1 Normal Regression Theory

We assume that $e \sim N_n(0, \sigma^2 I_n)$. Equivalently, e_1, \ldots, e_n are independent normals with mean 0 and variance σ^2. As a result of this assumption, we can calculate the following:

1. **Distribution of Y**: Since $Y = X\beta + e$, we have $Y \sim N_n(X\beta, \sigma^2 I_n)$.

2. **Distribution of $\hat{\beta}$**: $\hat{\beta} = (X^T X)^{-1} X^T Y \sim N_{p+1}(\beta, \sigma^2 (X^T X)^{-1})$.

3. **Distribution of Residuals**: $\hat{e} = (I - H) Y$. We saw that $E\hat{e} = 0$ and $Cov(\hat{e}) = \sigma^2 (I - H)$. Therefore $\hat{e} \sim N_n(0, \sigma^2 (I - H))$.

4. **Independence of residuals and $\hat{\beta}$**: Recall that if $U \sim N_p(\mu, \Sigma)$, then AU and BU are independent if and only if $A\Sigma B^T$.

 This can be used to verify that $\hat{\beta} = (X^T X)^{-1} X^T Y$ and $\hat{e} = (I - H) Y$ are independent. To see this, observe that both are linear functions of $Y \sim N_n(X\beta, \sigma^2 I)$. Thus if $A = (X^T X)^{-1} X^T Y$, $B = (I - H)$ and $\Sigma = \sigma^2 I$, then

 $$A\Sigma B^T = \sigma^2 (X^T X)^{-1} X^T (I - H) = \sigma^2 (X^T X)^{-1} (X^T - X^T H).$$

 Because $X^T H = (HX)^T = X^T$, we conclude that $\hat{\beta}$ and \hat{e} are independent.

 Also check that \hat{Y} and \hat{e} are independent.

5. **Distribution of RSS**: $RSS = \hat{e}^T \hat{e} = Y^T (I - H) Y = e^T (I - H) e$. So

 $$\frac{RSS}{\sigma^2} = \left(\frac{e}{\sigma} \right)^T (I - H) \left(\frac{e}{\sigma} \right).$$

 Because $e/\sigma \sim N_n(0, I)$ and $I - H$ is symmetric and idempotent with rank $n - p - 1$, we have

 $$\frac{RSS}{\sigma^2} \sim \chi^2_{n - p - 1}.$$

2 How to test $H_0 : \beta_j = 0$

The are two equivalent ways of testing this hypothesis.
2.1 First Test: \(t \)-test

It is natural to base the test on the value of \(\hat{\beta}_j \), i.e., reject if \(|\hat{\beta}_j| \) is large. How large? To answer this, we need to look at the distribution of \(\hat{\beta}_j \) under \(H_0 \) (called the null distribution). Under normality of the errors, we have seen that \(\hat{\beta} \sim N_{p+1}(\beta, \sigma^2(X^TX)^{-1}) \). In other words,

\[
\hat{\beta}_j \sim N(\beta_j, \sigma^2 v_j)
\]

where \(v_j \) is the \(j \)th diagonal entry of \((X^TX)^{-1} \). Under the null hypothesis, when \(\beta_j = 0 \), we thus have

\[
\frac{\hat{\beta}_j}{\sigma/\sqrt{v_j}} \sim N(0, 1)
\]

This can be used to construct a test but the problem is that \(\sigma \) is unknown. One therefore replaces it by the estimate \(\hat{\sigma} \) to construct the test statistic:

\[
\frac{\hat{\beta}_j}{s.e(\hat{\beta}_j)} = \frac{\hat{\beta}_j}{\hat{\sigma}/\sqrt{v_j}} = \frac{\hat{\beta}_j/\sqrt{v_j}}{\sqrt{RSS/(n-p-1)\sigma^2}}
\]

Now the numerator here is \(N(0, 1) \). The denominator is \(\sqrt{\chi^2_{n-p-1}/(n-p-1)} \). Moreover, the numerator and the denominator are independent. Therefore, we get

\[
\frac{\hat{\beta}_j}{s.e(\hat{\beta}_j)} \sim t_{n-p-1}
\]

where \(t_{n-p-1} \) denotes the \(t \)-distribution with \(n-p-1 \) degrees of freedom.

The \(p \)-value for testing \(H_0 : \beta_j = 0 \) can be got by

\[
P \left(t_{n-p-1} > \left| \frac{\hat{\beta}_j}{s.e(\hat{\beta}_j)} \right| \right).
\]

Note that when \(n-p-1 \) is large, the \(t \)-distribution is almost the same as a standard normal distribution.

2.2 Second Test: \(F \)-test

We have just seen how to test the hypothesis \(H_0 : \beta_j = 0 \) using the statistic \(\hat{\beta}_j/s.e(\hat{\beta}_j) \) and the \(t \)-distribution.

Here is another natural test for this problem. The null hypothesis \(H_0 \) says that the explanatory variable \(x_j \) can be dropped from the linear model. Let us call this reduced model \(m \).

Also, let us call the original model \(M \) (this is the full model: \(y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i \)).

The following presents another natural test for \(H_0 \). Let the Residual Sum of Squares in the model \(m \) be denoted by \(RSS(m) \) and let the RSS in the full model be \(RSS(M) \). It is always true that \(RSS(M) \leq RSS(m) \). Now if \(RSS(M) \) is much smaller than \(RSS(m) \), it means that the explanatory variable \(x_j \) contributes a lot to the regression and hence cannot be dropped i.e., we reject the null hypothesis \(H_0 \). On the other hand, if \(RSS(M) \) is only a little smaller than \(RSS(m) \), then \(x_j \) does not really contribute a lot in predicting \(y \) and hence can be dropped i.e., we do not reject \(H_0 \).

Therefore one can test \(H_0 \) via the test statistic:

\[
RSS(m) - RSS(M)
\]

2
We would reject the null hypothesis if this is large. How large? To answer this, we need to look at the null distribution of $RSS(m) - RSS(M)$. We show (in the next class) that
\[
\frac{RSS(m) - RSS(M)}{\sigma^2} \sim \chi^2_1
\]
under the null hypothesis. Since we do not know σ^2, we estimate it by
\[
\hat{\sigma}^2 = \frac{RSS(M)}{n - p - 1},
\]
to obtain the test statistic:
\[
\frac{RSS(m) - RSS(M)}{RSS(M)/(n - p - 1)}
\]
The numerator and the denominator are independent (to be shown in the next class). This independende will not hold if the denominator were $RSS(m)/(n - p)$. Thus under the null hypothesis
\[
\frac{RSS(m) - RSS(M)}{RSS(M)/(n - p - 1)} \sim F_{1, n - p - 1}.
\]
p-value can therefore be got by
\[
P \left(F_{1, n - p - 1} > \frac{RSS(m) - RSS(M)}{RSS(M)/(n - p - 1)} \right).
\]

2.3 Equivalence of These Two Tests

It turns out that these two tests for testing $H_0 : \beta_j = 0$ are equivalent in the sense that they give the same p-value. This is because
\[
\left(\frac{\hat{\beta}_j}{s.e(\hat{\beta}_j)} \right)^2 = \frac{RSS(m) - RSS(M)}{RSS(M)/(n - p - 1)}
\]
This is not very difficult to prove but we shall skip its proof.