \) and take \(F \) to be an \(\epsilon \)-cover of \(\mathcal{S}_\alpha \) under the \(L_2 \) metric, we get, by Theorem 2.1, that the right hand side is bounded from above by a positive constant multiple of
\[
\frac{1}{n} \epsilon^{-1/\alpha} + \epsilon^2
\]
By taking \(\epsilon = n^{-\alpha/(2\alpha+1)} \), we get that
\[
\inf_{f} \sup_{f \in \mathcal{S}_\alpha} -E_f \log \left(\int_0^1 \exp \left(-\frac{(f(x) - \hat{f}(x))^2}{4} \right) dx \right) \leq C(\alpha)n^{-2\alpha/(2\alpha+1)}.
\]
Because \(-\log x \geq 1 - x \), we get
\[
\inf_{f} \sup_{f \in \mathcal{S}_\alpha} \mathbb{E}_f \left(1 - \int_0^1 \exp \left(-\frac{(f(x) - \hat{f}(x))^2}{4} \right) dx \right) \leq C(\alpha)n^{-2\alpha/(2\alpha+1)}. \tag{11}
\]
Now because both the functions \(f \) and \(\hat{f} \) are in \(\mathcal{S}_\alpha \), they are bounded by 1 and thus for each \(x \in [0, 1] \), we have

\[
\frac{(f(x) - \hat{f}(x))^2}{4} \leq 1.
\]

Because on \([0, 1]\), the convex function \(e^{-t} \) lies below the chord joining the points \((0, 1)\) and \((1, 1/e)\), we get

\[
1 - e^{-t} \geq (1 - 1/e)t \quad \text{for } 0 \leq t \leq 1.
\]

Using (11) and the above for \(t = (f(x) - \hat{f}(x))^2/4 \) we get that

\[
R_{\text{minimax}} := \inf_{\hat{f}} \sup_{f \in \mathcal{S}_\alpha} \mathbb{E}_f \int (f(x) - \hat{f}(x))^2 \, dx \leq C(\alpha) n^{-2\alpha/(2\alpha + 1)}.
\]

(12)

Note that the property of the parameter space \(\mathcal{S}_\alpha \) that was used to derive the above risk bound is the covering number bound given by Theorem 2.1.

Using the lower bound:

\[
R_{\text{minimax}} \geq \sup_{\eta, \epsilon} \frac{\eta}{2} \left(1 - \frac{\log 2 + \log M(\epsilon) + \epsilon^2}{\log N(\eta)} \right)
\]

that we derived previously, one can show that \(R_{\text{minimax}} \geq C(\alpha) n^{-2\alpha/(2\alpha + 1)} \) using only the covering and packing numbers derived in Theorem 2.1.