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1 Lecture One

Time series refers to observations collected sequentially in time. One can have univariate
time series (where a single observation is collected at each point in time) or multivariate
time series (where a bunch of obserations are collected at each point in time). In this class,
we shall denote the observed time series by

y0, y1, . . . , yT .

Here y0 denotes the observed value at the first time point, y1 denotes the observed value
at the second time point etc. Typically the time points where the observations are taken
are uniformly spaced but there do exist situations where the time points are not uniformly
spaced (if the time points are not uniformly spaced, we shall denote them by t0, t1, . . . , tT
and note that the observation yi corresponds to the time ti).

Time series are commonly analyzed through time series models. These models assume first
that the observed time series y0, . . . , yT are a realization of random variables Y0, Y1, . . . , YT ,
and then proceed to describe the joint distribution of Y0, . . . , YT . We shall focus on State
Space Models in this class as these are a general class of time series models with wide
applicability.

1.1 State Space Models

State space models assume that {Yt, 0 ≤ t ≤ T} are noisy measurements of a hidden or
latent Markov process {Xt, 0 ≤ t ≤ T}.

Here {Xt, 0 ≤ t ≤ T} is a Markov process means that the conditional distribution of
Xt given Xt−1 = xt−1, . . . , X0 = x0 is the same as the conditional distribution of Xt given
Xt−1 = xt−1 for every 1 ≤ t ≤ T and x0, x1, . . . , xt. We shall denote the density of X0

by p0(·) and the density of Xt given Xt−1 = xt−1 by pt(xt | xt−1) for t = 1, . . . , T . p0 is
called the initial distribution of the Markov process {Xt} and pt(xt | xt−1) is called the tth

transition density. If the transition densities are the same for all t, we say that {Xt} is a time
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homogeneous Markov process (otherwise, {Xt} is said to be a time inhomogeneous Markov
process). Note that the joint density of X0, . . . , XT equals

p0(x0)p1(x1 | x0) . . . pT (xT | xT−1) = p0(x0)
T∏
t=1

pt(xt | xt−1).

State space models specify that {Xt, 0 ≤ t ≤ T} is a Markov process and, additionally, that
Y0, . . . , YT are independent conditionally on X0, . . . , XT and, moreoever, that the conditional
distribution of Yt given X0 = x0, . . . , XT = xT is the same as the conditional distribuion of Yt
given Xt = xt for each 0 ≤ t ≤ T . We shall denote the conditional density of Yt given Xt = xt
by ft(yt | xt). The conditional joint density of Y0, . . . , YT given X0 = x0, . . . , XT = xT equals

T∏
t=0

ft(yt | xt).

To summarize, state space models specify that the joint distribution X0, Y0, . . . , XT , YT
equals

p0(x0)
T∏
t=1

pt(xt | xt−1)
T∏
t=0

ft(yt | xt). (1)

The random variables X0, . . . XT are known as state variables (or hidden or latent variables)
and Y0, . . . , YT are known as data variables. Observe that the joint density of the data
variables Y0, . . . , YT is given by integrating (1) with respect to x0, . . . , xT :∫

· · ·
∫ [

p0(x0)
T∏
t=1

pt(xt | xt−1)
T∏
t=0

ft(yt | xt)

]
dx0dx1 . . . dxT

State space models can also be referred to as Hidden Markov Models although some authors
use Hidden Markov Models to refer to models where the state variables Xt are discrete
random variables.

1.2 Examples of State Space Models

1.2.1 Direct Examples: Tracking

In tracking problems, the goal is to track the movement of an unknown moving object from
noisy measurements {Yt}. Here the state space model directly arises with the state variable
Xt representing attributes of the moving object (such as position and velocity). To give
a concrete example, consider a body moving in the two-dimensional plane. Suppose we
discretize time to a resolution δ (so that the time points are t0, t1, . . . with tk = kδ).

Denote the position of the object at time tk by (x1k, x2k) (remember we are assuming that
the movement is in the two-dimensional plane). Also let the velocity of the object at time
ti is (x3k, x4k). If the velocity in the time period [tk−1, tk] is assumed to be nearly constant,
we would have

x1k ≈ x1,k−1 + δx3,k−1 and x2k ≈ x2,k−1 + δx4,k−1.

One can assume these equations to be exact (as opposed to approximate) by incorporating
error variables:

x1k = x1,k−1 + δx3,k−1 + q1k and x2k = x2,k−1 + δx4,k−1 + q2k
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Here q1k, q2k denote error variables which can be modeled as i.i.d with a normal distribution.
Further the assumption that the velocity is nearly constant in the time period [tk−1, tk] can
be written as

x3,k ≈ x3,k−1 and x4,k ≈ x4,k−1.

These two equations can also be assumed to be exact by incorporating error variables:

x3k = x3,k−1 + q3k and x4k = x4,k−1 + q4k.

If we therefore let

Xk =


x1k

x2k

x3k

x4k


denote the position and velocities of the unknown object, then Xk satisfies the equation

Xk =


1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

Xk−1 + qk where qk =


q1k

q2k

q3k

q4k


If we assume that qk are i.i.d, then it is easy to check that {Xk} is a Markov process.

The observation Yk here is a noisy measurement of Xk. The exact relationship between Yk
and Xk depends on the nature of the measurements. Suppose that we are obtaining noisy
measurements only of the position of the object. Then

Yk =

(
x1k

x2k

)
+

(
ε1k
ε2k

)
=

(
1 0 0 0
0 1 0 0

)
Xk +

(
ε1k
ε2k

)

Suppose we assume that εk =

(
ε1k
ε2k

)
are i.i.d and also that the two error sequences {εk} and

{qk} are independent. Then this represents a state space model (it turns out that this is a
linear Gaussian state space model as will be clear soon).

In another measurement model, we could only be measuring the angle that the unknown
object makes with the positive x-axis (this is sometimes known as bearings-only tracking).
Here we would have

Yk = arctan

(
x2k

x1k

)
+ εk.

This is again a state-space model (this is a nonlinear state space model).

1.2.2 Trend Estimation

State space models can be used to estimate trend in state space models. Trend in a time
series can be generally understood as a smooth function that tracks well the evolution or
course of the time series. One way of estimating a smooth trend is via the following state
space model. As usual, we let Y0, . . . , YT to be the data random variables. The idea is that
the hidden state variables X0, . . . , XT represent the trend. Because trend is supposed to be
smooth, we assume that

Xt = Xt−1 + ηt with ηk
i.i.d∼ N(0, σ2

η). (2)
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This equation says that Xt is centered around Xt−1 with an error whose size is controlled
by ση. If ση is small, then Xt ≈ Xt−1 representing a smooth trend. Note that (2) clearly
implies that {Xt} is a Markov process.

The data variables Yt are connected to the state variables Xt via

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε ). (3)

This equation captures the intuition that the trend Xt tracks the time series Yt.

The noise parameters ση and σε control the twin objectives of smooth trend and tracking
the data respectively. If ση is small, we would get smoother trends while if σε is small, our
trend estimate will closely track the data. Note however if the observed time series yt is not
very smooth, then both the objectives cannot be simultaneously achieved. In general, one
chooses ση and σε so as to obtain the best fit to the data (we shall see all this later).

The state space model given by the pair of equations (2) and (3) is called the local level
model. It is a common way of estimating trend in time series.

1.3 Recommended Reading for Today

1. Definition of State Space Models: Sections 2.1 and 2.2 of the Chopin-Papaspiliopoulos
book.

2. Tracking application of State Space Models: Section 2.4.1 of the Chopin-Papaspiliopoulos
book, and Section 1.3.2 of the Triantafyllopoulos book.

3. Local level model: Section 2.1 of the Durbin-Koopman book, and Section 1.2 of the
Triantafyllopoulos book.

2 Lecture Two

In the last class, we introduced state space models and looked at two examples (a tracking
model and the local level model). To recap, state space models describe the distribution of
Y0, . . . , YT in terms of a hidden set of random variables X0, . . . , XT . The joint distribution
of X0, Y0, . . . , XT , YT is specified via the joint density:

p0(x0)
T∏
t=1

pt(xt | xt−1)

T∏
t=0

ft(yt | xt). (4)

This means that the density of X0 is p0, the conditional density of Xt given Xt−1 = xt−1 (as
well as given Xt−1 = xt−1, . . . , X0 = x0) equals pt(xt | xt−1) and the conditional density of
Yt given Xt = xt (as well as given Xt = xt, Xs = xs for s 6= t) equals ft(yt | xt).

Specifying the joint distribution via the joint density (4) requires writing down p0(x0),
pt(xt | xt−1) as well as ft(yt | xt). In practice, people specify state space models via equa-
tions involving independent random variables. More precisely, one usually first specifies the
distribution p0 of X0 (this is often a diffuse density such as a normal with a large variance
or a uniform over a large range), and then specify the distribution of Xt via the equation:

Xt = Kt(Xt−1, Ut) for t = 1, 2, . . . (5)
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where {Ut} are independent random variables that are also independent of X0. Finally the
distribution of Yt is specified via

Yt = Ht(Xt, Vt) for t = 0, 1, 2, . . . (6)

where {Vt} are independent random variables that are also independent of {Ut} and X0.
The functions Kt and Ht in (5) and (6) can be completely arbitrary.

Linear Gaussian State Space Models form a special case of state space models (inference
is particularly easy in linear Gaussian State Space Model because of the Kalman filter; as
we shall study in the next few weeks). Specifically, for a linear Gaussian state space model,
X0 is normal, the state evolution equation (5) takes the form

Xt = Ft−1Xt−1 + Ut with Ut
independent∼ N(0, Qt)

and the observation equation (6) takes the form

Yt = HtXt + Vt with Vt
independent∼ N(0, Rt)

Here Ft−1 and Ht are deterministic matrices, and Qt and Rt are covariance matrices. Note
that for the linear Gaussian state space model, each of the densities p0(x0), pt(xt | xt−1) and
ft(yt | xt) are normal with mean being a linear function of the underlying variable and the
covariance being a deterministic matrix.

We shall look at a few additional examples of state space models today.

2.1 Local Level and Local Linear Models

In the last class, we looked at the simple local level model:

X0 ∼ N(m0,Γ0)

Xt = Xt−1 + ηt with ηt
i.i.d∼ N(0, σ2

η)

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε ).

This model has the two parameters σ2
η and σ2

ε (the parameters m0 and Γ0 of X0 are usually
set to be some standard values corresponding to a diffuse distribution such m0 = 0 and
Γ0 = 108). We have seen simulation examples involving smooth trend estimation where this
model does a decent job in recovering the underlying smooth trend function (it does not work
however when the underlying trend function is nonsmooth). But often the trend estimate
provided by this model is somewhat wiggly and we might want to obtain a smoother fit.
This can be achieved by the local linear model given by

X0 ∼ N(m0,Γ0)

Xt −Xt−1 = Xt−1 −Xt−2 + ηt with ηt
i.i.d∼ N(0, σ2

η)

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε ).

The difference between the local level and the local linear models is that the random walk
specification in the local linear model is in terms of the slopes Xt −Xt−1 as opposed to the
levels as in the local level model. This generally leads to smoother fits.
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Note that the local linear model is also a state space model even though {Xt} as defined
by Xt −Xt−1 = Xt−1 −Xt−2 + ηt is not Markov. This is because we can rewrite the model
in terms of the state variable X̃t defined by

X̃t :=

(
Xt

Xt−1

)
.

The equation Xt −Xt−1 = Xt−1 −Xt−2 + ηt is easily seen to be equivalent to

X̃t =

(
2 −1
1 0

)
X̃t−1 +

(
ηt
0

)
which implies that {X̃t} is a Markov process. The observation equation Yt = Xt + εt can be
written in terms of X̃t as

Yt =
(
1 0

)
X̃t + εt.

This shows that the local linear model is also a state space model.

This re-writing of a second order Markov process {Xt} in terms of the Markov process X̃t

is reminiscent of a similar argument in Ordinary Differential Equations. For example, the
second order differential equation

x′′(t) = −ω2x(t)

can be re-written as the first order differential equation(
x′1(t)
x′2(t)

)
=

(
0 1
−ω2 0

)(
x1(t)
x2(t)

)

2.2 Stochastic Volatility Models

Consider the model

Xt = Xt−1 + ηt with ηt
i.i.d∼ N(0, σ2

η)

Yt = exp (Xt/2) εt with εt
i.i.d∼ N(0, σ2

ε ).

Data generated from this model exhibits volatility clustering i.e., the variance remains high
or low for considerable periods of time. This model is useful for finance data (say for log-
returns of stocks) which exhibit volatility clustering. This model is an alternative to volatility
time series models such as ARCH or GARCH (which are somewhat less natural even though
they are widely used). It is easy to check that this is also a state space model (it is not a
linear Gaussian state space model however).

2.3 Dynamic Regression Model

Consider the following model for a response variable Yt and an explanatory variable xt (xt
will be treated as deterministic and non-random in the model below) which are both indexed
by time t = 0, 1, . . . , T . Dynamic regression models (also known as linear regression with
time varying parameters) are of the form:

yt = αt + βtxt + εt with εt
i.i.d∼ N(0, σ2

ε ).

The difference with the usual simple linear regression model is that both the intercept and
the slope coefficients above are allowed to depend on t. In order to make estimation of this
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model feasible, we need further restrictions on {αt} and {βt} (otherwise there are just too
many parameters in the model). One simple restriction is to assume that:

αt = αt−1 + wα,t with wα,t
i.i.d∼ N(0, σ2

α)

βt = βt−1 + wβ,t with wβ,t
i.i.d∼ N(0, σ2

β)

Note that this is an example of a state space model with the state variable:

St =

(
αt
βt

)
which satisfies

St = St−1 +

(
wαt
wβt

)
which implies that the state process is Markov. Further the observation equation can be
written as

Yt =
(
1 xt

)
St + εt.

Dynamic regression models are used in many regression situations where the response and
explanatory variables are collected in time. One example is when yt gives the returns on a
particular stock and xt gives the average returns of the market. Then the dynamic regres-
sion model allows one to study the performance of the stock with respect to the average
performance of the market over the course of time.

2.4 Recommended Reading for Today

1. For a description of linear Gaussian state space models, see Section 2.4 of the Petris-
Petrone-Campagnoli book and Section 3.1 of the Durbin-Koopman book.

2. Local Linear Model: Section 3.2.1 of the Durbin-Koopman book, Section 11.3 of the
Kitagawa book.

3. Stochastic volatility models: page 49 of Petris-Petrone-Campagnoli, Section 2.4.3 of
Chopin-Papaspiliopoulos, Section 1.3.3 of Triantafyllopoulos

4. Dynamic linear regression: Section 3.2.7 of Petris-Petrone-Campagnoli and Section
4.1.5 of Triantafyllopoulos.

3 Lecture Three

We are in the midst of looking at different applications of state space models. Our next step
is to see that ARMA models are special cases of state space models. We shall first consider
the AR(2) model before going to general state space models. Historically, the AR(2) model
was introduced in the context of the sunspots data (see the classical 1927 paper titled “On
a method of investigating periodicities disturbed series, with special reference to Wolfer’s
sunspot numbers” by G. Udny Yule or the 2011 book “The Foundations of Modern Time
Series Analysis” by T.C. Mills). It is often claimed that (see, for example, https://en.

wikipedia.org/wiki/Sunspot) the sunspot number varies according to an approximately
11-year cycle. We can verify this by fitting the simple sinusoidal model:

Yi = µ+ α1 cos(ωti) + α2 sin(ωti) + εi for i = 1, . . . , n (7)
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to the observed data (t1, y1), . . . , (tn, yn). Here ti refers to year i and yi denotes the average
number of sunspots for year ti. In the dataset (obtained from https://wwwbis.sidc.be/

silso/infosnytot), we have data for all years from 1700 to 2019. So we are analyzing the
whole data, we can take n = 320 and t1 = 1700, t2 = 1701, t3 = 1702, . . . , tn = 2019. In
general, it is not necessary to have the observed times ti to be consecutive (i.e., it is okay for
the time series to have some observation gaps).

Today, we shall study the problem of fitting the model (7) and obtaining estimates of the
frequency parameter ω from the sunspots data. Note that, if we believe the 11-year cycle
for the sunspots data, then we would expect the data to give an estimate of ω (in the model
(7)) that is close to 2π/11 = 0.5712. In the next class, we shall see the connection between
the model (7) and AR(2).

For the model (7), we shall assume that

ε1, . . . , εn
i.i.d∼ N(0, σ2)

which is the most standard distributional assumption for errors. The problem then is to
estimate the frequency parameter ω. The other four parameters µ, α1, α2, σ are unknown
but they are not our main focus (these parameters can be termed nuisance parameters). For
principled estimation of ω in the presence of the nuisance parameters µ, α1, α2, σ, we shall
take the Bayesian approach with the following natural prior:

ω, µ, α1, α2, log σ
i.i.d∼ Unif(−C,C)

for a large number C (the exact value of C will not matter in the following calculations). Note
that as σ is always positive, we have made the uniform assumption on log σ (by the change

of variable formula, we would have fσ(x) = flog σ(log x) 1
x = I{−C<log x<C}

2Cx = I{e−C<x<eC}
2Cx .

The posterior for all the unknown parameters ω, µ, α1, α2, log σ is then (below we write
the term “data” for Y1 = y1, . . . , Yn = yn):

fω,µ,α1,α2,σ|data(ω, µ, α1, α2, σ) ∝ fY1,...,Yn|ω,µ,α1,α2,σ(y1, . . . , yn)fω,µ,α1,α2,σ(ω, µ, α1, α2, σ).

The two terms on the right hand side above are

fY1,...,Yn|ω,µ,α1,α2,σ(y1, . . . , yn) ∝
n∏
i=1

fYi|ω,µ,α1,α2,σ(yi)

=
n∏
i=1

fεi|µ,σ,α1,α2,σ(yi − µ− α1 cos(ωti)− α2 sin(ωti))

=
n∏
i=1

1√
2πσ

exp

(
−(yi − µ− α1 cos(ωti)− α2 sin(ωti)

2

2σ2

)

∝ σ−n exp

(
− 1

2σ2

n∑
i=1

(yi − µ− α1 cos(ωti)− α2 sin(ωti)
2

)
,

and

fω,µ,α1,α2,σ(ω, µ, α1, α2, σ) = fω(ω)fµ(µ)fα1(α1)fα2(α2)fσ(σ)

∝ I{−C < ω < C}
2C

I{−C < µ < C}
2C

I{−C < α1 < C}
2C

I{−C < α2 < C}
2C

I{e−C < σ < eC}
2Cσ

∝ 1

σ
I {−C < ω, µ, α1, α2, log σ < C} .
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We thus obtain

fω,µ,α1,α2,σ|data(ω, µ, α1, α2, σ)

∝ σ−n−1 exp

(
− 1

2σ2

n∑
i=1

(yi − µ− α1 cos(ωti)− α2 sin(ωti)
2

)
I {−C < ω, µ, α1, α2, log σ < C} .

To obtain the posterior density of ω, we simply integrate the above with respect to µ, α1, α2, σ.
Thus for every ω ∈ (−C,C),

fω|data(ω) ∝
∫ eC

e−C

∫ C

−C

∫ C

−C

∫ C

−C
σ−n−1 exp

(
−
∑n

i=1(yi − µ− α1 cos(ωti)− α2 sin(ωti)
2

2σ2

)
dµdα1dα2dσ.

When C is large, the above integral is well-approximated by∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

σ−n−1 exp

(
−
∑n

i=1(yi − µ− α1 cos(ωti)− α2 sin(ωti)
2

2σ2

)
dµdα1dα2dσ.

(8)

This integral can be evaluated exactly. The calculation is easiest done using matrix notation.
Let

Y =


y1

·
·
·
yn

 and X =


1 cos(ωt1) sin(ωt1)
· · ·
· · ·
· · ·
1 cos(ωtn) sin(ωtn)

 and β =

 µ
α1

α2

 .

With this notation,

n∑
i=1

(yi − µ− α1 cos(ωti)− α2 sin(ωti)
2 = ‖Y −Xβ‖2.

so that (8) is the same as∫ ∞
0

σ−n−1

∫
R3

exp

(
−‖Y −Xβ‖

2

2σ2

)
dβdσ (9)

Now if β̂ is the least squares estimator:

β̂ := argmin
β

‖Y −Xβ‖2,

then

‖Y −Xβ‖2 = ‖Y −Xβ̂‖2 + ‖Xβ −Xβ̂‖2 = ‖Y −Xβ̂‖2 +
(
β − β̂

)T
XTX

(
β − β̂

)
.

The integral (9) then becomes∫ ∞
0

∫
R3

σ−n−1 exp

(
−‖Y −Xβ̂‖

2

2σ2

)
exp

(
−(β − β̂)X ′X(β − β̂)

2σ2

)
dβdσ

=

∫ ∞
0

σ−n−1 exp

(
−‖Y −Xβ̂‖

2

2σ2

)∫
R3

exp

(
−(β − β̂)X ′X(β − β̂)

2σ2

)
dβdσ.
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We shall now use the formula:∫
Rp

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx1 . . . dxp = (2π)p/2

√
det(Σ)

where Σ is a p× p positive definite matrix and the integral is over x = (x1, . . . , xp). This is
basically the formula for the normalizing constant for the multivariate normal distribution
which we shall study next week.

This formula with p = 3 and Σ−1 = X ′X/(σ2) (or equivalently Σ = σ2(X ′X)−1) gives∫
R3

exp

(
−(β − β̂)TXTX(β − β̂)

2σ2

)
dβ = (2π)p/2

√
det (σ2(X ′X)−1) = (2π)p/2σp

(
det(X ′X)

)−1/2
.

The integral (8) thus equals

(2π)p/2(det(X ′X))−1/2

∫ ∞
0

σ−n+p−1 exp

(
−‖Y −Xβ̂‖

2

2σ2

)
dσ.

The change of variable

t =
σ

‖Y −Xβ̂‖

then gives

(2π)p/2(det(X ′X))−1/2

∫ ∞
0

σ−n+p−1 exp

(
−‖Y −Xβ̂‖

2

2σ2

)
dσ

= (2π)p/2(det(X ′X))−1/2‖Y −Xβ̂‖−n+p

∫ ∞
0

t−n+p−1 exp

(
− 1

2t2

)
dt

∝ (det(X ′X))−1/2‖Y −Xβ̂‖−n+p.

Putting everything together, we have proved that

fω|data(ω) ∝ (det(X ′X))−1/2‖Y −Xβ̂‖−n+p.

Note that the right hand side depends crucially on ω because X depends on ω. Also β̂
depends on X as β̂ = (X ′X)−1X ′Y . To make this explicit, let us write X(ω) for X and
β̂(ω) for β̂:

fY1,...,Yn|ω(y1, . . . , yn) ∝
(
det(X(ω)′X(ω))

)−1/2 ‖Y −X(ω)β̂(ω)‖−(n−p). (10)

This function of ω can be plotted on the computer (and normalized so the density integrates
to one). Note that p = 3. This allows inference on ω based on the data.

3.1 Connection to the Periodogram

It turns out the Bayesian posterior (10) can be related to the periodogram which is a standard
object in time series analysis. The periodogram corresponding to the time series data (ti, yi)
is defined as

I(ω) :=
1

n

∑
j

yj cos(ωtj)

2

+

∑
j

yj sin(ωtj)

2 . (11)
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This is a function of ω ∈ R. Usually, the periodogram is computed for uniformly spaced data
(where the time points tj can be taken to be consecutive integers such as 0, . . . , n − 1) and
when ω is of the form 2πk

n for some integer k ∈ {1, . . . , n− 1}. These values of ω are known
as Fourier Frequencies. Observe that I(ω) can also be written as

I(ω) =
1

n

∣∣∣∣∣∣
∑
j

yje
iωtj

∣∣∣∣∣∣
2

where i =
√
−1, eiωtj is the complex number cos(ωtj) + i sin(ωtj) and |z| for a complex

number z denotes its modulus. The complex number

b(ω) :=
∑
j

yje
iωtj

is termed the Discrete Fourier Transform of the data when tj = j − 1 and ω ranges over the
Fourier frequencies. Thus, the periodogram is basically the squared modulus of the DFT
(scaled by n).

It is a standard procedure to look at the periodogram of an observed time series in order to
determine periodic components present in the data. It turns out that the Bayesian posterior
(10) is related to the periodogram as we shall argue below. To see this, first note that the
posterior (10) is described in terms of the matrix X(ω). For this matrix, it is easy to see
that

X ′(ω)X(ω) =

 n
∑n

j=1 cos(ωtj)
∑n

j=1 sin(ωtj)∑n
j=1 cos(ωtj)

∑n
j=1 cos2(ωtj)

∑n
j=1 cos(ωtj) sin(ωtj)∑n

j=1 sin(ωtj)
∑n

j=1 cos(ωtj) sin(ωtj)
∑n

j=1 sin2(ωtj).


Quite often, this X ′(ω)X(ω) matrix can be well-approximated as

n

 1 1
n

∑n
j=1 cos(ωtj)

1
n

∑n
j=1 sin(ωtj)

1
n

∑n
j=1 cos(ωtj)

1
n

∑n
j=1 cos2(ωtj)

1
n

∑n
j=1 cos(ωtj) sin(ωtj)

1
n

∑n
j=1 sin(ωtj)

1
n

∑n
j=1 cos(ωtj) sin(ωtj)

1
n

∑n
j=1 sin2(ωtj).

 = n

1 0 0
0 1/2 0
0 0 1/2


To see this, consider the case where the time points are consecutive in which case we take
tj = j − 1. Then for a wide range of ω, we will argue that

1

n

n∑
j=1

cos(ωtj) ≈ 0
1

n

n∑
j=1

sin(ωtj) ≈ 0

1

n

n∑
j=1

cos2(ωtj) ≈
1

2

1

n

n∑
j=1

sin2(ωtj) ≈
1

2

1

n

n∑
j=1

cos(ωtj) sin(ωtj) ≈ 0

Let me provide the argument for one of the above assertions. The argument for the others
is similar. We shall consider the assertion

1

n

n∑
j=1

cos2(ωtj) ≈
1

2
. (12)
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To see this, write

1

n

n∑
j=1

cos2(ωtj) =
1

n

n∑
j=1

1 + cos(2ωtj)

2

=
1

2
+

1

2n

n∑
j=1

cos(2ωtj) =
1

2
+

1

4n

n∑
j=1

e2iωtj +
1

4n

n∑
j=1

e−2iωtj

The sums above can be evaluated explicitly under the assumption that the times are uni-
formly spaced tj = j − 1:

n∑
j=1

e2iωtj =
n∑
j=1

e2iω(j−1) =
n∑
j=1

(e2iω)j−1 =
e2iωn − 1

e2iω − 1
,

and similarly

n∑
j=1

e−2iωtj =
e−2iωn − 1

e−2iω − 1
.

Now if ω is a Fourier frequency of the form ω = 2πk/n, then e±2iωn = e±4iπk = cos(4πk)±
i sin(4πk) = 1 so the above displayed sums are zero leading to (12). If ω is not a Fourier
frequency, we can write∣∣∣∣∣∣ 1

4n

n∑
j=1

e2iωtj

∣∣∣∣∣∣ =

∣∣∣∣ 1

4n

e2iωn − 1

e2iω − 1

∣∣∣∣ ≤ 1

2n|e2iω − 1|

because |e2iωn − 1| ≤ |e2iωn| + 1 ≤ 2. We can thus ignore this term if n|e2iω − 1| is large.
Similarly the term

1

4n

n∑
j=1

e−2iωtj

can be ignored if n|e−2iω − 1| is large. The assertion (12) is therefore justified if n|e±2iω − 1|
is large (which will often be the case unless ω is too close to zero).

In the rest of this section, we shall assume that

X ′(ω)X(ω) ≈

n 0 0
0 n/2 0
0 0 n/2


Under this condition, the integral (9) can be evaluated in the following alternative way. We
start with

‖Y −Xβ‖2 = Y ′Y − 2Y ′Xβ + β′X ′Xβ

=
∑
i

y2
i − 2

n∑
i=1

yi(µ+ α1 cos(ωti) + α− 2 sin(ωti)) + nµ2 +
n

2
α2

1 +
n

2
α2

2

=
∑
i

y2
i − 2µ

∑
i

yi + nµ2 − 2α1

∑
i

yi cos(ωti) +
n

2
α2

1 − 2α2

∑
i

yi sin(ωti) +
n

2
α2

2
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Thus the inner integral over R3 in (9) can be broken down into 3 one dimensional integrals
(as opposed to one three-dimensional integral) as∫

R3

exp

(
−‖Y −Xβ‖

2

2σ2

)
dβ

= exp

(
−
∑

i y
2
i

2σ2

)[∫
exp

(
µ
∑

i yi
σ2

− nµ2

2σ2

)
dµ

] [∫
exp

(
α1
∑

i yi cos(ωti)

σ2
− nα2

1

4σ2

)
dα1

]
[∫

exp

(
α2
∑

i yi sin(ωti)

σ2
− nα2

2

4σ2

)
dα2

]
can be evaluated in the following alternative way. Each of the above three integrals can be
evaluated explicitly using the one-dimensional integration formula:∫ ∞

−∞
exp

(
xC1 −

C2

2
x2

)
dx =

√
2π

C2
exp

(
C2

1

2C2

)
.

We thus deduce∫
R3

exp

(
−‖Y −Xβ‖

2

2σ2

)
dβ

∝ exp

(
−
∑

i y
2
i

2σ2

)
σ3 exp

(
(
∑

i yi)
2

2nσ2

)
exp

(
(
∑

i yi cos(ωti))
2

2σ2

)
exp

(
(
∑

i yi sin(ωti))
2

2σ2

)
.

Finally the integration over σ can be done as before to obtain

fω|data(ω) ∝

∑i y
2
i

2
−

(
∑

i yi)
2

2n
− 1

n

(∑
i

yi cos(ωti)

)2

− 1

n

(∑
i

yi sin(ωti)

)2
−(n−p)/2

=

∑i(yi − ȳ)2

2
− 1

n

(∑
i

yi cos(ωti)

)2

− 1

n

(∑
i

yi sin(ωti)

)2
−(n−p)/2

Using the periodogram formula (11), we can write the above as

fω|data(ω) ∝
[∑

i(yi − ȳ)2

2
− I(ω)

]−(n−p)/2

∝
[
1− 2I(ω)∑n

i=1(yi − ȳ)2

]−(n−p)/2
.

Thus the Bayesian posterior for ω is essentially a function of the periodogram (and the
sample variance of the data). But it is important to note that it is a very specific function
which can look quite different from the raw periodogram. For example, for the sunspots
dataset, the periodogram has several peaks but the Bayesian posterior is typically quite
strongly concentrated. Thus if we are trying to find a single frequency in a time series
dataset, the Bayesian posterior will provide that information much more precisely compared
to the periodogram.

3.2 Recommended Reading for Today

1. The Bayesian analysis of the model (7) is taken from the book Bayesian spectrum
analysis and parameter estimation by Larry Bretthorst (available freely online). You
can read Chapters 1 and 2 of that book.
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2. The periodogram is a standard object in time series analysis and it can be found
in many books; see for example Chapter 4 of the book Time series analysis and its
applications by Shumway and Stoffer (note that some authors use slightly different
scaling factors while defining the periodogram).

4 Lecture Four

In the last class, we studied the model

Yi = µ+ α1 cos(ωti) + α2 sin(ωti) + εi for i = 1, . . . , n (13)

for the sunspots dataset. We used a Bayesian method to infer the frequency parameter ω
(which is the main parameter of interest) and this led to an estimated period of close to 11
(which is often cited as the period of the solar cycle). Note however that (13) is not ideal
for the sunspots dataset for at least two reasons: (a) the fit to the data is not very good
(some of the oscillations have a much higher amplitude than that explained by the single
sinusoid), (b) data generated from the model (13) look much more “noisy” compared to the
actual sunspots data. Starting with these observations, Yule (1927) proposed an alternative
model that is also based on a single sinuosoid. This is the topic of this lecture.

Yule started with the following basic observation. Let st denote the sinusoid:

st = µ+ α1 cos(ωt) + α2 sin(ωt) (14)

The same sinusoid can be understood as the solution to a specific difference equation. To
derive the difference equation, let us first note that, in continuous time, s(t) satisfies

s′′(t) = −ω2 (α1 cos(ωt) + α2 sin(ωt)) = −ω2 (s(t)− µ) . (15)

In discrete time (where t ∈ {. . . ,−2,−1, 0, 1, 2, . . . }), the sequence (14) satisfies the following
difference equation that is analogous to (15):

st+2 − 2st+1 + st = 2(cosω − 1) (st+1 − µ) . (16)

To see this, note that

st+2 − 2st+1 + st

= α1 (cos(ω(t+ 2))− 2 cos(ω(t+ 1)) + cos(ωt)) + α2 (sin(ω(t+ 2))− 2 sin(ω(t+ 1)) + sin(ωt))

Writing A = ω(t+ 1) and B = ω, we get

cos(ω(t+ 2))− 2 cos(ω(t+ 1)) + cos(ωt) = cos(A+B)− 2 cosA+ cos(A−B)

= 2 cosA(cosB − 1)

= 2(cosω − 1) cos(w(t+ 1))

and similarly

sin(ω(t+ 2))− 2 sin(ω(t+ 1)) + sin(ωt) = 2(cosω − 1) sin(ω(t+ 1))

This proves

st+2 − 2st+1 + st = 2(cosω − 1) (α1 cos(ω(t+ 1)) + α2 sin(ω(t+ 1))) = 2(cosω − 1)(st+1 − µ)

and this proves (16).
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The converse is also true in the sense that every solution {st} to the difference equation
(16) say, for t = 0, 1, 2, . . . , with given values of s0 and s1 (initial conditions) is of the form
(14) for some α1 and α2. To see this, let gt = st − µ and note that {gt} satisfies

gt+2 − 2gt+1 + gt = 2(cosω − 1)gt+1.

We find α1 and α2 such that

ht := α1 cos(ωt) + α2 sin(ωt)

matches gt for t = 0, 1. Now if gt = ht and gt+1 = ht+1, then

gt+2 = (2 cosω)gt+1 − gt
= (2 cosω) (α1 cos(ω(t+ 1)) + α2 sin(ω(t+ 1)))− (α1 cos(ωt) + α2 sin(ωt))

= α1 (2 cosω cos(ω(t+ 1))− cos(ωt)) + α2 (2 cosω sin(ω(t+ 1))− sin(ωt))

= α1

(
cos(ωt)

(
2 cos2 ω − 1

)
− sin(ωt)2 sinω cosω

)
+ α2

(
sin(ωt)

(
2 cos2 ω − 1

)
+ cos(ωt)2 sinω cosω

)
= α1 (cos(ωt) cos(2ω)− sin(ωt) sin(2ω)) + α2 (sin(ωt) cos(2ω) + cos(ωt) sin(2ω))

= α1 cos(ω(t+ 2)) + α2 sin(ω(t+ 2)) = ht+2.

Using this for t = 0, 1, 2, . . . proves that (14) is the unique solution to (16).

To summarize, an alternative way of describing a sinusoid of frequency ω is via the differ-
ence equation (16) which is equivalent to

st+2 = (2 cosω)st+1 − st + 2(1− cosω)µ.

Based on this equation, Yule proposed the model:

Yt+2 = θYt+1 − Yt + c+ Zt+2 (17)

with two parameters θ and c (and the additional noise parameter σ in Zt+2
i.i.d∼ N(0, σ2)).

Note that this is also a single sinusoid plus noise model but now the noise is in a different
place. To better understand the difference between (17) and the earlier model:

Yt = µ+ α1 cos(ωt) + α2 sin(ωt) + εt, (18)

consider the following physical situation where sinusoids naturally arise (see e.g., page 2 of
the Fourier Analysis book by Stein and Shakarchi). Consider a mass m that is attached to a
horizontal spring, which itself is attached to fixed wall, and assume that the system lies on a
frictionless surface. Choose an axis whose origin coincides with the center of the mass when
the spring is neither compressed or stretched. When the spring is compressed or stretched
and released, the mass undergoes simple harmonic motion.

Let y(t) denote the displacement of the mass at time t. Hooke’s law says that the force
exerted by the spring on the mass is given by F = −κy(t) where κ > 0 is the spring constant.
By Newton’s law (note that the acceleration is given by y′′(t)), we have

−κy(t) = my′′(t)

This is same as

y′′(t) = −ω2y(t) where ω :=

√
k

m
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whose general solution is the sinusoid α1 cos(ωt) +α2 sin(ωt). In the context of this physical
situation, the two different sinusoid plus models ((18) and (17)) can be understood as follows.
We are taking measurements of the displacement Yt at various times t.

Model (18): Here our measurements are noisy and every measurement is corrupted by
an unknown noise which we are terming εt and modeling as N(0, σ2).

Model (17): Here there is no measurement error and our measurement mechanism is
perfect. However the actual oscillation of the mass is not perfectly sinusoidal and is affected
by noise. For example, imagine, as Yule put it, that some kids are randomly throwing stones
at the mass (sometimes from the left and sometimes from the right) while it is oscillating.

It is very interesting to note that observations generated from Model (17) are much
smoother compared to observations generated from Model (18). Yule used this to argue
that (17) is a better model for the sunspots data compared to (18).

It is natural to wonder if it makes sense to incorporate both kinds of errors simultaneously
(measurement errors and errors affecting the oscillation). This leads to the model:

Xt = θXt−1 −Xt−2 + c+ Zt

Yt = Xt + εt

This is a state space model if we take the state variable to be

X̃t =

(
Xt

Xt−1

)
because the state evolution

X̃t+1 =

(
c
0

)
+

(
θ −1
1 0

)
+

(
Zt
0

)
is Markov, and the observations are

Yt =
(
1 0

)
X̃t + εt.

4.1 The Autoregressive Model

Yule (1927) also fit models to the sunspots dataset that are more complicated compared to
(17) and introduced the Autoregressive Model (of order 2) in this process. The AR(2) model
is given by

Yt+2 = φ1Yt+1 + φ2Yt + c+ Zt+2 (19)

Note that (17) can be seen as a simpler version of the above model where the φ2 parameter
is set to the value −1. We can fit this model to the observed sunspots data y1, . . . , yT to
obtain parameter estimates ĉ, φ̂1, φ̂2 and σ̂ of the model parameters. Using the fitted model,
future values can be predicted by recursing the equation:

Yt = ĉ+ φ̂1Yt−1 + φ̂2Yt−2 for t = T + 1, T + 2, . . .

with YT and YT−1 set to the observed values yT and yT−1 respectively. For the sunspots
data, these predictions follow a damped sinusoid. Indeed, fitting the AR(2) model to the
sunspots data for the time period 1700− 1969 led to the model:

Yt+2 = 23.92 + 1.38Yt+1 − 0.69Yt + Zt+2
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which gives the prediction equation:

Yt = 23.92 + 1.38Yt−1 − 0.69Yt−2

for the future values of sunspot numbers from 1970 onwards. This equation can also be
written as

Yt − 77.16 = 1.38 (Yt−1 − 77.16)− 0.69 (Yt−2 − 77.16)

Thus the predictions for Ut := Yt − 77.16 are given by recursing the equation:

Ut = 1.38Ut−1 − 0.69Ut−2 (20)

for t = T +1, T +2, . . . (note that UT−1 and UT are observed from the data). It follows from
the following fact that the general solution of (20) is of the form:

c1 (1.2)−t cos (0.59t+ c2)

for two constants c1 and c2. The above is clearly a damped sinusoid (the sinusoid cos (0.59t+ c2)
is damped by the factor (1.2)−t).

Fact 4.1. Consider the difference equation

Ut = φ1Ut−1 + φ2Ut−2 for t ∈ {k + 1, . . . }. (21)

with initial conditions Uk−1 = α and Uk = β. Suppose that the quadratic polynomial

1− φ1z − φ2z
2

has complex roots z1 and z2. As φ1 and φ2 are real, z1 and z2 must be complex conjugates
of each other so they can be written as reiθ and re−iθ for some r > 0 and θ ∈ R (here
i =
√
−1). Then the solution to (21) is of the form:

Ut = c1r
−t cos (θt+ c2) for t = k + 1, k + 2, . . . (22)

for some constants c1 and c2.

Proof. Let Ht = c1r
−t cos (θt+ c2). We find c1 and c2 such that Ht = Ut for t = k − 1 and

t = k. Then observe that

Ht = c1r
−t cos(θt+ c2)

= 2c1r
−t
(
eiθteic2 + e−iθte−ic2

)
= 2c1e

ic2(re−iθ)−t + 2c2e
−ic2(reiθ)−t

= 2c1e
ic2z−t1 + 2c1e

−ic2z−t2 .

This gives

Ht − φ1Ht−1 − φ2Ht−2 = 2c1e
ic2
(
z−t1 − φ1z

−t+1
1 − φ2z

−t+2
1

)
+ 2c1e

−ic2 (z−t2 − φ1z
−t+1
2 − φ2z

−t+2
2

)
= 2c1e

ic2z−t1

(
1− φ1z1 − φ2z

2
1

)
+ 2c1e

−ic2z−t2

(
1− φ1z2 − φ2z

2
2

)
= 0

because 1 − φ1z1 − φ2z
2
1 = 1 − φ1z2 − φ2z

2
2 = 0 as z1 and z2 are roots of the polynomial

1−φ1z−φ2z
2. Thus Ht satisfies the given difference equation and it matches Ut for t = k−1, k

which implies that it matches Ut for all t ≥ k + 1.
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4.2 Recommended Reading for Today

1. A very nice account of Yule’s influential 1927 paper is Chapter 6 of the 2011 book “The
Foundations of Modern Time Series Analysis” by T. C. Mills. (available for free from
the library website).

2. Section 3.4 of the Durbin-Koopman book writes ARMA and ARIMA models in state
space form.

5 Lecture Five

We start today with the problem of fitting state space models to observed time series data.
This is the main topic of the class. We shall denote the observed time series data by
y0, y1, . . . , yT (note that the number of observations is T + 1). We shall assume that the
observations are realizations of random variables Y0, Y1, . . . , YT . State space models describe
the distribution of Y0, . . . , YT in terms of a hidden set of state random variables X0, . . . , XT .
The joint density of X0, . . . , XT , Y0, . . . , YT is given by

fX0(x0)

T∏
t=1

fXt|Xt−1=xt−1
(xt)

T∏
t=0

fYt|Xt=xt(yt).

As we have seen previously, this means that X0, . . . , XT is Markov, and also that Y0, . . . , YT
are independent conditional on X0 = x0, . . . , XT = xT with

Yt | X0 = x0, . . . , XT = xT
d
= Yt | Xt = xt.

Often, in actual specifications of state space models, the description of the conditional den-
sities fX0 , fXt|Xt−1

, fYt|Xt depends on additional unknown parameters θ (for example, in the
local level model, θ = (σ2

η, σ
2
ε ) where σ2

η and σ2
ε are the state and observation error variances).

We shall follow the full Bayesian approach in the treatment of these nuisance parameters
θ. Specifically, we shall assume that they are random and employ a (usually diffuse) prior
density fθ(·). From now on, we shall explicitly acknowledge that fX0 , fXt|Xt−1

, fYt|Xt depend
on θ by using the notation:

fX0|θ, fXt|Xt−1,θ, fYt|Xt,θ.

Our main goal is to fit the state space model to the observed data y0, . . . , yT . Fitting a
model in the Bayesian context means computing the conditional distribution of the unknown
parameters of the model given the observed data Y0 = y0, . . . , YT = yT . For the state space
model, the unknown parameters are X0, . . . , XT as well as θ. The conditional distribution
of X0, . . . , XT , θ given the observed data Y0 = y0, . . . , YT = yT equals

fX0,...,XT ,θ|Y0=y0,...,YT=yt(x0, . . . , xt, θ)

∝ fX0,...,XT ,Y0,...,YT ,θ(x0, . . . , xT , y0, . . . , yT , θ)

= fX0,...,XT ,Y0,...,YT |θ(x0, . . . , xT , y0, . . . , yT )fθ(θ)

= fX0|θ(x0)
T∏
t=1

fXt|Xt−1=xt−1,θ(xt)
T∏
t=0

fYt|Xt=xt,θ(yt)fθ(θ).

With the normalizing constant,

fX0,...,XT ,θ|Y0=y0,...,YT=yt(x0, . . . , xt, θ)

=
fX0|θ(x0)

∏T
t=1 fXt|Xt−1=xt−1,θ(xt)

∏T
t=0 fYt|Xt=xt,θ(yt)fθ(θ)∫

· · ·
∫ ∫

fX0|θ(x0)
∏T
t=1 fXt|Xt−1=xt−1,θ(xt)

∏T
t=0 fYt|Xt=xt,θ(yt)fθ(θ)dx0 . . . dxTdθ

(23)
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This is a high-dimensional density which, in principle, answers any inferential question about
the unknown parameters X0, . . . , XT , θ based on the data Y0 = y0, . . . , YT = yT . In practice,
the quantities of main interest would be the conditional densities of each individual state
conditioned on the data Y0 = y0, . . . , YT = yT :

Xt | Y0 = y0, . . . , YT = yT for t = 0, 1, . . . , T .

In principle it is possible to deduce

fXt|Y0=y0,...,YT=yT (xt) (24)

from the full posterior (23). But a naive way of doing this would involve high dimensional
integration that would not be computationally feasible. We shall study principled compu-
tationally feasible algorithms for obtaining (24) for t = 0, . . . , T . I will give a high level
overview of the main ideas in this class and we shall study full details in the coming classes.
The first step is to write (24) as

fXt|Y0=y0,...,YT=yT (xt) =

∫
fXt|Y0=y0,...,YT=yT ,θ(xt)fθ|Y0=y0,...,YT=yT (θ)dθ.

This implies that the task of calculating (24) can be broken down into the following two
subtasks:

1. Calculate fXt|Y0=y0,...,YT=yT ,θ(xt). This is the conditional density of Xt given the entire
data as well as θ.

2. Calculate fθ|Y0=y0,...,YT=yT (θ). This is the conditional density of θ given the entire data.
This can be done via calculating the likelihood fY0,...,YT |θ(y0, . . . , yT ) because, by Bayes
rule,

fθ|Y0=y0,...,YT=yT (θ) ∝ fY0,...,YT |θ(y0, . . . , yT )fθ(θ)

It is convenient here to introduce some standard terminology. The conditional distributions:

Xt | Y0 = y0, . . . , YT = yT , θ for t = 0, 1, . . . , T (25)

are called smoothing distributions. Thus, the conditional densities (24) can be determined
from the smoothing distributions as well as the likelihood fY0,...,YT |θ(y0, . . . , yT ).

5.1 Outline of Approach to Calculate Smoothing Distributions

The approach that we will use for efficiently calculating all the smoothing distributions i.e.,
all the conditional distributions (25) for t = 0, 1, . . . , T is the following. This is a sequential
approach that has the following two steps:

1. The first step calculates the distributions:

Xt | Y0 = y0, . . . , Yt = yt, θ (26)

for each t = 0, 1, . . . , T . Note that the conditioning above is on Y0, . . . , Yt and not
on the whole data Y0, . . . , YT . These conditional distributions are known as Filtering
Distributions and algorithms for calculating them are called Filtering Algorithms.
We shall study the standard filtering algorithms: Kalman filter (for Linear Gaussian
State Space Models) and Partile filter (for arbitrary state space models). These al-
gorithms calculate the filtering densities recursively starting from t = 0 and then for
t = 1, . . . , T .
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2. After the filtering step, the last smoothing distribution:

XT | Y0 = y0, Y1 = y1, . . . , YT = yT , θ

is already available. From here, the idea is to calculate the rest of the smoothing
distributions (25) recursively for t = T − 1, T − 2, . . . , 0. Note that this is a backward
recursion.

This overall approach to calculating the smoothing distributions is known as FFBS (Forward
Filtering and Backward Smoothing). We shall study this approach in the case of general state
space models. For the special case of linear Gaussian state space models, these recursions
can be solved in closed form.

5.2 Linear Gaussian State Space Models

A state space model is specified by the densities fX0|θ(x0), fXt|Xt−1=xt−1,θ(xt) for t = 1, . . . , T
and fYt|Xt=xt(yt) for t = 0, . . . , T . We say that a state space model is Linear Gaussian if
the following three conditions are all satisfied:

1. fX0|θ(·) is a Gaussian density.

2. fXt|Xt−1=xt−1
(·) is a Gaussian density whose mean is a linear function of xt−1 and

whose covariance does not depend on xt−1.

3. fYt|Xt=xt(·) is a Gaussian density whose mean is a linear function of xt and whose
covariance does not depend on xt.

Quite often, linear Gaussian state space models are specified as:

X0 ∼ N(0,Σ0)

Xt = AtXt−1 + Ut

Yt = BtXt + Vt

where X0, U1, . . . , UT , V0, . . . , VT are independent with

Ut ∼ N(0,Σt) and Vt ∼ N(0, Rt).

It is easy to see that this specification satisfies the three conditions of the Linear Gaussian
State Space Model. The quantities Σ0, At, Bt,Σt, Rt all potentially depend on unknown
parameters θ.

For the linear Gaussian state space model, all the filtering and smoothing distributions
turn out to be Gaussian which means that they are specified by means and covariances. The
general approach for filtering and smoothing can be specialized to this case as recursions in
terms of means and covariances. This leads to the Kalman Filter and Kalman Smoother
algorithms. We shall start our study of these in the next class.

5.3 Recommended Reading for Today

1. Definitions of filtering and smoothing distributions and the general problem of Se-
quential Analysis of State Space Models is described in Section 2.3 of the Chopin-
Papaspiliopoulos book.

2. Chapter 1 of the Särkkä book also describes the main goals in the analysis of state
space models and gives a list of the common Filtering and Smoothing algorithms.

23



6 Lecture Six

The goal of today’s lecture is to study the general filtering algorithm and then specialize it
to the case of linear Gaussian State Space Models leading to the Kalman Filter.

Let us recall the basic setup. We have a state space model describing the distribution of
random variables X0, Y0, X1, Y1, . . . , XT , YT as

fX0|θ(x0)
T∏
t=1

fXt|Xt−1=xt−1,θ(xt)
T∏
t=0

fYt|Xt=xt,θ(yt)

Here fX0|θ is the density of X0, fXt|Xt−1=xt−1,θ is the conditional density of Xt given Xt−1 =
xt−1 and fYt|Xt=xt,θ is the conditional density of Yt given Xt = xt. Throughout there is
additional conditioning on θ.

Our aim is to calculate the conditional distributions:

Xs | Y0 = y0, . . . , Yt = yt, θ

for various values of s and t. These conditional distributions have known by different names
depending on the specific values of s and t:

1. Filtering Distributions: These correspond to s = t.

2. Smoothing Distributions: These correspond to s ≤ t.

3. Prediction Distributions: These correspond to s > t.

The importance of calculating these three types of conditional distributions varies with
the application. In tracking applications, interest mainly lies in filtering and prediction
distributions while in applications such as trend estimation, interest mainly lies in smoothing
and prediction distributions.

6.1 General Approach for calculating Filtering Distributions

Let us now study the general recursive scheme for calculating the filtering distributions. The
main step is to go from the filtering density at time t− 1:

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)

to the filtering density at time t:

fXt|Y0=y0,...,Yt−1=yt−1,Yt=yt.θ(xt)

This recursion is carried out in two steps:

1. Step One: Go from the filtering density fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1) at time t − 1
to the one-step ahead prediction density fXt|Y0=y0,...,Yt−1=yt−1,θ(xt) at time t− 1. This
step is known as the one-step prediction update.

2. Step Two: Go from the one-step ahead prediction density fXt|Y0=y0,...,Yt−1=yt−1,θ(xt)
at time t−1 to the filtering density fXt|Y0=y0,...,Yt=yt,θ(xt) at time t. This step is known
as the filtering update.
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The one-step ahead prediction update is carried out via the formula:

fXt|Y0=y0,...,Yt−1=yt−1,θ(xt)

=

∫
fXt|Xt−1=xt−1,Y0=y0,...,Yt−1=yt−1,θ(xt)fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)dxt−1

Now by the Markov nature of the state variables and the independence of the observation
random variables conditioned on the state variables, we have

fXt|Xt−1=xt−1,Y0=y0,...,Yt−1=yt−1,θ(xt) = fXt|Xt−1=xt−1,θ(xt).

Thus

fXt|Y0=y0,...,Yt−1=yt−1,θ(xt) =

∫
fXt|Xt−1=xt−1,θ(xt)fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)dxt−1 (27)

This equation tells us how to go from the filtering density at time t − 1 to the one-step up
ahead prediction density at time t− 1.

Let us now see the filtering update which specifies how to go from the one-step ahead
prediction density at time t−1 to the filtering density at time t. By Bayes rule, we can write

fXt|Y0=y0,...,Yt=yt,θ(xt)

∝ fYt|Xt=xt,Y0=y0,...,Yt−1=yt−1,θ(yt)fXt|Y0=y0,...,Yt−1=yt−1,θ(xt).

The Markov nature of the state variables and the independence of the observation random
variables conditioned on the state variables implies that

fYt|Xt=xt,Y0=y0,...,Yt−1=yt−1,θ(yt) = fYt|Xt=xt,θ(yt).

Thus

fXt|Y0=y0,...,Yt=yt,θ(xt) ∝ fYt|Xt=xt,θ(yt)fXt|Y0=y0,...,Yt−1=yt−1,θ(xt).

The constant underlying the proportionality symbol ∝ above is simply the constant that
makes the left hand side integrate to one. We thus get

fXt|Y0=y0,...,Yt=yt,θ(xt) =
fYt|Xt=xt,θ(yt)fXt|Y0=y0,...,Yt−1=yt−1,θ(xt)∫
fYt|Xt=u,θ(yt)fXt|Y0=y0,...,Yt−1=yt−1,θ(u)du

(28)

The two steps (27) and (28) together describe the recursion to go from the filtering density
at time t − 1 to the filtering density at time t. The recursion can be initialized by simply
using (28) with t = 0 and replacing fXt|Y0=y0,...,Yt−1=yt−1,θ(xt) on the right hand by fX0|θ(x0)
for t = 0.

For linear Gaussian state space models, steps (27) and (28) can be implemented in closed
form leading to the Kalman Filter which we shall study next.

6.2 The Kalman Filter

Consider the linear Gaussian state space model:

X0 ∼ N(µ0,Γ0)

Xt = AtXt−1 + Ut

Yt = BtXt + Vt

(29)

25



with X0, U1, . . . , V0, V1, . . . independent and Ut ∼ N(0,Σt) and Vt ∼ N(0, Rt). In this case,
it turns out every conditional distributions Xs | Y0 = y0, . . . , Yt = yt, θ are Gaussian so we
can write

Xs | Y0 = y0, . . . , Yt = yt, θ ∼ N(ms|t, Qs|t). (30)

The Kalman filtering algorithm specifies how to compute mt|t, Qt|t for t = 0, 1, . . . by es-
sentially solving the equations (27) and (28) in closed form. Equation (27) specifies how to
calculate mt|t−1, Qt|t−1 from mt−1|t−1, Qt−1|t−1. For this, we can either explicitly compute
the integral in (27) or just use standard properties of normal distributions as:

Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ
d
= AtXt−1 + Ut | Y0 = y0, . . . , Yt−1 = yt−1, θ.

Because, conditional on Y0 = y0, . . . , Yt−1 = yt−1, θ, the random variables Xt−1 and Ut are
independently distributed as N(mt−1|t−1, Qt−1|t−1) and N(0,Σt) respectively, we obtain

Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ ∼ N(Atmt−1|t−1, AtQt−1|t−1A
′
t + Σt)

Thus

mt|t−1 = Atmt−1|t−1 and Qt|t−1 = AtQt−1|t−1A
′
t + Σt. (31)

We next calculate mt|t, Qt|t from mt|t−1, Qt|t−1 by calculating filtering update (28). The basic
idea behind this calculation is encapsulated in the result below.

Fact 6.1. Suppose X ∼ N(m0, Q0) and Y | X = x ∼ N(Bx,R) (note that the condition
Y | X = x ∼ N(Bx,R) can also be written as Y = BX + V where V ∼ N(0, R) with V,X
being independent). Then

X | Y = y ∼ N(m1, Q1)

where

m1 =
(
Q−1

0 +B′R−1B
)−1 (

Q−1
0 m0 +B′R−1y

)
and Q1 =

(
Q−1

0 +B′R−1B
)−1

. (32)

The following two simple examples can be used to better understand the formula (32).

Example 6.2 (Normal Mean Estimation). Suppose Θ ∼ N(µ, τ2) and Y1, . . . , Yn | Θ =

θ
i.i.d∼ N(θ, σ2). Then it is well-known that

Θ | Y1 = y1, . . . , Yn = yn ∼ N
(
µ/τ2 + nȳ/σ2

1/τ2 + n/σ2
,

1

1/τ2 + n/σ2

)
.

This result is a special case of (32) corresponding to m0 = µ,Q0 = τ2, Y = (Y1, . . . , Yn)′,
y = (y1, . . . , yn)′, B = (1, . . . , 1)′ and R = σ2In.

Example 6.3 (Linear Regression). Suppose β ∼ N(m0, Q0) and Y | β ∼ N(Zβ, σ2In) where
Z is a deterministic n× p matrix. The formula (32) then gives

β | Y = y ∼ N

((
Q−1

0 +
X ′X

σ2

)−1(X ′Y
σ2

+Q−1
0 m0

)
,

(
Q−1

0 +
X ′X

σ2

)−1
)
.

This result is expected because when Q0 = CI for a large constant C, we can neglect the
effect of Q0 and this leads to

β | Y = y ≈ N
(
(X ′X)−1X ′Y, σ2(X ′X)−1

)
which is familiar from usual least squares theory.
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The Sherman-Morrison-Woodbury formula:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

can be used with A = Q−1
0 , U = B′, C = R−1, V = B to obtain the following alternative

formulae for m1 and Q1:

m1 = m0 +Q0B
′ (BQ0B

′ +R
)−1

(y −Bm0)

Q1 = Q0 −Q0B
′ (BQ0B

′ +R
)−1

BQ0

(33)

Note that (32) involves inversion of the matrix Q−1
0 +B′R−1B while (53) involves inversion of

BQ0B
′+R. When the dimension of BQ0B

′+R is much smaller than that of Q−1
0 +B′R−1B,

it is computationally advantageous to work with (53) compared to (32). This will often be
the case so we shall mainly use the formula (53).

Now let us get back to the derivation of the filtering updates for the Linear Gaussian State
Space Model where we need to calculate mt|t and Qt|t in terms of mt|t−1 and Qt|t−1. It is
easy to check that Fact 9.1 is directly applicable with m0 = mt|t−1, Q0 = Qt|t−1, B = Bt,
R = Rt and m1 = mt|t, Q1 = Qt|t. The formula (53) then gives

mt|t = mt|t−1 +Qt|t−1B
′
t

(
BtQt|t−1B

′
t +Rt

)−1 (
yt −Btmt|t−1

)
Qt|t = Qt|t−1 −Qt|t−1B

′
t

(
BtQt|t−1B

′
t +Rt

)−1
BtQt|t−1

(34)

The equations (51) and (52) together comprise the Kalman Filter. They provide the solution
for the filtering problem for linear Gaussian state space models. Here is a formal description
of the Kalman Filter including the initialization step: We are given the model (49) and we
assume that µ0,Γ0, {At, t ≥ 1}, {Bt, t ≥ 0}, {Σt, t ≥ 0} and {Rt, t ≥ 0} are known. The
Kalman filter for calculating the conditional distributions (50) for s = t is:

1. Initialization: Set m0|−1 = µ0 and Q0|−1 = Γ0. Implement (52) for t = 0 to obtain
m0|0 and Q0|0.

2. Recursion: For each t = 1, 2, . . . , implement (51) and (52).

Note that the Kalman Filter algorithm also computes the one-step ahead prediction means
mt|t−1 and covariances Qt|t−1 in intermediate computations. So the Kalman Filter can also
be used to obtain these one-step ahead predictions.

6.3 Recommended Reading for Today

1. The general filtering approach described in Section 6.1 can be found in:

a) Section 6.2 of the Kitagawa-Gersch book

b) Section 14.2 of the Kitagawa book.

c) Section 2.7.1 of the Petris-Petrone-Campagnoli book

2. The Kalman filter is described in the all the books listed in the course outline:

a) Section 5.2 of the Kitagawa-Gersch book

b) Section 9.2 of the Kitagawa book

c) Section 4.3 of the Durbin-Koopman book
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d) Section 4.3 of the Särkkä book

e) Section 2.7.2 of the Petris-Petrone-Campagnoli book

f) Section 3.2 of the Triantafyllopoulos book

Section 7.2 of the Chopin-Papaspiliopoulos book also discusses the Kalman filter. They
however derive the algorithm from a general Feynman-Kac formalism (see their Chapter
5). I will discuss the Feynman-Kac stuff in class a few weeks later.

7 Lecture Seven

7.1 The Kalman Filter

Consider the linear Gaussian state space model:

X0 ∼ N(µ0,Γ0)

Xt = AtXt−1 + Ut

Yt = BtXt + Vt

(35)

with X0, U1, . . . , V0, V1, . . . independent and Ut ∼ N(0,Σt) and Vt ∼ N(0, Rt). Each of
the quantities µ0,Γ0, At, Bt,Σt, Rt appearing in the model above can depend on an unknown
vector of parameters θ. Every conditional distributionXs | Y0 = y0, . . . , Yt = yt, θ is Gaussian
and we can write

Xs | Y0 = y0, . . . , Yt = yt, θ ∼ N(ms|t, Qs|t). (36)

The Kalman filtering algorithm specifies how to compute mt|t, Qt|t for t = 0, 1, . . . using the
following equations:

mt|t−1 = Atmt−1|t−1 and Qt|t−1 = AtQt−1|t−1A
′
t + Σt. (37)

and

mt|t = mt|t−1 +Qt|t−1B
′
t

(
BtQt|t−1B

′
t +Rt

)−1 (
yt −Btmt|t−1

)
Qt|t = Qt|t−1 −Qt|t−1B

′
t

(
BtQt|t−1B

′
t +Rt

)−1
BtQt|t−1

(38)

Equations (51) and (52) together comprise the Kalman Filter. The formal description of the
Kalman Filter including the initialization is as follows. We are given the model (49) and
we assume that µ0,Γ0, {At, t ≥ 1}, {Bt, t ≥ 0}, {Σt, t ≥ 0} and {Rt, t ≥ 0} are known. The
Kalman filter for calculating the conditional distributions (50) for s = t is:

1. Initialization: Set m0|−1 = µ0 and Q0|−1 = Γ0. Implement (52) for t = 0 to obtain
m0|0 and Q0|0.

2. Recursion: For each t = 1, 2, . . . , implement (51) and (52).

Note that the Kalman Filter algorithm also computes the one-step ahead prediction means
mt|t−1 and covariances Qt|t−1 in intermediate computations. So the Kalman Filter can also
be used to obtain these one-step ahead predictions.

7.2 Some Examples

We shall give here some simple examples of linear Gaussian state space models and write
the Kalman recursions more explicitly.
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7.2.1 Tracking One: Velocity Model

Consider the problem of tracking the position of an object moving on a straight line. We
observe the position of the object every ∆t seconds but these measurements are imprecise.
For k = 0, 1, 2, , . . . , let xk denote the actual position of the object at time k(∆t) and let yk
denote the measurement. We assume that

yk = xk + εk with εk
i.i.d∼ N(0, σ2

ε )

for k = 0, 1, 2, . . . . For the state model, in this “velocity model”, we assume that the velocity
of the particle stays constant at a level uk in the time interval [(k − 1)(∆t), k∆t] leading to
the equation:

xk = xk−1 + uk(∆t) for k = 1, 2, . . . .

Further, we shall assume that u1, u2, . . . are i.i.d N(0, σ2
u). Finally assume that x0 ∼ N(0, C)

for a large positive constant C. This is basically the local level model with the state evolution
error variance equal to σ2

u(∆t)2.

The Kalman filter for this model for computing

xk | y0, . . . , yk, σε, σu, C

is easily checked to be given by

mk|k−1 = mk−1|k−1 and Qk|k−1 = Qk−1|k−1 + σ2
u(∆t)2

and

mk|k = mk|k−1 +
Qk|k−1

Qk|k−1 + σ2
ε

(
yk −mk|k−1

)
Qk|k = Qk|k−1 −

Q2
k|k−1

Qk|k−1 + σ2
ε

=
Qk|k−1σ

2
ε

Qk|k−1 + σ2
ε

.

(39)

The Kalman Filter is initialized with m0|−1 = 0 and Q0|−1 = C which leads to (via the filter
update (39))

m0|0 = m0|−1 +
Q0|−1

Q0|−1 + σ2
ε

(
y0 −m0|−1

)
=

C

C + σ2
ε

y0

Q0|0 =
Q0|−1σ

2
ε

Q0|−1 + σ2
ε

=
Cσ2

ε

C + σ2
ε

.

It is clear that when C is large, the above equations imply that m0|0 ≈ y0 and Q0|0 ≈ σ2
ε .

Thus a commonly used initialization for the local level model is m0|0 = y0 and Q0|0 = σ2
ε .

7.2.2 Tracking Two: Acceleration Model

Consider the same setting as the last subsection. We now consider a different model for
the state evolution where we assume that the acceleration (not velocity) remains constant
in each time period [(k − 1)(∆t), k(∆t)]. Denoting this acceleration by ak, we see that the
velocity at time (k − 1)(∆t) (which we denote by xk−1,2) and the velocity at time k(∆t)
(which we denote by xk,2) are related by the equation:

xk,2 = xk−1,2 + ak(∆t). (40)
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Further the position at time (k − 1)(∆t) (which we denote by xk−1,1) and the position at
time k(∆t) (which we denote by xk,1) are related by the equation:

xk,1 = xk−1,1 + xk−1,2(∆t) +
1

2
(∆t)2ak. (41)

Letting the state vector at time k to be both the position and the velocity at time k:

xk =

(
xk,1
xk,2

)
,

we can write the state evolution as

xk =

(
1 ∆t
0 1

)
xk−1 + ak

(
(∆t)2/2

∆t

)
.

Because the accelerations a1, a2, . . . are unknown, a simple way of dealing with them is to
assume that:

a1, a2, . . .
i.i.d∼ N(0, σ2

a).

Then the state evolution becomes

xk =

(
1 ∆t
0 1

)
xk−1 + Uk where Uk ∼ N2

([
0
0

]
, σ2

a

[
(∆t)4/4 (∆t)3/2

(∆t)3/2 (∆t)2

])
The equation relating the observation and state variables becomes

yk = xk,1 + εk =
(
1 0

)
xk + εk where εk

i.i.d∼ N(0, σ2
ε ).

The Kalman filter for this model simplifies to the following equations. Note that ms|t is a
2× 1 vector and Qs|t is a 2× 2 matrix. The one-step prediction update is

mt|t−1 =

(
1 ∆t
0 1

)
mt−1|t−1

and

Qt|t−1 =

(
1 ∆t
0 1

)
Qt−1|t−1

(
1 0

∆t 1

)
+ σ2

a

(
(∆t)4/4 (∆t)3/2
(∆t)3/2 (∆t)2

)
The filter update is given by the two equations:

mt|t = mt|t−1 +

(
yt −

(
1 0

)
mt|t−1

)
(
1 0

)
Qt|t−1

(
1
0

)
+ σ2

ε

Qt|t−1

(
1
0

)

= mt|t−1 +

(
yt −mt|t−1[1]

)
Qt|t−1[1, 1] + σ2

ε

(
Qt|t−1[1, 1]

Qt|t−1[2, 1]

)
,

and

Qt|t = Qt|t−1 −
Qt|t−1

(
1
0

)(
1 0

)
Qt|t−1(

1 0
)
Qt|t−1

(
1
0

)
+ σ2

ε

= Qt|t−1 −
1

Qt|t−1[1, 1] + σ2
ε

(
Q2
t|t−1[1, 1] Qt|t−1[1, 1]Qt|t−1[2, 1]

Qt|t−1[1, 1]Qt|t−1[2, 2] Q2
t|t−1[2, 1]

)

In the above, we used Qt|t−1[i, j] for the (i, j)th entry of the matrix Qt|t−1 and mt|t−1[1] for
the first entry of the 2× 1 vector mt|t−1.
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7.2.3 Tracking Three: Local Linear Model

The local linear model that we saw previously can be seen as an approximation of the
acceleration model of the last subsection. Specifically, in the position equation (41), we drop
the last term ak(∆t)

2/2 the idea being that if ∆t is small, then this term will generally be
negligible compared to at least one of the other two terms xk−1,1(∆t) and xk−1,1(∆t). This
leads to the equations:

xk,1 = xk−1,1 + xk−1,2(∆t) and xk,2 = xk−1,2 + ak(∆t).

We can combine these two equations into one by using xk,2 =
xk+1,1−xk,1

∆t (which is obtained
from the first equation) in the second equation to deduce

xk,1 − 2xk−1,1 + xk−2,1 = ak−1(∆t)2 ∼ N(0, σ2
a(∆t)

4)

which is the local linear model with the state evolution error variance equal to σ2
a(∆t)

4.

This can be written as a state space model using

(
xk,1
xk−1,1

)
as the state or as in the previous

subsection with

(
xk,1

(∆t)−1(xk,1 − xk−1,1)

)
as the state. Note that this shows that there can

be many different ways to write a model in state space form. The Kalman recursions for the
local level model are left as exercise.

7.3 Use of the Kalman Filter for Parameter Estimation by Maximum Likelihood

As mentioned previously, the quantities µ0,Γ0, At, Bt,Σt, Rt appearing in the state space
model (49) typically depend on an unknown vector of parameters θ which needs to be
estimated from the observed data y0, . . . , yT . A standard method for parameter estimation
is maximum likelihood and the Kalman filter output is useful for writing down the likelihood
function. To see this, first note that the likelihood for the observed data y0, . . . , yT is given
by

fY0,...,YT |θ(y0, . . . , yT ) =

T∏
t=0

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt) =

T∏
t=0

fBtXt+Vt|Y0=y0,...,Yt−1=yt−1,θ(yt).

Conditionally on Y0 = y0, . . . , Yt−1 = yt−1, θ, the random variables Xt and Vt are independent
having the N(mt|t−1, Qt|t−1) and N(0, Rt) respectively. Thus

BtXt + Vt | Y0 = y0, . . . , Yt−1 = yt−1, θ ∼ N(Btmt|t−1, BtQt|t−1B
′
t +Rt).

Thus, for each t = 0, 1, . . . , T , we have

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

=
∣∣2π (BtQt|t−1B

′
t +Rt

)∣∣−1/2
exp

(
−1

2

(
yt −Btmt|t−1

)′ (
BtQt|t−1B

′
t +Rt

)−1 (
yt −Btmt|t−1

))
where | · | denotes determinant. Let

εt(θ) := yt −Btmt|t−1 and Ht(θ) := BtQt|t−1B
′
t +Rt

for t = 0, 1, 2, . . . . Then

−2 log fYt|Y0=y0,...,Yt−1=yt−1,θ(yt) = log |2πHt(θ)|+ ε′t(θ)H
−1
t (θ)εt(θ)
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Thus

(−2)× log-likelihood =

T∑
t=0

[
log |2πHt(θ)|+ ε′t(θ)H

−1
t (θ)εt(θ)

]
.

For calculating this likelihood, we only need mt|t−1 and Qt|t−1 for t = 0, 1, 2, . . . which can
be obtained from the Kalman Filter. One can maximize likelihood by minimizing the right
hand side above over the parameters θ. Numerical optimization routines can be used for this
purpose.

7.4 Recommended Reading for Today

1. The local level model is analyzed in detail in Chapter 2 of the Durbin-Koopman book.
In particular, see Section 2.2.1 for the Kalman filter updates in the local level model.
Some comments on the initial distribution X0 ∼ N(0, C) (for a large C) can be found
in Section 2.9.

2. The acceleration model of Subsection 7.2.2 can be found in https://en.wikipedia.

org/wiki/Kalman_filter (see Section 7).

3. For likelihood computation using the Kalman filter, see Section 9.6 of the Kitagawa
book.

8 Lecture Eight

8.1 Some remarks on the local level model

Consider the local level model:

X0 ∼ N(0, C) Xt = Xt−1 + Zt Yt = Xt + εt

where X0, Z1, Z2, . . . , ε0, ε1, . . . are independent with Zt
i.i.d∼ N(0, σ2

Z) and εt
i.i.d∼ N(0, σ2

ε ).
The Kalman filter recursions for this model are given by

mt|t−1 = mt−1|t−1 and Qt|t−1 = Qt−1|t−1 + σ2
Z

and

mt|t = mt|t−1 +
Qt|t−1

Qt|t−1 + σ2
ε

(
yt −mt|t−1

)
=

σ2
ε

Qt|t−1 + σ2
ε

mt|t−1 +
Qt|t−1

Qt|t−1 + σ2
ε

yt

Qt|t =
Qt|t−1σ

2
ε

Qt|t−1 + σ2
ε

.

Here ms|t and Qs|t denote the conditional mean and variance of Xs given Y0 = y0, . . . , Yt = yt
(and σZ , σε).

It is interesting to note that mt|t is a weighted linear combination of mt|t−1 and yt. We
see in simulations that when the σZ parameter is large, then the filtering mean mt|t is close
to yt for each t ≥ 0. This can be explained as follows. Because Qt|t−1 = Qt−1|t−1 +σ2

Z ≥ σ2
Z ,

it follows that, when σZ is large, each Qt|t−1 is also large. As a result, the weight for yt
dominates the weight for mt|t−1 in the formula for mt|t leading to mt|t ≈ yt when σZ is large.
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Note that mt|t ≈ yt does not imply that the model is overfitting the observed data. This
is because the log-likelihood multiplied by (−2) is given by

(−2)log-likelihood =

T∑
t=0

[
log
{

2π
(
Qt|t−1 + σ2

ε

)}
+

(
yt −mt|t−1

)2
Qt|t−1 + σ2

ε

]

=
T∑
t=0

[
log
{

2π
(
Qt−1|t−1 + σ2

Z + σ2
ε

)}
+

(
yt −mt−1|t−1

)2
Qt−1|t−1 + σ2

Z + σ2
ε

]
When σZ is large, we would have mt−1|t−1 ≈ yt−1 as remarked above. Thus the above
expression for large σZ becomes

(−2)log-likelihood ≈
T∑
t=0

[
log
{

2π
(
Qt−1|t−1 + σ2

Z + σ2
ε

)}
+

(yt − yt−1)2

Qt−1|t−1 + σ2
Z + σ2

ε

]
The second term in the sum above is of smaller order compared to the first term when σZ
is large. Thus the behavior of the whole expression will be similar to the behavior to the
first term which is increasing in σZ . Thus as σZ increases, the log-likelihood decreases (note
that the above is the expression for negative log-likelihood multiplied by 2). This means
that there is no overfitting for large σZ (overfitting would happen when the likelihood keeps
getting better and better when σZ is increased which is not happening here).

In the last class, we mentioned that parameter estimates of σZ and σε can be obtained by
maximizing the likelihood (or equivalently, minimizing negative two times the log-likelihood)
over σZ and σε. The result of this optimization cannot be written in closed because it is a
somewhat complicated optimization. This is because it depends on σZ and σε in a not-so-
simple way. To highlight this, let us note that Qt|t−1 and mt|t−1 depend on σZ and σε, and
also on the initial state variance C. We shall therefore write them as Qt|t−1(C, σZ , σε) and
mt|t−1(C, σZ , σε) respectively. We thus have

`(σZ , σε) := (−2)log-likelihood

=
T∑
t=0

[
log
{

2π
(
Qt|t−1(C, σZ , σε) + σ2

ε

)}
+

(
yt −mt|t−1(C, σZ , σε)

)2
Qt|t−1(C, σZ , σε) + σ2

ε

]
.

The dependence of this function on C, σZ , σε is not so simple. Numerical routines can be used
to optimize this function of σZ and σε. The following trick reduces this to a one-parameter
optimization problem and it can be quite handy. To see this, first note that for t = 0, we
have Q0|−1 = C and m0|−1 = 0. Thus

`(σZ , σε) = log
{

2π
(
C + σ2

ε

)}
+

y2
0

C + σ2
ε

+

T∑
t=1

[
log
{

2π
(
Qt|t−1(C, σZ , σε) + σ2

ε

)}
+

(
yt −mt|t−1(C, σZ , σε)

)2
Qt|t−1(C, σZ , σε) + σ2

ε

]
.

As C is large, the first term is approximately log(2πC) and the second term is zero. Thus

`(σZ , σε) ≈ log(2πC) +

T∑
t=1

[
log
{

2π
(
Qt|t−1(C, σZ , σε) + σ2

ε

)}
+

(
yt −mt|t−1(C, σZ , σε)

)2
Qt|t−1(C, σZ , σε) + σ2

ε

]
.

The log(2πC) term does not depend on σZ or σε so it can be removed from the optimization
so the goal is to minimize:

T∑
t=1

[
log
{

2π
(
Qt|t−1(C, σZ , σε) + σ2

ε

)}
+

(
yt −mt|t−1(C, σZ , σε)

)2
Qt|t−1(C, σZ , σε) + σ2

ε

]
.
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We shall now take C = +∞. The quantities Qt|t−1(∞, σZ , σε) and mt|t−1(∞, σZ , σε) are then
obtained for t = 1, 2, . . . by running the Kalman filter steps with the initialization m0|0 = y0

and Q0|0 = σ2
ε . Our goal is to minimize

`∗(σZ , σε) :=

T∑
t=1

[
log
{

2π
(
Qt|t−1(∞, σZ , σε) + σ2

ε

)}
+

(
yt −mt|t−1(∞, σZ , σε)

)2
Qt|t−1(∞, σZ , σε) + σ2

ε

]
.

We now note the following useful fact:

mt|t−1(∞, σZ , σε) = mt|t−1(∞, σZ
σε
, 1) and Qt|t−1(∞, σZ , σε) = σ2

εQt|t−1(∞, σZ
σε
, 1).

(42)
I will leave the proof of this fact as an exercise. To compute mt|t−1(∞, σZ/σε, 1) and
Qt|t−1(∞, σZ/σε, 1), we would need to run the Kalman filter with σZ and σε replaced by
σZ/σε and 1 respectively (the initialization would then be m0|0 = y0 and Q0|0 = 1).

Because of the scaling fact (42), we can write `∗(σZ , σε) as

`∗(σZ , σε) :=

T∑
t=1

[
log
{

2π
(
Qt|t−1(∞, σZ , σε) + σ2

ε

)}
+

(
yt −mt|t−1(∞, σZ , σε)

)2
Qt|t−1(∞, σZ , σε) + σ2

ε

]

= T log(2πσ2
ε ) +

T∑
t=1

log

(
Qt|t−1(∞, σZ

σε
, 1) + 1

)
+

1

σ2
ε

T∑
t=1

(
yt −mt|t−1(∞, σZσε , 1)

)2

Qt|t−1(∞, σZσε , 1) + 1
.

The goal is to minimize the above function over all σε > 0 and σZ > 0. Equivalently, we need
to minimize this over all σε > 0 and q := σZ

σε
> 0. The advantage of viewing the problem

as an optimization over σε and q is that it is easy to find the best σε for each value of q.
Specifically, we need to minimize

T log(2πσ2
ε ) +

T∑
t=1

log
(
Qt|t−1(∞, q, 1) + 1

)
+

1

σ2
ε

T∑
t=1

(
yt −mt|t−1(∞, q, 1)

)2
Qt|t−1(∞, q, 1) + 1

(43)

over both σε > 0 and q > 0. For each fixed q, it is easy to find the minimizing σε by simply
taking the derivative with respect to σ2

ε and setting it equal to zero. This gives

σ̂2
ε (q) :=

1

T

T∑
t=1

(
yt −mt|t−1(∞, q, 1)

)2
Qt|t−1(∞, q, 1) + 1

. (44)

Plugging this value of σ2
ε in (43), we get

T log(2πσ̂2
ε (q)) +

T∑
t=1

log
(
Qt|t−1(∞, q, 1) + 1

)
+ T. (45)

This function will need to be numerically minimized over q > 0 to obtain the minimizer
q̂. This is an easier optimization problem (compared to minimizing `∗(σZ , σε) over both σZ
and σε) for numerical methods as it only depends on the one variable q. After obtaining the
minimizer q̂, σ2

ε is estimated by σ̂2
ε (q̂) (i.e., the right hand side of (44) with q = q̂) and then

σZ is estimated by q̂σ̂ε(q̂). Finally, note that to form the objective (45), we need to calculate
σ̂2
ε (q) and, for this, it is necessary to implement the Kalman filter with σZ set to q and σε

set to 1 in order to calculate mt|t−1(∞, q, 1) and Qt|t−1(∞, q, 1).
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8.2 Application of the Kalman Filter to Linear Regression

Consider the usual linear regression setting where we observe data (z0, y0), . . . , (zT , yT ) where
zt is the p × 1 covariate and yt is the scalar response corresponding to index t. The usual
linear model for this setting assumes that the covariates z0, . . . , zT are deterministic and the
response yt is related to zt via

yt = z′tβ + εt with εt
i.i.d∼ N(0, σ2

ε ).

In Bayesian treatments of the linear model, one supplements the model above with the prior

β ∼ N(µ0,Γ0).

If no information on β is available, one can set µ0 = 0 and Γ0 = CI for a large constant C.
Having a prior is a good idea in general as it avoids degeneracy issues. For example, when
the matrix Z of covariates (whose rows are z′0, . . . , z

′
T ) does not have full column rank, the

usual least squares estimator is not defined but the Bayesian posterior is well-defined as long
as Γ0 is invertible.

The posterior distribution of β is given by

β | data, σ ∼ N

((
Γ−1

0 +
Z ′Z

σ2

)−1(Z ′Y
σ2

+ Γ−1
0 µ0

)
,

(
Γ−1

0 +
Z ′Z

σ2

)−1
)

(46)

Direct computation of mean vector and covariance matrix of the above posterior distribution
requires inverting the p × p matrix Γ−1

0 + Z ′Z/σ2 and this can be computationally costly
(note that calculating Γ−1

0 is usually not hard as Γ0 is commonly a constant multiple of the
identity; the main issue here involves inverting Γ−1

0 + Z ′Z/σ2).

The Kalman filter provides an alternative way of computing the posterior mean and vari-
ance via a sequential algorithm which does not involve matrix inversion at any step. This is
described below. The first step is to write the linear regression model in state space form.
We take the state variables to be β0, β1, . . . with the state evolution as

βt = βt−1 for t = 1, 2, . . .

The observation is
yt = z′tβt + εt for t = 0, 1, 2, . . .

Finally the initial condition is β0 ∼ N(µ0,Γ0). This linear Gaussian state space model is
exactly the Bayesian linear regression model and so we can apply the Kalman filter. Note
that (46) is simply the filtering distribution in this state space model at time T . Thus

mT |T =

(
Γ−1

0 +
Z ′Z

σ2

)−1(Z ′Y
σ2

+ Γ−1
0 µ0

)
and QT |T =

(
Γ−1

0 +
Z ′Z

σ2

)−1

.

The Kalman filter provides an alternative way of computing mT |T and QT |T using the
following recursions. Because βt = βt−1, the one-step ahead prediction update is simply
mt|t−1 = mt−1|t−1 and Qt|t−1 = Qt−1|t−1. The filter update is

mt|t = mt|t−1 +
yt − z′tmt|t−1

z′tQt|t−1zt + σ2
ε

Qt|t−1zt

Qt|t = Qt|t−1 −
Qt|t−1ztz

′
tQt|t−1

z′tQt|t−1zt + σ2
ε

.
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These recursions are initialized with m0|−1 = µ0, Q0|−1 = Γ0 leading to

m0|0 = µ0 +
y0 − z′0µ0

z′0Γ0z0 + σ2
ε

Γ0z0

Q0|0 = Γ0 −
Γ0z0z

′
0Γ0

z′0Γ0z0 + σ2
ε

.

The main point to be noted here is that, in the Kalman filter, at no point do we need to
invert a p × p matrix. There are matrix vector products and other elementary operations
but there is no matrix inversion.

8.3 Prediction

Prediction, in the context of state space models, refers to the problem of finding the distri-
bution Xs | Y0 = y0, . . . , Yt = yt, θ for s > t. The prediction problem for linear Gaussian
state space models is readily solved by the Kalman filter. To see this, note that we need to
find the mean ms|t and covariance Qs|t for each s > t. The Kalman filter tells us how to
compute mt|t, Qt|t. The prediction problem for s = t+ 1 is easily solved via (this is basically
the same as the one-step ahead prediction update used in the Kalman filter):

mt+1|t = At+1mt|t and Qt+1|t = At+1Qt|tA
′
t+1 + Σt+1. (47)

Next for s = t+ 2, observe that

Xt+2 | (Y0 = y0, . . . , Yt = yt, θ) = At+2Xt+1 + Ut+2 | (Y0 = y0, . . . , Yt = yt, θ)

Note now that

Xt+1 | (Y0 = y0, . . . , Yt = yt, θ) ∼ N(mt+1|t, Qt+1|t)

Ut+2 | (Y0 = y0, . . . , Yt = yt, θ) ∼ N(0,Σt+2)

and further Xt+1 and Ut+2 are independent conditional on Y0 = y0, . . . , Yt = yt, θ. Thus

Xt+2 | (Y0 = y0, . . . , Yt = yt, θ) ∼ N(At+2mt+1|t, A
′
t+2Qt+1|tAt+2 + Σt+2).

Therefore
mt+2|t = At+2mt+1|t and Qt+2|t = A′t+2Qt+1|tAt+2 + Σt+2.

Note that the terms mt+1|t and Qt+1|t appearing on the right hand side above have already
been calculated in (47).

More generally, one can write ms|t, Qs|t for s > t in terms of ms−1|t, Qs−1|t as

ms|t = Asms−1|t and Qs|t = AsQs−1|tA
′
s + Σs.

This equation can be used recursively for s = t + 1, t + 2, to calculate all prediction distri-
butions.

8.4 Smoothing

Smoothing, in the context of state space models, refers to the problem of finding the distri-
bution of Xs | Y0 = y0, . . . , Yt = yt, θ for s ≤ t. These are calculated by backward recursion
starting for s = t and then decreasing s (note that the smoothing distribution for s = t
is a filtering distribution which is given by the Kalman filter). The details for this will be
discussed next week.
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8.5 Recommended Reading for Today

1. The technique described in Section 8.1 for reducing the likelihood optimization to a
one-dimensional optimization problem can be found in Section 2.10.2 of the Durbin-
Koopman. This technique holds in some more settings as described in Section 9.6 of
the Kitagawa book.

2. See Sections 3.1, 3.2 and 3.3 of the Särkkä book for treatment of linear regression and
application of the Kalman filter for recursive linear regression. Also see Section 3.4 for
a treatment of the linear regression with drift model.

3. The prediction recursions can be found in Section 9.5 of the Kitagawa book.

9 Lecture Nine

9.1 Smoothing

Smoothing, in the context of state space models, refers to the problem of finding the con-
ditional distribution Xs | Y0 = y0, . . . , Yt = yt, θ for s ≤ t. The main interest in these
conditional distributions is in the case t = T (recall that our observed data is y0, . . . , yT ).

The algorithm that we shall discuss proceeds by first running the filtering step which
calculates the distributions Xt | Y0 = y0, . . . , Yt = yt, θ for t = 0, 1, 2, . . . . Following this,
one follows backward recursion starting from s = t and then decreasing s as t− 1, t− 2, . . .
to calculate the conditional distributions Xs | Y0 = y0, . . . , Yt = yt, θ for s ≤ t. The overall
algorithm is often referred to as FFBS (Forward Filtering Backward Smoothing).

We shall understand the backward recursion in the general case of arbitrary state space
models. Subsequently, we shall specialize this to the case of linear Gaussian state space
models.

9.2 Backward Recursion for General State Space Models

Fix a value of t ≥ 0. Assume that we have computed the conditional density:

fXs+1|Y0=y0,...,Yt=yt,θ

for some s < t. The goal is then to figure out how to use the above density to calculate

fXs|Y0=y0,...,Yt=yt,θ.

For this, we write

fXs|Y0=y0,...,Yt=yt,θ(xs) =

∫
fXs|Xs+1=xs+1,Y0=y0,...,Yt=yt,θ(xs)fXs+1|Y0=y0,...,Yt=yt,θ(xs+1)dxs+1.

The key now is to note that

Xs | (Xs+1 = xs+1, Y0 = y0, . . . , Yt = yt, θ)
d
= Xs | (Xs+1 = xs+1, Y0 = y0, . . . , Ys = ys, θ) .

In words, the above means that conditional on Xs+1 = xs+1, Y0 = y0, . . . , Ys = ys, the
random objects Xs and (Ys+1, . . . , Yt) are independent. I will leave the verification of this
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property as an exercise. We thus have

fXs|Y0=y0,...,Yt=yt,θ(xs) =

∫
fXs|Xs+1=xs+1,Y0=y0,...,Ys=ys,θ(xs)fXs+1|Y0=y0,...,Yt=yt,θ(xs+1)dxs+1.

The next step is to calculate fXs|Xs+1=xs+1,Y0=y0,...,Ys=ys,θ(xs). For this we use Bayes rule to
write

fXs|Xs+1=xs+1,Y0=y0,...,Ys=ys,θ(xs) ∝ fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,Y0=y0,...,Ys=ys,θ(xs+1)

= fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,θ(xs+1)

=
fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,θ(xs+1)∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,θ(xs+1)du

.

We can thus write the backward smoothing recursion in one step as

fXs|Y0=y0,...,Yt=yt,θ(xs)

=

∫ [
fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,θ(xs+1)∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,θ(xs+1)du

]
fXs+1|Y0=y0,...,Yt=yt,θ(xs+1)dxs+1

(48)

Note that the right hand side above involves the densities fXs+1|Y0=y0,...,Yt=yt,θ, fXs|Y0=y0,...,Ys=ys,θ

and fXs+1|Xs=u,θ. The first of these densities is available to us because we are assuming that
we calculated the smoothing density for s + 1. The second of these densities is a filtering
density and will be available after running the forward filtering algorithm. The third of these
densities is the transition density of the hidden Markov process that is available from the
specification of the state space model.

For the linear Gaussian state space models, the recursion above can be re-written in closed
form in terms of the means and covariances of the distributions as we show in the next section.

9.3 Smoothing for Linear Gaussian State Space Models

Consider the linear Gaussian state space model:

X0 ∼ N(µ0,Γ0)

Xt = AtXt−1 + Ut

Yt = BtXt + Vt

(49)

with X0, U1, . . . , V0, V1, . . . independent and Ut ∼ N(0,Σt) and Vt ∼ N(0, Rt). Each of
the quantities µ0,Γ0, At, Bt,Σt, Rt appearing in the model above can depend on an unknown
vector of parameters θ. Every conditional distributionXs | Y0 = y0, . . . , Yt = yt, θ is Gaussian
and we can write

Xs | Y0 = y0, . . . , Yt = yt, θ ∼ N(ms|t, Qs|t). (50)

We have already seen that the Kalman filter computes mt|t, Qt|t using the following equations:

mt|t−1 = Atmt−1|t−1 and Qt|t−1 = AtQt−1|t−1A
′
t + Σt. (51)

and

mt|t = mt|t−1 +Qt|t−1B
′
t

(
BtQt|t−1B

′
t +Rt

)−1 (
yt −Btmt|t−1

)
Qt|t = Qt|t−1 −Qt|t−1B

′
t

(
BtQt|t−1B

′
t +Rt

)−1
BtQt|t−1

(52)

The smoothing algorithm described below computes ms|t, Qs|t for a fixed t ≥ 0 and all s ≤ t.
We shall make use of the following fact that we used previously in the derivation of the
Kalman Filter:
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Fact 9.1. Suppose X ∼ N(m0, Q0) and Y | X = x ∼ N(Bx,R) (note that the condition
Y | X = x ∼ N(Bx,R) can also be written as Y = BX + V where V ∼ N(0, R) with V,X
being independent). Then the following assertions hold:

1. X | Y = y ∼ N(m̃(y), Q̃) where

m̃(y) = m0 +Q0B
′ (BQ0B

′ +R
)−1

(y −Bm0)

Q̃ = Q0 −Q0B
′ (BQ0B

′ +R
)−1

BQ0

(53)

2. Y ∼ N(Bm0, BQ0B
′ +R)

Note that m̃(y) depends on y but Q̃ does not depend on y.

Remark 9.1. Fact 9.1 can be reformulated in terms of densities as follows. Let φ(x;µ,Σ)
denote the multivariate normal density with mean vector µ and covariance matrix Σ evaluated
at x i.e.,

φ(x;µ,Σ) := (2π det(Σ))−1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
.

The first conclusion X | Y = y ∼ N(m̃(y), Q̃) of Fact 9.1 is equivalent to the identity

φ(x;m0, Q0)φ(y;Bx,R)∫
φ(u;m0, Q0)φ(y;Bu,R)du

= φ(x; m̃(y), Q̃) (54)

This is because the left hand side above is simply

fY |X=x(y)fX(x)∫
fY |X=u(y)fX(u)du

= fX|Y=y(x).

The second conclusion of Fact (9.1) is equivalent to the identity:∫
φ(y;Bx,R)φ(x;m0, Q0)dx = φ(y;Bm0, BQ0B

′ +R). (55)

This is because the left hand side above is∫
fY |X=x(y)fX(x)dx = fY (y).

It should be easy to see that (55) is easily extended to the case where the Bx term on the left
hand side is replaced by Bx+ c for a deterministic vector c:∫

φ(y;Bx+ c,R)φ(x;m0, Q0)dx = φ(y;Bm0 + c,BQ0B
′ +R). (56)

Using the identities (54) and (55), we can rewrite the general backward smoothing recur-
sion (48) as follows.

φ(xs;ms|t, Qs|t)

= fXs|Y0=y0,...,Yt=yt,θ(xs)

=

∫ [
fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,θ(xs+1)∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,θ(xs+1)du

]
fXs+1|Y0=y0,...,Yt=yt,θ(xs+1)dxs+1

=

∫ [
φ(xs;ms|s, Qs|s)φ(xs+1;As+1xs,Σs+1)∫
φ(u;ms|s, Qs|s)φ(xs+1;As+1u,Σs+1)du

]
φ(xs+1;ms+1|t, Qs+1|t)dxs+1
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Applying (54) with m0 = ms|s, Q0 = Qs|s, B = As+1 and R = Σs+1, we deduce that the
term inside the square brackets above equals

φ(xs;ms|s, Qs|s)φ(xs+1;As+1xs,Σs+1)∫
φ(u;ms|s, Qs|s)φ(xs+1;As+1u,Σs+1)du

= φ(xs; m̃(xs+1), Q̃) (57)

where

m̃(xs+1) = ms|s +Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1 (
xs+1 −As+1ms|s

)
Q̃ = Qs|s −Qs|sA′s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

As a result

φ(xs;ms|t, Qs|t) =

∫
φ(xs; m̃(xs+1), Q̃)φ(xs+1;ms+1|t, Qs+1|t)dxs+1 (58)

We now apply (56). Note that m̃(xs+1) is a linear function of xs+1 and it can be written as
Bxs+1 + c with

B := Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1

and

c := ms|s −Qs|sA′s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1ms|s.

The identity (56) therefore gives that the integral on the right hand side of (58) equals the
multivariate normal density with mean Bm0 + c and covariance BQ0B

′ + R evaluated at
xs (here m0 = ms+1|t, Q0 = Qs+1|t and R = Q̃). Because the left hand side of (58) is the
multivariate normal density with mean ms|t and Qs|t, we deduce the equations

ms|t = ms|s +Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1 (
ms+1|t −As+1ms|s

)
and

Qs|t

= BQ0B
′ +R

= Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
Qs+1|t

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

+Qs|s −Qs|sA′s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

= Qs|s +Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
Qs+1|t

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

−Qs|sA′s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

= Qs|s +Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
Qs+1|t

(
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

−Qs|sA′s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1 (
As+1Qs|sA

′
s+1 + Σs+1

) (
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

= Qs|s+

Qs|sA
′
s+1

(
As+1Qs|sA

′
s+1 + Σs+1

)−1 (
Qs+1|t −As+1Qs|sAs+1 − Σs+1

) (
As+1Qs|sA

′
s+1 + Σs+1

)−1
As+1Qs|s

We shall now write these equations concisely by using the following notation. Recall that
from the one-step ahead prediction updates (51), we have

ms+1|s = As+1ms|s and Qs+1|s = As+1Qs|sA
′
s+1 + Σs+1.

Replacing the terms As+1ms|s and Qs+1|s = As+1Qs|sA
′
s+1 + Σs+1 by ms+1|s and Qs+1|s in

the smoothing recursion equations, we get

ms|t = ms|s +Qs|sA
′
s+1Q

−1
s+1|s

(
ms+1|t −ms+1|s

)
Qs|t = Qs|s +Qs|sA

′
s+1Q

−1
s+1|s

(
Qs+1|t −Qs+1|s

)
Q−1
s+1|sAs+1Qs|s
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Finally using the notation
Γs+1 := Qs|sA

′
s+1Q

−1
s+1|s,

we get

ms|t = ms|s + Γs+1

(
ms+1|t −ms+1|s

)
Qs|t = Qs|s + Γs+1

(
Qs+1|t −Qs+1|s

)
Γ′s+1

These are the Kalman Smoothing equations; alternatively known as the Rauch-Tung-Striebel
equations. They allow the calculation of ms|t, Qs|t from knowledge of ms+1|t, Qs+1|t as well
as from ms|s, Qs|s,ms+1|s, Qs+1|s (these four quantities are obtained by running the Kalman
filter). One runs these smoothing equations starting from s = t− 1 and decreasing s all the
way to zero.

9.4 Dealing with missing data in the context of state space models

Consider a time series dataset y0, y1, . . . , yT where observations corresponding to certain time
points may be missing. More precisely, the data might look like y0, y1, y2,miss, y4, y5, y6,miss, y8, . . . .
How does one analyze this dataset? In the context of state space models, this is quite straight-
forward. As usual, we use a state space model with a hidden Markov process {Xt} and then
connect it to the observation random variables Y0, Y1, . . . . In contrast to the fully observed
setup, we now assume that each Yt takes an additional value “miss” which means that we
should also model:

P {Yt = miss | Xt = x} .

Modeling this probability requires us to know the missing mechanism which is quite difficult
in general. A simplistic assumption is that

P {Yt = miss | Xt = x} does not depend on x. (59)

This is can be viewed as a “missing at random” assumption. Under this assumption, analysis
is quite straightforward and the Kalman filter and smoother for the model with missing ob-
servations are obtained by a simple modification of the model without missing observations.
For example, here is how to run the Kalman filter in the presence of missing observations
and the missing at random assumption (59). The Kalman filter tells us about the step:

Xt−1 | Y0 = y0, . . . , Yt−1 = yt−1, θ to Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ

which is the one-step ahead prediction update and then about the

Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ and Xt | Y0 = y0, . . . , Yt−1 = yt−1, Yt = yt, θ (60)

which is the filter update. When yt is observed, both these steps are carried out as usual.
However when yt is missing, then there is nothing to do in the filter update so we just take
the two conditional distributions in (60) to be the same (observe that the missing at random
assumption is crucial here). The smoothing procedure is the same as in the fully observed
case. We shall look at specific examples in the next class.

9.5 Recommended Reading for Today

1. The general smoothing approach described in Section 9.2 can be found in:

a) Section 6.2.1 of the Kitagawa-Gersch book (in particular, see Equation (6.7))

41



b) Section 14.2 of the Kitagawa book.

c) Section 2.7.4 of the Petris-Petrone-Campagnoli book

d) Section 8.1 of the Särkkä book

2. The Kalman/Rauch-Tung-Striebel smoothing equations are described in all the books
listed in the course outline:

a) Section 5.2 of the Kitagawa-Gersch book (in particular, see equation (5.6)

b) Section 9.3 of the Kitagawa book

c) Section 4.4 of the Durbin-Koopman book

d) Section 8.2 of the Särkkä book

e) Proposition 2.4 of the Petris-Petrone-Campagnoli book

f) Theorem 3.4 of the Triantafyllopoulos book

Section 7.2 of the Chopin-Papaspiliopoulos book also discusses the Kalman smoothing
equations. They however derive the algorithm from a general Feynman-Kac formalism
(see their Chapter 5). I will discuss the Feynman-Kac stuff in class a few weeks later.

3. For missing data:

a) See Section 2.7 of the Durbin-Koopman book for a treatment of missing observa-
tions for the local level model and Section 4.10 of the Durbin-Koopman book for
a more general treatment of missing observations for linear Gaussian state space
models.

b) See Section 9.7 of the Kitagawa book.

c) Section 2.7.3 of the Petris-Petrone-Campagnoli book for filtering with missing ob-
servations (also see page 62 of Petris-Petrone-Campagnoli where it is argued that
no changes to the smoothing step is necessary for dealing with missing observa-
tions).

10 Lecture Ten

10.1 Summary: General Filtering and Smoothing

Let us use the following simpler notation. Let fs|t(xs) denote the conditional density of Xs

given Y0 = y0, . . . , Yt = yt, θ evaluated at the point xs.

Filtering recursions for general state space models are (see Lecture Six) the following. The
one-step ahead prediction update is

ft|t−1(xt) =

∫
fXt|Xt−1=xt−1,θ(xt)ft−1|t−1(xt−1)dxt−1, (61)

and the filter update is
ft|t(xt) ∝ fYt|Xt=xt,θ(yt)ft|t−1(xt). (62)
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The backward smoothing recursion for general state space models is (see Lecture Nine):

fs|t(xs) =

∫ [
fs|s(xs)fXs+1|Xs=xs,θ(xs+1)∫
fs|s(u)fXs+1|Xs=u,θ(xs+1)du

]
fs+1|t(xs+1)dxs+1 (63)

This can be rewritten in the following way. Note first that the denominator (inside the
square brackets) equals:∫

fs|s(u)fXs+1|Xs=u,θ(xs+1)du

=

∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,θ(xs+1)du

=

∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,Y0=y0,...,Ys=ys,θ(xs+1)du

= fXs+1|Y0=y0,...,Ys=ys,θ(xs+1) = fs+1|s(xs+1)

Thus (63) becomes

fs|t(xs) =

∫
fs|s(xs)fXs+1|Xs,θ(xs+1)

fs+1|s(xs+1)
fs+1|t(xs+1)dxs+1.

Note also that the fs|s(xs) term on the right hand side can be pulled out of the integral (as it
does not depend on xs+1 which is the variable of integration). Thus the smoothing recursion
becomes:

fs|t(xs) = fs|s(xs)

∫
fXs+1|Xs,θ(xs+1)fs+1|t(xs+1)

fs+1|s(xs+1)
dxs+1. (64)

10.2 Summary: Kalman Filtering and Smoothing

The general filtering and smoothing recursions can be computed in closed form for the case
of the linear Gaussian state space model:

X0 ∼ N(µ0,Γ0)

Xt = AtXt−1 + Ut

Yt = BtXt + Vt

with X0, U1, . . . , V0, V1, . . . independent and Ut ∼ N(0,Σt) and Vt ∼ N(0, Rt). Here every
density fs|t is normal and we shall write ms|t and Qs|t for the mean and covariance corre-
sponding to the (possibly multivariate) normal density fs|t. The one-step ahead prediction
update (61) becomes

mt|t−1 = Atmt−1|t−1 and Qt|t−1 = AtQt−1|t−1A
′
t + Σt

The filter update (62) becomes

mt|t = mt|t−1 +Qt|t−1B
′
t

(
BtQt|t−1B

′
t +Rt

)−1 (
yt −Btmt|t−1

)
Qt|t = Qt|t−1 −Qt|t−1B

′
t

(
BtQt|t−1B

′
t +Rt

)−1
BtQt|t−1

Finally the smoothing backward recursion (63) becomes

ms|t = ms|s + Γs+1

(
ms+1|t −ms+1|s

)
Qs|t = Qs|s + Γs+1

(
Qs+1|t −Qs+1|s

)
Γ′s+1

where
Γs+1 := Qs|sA

′
s+1Q

−1
s+1|s.
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10.3 Special Case: Local Level Model

Let us specialize the Kalman filtering and smoothing recursions for the special case of the
local level model:

X0 ∼ N(0, C)

Xt = Xt−1 + Zt with Ut
i.i.d∼ N(0, σ2

Z)

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε )

We have already seen that the Kalman filter for the local level model is:

mt|t−1 = mt−1|t−1 and Qt|t−1 = Qt−1|t−1 + σ2
Z

and

mt|t =
σ2
ε

Qt|t−1 + σ2
ε

mt|t−1 +
Qt|t−1

Qt|t−1 + σ2
ε

yt and Qt|t =
σ2
εQt|t−1

Qt|t−1 + σ2
ε

.

The Kalman smoothing equations become (note that Γs+1 =
Qs|s
Qs+1|s

=
Qs|s

Qs|s+σ
2
Z

)

ms|t = ms|s +
Qs|s

Qs|s + σ2
Z

(
ms+1|t −ms+1|s

)
= ms|s +

Qs|s

Qs|s + σ2
Z

(
ms+1|t −ms|s

)
=

σ2
Z

Qs|s + σ2
Z

ms|s +
Qs|s

Qs|s + σ2
Z

ms+1|t,

and

Qs|t = Qs|s +

(
Qs|s

Qs|s + σ2
Z

)2 (
Qs+1|t −Qs+1|s

)
= Qs|s +

(
Qs|s

Qs|s + σ2
Z

)2 (
Qs+1|t −Qs|s − σ2

Z

)
= Qs|s −

Q2
s|s

Qs|s + σ2
Z

+

(
Qs|s

Qs|s + σ2
Z

)2

Qs+1|t =
Qs|sσ

2
Z

Qs|s + σ2
Z

+

(
Qs|s

Qs|s + σ2
Z

)2

Qs+1|t.

This local level model is useful for estimating smooth trends in time series. However it does
not work well for estimating nonsmooth trends such as piecewise constant trend functions.
For piecewise constant trend functions, using certain non-Gaussian distributions for the
evolution errors {Zt} works well. For example, one can use

Zt
i.i.d∼ C(0, σ2

Z) (65)

or
Zt

i.i.d∼ αN(0, small) + (1− α)N(0, σ2
2). (66)

In (65), C(0, σ2
Z) denotes the Cauchy density centered at 0 with scale parameter σZ :

z 7→ σZ
π(z2 + σ2

Z)
.

(66) is a mixture density with two components: the first component is a normal density
centered at zero with small variance and the second component is a normal density centered
at zero with variance σ2

2. For fitting piecewise constant trend functions, we would take α to
be close to 1.
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When the density of Zt is not normal (as when it is of the form (65) or (66)), the overall
model is not “linear Gaussian” so that Kalman filtering and smoothing are not applicable. We
will study two ways of solving the filtering and smoothing problems in such models. The first
approach is to numerically evaluate the general recursions of Section 10.1 by discretization.
This method is described in the next section. The second approach is to use Monte Carlo
approximation and we shall discuss this later (this approach is known as “Sequential Monte
Carlo” and is the main focus of the Chopin-Papaspiliopoulos book for example).

10.4 Numerical Evaluation of Xs | Y0 = y0, . . . , Yt = yt, θ

This method works for arbitrary state space models. It is also conceptually simpler (com-
pared to the Kalman recursions) but it is computationally quite intensive because we need
to recursively compute entire densities (as opposed to just means and covariances as in the
Kalman recursions).

We shall discretize space by placing a dense grid x(g), g ∈ G covering the range of Xt. We
shall use the same grid for each Xt for simplicity although in principle different grids may be
used for different values of t. We shall reduce all densities to probability mass functions over
{x(g), g ∈ G}. Let ps|t(x

(g)), g ∈ G denote the probability mass function that approximates
the density fs|t(·) i.e.,

ps|t(x
(g)) ∝ fs|t(x(g))

or, more precisely,

ps|t(x
(g)) =

fs|t(x
(g))∑

g′∈G fs|t(x
(g′))

.

From knowledge of ps|t(x
(g)), g ∈ G, the density fs|t(x) cannot be determined precisely for

all x but it can be approximated well if the grid G is dense. For example, one can use the
approximation

fs|t(x) ∝ ps|t(x(g)) for x(g) that is closest to x.

We shall discretize the recursions (61), (62) and(63). The discrete equation corresponding
to the one-step ahead prediction update (61) is given by

pt|t−1(x(g)) ∝
∑
g̃∈G

fXt|Xt−1=x(g̃)(x
(g))pt−1|t−1(xg̃)

The normalization constant can be written explicitly as

pt|t−1(x(g)) =

∑
g̃∈G fXt|Xt−1=x(g̃),θ(x

(g))pt−1|t−1(xg̃)∑
g′
∑

g̃∈G fXt|Xt−1=x(g̃)(x
(g′))pt−1|t−1(xg̃)

(67)

The discrete equation corresponding to the filtering update (62) is given by

pt|t(x
(g)) ∝ fYt|Xt=x(g)(yt)pt|t−1(x(g))

which becomes the following with proper normalization:

pt|t(x
(g)) =

fYt|Xt=x(g)(yt)pt|t−1(x(g))∑
g′∈G fYt|Xt=x(g′)(yt)pt|t−1(x(g′))

(68)

Finally the discretized version of the smoothing recursion (63) is

ps|t(x
(g)) = ps|s(x

(g))
∑
g̃∈G

(
fXs+1|Xs=x(g),θ(x

(g̃))∑
g′∈G fXs+1|Xs=x(g),θ(x

(g′))

)
ps+1|t(x

(g))

ps+1|s(x(g̃))
(69)
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These three equations (67), (68) and (69) can be implemented to compute ps|t for all s ≤ t.
The recursions can be initialized with

p0|−1(x(g)) ∝ 1 for all g ∈ G.

This corresponds to a diffuse prior on X0.

These recursions are used, for example, to fit the local level model with evolution errors
(65) or (66).

10.5 Recommended Reading for Today

1. Kalman smoothing equations for the local level model can be found in Section 2.4 of
the Durbin-Koopman book and Example 8.1 of the Särkkä book

2. The numerical recursions for filtering and smoothing can be found in Section 6.3 of the
Kitagawa-Gersch book and Section 14.3 of the Kitagawa book.

3. For estimating smooth trend functions with state space models, see Section 8.2 of the
Kitagawa-Gersch book or Chapter 11 of the Kitagawa book.

4. The local level model with Cauchy errors has been used to fit a piecewise constant trend
function in Section 14.4 of the Kitagawa book (they actually used the more general
Pearson family for the evolution errors). Section 8.4 of the Kitagawa-Gersch book also
considers the Pearson family for the evolution errors as well as the normal mixture
distribution (66).

11 Lecture Eleven

We shall discuss optimization algorithms for maximum likelihood estimation for state space
models. We start with a general discussion of optimization algorithms before specializing to
the case of state space models.

11.1 Basic Optimization Algorithms

The goal is to maximize a function F (θ) over θ. Optimization algorithms are iterative and
output a sequence of values θ(0), θ(1), . . . which is supposed to converge to a (local) maximizer
of F . We shall describe briefly three standard optimization algorithms: Gradient Ascent,
Newton’s method and BFGS.

11.1.1 Gradient Ascent

Given the current iterate θ(n), consider the first order Taylor expansion of F near θ(n):

F (θ) ≈ F (θ(n)) +
〈
∇F (θ(n)), θ − θ(n)

〉
.

This suggests that F (θ) ≥ F (θ(n)) provided〈
∇F (θ(n)), θ − θ(n)

〉
≥ 0
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which will be satisfied when

θ − θ(n) = αn∇F (θ(n)) for α ≥ 0.

Motivated by this, the gradient ascent update is

θ(n+1) = θ(n) + αn∇F (θ(n)).

The quantity αn is called the step-size and the best way to choose it (which guarantees
improvement in function values) is to maximize the quantity

F
(
θ(n) + α∇F (θ(n))

)
over all α ≥ 0.

The above one-parameter maximization can be done by a line search.

11.1.2 Newton’s Method

Given the current iterate θ(n), consider the second order Taylor expansion of F near θ(n):

F (θ) ≈ F (θ(n)) +
〈
∇F (θ(n)), θ − θ(n)

〉
+

1

2
(θ − θ(n))′HF (θ(n))(θ − θ(n)). (70)

The maximizer of the right hand side above can be calculated in closed form as:

θ − θ(n) =
(
−HF (θ(n))

)−1 (
∇F (θ(n))

)
.

This motivates setting

θ(n+1) = θ(n) + αn

(
−HF (θ(n))

)−1 (
∇F (θ(n))

)
(71)

where again αn is chosen to maximize the quantity

F

(
θ(n) + α

(
−HF (θ(n))

)−1 (
∇F (θ(n))

))
over all α ≥ 0.

Note that it is important that −HF (θ(n) must be positive semi-definite for the quadratic
approximation (70) to have a well-defined maximum (otherwise, its maximum will be +∞).

Newton’s method works very well when initialized reasonably close to the actual maximizer
of F . But one needs to calculate the Hessian matrix HF (θ(n)) which may be difficult on
impossible in some applications.

11.1.3 Quasi-Newton Method: BFGS

Quasi-Newton methods mimic the Newton update (71) without explicitly including Hessian
matrices. Instead the idea is to have approximate Hessians and update them at each step.
The most popular of these methods is BFGS (Broyden-Fletcher-Goldfarb-Shanno) and this
method works as follows. At each step of the procedure, the current estimate of the maximizer
θ(n) is updated to the next value θ(n+1) and the current approximate Hessian matrix H(n)

is also updated to the next value H(n+1). The update θ(n) → θ(n+1) is exactly the same as
(71) with HF (θ(n)) replaced by the current Hessian approximation H(n):

θ(n+1) = θ(n) + αn

(
−H(n)

)−1 (
∇F (θ(n))

)
(72)
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where, as before, αn is chosen to maximize the quantity

F

(
θ(n) + α

(
−H(n)

)−1 (
∇F (θ(n))

))
over all α ≥ 0.

The update for the Hessian is given by (we are assuming that each −H(n) is symmetric and
positive definite)

H(n+1) = H(n) +
gg′

g′s
− H(n)ss′H(n)

s′H(n)s
(73)

where
s := θ(n+1) − θ(n) and g := ∇F

(
θ(n+1)

)
−∇F

(
θ(n)

)
.

The Hessian update can also be written in terms of (H(n))−1:(
H(n+1)

)−1
=

(
I − sg′

g′s

)(
H(n)

)−1
(
I − gs′

g′s

)
+
ss′

g′s
. (74)

This is useful because the θ-update (72) is written in terms of the inverse of H(n).

Here is some intuition behind the Hessian update (73) (or, equivalently, (74)). It is easy
to check that H(n+1)s = g which is same as

H(n+1)
(
θ(n+1) − θ(n)

)
= ∇F (θ(n+1))−∇F (θ(n)).

This is a reasonable condition to insist becauseH(n+1) is supposed to approximateHF (θ(n+1)).
Observe that when the dimension equals 1, the equality H(n+1)s = g is the same as

H(n+1) =
F ′(θ(n+1))− F ′(θ(n))

θ(n+1) − θ(n)
.

The matrix H(n+1) defined by (73) is actually the solution to the following optimization
problem:

H(n+1) = argmin
X

{
D(X‖H(n)) : Xs = g and X is psd

}
where

D(X‖H) :=
1

2

[
tr
(

(H(n))−1X
)
− log det

(
(H(n))−1X

)
− d
]
.

Here d is the dimension of θ (note that each H is d×d). The above expression D(X‖H) is the
Kullback-Leibler divergence between the multivariate normal distribution with covariance X
and the multivariate normal distribution with covariance H. At a high level, H(n+1) should
be understood as the closed matrix to H(n) (measured in terms of the divergence D(·‖H(n)))
subject to the condition H(n+1)s = g. It is standard to initialize H(0) with the identity
matrix.

Observe that in order to apply the gradient ascent and the BFGS methods, it is necessary
to be able to compute the gradients of F . To apply the Newton method, one also needs to
compute the Hessian of F .

If you want to learn more about these optimization algorithms, you can read standard
books on nonlinear optimization; I can recommend Numerical Optimization by Nocedal and
Wright, or the first chapter of Introductory Lectures on Convex Optimization by Nesterov,
or Iterative Methods for Optimization by Kelley.
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11.2 Application to Maximum Likelihood Estimation in State Space Models

We shall apply the optimization algorithms for obtaining maximum likelihood estimates in
state space models. The function F in the previous section will now be the log-likelihood
function. We have seen that it can be calculated for state space models by filtering (in
particular, the Kalman filter can be used for likelihood computation in linear Gaussian state
space models). As we saw in the previous section, gradient ascent and BFGS require gradient
evaluations. We thus need to calculate the gradient of the log-likelihood function in state
space models. One often uses the term score vector or score function for the gradient of the
log-likelihood function.

For calculating the score vector in state space models (and more generally in latent variable
models), it is convenient to use the Fisher identity which we shall describe next.

11.2.1 Fisher Identity for the Score

Consider a general latent variable model which describes the joint density fY,X|θ(y, x) of two
variables Y,X in terms of parameters θ. Here Y denotes the observed variable (the observed
data from Y will be denoted by y) and X denotes the hidden or latent variable (we will not
be observing any specific realizations x corresponding to X). This setting is quite general
and includes the state space model as special case. For state space models, Y = (Y0, . . . , YT )
and X = (X0, . . . , XT ).

The likelihood of the observation y is simply equal to the density of Y at y:

fY |θ(y) =

∫
fY,X|θ(y, x)dx

viewed as a function of the parameters θ. Generally in latent variable models, fY |θ(y) is
harder to evaluate compared to fY,X|θ(y, x). Our goal here is to calculate the score function

(gradient of the log-likelihood) at a specific parameter value θ(0). More precisely, we want
to calculate:

∇θ log fY |θ(y)

∣∣∣∣
θ=θ(0)

Fisher’s identity provides a formula for the score in terms of fY,X|θ:

Fact 11.1 (Fisher’s Identity). For every θ(0) and y, we have

∇θ log fY |θ(y)

∣∣∣∣
θ=θ(0)

= ∇θE
(
θ, θ(0)

)∣∣∣∣
θ=θ(0)

(75)

where

E(θ, θ(0)) :=

∫ [
log fY,X|θ(y, x)

]
fX|Y=y,θ=θ(0)(x)dx (76)

Proof. Fix θ(0) and y. Note that for every x,

fY |θ(y) =
fY,X|θ(y, x)

fX|Y=y,θ(x)

which can be rewritten as

log fY |θ(y) = log fY,X|θ(y, x)− log fX|Y=y,θ(x). (77)
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We now integrate both sides of the above equality with respect to the probability density

q(x) := fX|Y=y,θ=θ(0)(x).

Note that the function x 7→ q(x) depends on y and θ(0) but it does not depend on the generic
parameter value θ appearing in (77). Integrating both sides of (77) with respect to q(x)
(note that the left hand side of (77) does not depend on x), we get

log fY |θ(y) =

∫ [
log fY,X|θ(y, x)

]
q(x)dx−

∫ [
log fX|Y=y,θ(x)

]
q(x)dx

= E(θ, θ(0))−
∫ [

log fX|Y=y,θ(x)
]
q(x)dx.

We now take the gradient on both sides with respect to θ and evaluate the gradient at
θ = θ(0). This leads to

∇θ log fY |θ(y)

∣∣∣∣
θ=θ(0)

= ∇θE(θ, θ(0))

∣∣∣∣
θ=θ(0)

−∇θ
∫ [

log fX|Y=y,θ(x)
]
q(x)dx

∣∣∣∣
θ=θ(0)

.

Thus, to complete the proof of (82), it is enough to show that the last term above equals
zero. This is true because

∇θ
∫ [

log fX|Y=y,θ(x)
]
q(x)dx

∣∣∣∣
θ=θ(0)

=

∫
∇θ
[
log fX|Y=y,θ(x)

]∣∣∣∣
θ=θ(0)

q(x)dx

=

∫ ∇θfX|Y=y,θ(x)

∣∣∣∣
θ=θ(0)

fX|Y=y,θ=θ(0)(x)
q(x)dx

=

∫ ∇θfX|Y=y,θ(x)

∣∣∣∣
θ=θ(0)

fX|Y=y,θ=θ(0)(x)
fX|Y=y,θ=θ(0)(x)dx

=

∫
∇θfX|Y=y,θ(x)

∣∣∣∣
θ=θ(0)

dx

= ∇θ
[∫

fX|Y=y,θ(x)dx

]∣∣∣∣
θ=θ(0)

= ∇θ [1]

∣∣∣∣
θ=θ(0)

= 0.

Note that at two places in the above chain of equalities, we interchanged the operations of
differentiation (with respect to θ) and integration (with respect to x).

As we shall see in the next class, the quantity E(θ, θ(0)) also appears in the EM algorithm.
We shall often write it as

E(θ, θ(0)) = Eθ(0)
[
log fY,X|θ(y,X) | Y = y

]
.

The notation on the right hand side needs to be understood correctly. The parameter θ
appearing in log fY,X|θ(y,X) will remain as θ (i.e., it will not be replaced by θ(0)). Eθ(0)
represents expectation over X with respect to the density fX|Y=y,θ=θ(0) .
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11.2.2 E(θ, θ(0)) for state space models

For state space models,

log fY,X|θ(y, x) = log fX0,...,XT ,Y0,...,YT |θ(x0, . . . , xT , y0, . . . , yT )

= log fX0|θ(x0) +
T∑
t=1

log fXt|Xt−1=xt−1,θ(xt) +
T∑
t=0

log fYt|Xt=xt,θ(yt).

Observe that the right hand side above involves three kinds of quantities: the observed data
y0, . . . , yT , the parameters θ and the quantities x0, . . . , xT . From here, to obtain E(θ, θ(0)), we
leave y0, . . . , yT , θ unchanged in the right hand side and take the expectation over x0, . . . , xT
conditional on y0, . . . , yT . This conditional expectation depends on parameters and we shall
fix the parameters at θ(0) (as opposed to the θ that is already appearing on the right hand
side). We can thus write

E(θ, θ(0)) = I1(θ, θ(0)) + I2(θ, θ(0)) + I3(θ, θ(0)) (78)

where

I1(θ, θ(0)) =

∫ [
log fX0|θ(x0)

]
fX0|Y0=y0,...,YT=yT ,θ(0)

(x0)dx0

= E
[
log fX0|θ(X0) | Y0 = y0, . . . , YT = yT , θ

(0)
]
,

and

I2(θ, θ(0)) =

T∑
t=1

∫ ∫ [
log fXt|Xt−1=xt−1,θ(xt)

]
fXt,Xt−1|Y0=y0,...YT=yT ,θ(0)

(xt, xt−1)dxtdxt−1

=

T∑
t=1

E
[
log fXt|Xt−1=Xt−1,θ(Xt) | Y0 = y0, . . . , YT = yT , θ

(0)
]
,

and

I3(θ, θ(0)) =
T∑
t=0

∫ [
log fYt|Xt=xt,θ(yt)

]
fXt|Y0=y0,...,YT=yT ,θ(0)

(xt)dxt

=
T∑
t=0

E
[
log fYt|Xt=Xt,θ(yt) | Y0 = y0, . . . , YT = yT , θ

(0)
]
.

Note that I3(θ, θ(0)) involves expectation with respect to the conditional distribution

Xt | Y0 = y0, . . . , YT = yT , θ
(0)

and I1(θ, θ(0)) involves expectation with respect to the above conditional distribution for
t = 0. These conditional distributions are obtained from the smoothing algorithm. Further
I2(θ, θ(0)) involves expectation with respect to

Xt, Xt−1 | Y0 = y0, . . . , YT = yT , θ
(0)

which can also be obtained from the smoothing algorithm (we shall see the reasoning behind
this in the next class).

For the linear Gaussian state space models, I1(θ, θ(0)), I2(θ, θ(0)), I3(θ, θ(0)) can be com-
puted in closed form in terms of the output of the Kalman smoothing algorithm. It is also
possible to obtain closed form expressions for the gradient of E(θ, θ(0)). This is a nice way
of computing the score function in linear Gaussian state space models using the Kalman
smoother output. We shall see the details in the next class.
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11.3 Recommended Reading for Today

1. Some references for an in-depth coverage of optimization algorithms are the books
Numerical Optimization by Nocedal and Wright, or the first chapter of Introductory
Lectures on Convex Optimization by Nesterov, or Iterative Methods for Optimization
by Kelley.

2. For a quick review of optimization algorithms with the goal of applying them to param-
eter estimation in state space models, see Section 7.3 of the Durbin-Koopman book,
Section 14.4 of the Chopin-Papaspiliopoulos book, and Appendix A of the Kitagawa
book.

3. Fisher’s identity can be found in Section 7.3.3 of the Durbin-Koopman book (although
they don’t call it the Fisher identity), and Exercise 12.5 of the Chopin-Papaspiliopoulos
book, and Equation (12.32) in the Särkkä book.

4. For the formula (87), see equations (12.29) and (12.30) of the Särkkä book.

12 Lecture Twelve

12.1 Pairwise Smoothing Distributions

In our study of smoothing algorithms, we have focussed on calculating the distribution of
Xs | Y0 = y0, . . . , Yt = yt, θ for fixed s ≤ t. For the score vector calculation (as well in the
EM algorithm), we would need to calculate the conditional joint distribution of Xs and Xs+1

given Y0 = y0, . . . , Yt = yt, θ. In the general case, this can be done via

fXs,Xs+1|Y0=y0,...,Yt=yt,θ(xs, xs+1)

= fXs|Xs+1=xs+1,Y0=y0,...,Yt=yt,θ(xs)fXs+1|Y0=y0,...,Yt=yt,θ(xs)

We have seen in Lecture Nine that the first term in the right hand side above equals

fXs|Xs+1=xs+1,Y0=y0,...,Yt=yt,θ(xs) = fXs|Xs+1=xs+1,Y0=y0,...,Ys=ys,θ(xs)

=
fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,θ(xs+1)∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,θ(xs+1)du

.

We thus have

fXs,Xs+1|Y0=y0,...,Yt=yt,θ(xs, xs+1)

=

[
fXs|Y0=y0,...,Ys=ys,θ(xs)fXs+1|Xs=xs,θ(xs+1)∫
fXs|Y0=y0,...,Ys=ys,θ(u)fXs+1|Xs=u,θ(xs+1)du

]
fXs+1|Y0=y0,...,Yt=yt,θ(xs).

The above formula expresses the joint smoothing density of Xs, Xs+1 in terms of the smooth-
ing density of Xs+1 as well filtering and transition densities.

For linear Gaussian state space models, explicit calculations can be done leading to the
formula:(

Xs+1

Xs

)
| Y0 = y0, . . . , Yt = yt, θ ∼ N

((
ms+1|t
ms|t

)
,

(
Qs+1|t Qs+1|tΓ

′
s+1

Γs+1Qs+1|t Qs|t

))
. (79)

Here, as before, ms|t and Qs|t denote the mean and covariance of Xs | Y0 = y0, . . . , Yt, θ
respectively. Also Γs+1 equals

Γs+1 = Qs|sA
′
s+1Q

−1
s+1|s. (80)

52



Note that Γs+1 appears in the Kalman smoother recursions. To prove (79), we only need to
verify that

Cov (Xs+1, Xs | Y0 = y0, . . . , Yt = yt, θ) = Qs+1|tΓ
′
s+1. (81)

This is true because (below datat stands for Y0 = y0, . . . , Yt = yt)

Cov (Xs+1, Xs | datat, θ) = E
[(
Xs+1 −ms+1|t

) (
Xs −ms|t

)′ | datat, θ
]

= E
[(
Xs+1 −ms+1|t

)
E
{(
Xs −ms|t

)′ | Xs+1,datat, θ
}
| datat, θ

]
.

We have seen in Lecture Nine that

E (Xs | Xs+1,datat) = ms|s + Γs+1

(
Xs+1 −ms+1|s

)
which gives

E
{(
Xs −ms|t

)′ | Xs+1,datat, θ
}

=
(
ms|s + Γs+1

(
Xs+1 −ms+1|s

)
−ms|t

)′
= X ′s+1Γ′s+1 + non-random

where “non-random” refers to a quantity which is deterministic. Thus

Cov (Xs+1, Xs | datat, θ) = E
[(
Xs+1 −ms+1|t

) {
X ′s+1Γ′s+1 + non-random

}
| datat, θ

]
= E

[(
Xs+1 −ms+1|t

){(
Xs+1 −ms+1|t

)′
Γ′s+1 + non-random

}
| datat, θ

]
= Cov (Xs+1 | datat, θ) Γ′s+1 = Qs+1|tΓ

′
s+1.

This proves (81) which completes the proof of (79).

12.2 Fisher’s Identity (from last time)

In the last class, we looked at the Fisher identity for the score function. The setting is that
of a latent variable model that describes the joint density fY,X|θ(y, x) of two variables Y,X
in terms of parameters θ. Y is the observed variable (y is the observed data) and X is the
hidden or latent variable. Fisher’s identity says that

∇θ log fY |θ(y)

∣∣∣∣
θ=θ(0)

= ∇θE
(
θ, θ(0)

)∣∣∣∣
θ=θ(0)

(82)

where

E(θ, θ(0)) :=

∫ [
log fY,X|θ(y, x)

]
fX|Y=y,θ=θ(0)(x)dx (83)

12.3 The Score Function for the Local Level Model

Let us illustrate the Fisher identity for calculating the score function in the local level model:

X0 ∼ N(µ0,Γ0)

Xt = Xt−1 + Zt with Ut
i.i.d∼ N(0, σ2

Z)

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε )
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The parameter vector here is θ := (σZ , σε). Let us calculate E(θ, θ(0)) to calculate the score

vector at θ(0) := (σ
(0)
Z , σ

(0)
ε ). The log-likelihood of Y0, . . . , YT , X0, . . . , XT equals

log fY,X(θ) := −1

2
log (2πΓ0)− 1

2Γ0
(x0 − µ0)2 − T

2
log
(
2πσ2

Z

)
− 1

2σ2
Z

T∑
t=1

(xt − xt−1)2

− T + 1

2
log(2πσ2

ε )−
1

2σ2
ε

T∑
t=0

(yt − xt)2

Therefore

E(θ, θ(0)) := −1

2
log (2πΓ0)− 1

2Γ0
E
{

(X0 − µ0)2 | data, θ(0)
}

− T

2
log
(
2πσ2

Z

)
− 1

2σ2
Z

E

{
T∑
t=1

(Xt −Xt−1)2 | data, θ(0)

}

− T + 1

2
log(2πσ2

ε )−
1

2σ2
ε

E

{
T∑
t=0

(yt −Xt)
2 | data, θ(0)

} (84)

where “data” represents Y0 = y0, . . . , YT = yT (this is basically dataT in the notation of
Section 12.1). As a result

∇θE(θ, θ(0)) =

− T
σZ

+ 1
σ3
Z
E
{∑T

t=1(Xt −Xt−1)2 | data, θ(0)
}

−T+1
σε

+ 1
σ3
ε
E
{∑T

t=0(yt −Xt)
2 | data, θ(0)

}  (85)

The Fisher identity therefore gives

∇θ log fY |θ(y)

∣∣∣∣
θ=θ(0)

=


− T

σ
(0)
Z

+ 1(
σ
(0)
Z

)3E
{∑T

t=1(Xt −Xt−1)2 | data, θ(0)
}

−T+1

σ
(0)
ε

+ 1(
σ
(0)
ε

)3E
{∑T

t=0(yt −Xt)
2 | data, θ(0)

}
 (86)

The expectations appearing above can be calculated using the output of the Kalman smoother
as shown below. Let ms|T (θ(0)) and Qs|T (θ(0)) denote the output of the Kalman smoother

when the parameters are set to θ(0). Then

E

{
T∑
t=1

(Xt −Xt−1)2 | data, θ(0)

}

=
T∑
t=1

E
{

(Xt −Xt−1)2 | data, θ(0)
}

=
T∑
t=1

var
{
Xt −Xt−1 | data, θ(0)

}
+

T∑
t=1

(
mt|T (θ(0))−mt−1|T (θ(0))

)2

=
T∑
t=1

[
Qt|T (θ(0)) +Qt−1|T (θ(0))− 2Cov(Xt, Xt−1 | data, θ(0))

]
+

T∑
t=1

(
mt|T (θ(0))−mt−1|T (θ(0))

)2

=
T∑
t=1

[
Qt|T (θ(0)) +Qt−1|T (θ(0))− 2Qt|T (θ(0))Γt(θ

(0))
]

+
T∑
t=1

(
mt|T (θ(0))−mt−1|T (θ(0))

)2

where, in the last equation, we used the formula (81) for s = t − 1. The quantity Γt(θ
(0))

equals (see (80)):

Γt(θ
(0)) =

Qt−1|t−1(θ(0))

Qt|t−1(θ(0))
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which can be calculated by the Kalman filter output.

Also

E

{
T∑
t=0

(yt −Xt)
2 | data, θ(0)

}
=

T∑
t=0

E
{

(yt −Xt)
2 | data, θ(0)

}
=

T∑
t=0

{
var
(
Xt | data, θ(0)

)
+
(
yt −mt|T (θ(0))

)2
}

=

T∑
t=0

{
Qt|T (θ(0)) +

(
yt −mt|T (θ(0))

)2
}
.

Observe that (86) is a closed form expression for the score function (in terms of the Kalman
smoother output). Using the expression (86) for the score function, we can use standard
optimization methods (such as gradient ascent or BFGS) to obtain the maximum likelihood
estimator for θ = (σZ , σε).

12.4 The EM Algorithm

The EM algorithm is another method for maximizing the log-likelihood log fY |θ(y) over θ in
latent variable models. It is also an iterative algorithm. The EM update

θ(n) → θ(n+1)

consists of the following two steps:

1. E-Step: Calculate E(θ, θ(n)) (this is (83) with θ(0) replaced by θ(n)).

2. M-Step: Take θ(n+1) to be the maximizer of E(θ, θ(n)) over θ.

Some intuition behind this algorithm will be provided in the next class.

12.5 EM for the local level model

For the local level model, the expression for E(θ, θ(0)) as well as ∇θE(θ, θ(0))

∣∣∣∣
θ=θ(0)

are

calculated in Section 12.3 (see (84) and (85)). Using these, we can immediately write down
the EM iterate in closed form. Indeed, θ(n+1) is obtained by maximizing E(θ, θ(n)) over θ.
Setting the gradient of E(θ, θ(n)) (calculated in (85)) to zero, we can immediately deduce
that

σ
(n+1)
Z =

√√√√ 1

T
E

{
T∑
t=1

(Xt −Xt−1)2 | data, θ(n)

}

and

σ(n+1)
ε =

√√√√ 1

T + 1
E

{
T∑
t=0

(yt −Xt)2 | data, θ(n)

}
.

This is a very easy update (there are no line searches for step size selection) and thus the
EM is very popular for state space models.
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12.6 Calculation of E(θ, θ(0)) for general state space models

For a general state space model,

log fY,X|θ(y, x) = log fX0,...,XT ,Y0,...,YT |θ(x0, . . . , xT , y0, . . . , yT )

= log fX0|θ(x0) +
T∑
t=1

log fXt|Xt−1=xt−1,θ(xt) +
T∑
t=0

log fYt|Xt=xt,θ(yt).

Observe that the right hand side above involves three kinds of quantities: the observed data
y0, . . . , yT , the parameters θ and the quantities x0, . . . , xT . From here, to obtain E(θ, θ(0)), we
leave y0, . . . , yT , θ unchanged in the right hand side and take the expectation over x0, . . . , xT
conditional on y0, . . . , yT . This conditional expectation depends on parameters and we shall
fix the parameters at θ(0) (as opposed to the θ that is already appearing on the right hand
side). We can thus write

E(θ, θ(0)) = I1(θ, θ(0)) + I2(θ, θ(0)) + I3(θ, θ(0)) (87)

where

I1(θ, θ(0)) =

∫ [
log fX0|θ(x0)

]
fX0|Y0=y0,...,YT=yT ,θ(0)

(x0)dx0

= E
[
log fX0|θ(X0) | Y0 = y0, . . . , YT = yT , θ

(0)
]
,

and

I2(θ, θ(0)) =

T∑
t=1

∫ ∫ [
log fXt|Xt−1=xt−1,θ(xt)

]
fXt,Xt−1|Y0=y0,...YT=yT ,θ(0)

(xt, xt−1)dxtdxt−1

=

T∑
t=1

E
[
log fXt|Xt−1=Xt−1,θ(Xt) | Y0 = y0, . . . , YT = yT , θ

(0)
]
,

and

I3(θ, θ(0)) =

T∑
t=0

∫ [
log fYt|Xt=xt,θ(yt)

]
fXt|Y0=y0,...,YT=yT ,θ(0)

(xt)dxt

=

T∑
t=0

E
[
log fYt|Xt=Xt,θ(yt) | Y0 = y0, . . . , YT = yT , θ

(0)
]
.

Note that I3(θ, θ(0)) involves expectation with respect to the conditional distribution

Xt | Y0 = y0, . . . , YT = yT , θ
(0)

and I1(θ, θ(0)) involves expectation with respect to the above conditional distribution for
t = 0. These conditional distributions are obtained from the smoothing algorithm. Further
I2(θ, θ(0)) involves expectation with respect to

Xt, Xt−1 | Y0 = y0, . . . , YT = yT , θ
(0)

which can be obtained from the pairwise smoothing algorithm of Section 12.1.

For linear Gaussian state space models, I1(θ, θ(0)), I2(θ, θ(0)), I3(θ, θ(0)) can be computed
in closed form in terms of the output of the Kalman smoothing algorithm. The details of this
calculation are given in Theorem 12.4 of the Särkkä book. Often maximization of E(θ, θ(0))
can also be done in closed form for linear Gaussian state space models (see Theorem 12.5 of
the Särkkä book).

56



12.7 Recommended Reading for Today

1. The pairwise smoothing distributions for the linear Gaussian state space model are
described in the proof of Theorem 8.2 of the Särkkä book.

2. The EM algorithm is described in Section 12.2.3 of the Särkkä book, Section 2.4.2 of
the Triantafyllopoulos book, and Section 14.1.3 of the Chopin-Papaspiliopoulos book.

3. The EM algorithm for the local level model is given in Example 14.1 of the Chopin-
Papaspiliopoulos book.

4. More details on the EM algorithm for linear Gaussian state space models are given in
Section 12.3.2 of the Särkkä book.

13 Lecture Thirteen

We shall cover the following two topics today:

1. The EM algorithm in the context of the more general MM class of algorithms

2. The Forward Filtering Backward Sampling algorithm for sampling from the full pos-
terior of all the states X0, . . . , XT given the data Y0 = y0, . . . , YT = yT and θ.

13.1 The MM Algorithm

The EM algorithm is much easier to understand in the context of a more general class of
algorithms called MM. Consider the general problem of maximizing a function F (θ) over
θ. In this setting, MM stands for Minorize-Maximize (if we are studying the problem of
minimizing F (θ) as opposed to maximizing, MM would stand for Majorize-Minimize). The
MM algorithm for maximizing F (θ) over θ is iterative and the update from θ(n) to θ(n+1)

has the following two steps:

1. Construct a function G(θ, θ(n)) which minorizes F (θ) for every θ and agrees with F (θ)
at θ = θ(n). In other words, G(θ, θ(n)) must satisfy:

G(θ, θ(n)) ≤ F (θ) for every θ, and G(θ(n), θ(n)) = F (θ(n)).

2. Take θ(n+1) to be the maximizer of G(θ, θ(n)) over θ.

The most important fact about the MM algorithm is that the objective function increases
(or stays the same) when going from θ(n) to θ(n+1):

F (θ(n+1)) ≥ F (θ(n)). (88)

This can be easily proved via:

F (θ(n+1)) ≥ G(θ(n+1), θ(n)) ≥ G(θ(n), θ(n)) = F (θ(n)).

Note that the first inequality above follows from the fact that G(·, θ(n)) minorizes F (θ), the
second inequality follows because θ(n+1) maximizes G(·, θ(n)) and the third inequality follows
because G(θ, θ(n)) matches F (θ) at θ = θ(n).

The property (88) is very desirable for a maximization procedure and it is remarkable that
the MM algorithm satisfies it without any explicit line search scheme for choosing step sizes.
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Before seeing why the EM algorithm is a special case of the MM algorithm, let us first
look at two simple examples.

Example 13.1. Consider the problem of maximizing the function F (θ) = cos θ. The MM
algorithm can be used for this in the following way. In order to go from θ(n) to θ(n+1), the
first step is to construct G(θ, θ(n)) for which we argue as follows. For every θ, we can write

F (θ) = F (θ(n)) + F ′(θ(n))(θ − θ(n)) +
1

2
F ′′(z)(θ − θ(n))2

for some z that lies between θ and θ(n). Thus

F (θ) = cos θ(n) −
(

sin θ(n)
)

(θ − θ(n))− 1

2
(cos z) (θ − θ(n))2

≥ cos θ(n) −
(

sin θ(n)
)

(θ − θ(n))− 1

2
(θ − θ(n))2

and thus we take

G(θ, θ(n)) = cos θ(n) −
(

sin θ(n)
)

(θ − θ(n))− 1

2
(θ − θ(n))2.

It is easy to see that G(θ(n), θ(n)) = F (θ(n)). Thus G satisfies both the requirements of the
first step of the MM algorithm. Further as G(θ, θ(n)) is quadratic in θ, it is easy to maximize
it over θ to obtain

θ(n+1) = θ(n) − sin θ(n).

It is an exercise to show that this iterative scheme converges to the true maximizer 0 when
initialized anywhere in the open interval (−π, π).

Example 13.2. Given m real numbers y1, . . . , ym, consider the problem of maximizing

F (θ) := −
m∑
i=1

|yi − θ|

over θ. Any solution of this problem can be termed a median of F . The usual algorithms
for computing the median involve sorting the data. MM provides another method for median
computation that does not require sorting the data. The key to the MM iterate θ(n) → θ(n+1)

is the construction of G(θ, θ(n)). For this, consider the following inequality:

|yi − θ| =
|yi − θ|√
|yi − θ(n)|

√
|yi − θ(n)| ≤ 1

2

(yi − θ)2

|yi − θ(n)|
+

1

2
|yi − θ(n)| (89)

where we used the elementary fact: ab ≤ a2

2 + b2

2 . We thus take

G(θ, θ(n)) := −1

2

n∑
i=1

(yi − θ)2

|yi − θ(n)|
− 1

2

n∑
i=1

|yi − θ(n)|.

It is easy to check that G(θ, θ(n)) minorizes F (θ) (because of (89)) and that G(θ(n), θ(n)) =
F (θ(n)). Because G(θ, θ(n)) is a quadratic function in θ, it is easy to write down its maximizer
(over θ) in closed form:

θ(n+1) =

∑n
i=1w

(n)
i yi∑n

i=1w
(n)
i

where w
(n)
i :=

1

|yi − θ(n)|
.
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This algorithm clearly does not involve sorting the data. One problem with this algorithm

is that it does not work when θ(n) equals yi for some i (note then that w
(n)
i equals 0). It is

difficult (probably impossible) to construct a quadratic G(θ, θ(n)) satisfying our requirements
when θ(n) equals yi for some i. A practical fix is to change the weights w(n) slightly by adding

a small ε to the denominator as: w
(n)
i = 1

|yi−θ(n)|+ε
.

It should be clear from the above examples that the most important step for the use of
the MM algorithm is the construction of the G(θ, θ(n)) function. There are some general
ideas for this (see the book MM Optimization Algorithms by Kenneth Lange, or chapter
12 in the book Numerical Analysis for Statisticians by Kenneth Lange, or these slides:
https://www.stat.berkeley.edu/~aldous/Colloq/lange-talk.pdf).

13.2 The EM Algorithm as a special case of MM

The EM algorithm is a special case of MM corresponding to a special choice of G(θ, θ(n)) in
the latent variable model setting. We shall describe this below. Let us first recall the notion
of Kullback-Leibler divergence (also known as Relative Entropy).

13.2.1 The Kullback-Leibler Divergence

The Kullback-Leibler divergence D(p‖q) between two densities p and q is defined as

D(p‖q) :=

∫
p(x) log

p(x)

q(x)
dx.

The most important property of D(p‖q) is that it is always nonnegative. This can be proved
as a consequence of the elementary inequality:

u log u ≥ u− 1 for all u ≥ 0.

Because of this inequality:

D(p‖q) =

∫
p(x) log

p(x)

q(x)
dx

=

∫
q(x)

(
p(x)

q(x)
log

p(x)

q(x)

)
dx

≥
∫
q(x)

(
p(x)

q(x)
− 1

)
dx =

∫
q(x)dx−

∫
p(x)dx = 1− 1 = 0

Another way of proving D(p‖q) ≥ 0 is via the use of the Jensen inequality.

It should also be noted that

D(p‖q) = 0 if and only if p = q (90)

This can be argued using the fact that x log x = x− 1 if and only if x = 1.

It is also very important to note that D(q‖p) and D(p‖q) are in general not equal.
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13.2.2 EM and MM

We are now ready to explain the connection between the EM and MM algorithms. Consider
the latent variable setting where the goal is to maximize the log-likelihood:

F (θ) = log fY |θ(y)

There is a latent variable X and the model is specified via the full density fY,X|θ(y, x). It is
important to note that the conditional density of X given Y = y depends on the value of θ.
We shall denote this by fX|Y=y,θ(x).

We shall show below that the EM update for θ(n) → θ(n+1) is exactly equal to the MM
update corresponding to

G(θ, θ(n)) := F (θ)−D
(
fX|Y=y,θ(n)‖fX|Y=y,θ

)
(91)

Because the Kullback-Leibler divergence is always nonnegative, it is clear that G(θ, θ(n)) ≤
F (θ) for every θ. Further, because of (90), G(θ(n), θ(n)) = F (θ(n)). Thus G satisfies the
conditions required for the first step of the MM algorithm. Note that we can write G
alternately as

G(θ, θ(n)) = F (θ)−D
(
fX|Y=y,θ(n)‖fX|Y=y,θ

)
= log fY |θ(y)−

∫
fX|Y=y,θ(n)(x) log

fX|Y=y,θ(x)

fX|Y=y,θ(n)(x)
dx

=

∫
fX|Y=y,θ(n)(x) log fY |θ(y)dx−

∫
fX|Y=y,θ(n)(x) log

fX|Y=y,θ(x)

fX|Y=y,θ(n)(x)
dx

=

∫
fX|Y=y,θ(n)(x) log

fY |θ(y)fX|Y=y,θ(x)

fX|Y=y,θ(n)(x)
dx

=

∫
fX|Y=y,θ(n)(x) log

fY,X|θ(y, x)

fX|Y=y,θ(n)(x)
dx

=

∫
fX|Y=y,θ(n)(x) log fY,X|θ(y, x)dx−

∫
fX|Y=y,θ(n)(x) log fX|Y=y,θ(n)(x)dx.

Recall that the first term on the right hand side above is precisely the function E(θ, θ(n))
that appears in the Expectation Step of the EM algorithm. We have thus proved that

G(θ, θ(n)) = E(θ, θ(n))−
∫
fX|Y=y,θ(n)(x) log fX|Y=y,θ(n)(x)dx.

The second term above does not depend on θ. Therefore maximizing G(θ, θ(n)) over θ is
equivalent to maximizing E(θ, θ(n)) over θ. This shows that the second steps of the MM
algorithm (with G defined in (91)) and the EM algorithm are identical, which completes
the proof of the claim that MM (with G in (91)) is exactly the EM algorithm. The EM
algorithm is therefore a special case of MM.

13.3 Full Smoothing Distribution

In our discussion of smoothing, we have so far discussion the computation of the marginal
distributions:

Xt | Y0 = y0, . . . , YT = yT , θ
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for each t = 0, . . . , T , as well as the pairwise distributions:

Xt, Xt+1 | Y0 = y0, . . . , YT = yT , θ.

It turns out ideas used for the above calculations can also be used to obtain the full condi-
tional joint density:

X0, . . . , XT | Y0 = y0, . . . , YT = yT , θ (92)

for all the states given the observations (and θ). To see this, first write (below “data” refers
to Y0 = y0, . . . , YT = yT )

fX0,...,XT |data,θ(x0, . . . , xT ) = fXT |data,θ(xT )

0∏
t=T−1

fXt|Xt+1=xt+1,...,XT=xT ,data,θ(xt).

The Markov property of {Xt} and the conditional independence of Yt given X0, . . . , XT imply

fXt|Xt+1=xt+1,...,XT=xT ,data,θ(xt) = fXt|Xt+1=xt+1,Y0=y0,...,Yt=yt,θ(xt). (93)

This means that Xs = xs for s > t + 1 and Ys = ys for s > t can be dropped from the
conditioning. As a result

fX0,...,XT |data,θ(x0, . . . , xT ) = fXT |data,θ(xT )

0∏
t=T−1

fXt|Xt+1=xt+1,Y0=y0,...,Yt=yt,θ(xt).

By the Bayes rule (note that fXt+1|Xt=xt,Y0=y0,...,Yt=yt,θ(xt+1) = fXt+1|Xt=xt,θ(xt+1)), we ob-
tain

fX0,...,XT |data,θ(x0, . . . , xT ) = fXT |data,θ(xT )
0∏

t=T−1

fXt|Y0=y0,...,Yt=yt,θ(xt)fXt+1|Xt=xt,θ(xt+1)∫
fXt|Y0=y0,...,Yt=yt,θ(u)fXt+1|Xt=u,θ(xt+1)du

.

This is a formula for the full smoothing joint density in terms of the filtering densities.

For linear Gaussian state space models, the conditional density (93) can be computed in
closed form (as we saw in Lecture Nine) as:

Xt | Xt+1 = xt+1, Y0 = y0, . . . , Yt = yt, θ

∼ N
(
mt|t + Γt+1

(
xt+1 −mt+1|t

)
, Qt|t − Γt+1Qt+1|tΓ

′
t+1

) (94)

where Γt+1 = Qt|tA
′
t+1Q

−1
t+1|t. This gives a closed form expression for the full smoothing joint

density.

13.4 Forward Filtering Backward SAMPLING

Suppose we want to generate independent samples

X
(i)
0 , . . . , X

(i)
T

for i = 1, . . . , N from the conditional distribution (92). This can be done using the formulae
from the previous section. For linear Gaussian state space models, we use (94) to obtain the
following sampling algorithm. Repeat the following steps for each i = 1, . . . , N :

1. Generate X
(i)
T from the filtering distribution at time T i.e., we generate X

(i)
T from the

N(mT |T , QT |T ) distribution.
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2. Sequentially for t = T − 1, . . . , 0, generate X
(i)
t from the distribution:

N
(
mt|t + Γt+1

(
X

(i)
t+1 −mt+1|t

)
, Qt|t − Γt+1Qt+1|tΓ

′
t+1

)
.

Note that this algorithm requires the quantities mT |T , QT |T ,mt|t, Qt|t,mt+1|t, Qt+1|t,Γt+1

which are all obtained from the Kalman Filter. Thus, one would need to implement the
Kalman Filter before running the sampling algorithm. Note however that this sampling
algorithm does not use any output of the usual Kalman Smoother algorithm.

For a general state space model, sampling can be done by discretization (we shall see other
approaches later). The first step is to setup a dense grid x(g), g ∈ G covering the range of
Xt and perform filtering. This will lead to discrete distributions:

pt|t(x
(g)), g ∈ G (95)

which approximate the densities fXt|Y0=y0,...,Yt=yt,θ for each t = 0, 1, . . . , T . Then the sam-

pling algorithm to generate X
(i)
0 , . . . , X

(i)
T for i = 1, . . . , N from the conditional distribution

(92) is as follows. Repeat the following steps for each i = 1, . . . , N :

1. Generate X
(i)
T from pT |T (x(g)), g ∈ G (this is the discrete filtering approximation at

time T ).

2. Sequentially for t = T − 1, . . . , 0, repeat the following steps:

a) Calculate wg := pt|t(x
(g))fXt+1|Xt=x(g),θ(X

(i)
t+1) for g ∈ G.

b) Normalize wg, g ∈ G calculated above so they sum to one.

c) Generate X
(i)
t from the discrete distribution which gives probability wg to the

grid point x(g) for g ∈ G.

Note again that this algorithm only uses the filtering approximations (95). It is not necessary
to calculate smoothing approximations to run this sampling algorithm.

These sampling algorithms for sampling observations from the full conditional distribution
of the states given the data (and the parameters θ) are known as FFBS (Forward Filtering
Backward SAMPLING). They should be contrasted with the previous FFBS (Forward Filter-
ing Backward SMOOTHING) algorithms which computed the smoothing densities (exactly
or approximately).

13.5 Recommended Reading for Today

1. References for the MM algorithm are the book MM Optimization Algorithms by Ken-
neth Lange, or chapter 12 in the book Numerical Analysis for Statisticians by Kenneth
Lange, or these slides: https://www.stat.berkeley.edu/~aldous/Colloq/lange-talk.
pdf.

2. For the FFBSampling algorithm, see Section 5.7.2 of the Triantafyllopoulos book or
Section 4.4.1 of the Petris-Petrone-Campagnoli book,
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14 Lecture Fourteen

We shall discuss full Bayesian estimation of state space models today. Full Bayesian estima-
tion means that we put a prior on the unknown parameters θ (as opposed to obtaining point
estimates for θ and ignoring the uncertainty in their estimation). Let us start by considering
the local level model.

14.1 Local Level Model

We have as usual
X0 ∼ N(0, C) Xt = Xt−1 + Zt Yt = Xt + εt

with Zt
i.i.d∼ N(0, σ2

Z) and εt
i.i.d∼ N(0, σ2

ε ). σZ and σε are unknown parameters and C is a
large constant. Previously we obtained maximum likelihood estimates for σZ and σε and then
went on to obtain smoothing estimates of X0, . . . , XT ignoring the uncertainty in estimation
of σZ and σε. Now we shall place priors on σZ and σε. Natural priors on scale parameters
reflecting ignorance are:

log σZ , log σε
i.i.d∼ Unif(−C,C).

The full joint density of θ,X0, . . . , XT , Y0, . . . , YT (here θ = (σZ , σε)) is proportional to

I{e−C < σZ , σε < eC}
σZσε

φ(x0; 0, C)
T∏
t=1

1

σZ
exp

(
−(xt − xt−1)2

2σ2
Z

) T∏
t=0

1

σε
exp

(
−(yt − xt)2

2σ2
ε

)

= I{e−C < σZ , σε < eC}φ(x0; 0, C)σ−T−1
Z exp

(
−
∑T

t=1(xt − xt−1)2

2σ2
Z

)
σ−T−2
ε exp

(
−
∑T

t=0(yt − xt)2

2σ2
ε

)

As a result

fθ,X0,...,XT |Y0=y0,...,YT=yT (θ, x0, . . . , xT )

∝ I{e−C < σZ , σε < eC}φ(x0; 0, C)σ−T−1
Z exp

(
−
∑T

t=1(xt − xt−1)2

2σ2
Z

)
σ−T−2
ε exp

(
−
∑T

t=0(yt − xt)2

2σ2
ε

)
.

Often the main interest is in the conditional distribution ofX0, . . . , XT given Y0 = y0, . . . , YT =
yT and we can obtain this by integrating over the σZ and σε. This integration can be done
in closed form if we assume that C is large (so that the indicator above can be dropped).
We then get

fX0,...,XT |Y0=y0,...,YT=yT (x0, . . . , xT )

∝ φ(x0; 0, C)

[∫ ∞
0

σ−T−1
Z exp

(
−
∑T

t=1(xt − xt−1)2

2σ2
Z

)
dσZ

][∫ ∞
0

σ−T−2
ε exp

(
−
∑T

t=0(yt − xt)2

2σ2
ε

)
dσε

]

∝ φ(x0; 0, C)

[
T∑
t=1

(xt − xt−1)2

]−T/2 [ T∑
t=0

(yt − xt)2

]−(T+1)/2

.

where we used ∫ ∞
0

σ−m−1 exp

(
− G
σ2

)
dσ =

Γ
(
m
2

)
Gm/2

.

and ignored the Γ(m/2) terms in proportionality.
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The posterior density:

fX0,...,XT |Y0=y0,...,YT=yT (x0, . . . , xT )

∝ φ(x0; 0, C)

[
T∑
t=1

(xt − xt−1)2

]−T/2 [ T∑
t=0

(yt − xt)2

]−(T+1)/2
(96)

can, in principle, be used for all inference on the hidden variables X0, . . . , XT given the
observed data. The problem is that it does not correspond to any state space model so it is
not clear how to derive from it the marginal posterior densities Xt | Y0 = y0, . . . , YT = yT in
an efficient way. In particular, the Kalman smoother cannot be implemented as this posterior
does not correspond to a state space model. As a result, instead of integrating out θ from the

joint posterior of θ,X0, . . . , XT , the common approach is to obtain samples θ(i), X
(i)
0 , . . . , X

(i)
T

for i = 1, . . . , N from the joint posterior θ,X0, . . . , XT . Then X
(i)
0 , . . . , X

(i)
T for i = 1, . . . , N

can be used for posterior inference on the hidden states given the observed data. Also the
samples θ(1), . . . , θ(N) can be used for posterior inference on the parameters θ given the
observed data.

For generating the posterior samples θ(i), X
(i)
0 , . . . , X

(i)
T for i = 1, . . . , N , it is convenient

to use the Gibbs sampler algorithm.

14.2 Gibbs Sampler

Suppose we want to approximate a joint distribution fA,B over two random variables A and
B. The Gibbs sampler algorithm is applicable in situations where the conditional densities
fA|B=b and fB|A=a are easy to simulate from for each value of a and b. The algorithm is as
follows:

1. Start with a = a(0)

2. For each i = 1, 2, . . . , N ,

a) Generate b(i) ∼ fB|A=a(i−1) .

b) Generate a(i) ∼ fA|B=b(i)

When N is large, this method generates samples (a(i), b(i)) for i = 1, . . . , N having the
property that

g(a(1), b(1)) + · · ·+ g(a(N), b(N))

N
≈
∫
g(a, b)fA,B(a, b)dadb

for many functions g.

14.3 Gibbs Sampler for the Local Level Model

The Gibbs sampler for generating samples θ(i), X
(i)
0 , . . . , X

(i)
T for i = 1, . . . , N from the full

posterior distribution
θ,X0, . . . , XT | Y0 = y0, . . . , YT = yT

works as follows:

1. Start with θ(0) = (σ
(0)
Z , σ

(0)
ε ) for some initial values σ

(0)
Z and σ

(0)
ε .
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2. For each i = 1, . . . , N ,

a) Generate X
(i)
0 , . . . , X

(i)
T from the conditional joint distribution of X0, . . . , XT given

θ = θ(i) and Y0 = y0, . . . , YT = yT . Because we are conditioning on θ = θ(i) here,
these samples are obtained by the FFBSampling algorithm discussed in the last
class.

b) Generate θ(i) from the conditional distribution of θ given X0 = X
(i)
0 , X1 =

X
(i)
1 , . . . , XT = X

(i)
T and Y0 = y0, . . . , YT = yT . The details for doing this are

given below.

For the second step above, we need to be able to simuate from the conditional distribution:

θ | X0 = x0, . . . , XT = xT , Y0 = y0, . . . , YT = yT ,

and this can be done as follows:

fθ|X0=x0,...,XT=xT ,Y0=y0,...,YT=yT (θ)

∝ fθ,X0,...,XT |Y0=y0,...,YT=yT (θ, x0, . . . , xT )

∝ I{e−C < σZ , σε < eC}φ(x0; 0, C)σ−T−1
Z exp

(
−
∑T

t=1(xt − xt−1)2

2σ2
Z

)
σ−T−2
ε exp

(
−
∑T

t=0(yt − xt)2

2σ2
ε

)

∝ I{e−C < σZ < eC}σ−T−1
Z exp

(
−
∑T

t=1(xt − xt−1)2

2σ2
Z

)
I{e−C < σε < eC}σ−T−2

ε exp

(
−
∑T

t=0(yt − xt)2

2σ2
ε

)

as calculated previously. Thus, conditional on X0 = x0, . . . , XT = x0, Y0 = y0, . . . , YT = yT ,
the two parameters σZ and σε are independent with

fσZ |X0=x0,...,XT=xT ,Y0=y0,...,YT=yT (σZ) ∝ I{e−C < σZ < eC}σ−T−1
Z exp

(
−
∑T

t=1(xt − xt−1)2

2σ2
Z

)

and

fσε|X0=x0,...,XT=xT ,Y0=y0,...,YT=yT (σε) ∝ I{e−C < σε < eC}σ−T−2
ε exp

(
−
∑T

t=0(yt − xt)2

2σ2
ε

)
.

By changing the indicators to I{σZ > 0} and I{σε > 0} (which is justified when C is large),
and using the standard change of variable formula, we obtain

σ−2
Z | X0 = x0, . . . , XT = x0, Y0 = y0, . . . , YT = yT ∼ Gamma

(
T

2
,

∑T
t=1(xt − xt−1)2

2

)
,

and

σ−2
ε | X0 = x0, . . . , XT = x0, Y0 = y0, . . . , YT = yT ∼ Gamma

(
T + 1

2
,

∑T
t=0(yt − xt)2

2

)
.

Thus the second step in the iteration for the Gibbs sampler, we simply generate Gamma

random variables G
(i)
Z and G

(i)
ε from the above pair of distributions (with xt = X

(i)
t ) and

then transform them as σ
(i)
Z := 1/

√
G

(i)
Z and σ

(i)
ε := 1/

√
G

(i)
ε . Thus implementing the Gibbs

sampler for the local level model is quite simple.
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14.4 Gibbs sampler for general Linear Gaussian state space models

The Gibbs sampler algorithm for general Linear Gaussian state space models is basically the
same as the one we saw in the last section:

1. Start with θ(0).

2. For each i = 1, . . . , N ,

a) Generate X
(i)
0 , . . . , X

(i)
T from the conditional joint distribution of X0, . . . , XT given

θ = θ(i) and Y0 = y0, . . . , YT = yT . Because we are conditioning on θ = θ(i) here,
these samples are obtained by the FFBSampling algorithm discussed in the last
class.

b) Generate θ(i) from the conditional distribution of θ given X0 = X
(i)
0 , X1 =

X
(i)
1 , . . . , XT = X

(i)
T and Y0 = y0, . . . , YT = yT . Unlike the case of the local

level model, this step may not always be carried out in closed form. It depends
on the specific dependence of the matrices defining the linear Gaussian model on
the parameters θ.

14.5 Recommended Reading for Today

1. A general introduction to the Gibbs sampler is in Section 5.7.1 of the Triantafyllopoulos
book and in Section 1.6.1 of the Petris-Petrone-Campagnoli book.

2. The Gibbs sampler for the local level model is given in Section 4.4.3 of the Petris-
Petrone-Campagnoli book and Section 5.7.3 of the Triantafyllopoulos book.

15 Lecture Fifteen

In the last class, we started discussing Full Bayes estimation of state space models. Full
Bayesian estimation means that we put a prior on the unknown parameters θ (as opposed
to obtaining point estimates for θ and ignoring the uncertainty in their estimation).

In some applications of state space models such as tracking, θ represents nuisance param-
eters with the main focus centered on the state variables. In such applications, full Bayesian
estimation ensures that uncertainty in estimation of θ is accounted for in our uncertainty
quantification of the state variables. In certain other applications of state space models, the
main focus is on θ (and the state variables can be considered nuisance parameters). This is
for example the case for ARMA models (which can be written in state space form). Here
uncertainty quantification for θ is important which is achieved by Full Bayes analysis.

We shall discuss several approaches for Full Bayesian Analysis today. The main starting
point is the choice of prior on θ. We shall generally use noninformative (diffuse) priors such
as Unif(−C,C) or N(0, C) (with large C) for the components of θ or certain transformations
of the components of θ (such as log σZ and log σε for θ = (σZ , σε) in the local level model).
When the likelihood is peaked around the MLE (which would generally be the case when the
number of observations T is large), it actually does not matter much as to what the prior is.
Some heuristic justification for this will be provided today.

Here are some of the ways of doing Full Bayesian Analysis of state space models. We are
assuming, from now on, that we have fixed a prior fθ(θ) for the unknown parameters θ.
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15.1 Approach One: Gibbs Sampling

We looked at Gibbs sampling in the last class. It proceeds according to the following algo-
rithm.

1. Start with initial values θ(0).

2. For each i = 1, . . . , N ,

a) Generate X
(i)
0 , . . . , X

(i)
T from the conditional joint distribution of X0, . . . , XT given

θ = θ(i−1) and Y0 = y0, . . . , YT = yT . Because we are conditioning on a fixed value
of θ here, these samples can be obtained by the FFBSampling algorithm discussed
previously.

b) Generate θ(i) from the conditional distribution of θ given X0 = X
(i)
0 , X1 =

X
(i)
1 , . . . , XT = X

(i)
T and Y0 = y0, . . . , YT = yT .

The last step of the Gibbs sampling algorithm (which involves generating θ(i) from the condi-

tional distribution of θ givenX0 = X
(i)
0 , X1 = X

(i)
1 , . . . , XT = X

(i)
T and Y0 = y0, . . . , YT = yT )

cannot always be carried out in closed form for state space models. In the last class, we saw
how this can be done in closed form for the local level model.

The empirical probability measure of the samples (θ(i), X
(i)
0 , . . . , X

(i)
T ) for i = 1, . . . , N

generated by the Gibbs sampler can be used to approximate the full posterior distribution
of (θ,X0, . . . , XT ) given the data Y0 = y0, . . . , YT = yT :

1

N

N∑
i=1

δ
(θ(i),X

(i)
0 ,...,X

(i)
T )
≈ fθ,X0,...,XT |Y0=y0,...,YT=yt .

One implication of this is∫
g(θ, x0, . . . , xT )fθ,X0,...,XT |Y0=y0,...,YT=yt(θ, x0, . . . , xT )dθdx0 . . . dxT ≈

1

N

N∑
i=1

g(θ(i), X
(i)
0 , . . . , X

(i)
T ).

for arbitrary functions g. For example, the posterior mean of θ given Y0 = y0, . . . , YT = yT
is approximated by

1

N

N∑
i=0

θ(i).

One thing to note that the samples generated by the Gibbs sampler do not correspond to
independent draws from the (θ,X0, . . . , XT ) given the data Y0 = y0, . . . , YT = yT . Instead,
they represent draws from a Markov Chain whose stationary distribution is the full posterior
distribution of (θ,X0, . . . , XT ) given the data Y0 = y0, . . . , YT = yT . Thus the Gibbs Sampler
is an example of a Markov Chain Monte Carlo (MCMC) algorithm.

15.2 Approach Two: Direct Sampling

Direct sampling generates independent draws (θ(i), X
(i)
0 , . . . , X

(i)
T ) for i = 1, . . . , N via the

following algorithm. For each i = 1, . . . , N ,

1. Generate θ(i) according to the conditional distribution of θ given Y0 = y0, . . . , YT = yT .

2. Generate X
(i)
0 , . . . , X

(i)
T from the conditional joint distribution of X0, . . . , XT given

θ = θ(i) and Y0 = y0, . . . , YT = yT . Again, because we are conditioning on a fixed value
of θ here, these samples can be obtained by the FFBSampling algorithm.
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Notice the very close similarity between the Direct Sampling and the Gibbs Sampling al-
gorithms. The issue with the Direct Sampling algorithm is that the first step is generally
difficult and cannot be done in closed form using standard distributions. This is because, in
most state space models, the conditional density of θ given Y0 = y0, . . . , YT = yT is a some-
what complicated function given implicitly via the Kalman filter. For some simple models
however (such as AutoRegressive Models as we shall discuss in the next class), this method
can be carried out.

Note again that, unlike the Gibbs sampler, direct sampling generates independent draws
from the full posterior.

15.3 Approach Three: Posterior Normal Approximation

This can be seen as a modification of the Direct Sampling algorithm where the first step is
replaced by sampling from a normal approximation: For each i = 1, . . . , N ,

1. Generate θ(i) according to a normal approximation to the conditional distribution
of θ given Y0 = y0, . . . , YT = yT .

2. Generate X
(i)
0 , . . . , X

(i)
T from the conditional joint distribution of X0, . . . , XT given

θ = θ(i) and Y0 = y0, . . . , YT = yT . This step is the same as in the Direct Sampling
algorithm.

Here is one way of obtaining the normal approximation for use in the first step of the above
algorithm. Note first that

fθ|Y0=y0,...,YT=yT (θ) ∝ fY0,...,YT |θ(y0, . . . , yT )fθ(θ)

In the right hand side above, the term fY0,...,YT |θ(y0, . . . , yT ) is simply the likelihood (which is
given by the Kalman filter for linear Gaussian state space models) and the second term fθ(θ)
is the prior. Note that the likelihood fY0,...,YT |θ(y0, . . . , yT ) is maximized at the maximum

likelihood estimate θ̂. Now generally in state space models, the likelihood is quite peaked
around θ̂ which means that the likelihood is very close to 0 outside of a small region around θ̂.
On the other hand, the prior fθ(θ) is quite flat which means that it can be well-approximated
by a constant (such as fθ(θ̂)) in the region where the likelihood is significantly different from
zero. This leads to the approximation:

fθ|Y0=y0,...,YT=yT (θ)
•∝ fY0,...,YT |θ(y0, . . . , yT )fθ(θ̂) ∝ fY0,...,YT |θ(y0, . . . , yT )

where
•∝ means “proportional to approximately”. In the second relation above, we dropped

fθ(θ̂) as it is a constant. Thus when the prior is flat in the region where the likelihood
is significantly different from zero, the posterior of θ given the data is proportional to the
likelihood and does not depend on the exact form of the prior. Writing in terms of the
log-likelihood:

`(θ) := log fY0,...,YT |θ(y0, . . . , yT ),

we get

fθ|Y0=y0,...,YT=yT (θ)
•∝ exp (`(θ)) .

We now do a second order Taylor expansion of `(θ) around the MLE θ̂ to get

fθ|Y0=y0,...,YT=yT (θ)
•∝ exp (`(θ))

≈ exp

(
`(θ̂) +

〈
∇`(θ̂), θ − θ̂

〉
+

1

2

(
θ − θ̂

)T
H`(θ̂)

(
θ − θ̂

))
.
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Note the following about the three terms appearing on the right hand side above. The
first term exp(`(θ̂)) is just a constant and will be ignored in proportionality. The second
term equals zero because ∇`(θ̂) = 0 as θ̂ is a maximizer of `(θ) (this is, strictly speaking,
an assumption because this may not be true if θ̂ is not an interior point in the domain of
`(θ)). The Hessian H`(θ̂) is negative semi-definite (i.e., −H`(θ̂) is positive semi-definite) as
θ̂ maximizes `(θ) (this also may not always be true but this is generally true). We therefore
get

fθ|Y0=y0,...,YT=yT (θ)
•∝ exp

(
−1

2

(
θ − θ̂

)T (
−H`(θ̂)

)(
θ − θ̂

))
.

The right hand side above is the multivariate normal density (without the normalizing con-
stant). We thus have

θ | Y0 = y0, . . . , YT = yT
•∼ N

(
θ̂,
(
−H`(θ̂)

)−1
)

where
•∼ means “approximately distributed as”. This posterior normal approximation is

quite popular. Note that for state space models, the log-likelihood is calculated via the
Kalman filter and the Hessian of the log-likelihood can be calculated numerically.

Therefore the sampling algorithm using posterior normal approximation is the following.
For each i = 1, . . . , N ,

1. Generate θ(i) according to the multivariate normal distribution with mean θ̂ and covari-

ance matrix
(
−H`(θ̂)

)−1
. Here θ̂ denotes the MLE and `(θ) denotes the log-likelihood

(which is obtained by filtering).

2. Generate X
(i)
0 , . . . , X

(i)
T from the conditional joint distribution of X0, . . . , XT given

θ = θ(i) and Y0 = y0, . . . , YT = yT .

Note that the prior does not appear in the above algorithm at all which can be considered
an attractive feature. The posterior normal approximation does not work in the following
two situations:

1. The prior fθ(θ) varies considerably in the region of the likelihood. This is generally
not an issue as we usually work with flat priors.

2. When θ is far from θ̂, the second order Taylor expansion of `(θ) around θ̂ will not give
a good approximation of `(θ). Now if `(θ) is already negligible for such values of θ,
this poor approximation will not be a issue. If not, then the normal approximation
will not be accurate for the posterior.

15.4 Approach Four: Importance Sampling

Importance sampling can be used when direct sampling is infeasible and posterior normal
approximation is not accurate. The basic problem is as follows. We are interested in ap-
proximating a distribution P with density p. We cannot sample from P directly but we have
the ability to obtain independent samples X1, . . . , Xn from a distribution Q (with density
q). As explained below, importance sampling provides an approximation for P in terms of
X1, . . . , Xn. In the state space model context, P will be fθ|Y0=y0,...,YT=yT (θ) and Q will be
an approximation (such as the posterior normal approximation).
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Importance sampling provides two approximations for P . The first approximation is

P̂1 :=
1

n

n∑
i=1

p(Xi)

q(Xi)
δ{Xi}.

By δ{Xi}, we mean a point mass at Xi. Basically P̂1 is a discrete measure giving the weight
1
n
p(Xi)
q(Xi)

to the point Xi. Note that P̂1 is not necessarily a probability measure because the

weights 1
n
p(Xi)
q(Xi)

do not necessarily add to 1. It is a approximation to P in the sense that∫
g(x)dP̂1(x) =

1

n

n∑
i=1

p(Xi)

q(Xi)
g(Xi) ≈

∫
g(x)dP (x)

for most functions g. This is basically a consequence of the Strong Law of Large Numbers
which implies (under a minimal first moment assumption on g) that

1

n

n∑
i=1

p(Xi)

q(Xi)
g(Xi)→

∫
p(x)

q(x)
g(x)q(x)dx =

∫
g(x)dP (x) almost surely as n→∞. (97)

There are two annoying issues with P̂1:

1. As already mentioned, it is not a probability measure.

2. To use P̂1, we need to know the density p(x) fully. In many situations (including in
our setting of state space models), we would only know p(x) upto multiplication by a
normalizing constant. This would preclude use of P̂1.

To fix these two issues, importance sampling proposes the following estimator (often known
as self-normalized importance sampling):

P̂2 :=

n∑
i=1

wiδ{Xi} where wi :=

1
n
p(Xi)
q(Xi)∑n

j=1
1
n
p(Xj)
q(Xj)

It is clear that P̂2 is a probability measure. Also to use P̂2, it is enough to know p(x) (and
also q(x)) up to an unknown multiplicative constant. To see why P̂2 is a good approximation
of P , observe that for a function g:∫

g(x)dP̂2(x) =

n∑
i=1

wig(Xi) =

1
n

∑n
i=1 g(Xi)

p(Xi)
q(Xi)

1
n

∑n
i=1

p(Xi)
q(Xi)

As we have seen in (97), the numerator above converges to
∫
g(x)dP (x) almost surely as

n → ∞. By another application of the law of large numbers, it can be seen that the
denominator converges to 1:

1

n

n∑
i=1

p(Xi)

q(Xi)
→
∫
p(x)

q(x)
q(x)dx =

∫
p(x)dx = 1 almost surely as n→∞.

Thus ∫
g(x)dP̂2(x)→

∫
g(x)p(x)dx almost surely as n→∞.

We can do a more precise comparison of the performance of the two estimators:

E1 :=

∫
g(x)dP̂1(x) =

1

n

n∑
i=1

g(Xi)
p(Xi)

q(Xi)
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and

E2 :=

∫
g(x)dP̂2(x) =

1
n

∑n
i=1 g(Xi)

p(Xi)
q(Xi)

1
n

∑n
i=1

p(Xi)
q(Xi)

for estimating

µ :=

∫
g(x)dP (x)

by calculation of variances. Note that these estimators are based on data X1, . . . , Xn that
are independent with common distribution Q. We can also compare these estimators against
the simple estimator

E0 :=
1

n

n∑
i=1

g(Xi)

based on independent observations X1, . . . , Xn having distribution P . E0 will not be a
feasible estimator if we cannot sample from P but we can still use it as a comparison bench-
mark for the feasible estimators E1 and E2. Here are basic observations about these three
estimators:

1. Estimator E0: E0 is clearly an unbiased estimator of µ. Its variance is given by

var(E0) =
1

n
varP (g(X1)) =

1

n

∫
(g(x)− µ)2 p(x)dx. (98)

The subscript P in varP refers to X1 ∼ P . Note also that the mean of g(X1) under
X1 ∼ P is

∫
g(x)p(x)dx = µ.

2. Estimator E1: E1 is also an unbiased estimator of µ. Its variance is given by

var(E1) =
1

n
varQ

(
g(X1)

p(X1)

q(X1)

)
=

1

n

∫ (
g(x)

p(x)

q(x)
− µ

)2

q(x)dx =
1

n

∫
[g(x)p(x)− µq(x)]2

q(x)
dx.

Note that it is possible that var(E1) is much smaller than var(E0). This will be the
case, for example, when

q(x) ≈ g(x)p(x)

µ
=

g(x)p(x)∫
g(x)p(x)dx

.

In the extreme case when q(x) is exactly equal to the right hand side, E1 is a perfect
estimator of µ having zero variance. This also suggests that in situations where g is
non-zero only in a tiny part of the support of P , the importance sampling estimator E1

will work much better than the direct sampling estimator E0 when q(x) is concentrated
on the specific tiny part of the support of P .

3. Estimator E2: This is not an unbiased estimator. But the numerator 1
n

∑n
i=1 g(Xi)

p(Xi)
q(Xi)

and denominator 1
n

∑n
i=1

p(Xi)
q(Xi)

of E2 are very close (by the law of large numbers) to µ
and 1 respectively. So we can approximate E2 by a simple first order Taylor expansion
as follows. Let f(A,B) := A

B . For fixed points A0, B0, we have

A

B
= f(A,B) ≈ f(A0, B0) + (A−A0)

∂f

∂A

∣∣∣∣
A=A0,B=B0

+ (B −B0)
∂f

∂B

∣∣∣∣
A=A0,B=B0

=
A0

B0
+
A−A0

B0
− A0(B −B0)

B2
0

.

Using this with

A :=
1

n

n∑
i=1

g(Xi)
p(Xi)

q(Xi)
B :=

1

n

n∑
i=1

p(Xi)

q(Xi)
A0 = µ B0 = 1,
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we get

E2 ≈ µ+ (A− µ)− µ(B − 1) = µ+A−Bµ = µ+
1

n

n∑
i=1

(g(Xi)− µ)
p(Xi)

q(Xi)
.

This implies that E2 is approximately unbiased because

E(E2) ≈ µ+ EQ
[
(g(X1)− µ)

p(X1)

q(X1)

]
= µ+

∫
(g(x)− µ)

p(x)

q(x)
q(x)dx

= µ+

∫
(g(x)− µ) p(x)dx = µ+

(∫
g(x)p(x)dx− µ

)
= µ.

Further the variance of E2 is approximately

var(E2) ≈ 1

n
varQ

(
(g(X1)− µ)

p(X1)

q(X1)

)
=

1

n

∫
(g(x)− µ)2 p

2(x)

q(x)
dx.

This variance is more similar to (98) but it can still be smaller than (98). The best
possible variance reduction occurs when

q∗(x) =
|g(x)− µ|p(x)∫
|g(x)− µ|p(x)dx

when

var(E2) ≈ 1

n

(∫
|g(x)− µ|p(x)dx

)2

which is definitely smaller than var(E0). To see why q∗ minimizes var(E2), just note,

by Cauchy-Schwarz inequality (
∫
|a(x)b(x)|dx ≤

√∫
a2(x)dx

√∫
b2(x)dx) that∫

|g(x)− µ|p(x)dx =

∫
|g(x)− µ|p(x)√

q(x)

√
q(x)dx

≤

√∫
(g(x)− µ)2

p2(x)

q(x)
dx

√∫
q(x)dx =

√∫
(g(x)− µ)2

p2(x)

q(x)
dx.

15.5 Recommended Reading for Today

1. For the importance sampling approach to full Bayesian analysis, see Chapter 13 of the
Durbin-Koopman book.

2. A standard MCMC method such as Metropolis-Hastings can also be used in step 1
of the Direct Sampling approach. This method is described in Section 12.2.2 of the
Särkkä book or in Section 6.8.1 of the Triantafyllopoulos book.

3. For a general overview of importance sampling, see Chapter 8 of the Chopin-Papaspiliopoulos
book or this book chapter: https://artowen.su.domains/mc/Ch-var-is.pdf.

16 Lecture Sixteen

Our next topic is Sequential Monte Carlo methods for general state space models. Here the
conditional densities fXt|Xt−1=xt−1,θ(·) and fYt|Xt=xt,θ(·) (as well as the initial density fX0)
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can be arbitrary. We shall first look at the problem of filtering. Recall that filtering can be
used for writing down the likelihood (which is necessary for inference of θ). Filtering will
also be necessary for solving the smoothing problem which we shall study later.

Recall that filtering refers to the problem of determining the conditional distributions:

Xt | Y0 = y0, . . . , Yt = yt, θ for t = 0, 1, 2, . . . , T .

Our approach will be recursive and we shall determine the above distributions sequentially for
t = 0, 1, 2, . . . . In Lecture Six, we have seen closed form formulae for obtaining the filtering
density at time t using the filtering density at time t− 1. This involved two steps which we
termed one-step ahead prediction update and filtering update. The one-step ahead prediction
update is the following formula for the density of Xt given Y0 = y0, . . . , Yt−1 = yt−1, θ in
terms of the density of Xt−1 given Y0 = y0, . . . , Yt−1 = yt−1, θ:

fXt|Y0=y0,...,Yt−1=yt−1,θ(xt) =

∫
fXt|Xt−1=xt−1,θ(xt)fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)dxt−1. (99)

The filtering update is the following formula for the density of Xt given Y0 = y0, . . . , Yt = yt, θ
in terms of the density of Xt given Y0 = y0, . . . , Yt−1 = yt−1:

fXt|Y0=y0,...,Yt=yt,θ(xt) =
fYt|Xt=xt,θ(yt)fXt|Y0=y0,...,Yt−1=yt−1,θ(xt)∫
fYt|Xt=u,θ(yt)fXt|Y0=y0,...,Yt−1=yt−1,θ(u)du

(100)

Formula (100) can be seen as an application of the Bayes rule with the following choices of
“prior” and “likelihood”:

prior : fXt|Y0=y0,...,Yt−1=yt−1,θ, and likelihood : fYt|Xt=xt,θ = fYt|Xt=xt,Y0=y0,...,Yt−1=yt−1,θ

(101)
The “posterior” corresponding to the above prior and likelihood is the density of Xt given
Y0 = y0, . . . , Yt = yt, θ and is obtained by the Bayes rule leading to the formula (100).

For general state space models, the integral involved in (99) cannot be evaluated in closed
form. This would make (100) intractable as well (because (100) needs fXt|Y0=y0,...,Yt−1=yt−1,θ

as input). One approach for dealing with intractibility is to use Monte Carlo which leads to
Sequential Monte Carlo methods for state space models. In Monte Carlo methods, the focus is
not on evaluating an unknown density f in closed form, and instead, the focus is on obtaining
i.i.d samples X(1), . . . , X(N) from f . Once these samples are obtained, the distribution
corresponding to the density f is approximated by the discrete uniform distribution on
X(1), . . . , X(N):

Unif{X(1), . . . , X(N)}. (102)

In order to evaluate the expectation of a function g with respect to the density f , the Monte
Carlo approach will give ∫

g(x)f(x)dx ≈ 1

N

n∑
i=1

g(X(i)).

16.1 Notation for Discrete Distributions

We shall use the following notation in the sequel. A discrete distribution that takes the
values x(1), . . . , x(N) with probabilities p(1), . . . , p(N) will be denoted by

p(1)δ{x(1)} + · · ·+ p(N)δ{x(N)} =
n∑
i=1

p(i)δ{x(i)}.
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For example, the distribution taking the three values 5, 2,−6 with probabilities 0.3, 0.5, 0.2
respectively will be written as

0.3δ{5} + 0.5δ{2} + 0.2δ{−6}.

Note that the uniform distribution (102) is written as∑
i=1

1

N
δ{X(i)}

in this notation.

16.2 Monte Carlo versions of (99) and (100)

In terms of Monte Carlo, the basic question underlying filtering is the following:

Question 16.1. Suppose we are given i.i.d samples X
(1)
t−1, . . . , X

(N)
t−1 from the distribution

Xt−1 | Y0 = y0, . . . , Yt−1 = yt−1, θ (this is the filtering distribution at time t− 1). How then

do we generate i.i.d samples X
(1)
t , . . . , X

(N)
t from the distribution Xt | Y0 = y0, . . . , Yt = yt, θ

(this is the filtering distribution at time t)?

We shall solve this question by using Monte Carlo versions of (99) and (100). We start

with i.i.d samples X
(1)
t−1, . . . , X

(N)
t−1 from the filtering density fXt−1|Y0=y0,...,Yt−1=yt−1,θ at time

t− 1. For the one-step ahead prediction update, we need to obtain samples from the density
of Xt given Y0 = y0, . . . , Yt−1 = yt−1, θ. This is easily done via:

X̃
(i)
t ∼ fXt|Xt−1=X

(i)
t−1

for i = 1, . . . , N.

This makes sense because the right hand side of (99) is simply the marginal density of Xt

under the model:

Xt | Xt−1 = xt−1 ∼ fXt|Xt−1=xt−1
and Xt−1 ∼ fXt−1|Y0=y0,...,Yt−1=yt−1,θ.

Thus X̃
(1)
t , . . . , X̃

(N)
t are i.i.d samples from the one-step ahead prediction distrbution Xt |

Y0 = y0, . . . , Yt−1 = yt−1, θ. One can then approximate the one-step ahead prediction distri-
bution by

(Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ) ≈ Unif
{
X̃

(1)
t , . . . , X̃

(N)
t

}
=

n∑
i=1

1

N
δ{X̃(i)

t }
. (103)

Let us now come to (100). As noted earlier, this equation arises from the Bayes rule
with prior and likelihood given in (101). We do not have access to the prior density
fXt|Y0=y0,...,Yt−1=yt−1,θ as we have not evaulated (99) in closed form. We do, however, have
the Monte Carlo approximation (103) for the one-step ahead prediction distribution so it is
natural to approximate (100) by applying Bayes rule with

prior :

n∑
i=1

1

N
δ{X̃(i)

t }
, and likelihood : fYt|Xt=xt,θ.

The unnormalized posterior corresponding to the prior and likelihood above is given by the
weights:

w
(i)
t := f

Yt|Xt=X̃(i)
t ,θ

(yt).
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The properly normalized posterior is then given by

n∑
i=1

W
(i)
t δ{X̃(i)

t }
where W

(i)
t :=

w
(i)
t

w
(1)
t + · · ·+ w

(N)
t

.

This discrete distribution approximates the filtering distribution at time t:

Xt | Y0 = y0, . . . , Yt = yt, θ ≈
n∑
i=1

W
(i)
t δ{X̃(i)

t }
.

In order to generate i.i.d samples from the filtering distribution at time t, we can simply
generate samples from the above discrete distribution:

X
(1)
t , . . . , X

(N)
t ∼

n∑
i=1

W
(i)
t δ{X̃(i)

t }
.

This algorithm for solving the filtering problem in general state space models using Monte
Carlo is called Bootstrap Particle Filter. We stae the algorithm formally in the next section.

16.3 The Bootstrap Particle Filter

For each t ≥ 0, this algorithm outputs samples X
(1)
t , . . . , X

(N)
t such that

Unif
{
X

(1)
t , . . . , X

(N)
t

}
≈ Xt | Y0 = y0, . . . , Yt = yt, θ.

The algorithm proceeds sequentially. At time t−1, one has access to the samplesX
(1)
t−1, . . . , X

(N)
t−1

and using these, one generates the samples X
(1)
t , . . . , X

(N)
t by following the three steps given

below.

1. Generation: For each i = 1, . . . , N , generate independent samples:

X̃
(i)
t ∼ fXt|Xt−1=X

(i)
t−1

.

To execute this step, we need to be able to simulate from the state transition density
fXt|Xt−1=xt−1

.

2. Weights: For each i = 1, . . . , N , compute

w
(i)
t := f

Yt|Xt=X̃(i)
t

(yt). (104)

Normalize these weights so they sum to one:

W
(i)
t =

w
(i)
t

w
(1)
t + · · ·+ w

(N)
t

for i = 1, . . . , N.

To execute this step, we need to be able to evalute the conditional density fYt|Xt=xt(yt)
at least up to a constant that does not depend on xt.

3. Resampling: Generate

X
(1)
t , . . . , X

(N)
t

i.i.d∼
N∑
i=1

Wiδ{X̃(i)
t }
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This algorithm is initialized by taking

X̃
(1)
0 , . . . , X̃

(N)
0

i.i.d∼ fX0|θ

and then following the steps 2 (weights) and 3 (resampling) above to generate X
(1)
0 , . . . , X

(N)
0 .

One can then repeat the recursion for t = 1, 2, 3, . . . . This is similar to the way we initialized
the Kalman filter.

This algorithm is called the Bootstrap Particle Filter because: (a) Monte-Carlo samples
are called particles in the physics literature, (b) The resampling step is reminiscent of the
bootstrap procedure in statistics.

The Bootstrap Particle Filter is very simple and easy to implement. It can also be under-
stood from the point of view of Importance Sampling. Before describing this connection to
importance sampling, let us briefly recall importance sampling.

16.4 Importance Sampling Recalled

Consider a probability measure P with density p. Suppose we do not know the formula for p
exactly but we only know it up to some unknown multiplicative constant factor c. In other
words, we know the explicit formula for the function x 7→ cp(x) but we do not know c and
hence we do not know p(x) explicitly.

Importance sampling attempts to approximate P using i.i.d samples X̃(1), . . . , X̃(n) drawn
from another probability measure Q having density q. The idea is to form weights

w(i) :=
cp(X̃(i))

q(X̃(i))
for i = 1, . . . , N

and the corresponding normalized weights:

W (i) :=
w(i)

w(1) + · · ·+ w(N)
for i = 1, . . . , N.

Then the importance sampling approximation for P is

P ≈
N∑
i=1

W (i)δ{X̃(i)}

Observe that for every function g, this gives the following approximation for
∫
gdP :∫

gdP ≈
N∑
i=1

W (i)g(X̃(i)) =

∑N
i=1w

(i)g(X̃(i))∑N
i=1w

(i)
.

In Lecture 15, we used the terminology “self-normalized” importance sampling for the above
estimator of

∫
gdP .

Note that w(1), . . . , w(N) depend on the constant c but the normalized weightsW (1), . . . ,W (N)

don’t. This means that the approximation
∑N

i=1W
(i)δ{X̃(i)} does not depend on c.

It will be helpful to note the following two things before moving on:

1. Estimating c: Importance sampling provides the following estimate for the unknown
constant c:

ĉ :=
1

N

N∑
i=1

w(i). (105)
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To see why this estimator makes sense, just note that

Eĉ =
1

N

N∑
i=1

E
(
w(i)

)
=

1

N

N∑
i=1

E

(
cp(X̃(i))

q(X̃(i))

)
=

1

N

N∑
i=1

∫
cp(x)

q(x)
q(x)dx =

∫
cp(x)dx = c

2. Samples from P : Importance sampling can be used to obtain approximately i.i.d
samples from P . Indeed as the importance sampling approximation for P equals∑N

i=1W
(i)δ{X̃(i)}, one can obtain (approximate) samples from P by sampling from

the discrete distribution
∑N

i=1W
(i)δ{X̃(i)}:

X(1), . . . , X(N) i.i.d∼
N∑
i=1

W (i)δ{X̃(i)}

This method of sample generation is referred to as Importance Resampling because
X(1), . . . , X(N) are sampled from X̃(1), . . . , X̃(N) (with weights W (1), . . . ,W (N)) which
are themselves sampled from Q.

16.5 Bootstrap Particle Filter as Importance Resampling

The Bootstrap Particle Filter algorithm can be understood from the lens of importance
resampling. This generalized view is helpful for the creation of other particle filtering algo-
rithms. There are two (very similar) ways of seeing the connection between the Bootstrap
Particle Filter and Importance Resampling.

16.5.1 First Way of Seeing the Connection

As explained in Section 16.2, the samples X̃
(1)
t , . . . , X̃

(N)
t generated in the first step of the

Bootstrap particle filter recursion (from time t − 1 to t) can be seen as samples from the
one-step ahead prediction distribution Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ:

X̃
(1)
t , . . . , X̃

(N)
t

i.i.d∼ fXt|Y0=y0,...,Yt−1=yt−1,θ.

If we now apply importance sampling to use these samples to approximate the the filtering
distribution at time t: Xt | Y0 = y0, . . . , Yt = yt, θ, we need to use, for some positive constant
c, the weights

cfXt|Y0=y0,...,Yt=yt,θ(X̃
(i)
t )

fXt|Y0=y0,...,Yt−1=yt−1,θ(X̃
(i)
t )

(106)

=
c
fXt|Y0=y0,...,Yt−1=yt−1,θ

(X̃
(i)
t )f

Yt|Xt=X̃
(i)
t ,θ

(yt)

fYt|Y0=y0,...,Yt−1=yt−1
(yt)

fXt|Y0=y0,...,Yt−1=yt−1,θ(X̃
(i)
t )

=
cf
Yt|Xt=X̃(i)

t ,θ
(yt)

fYt|Y0=y0,...,Yt−1=yt−1
(yt)

.

It is now clear that the Bootstrap Particle Filter uses the above weights for

c = fYt|Y0=y0,...,Yt−1=yt−1
(yt)

so that the weights simplify to f
Yt|Xt=X̃(i)

t ,θ
(yt). Therefore each recursion of the Bootstrap

Particle Filter can be seen as a version of Importance Resampling.
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16.5.2 Second Way of Seeing the Connection

In the first step of the Bootstrap Particle Recursion to go from t−1 to t, we generate samples

X̃
(1)
t , . . . , X̃

(N)
t independently according to

X̃
(i)
t ∼ fXt|Xt−1=X

(i)
t−1

This means that jointly (X
(i)
t−1, X̃

(i)
t ), i = 1, . . . , N are i.i.d samples from the joint density:

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)

which is just the density of Xt−1, Xt | Y0 = y0, . . . , Yt−1 = yt−1, θ. We can now employ
importance sampling to convert these samples into an approximation of the distribution

Xt−1, Xt | Y0 = y0, . . . , Yt−1 = yt−1, Yt = yt, θ.

We would need to use weights (for some constant c > 0)

cfXt−1,Xt|Y0=y0,...,Yt=yt,θ(xt−1, xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)
(107)

with xt−1 = X
(i)
t−1 and xt = X̃

(i)
t . The above expression can be simplified using Bayes rule as

cfXt−1,Xt|Y0=y0,...,Yt=yt,θ(xt−1, xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)

=
c
fXt−1,Xt|Y0=y0,...,Yt−1=yt−1,θ

(xt−1,xt)fYt|Xt−1=xt−1,Xt=xt,θ
(yt)

fYt|Y0=y0,...,Yt−1=yt−1,θ
(yt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)

=
c

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

fXt−1,Xt|Y0=y0,...,Yt−1=yt−1,θ(xt−1, xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)
fYt|Xt=xt,θ(yt)

=
c

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)
fYt|Xt=xt,θ(yt)

=
c

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)
fYt|Xt=xt,θ(yt).

As a result, we can view the weights in the bootstrap particle filter as the weights given by
(107) with c = fYt|Y0=y0,...,Yt−1=yt−1,θ(yt).

16.6 Likelihood Approximation from the Bootstrap Particle Filter

In the previous section, we have seen that the recursion (to go from time t − 1 to time t)
in the Bootstrap Particle Filter can be seen as importance sampling with weights (107) (or
equivalently (106)) with c = fYt|Y0=y0,...,Yt−1=yt−1,θ(yt). The observation (105) can therefore
be used to deduce that:

1

N

N∑
i=1

w
(i)
t ≈ fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

for each t = 1, . . . , T (here w
(i)
t is as defined in (109)). One can also similarly argue that

1

N

N∑
i=1

w
(i)
0 =

1

N

N∑
i=1

f
Y0|X0=X̃

(i)
0

(y0) ≈ fY0(y0).
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The likelihood fY0,...,YT |θ(y0, . . . , yT ) can thus be approximated as

fY0,...,YT |θ(y0, . . . , yT ) = fY0|θ(y0)

T∏
t=1

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt) ≈
T∏
t=0

(
1

N

N∑
i=1

w
(i)
t

)
.

In this way, the bootstrap particle filter algorithm directly allows likelihood computation.

16.7 Recommended Reading for Today

1. For the Bootstrap Particle Filter Algorithm, I recommend Section 15.2 of the Kitagawa
book (Kitagawa refers to the algorithm as simply The Monte Carlo Filter).

2. For more details about importance sampling and resampling, I recommend Chapters
8 and 9 of the Chopin-Papaspiliopoulos book.

17 Lecture Seventeen

17.1 Recap: Bootstrap Particle Filter

In the last class, we studied the Bootstrap Particle Filter Algorithm for solving the filtering
problem via Monte Carlo in general sequential state space models.

For each t ≥ 0, this algorithm outputs samples X
(1)
t , . . . , X

(N)
t such that

Unif
{
X

(1)
t , . . . , X

(N)
t

}
≈ Xt | Y0 = y0, . . . , Yt = yt, θ. (108)

The algorithm proceeds sequentially. At time t−1, one has access to the samplesX
(1)
t−1, . . . , X

(N)
t−1

satisfying (108) for t − 1 and using these, one generates the samples X
(1)
t , . . . , X

(N)
t by fol-

lowing the three steps given below.

1. Generation: For each i = 1, . . . , N , generate independent samples:

X̃
(i)
t ∼ fXt|Xt−1=X

(i)
t−1

.

To execute this step, we need to be able to simulate from the state transition density
fXt|Xt−1=xt−1

.

2. Weights: For each i = 1, . . . , N , compute

w
(i)
t := f

Yt|Xt=X̃(i)
t

(yt). (109)

Normalize these weights so they sum to one:

W
(i)
t =

w
(i)
t

w
(1)
t + · · ·+ w

(N)
t

for i = 1, . . . , N.

To execute this step, we need to be able to evaluate the conditional density fYt|Xt=xt(yt).

3. Resampling: Generate

X
(1)
t , . . . , X

(N)
t

i.i.d∼
N∑
i=1

Wiδ{X̃(i)
t }
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This algorithm is initialized by taking

X̃
(1)
0 , . . . , X̃

(N)
0

i.i.d∼ fX0|θ

and then following the steps 2 (weights) and 3 (resampling) above to generate X
(1)
0 , . . . , X

(N)
0 .

One can then repeat the recursion for t = 1, 2, 3, . . . . This is similar to the Kalman Filter
initialization.

The algorithm also allows computation of the likelihood fY0,...,YT |θ(y0, . . . , yT ) as:

fY0,...,YT |θ(y0, . . . , yT ) = fY0|θ(y0)
T∏
t=1

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt) ≈
T∏
t=0

(
1

N

N∑
i=1

w
(i)
t

)
.

17.2 Unique Values and Particle Degeneracy

It is clear from the description of the algorithm that the samples X
(1)
t , . . . , X

(N)
t output by

the Bootstrap Particle Filter are actually sampled from the discrete distribution:

N∑
i=1

W
(i)
t δ{X̃(i)

t }

An immediate implication of this is that X
(1)
t , . . . , X

(N)
t will not all be distinct and there will

be repeats among them. A useful diagnostic here is the number of unique values Nt among

X
(1)
t , . . . , X

(N)
t . If Nt is particularly small for some t, the Monte Carlo approximation (108)

will not be accurate. If Nt is small for some time indices t, then one says that the particle
filter algorithm suffers from the problem of Particle Degeneracy.

The Bootstrap particle filter can suffer from particle degeneracy. To understand when this

problem is particularly serious, observe first that, in the generation step, X̃
(1)
t , . . . , X̃

(N)
t can

be seen as i.i.d samples from the one-step ahead prediction density:

fXt|Y0=y0,...,Yt−1=yt−1,θ.

The weights w
(i)
t = f

Yt|Xt=X̃(i)
t

(yt) satisfy

w
(i)
t ∝

fXt|Y0=y0,...,Yt−1=yt−1,Yt=yt,θ(X̃
(i)
t )

fXt|Y0=y0,...,Yt−1=yt−1,θ(X̃
(i)
t )

The two densities in play here are the proposal density given by fXt|Y0=y0,...,Yt−1=yt−1,θ and
the target density given by fXt|Y0=y0,...,Yt=yt,θ. The algorithm will not work well if these
two densities are far from each other. Specifically, particle degeneracy occurs if the target
density fXt|Y0=y0,...,Yt=yt,θ(xt) is quite small when xt belongs to the high-density regions of
the proposal density fXt|Y0=y0,...,Yt−1=yt−1,θ(xt). Note that the only difference between the
proposal and target densities is the additional conditioning on Yt = yt in the target density.
Thus the proposal and target densities will be different if Yt provides significantly more and
different information about Xt beyond that already provided by Y0, . . . , Yt−1. This tends
to happen, for example, if the observation model relating Yt to Xt has small errors. For
example, in the local level model Yt = Xt + εt, if εt is small (e.g., when σε is small), then
Yt is quite informative for Xt and, in such situations, the bootstrap particle filter algorithm
suffers from particle degeneracy.
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This also tends to happen for t = 0 when the proposal density is fX0|θ and the target
density is fX0|Y0=y0,θ. The proposal density is usually quite diffuse and the target density is
relatively informative leading to small weights for most of the samples (and, consequently,
small N0).

In such situations where Yt is quite informative about Xt, a natural fix is to change the
proposal distribution by including information on Yt. This is the idea underlying the Guided
Particle Filter Algorithm.

17.3 The Guided Particle Filter Algorithm

The guided particle filter algorithm uses more general proposal distributions. For each time
point t ≥ 0, each value x in the space of the hidden variables {Xt}, and each value y in the
space of the observation variables {Yt}, let

u 7→ qt(u | x, y, θ)

be an arbitrary density. The general algorithm described below works for any such set of
densities qt(· | x, y, θ). The only requirement is that it should be possible simulate from
this density. This general algorithm is known as the guided particle filter algorithm and
an alternative name for the same algorithm is the Sequential Importance Resampling (SIR)
algorithm. In order to apply this algorithm in an actual problem, it is necessary to specify
qt(· | x, y, θ). For this, two choices are commonly used:

1. qt(u | x, y, θ) := fXt|Xt−1=x,θ(u). The following algorithm for this choice of qt reduces to
the Bootstrap Particle Filter algorithm. Therefore the SIR algorithm is a generalization
of the Bootstrap Particle Filter. Note that this choice of qt(· |, x, y, θ) does not depend
on y (it only depends on x).

2. qt(u, | x, y, θ) := fXt|Xt−1=x,Yt=y,θ(u). This is commonly used as an alternative to the
Bootstrap particle filter when the latter suffers from particle degeneracy. The use of this
density in the SIR algorithm requires one to be able to simulate from the conditional
density of Xt given Xt−1 = x, Yt = y, θ.

The following is the SIR algorithm. As the Bootstrap particle filter algorithm, the goal is to

output, for each t ≥ 0, samples X
(1)
t , . . . , X

(N)
t such that

Unif
{
X

(1)
t , . . . , X

(N)
t

}
≈ Xt | Y0 = y0, . . . , Yt = yt, θ. (110)

The algorithm proceeds sequentially. At time t−1, one has access to the samplesX
(1)
t−1, . . . , X

(N)
t−1

satisfying (114) for t − 1 and using these, one generates the samples X
(1)
t , . . . , X

(N)
t by fol-

lowing the three steps given below.

1. Generation: For each i = 1, . . . , N , generate independent samples:

X̃
(i)
t ∼ q(· | x = X

(i)
t−1, y = yt, θ)

To execute this step, we obviously need to be able to simulate from q(· | x = X
(i)
t−1, y =

yt).

2. Weights: For each i = 1, . . . , N , compute

w
(i)
t :=

f
Xt|Xt−1=X

(i)
t−1,θ

(X̃
(i)
t )f

Yt|Xt=X̃(i)
t ,θ

(yt)

qt(X̃
(i)
t | x = X

(i)
t−1, y = yt, θ)

(111)
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Normalize these weights so they sum to one:

W
(i)
t =

w
(i)
t

w
(1)
t + · · ·+ w

(N)
t

for i = 1, . . . , N.

To execute this step, we need to be able to evaluate fXt|Xt−1=xt−1
(xt) and fYt|Xt=xt(yt).

3. Resampling: Generate

X
(1)
t , . . . , X

(N)
t

i.i.d∼
N∑
i=1

Wiδ{X̃(i)
t }

This algorithm is initialized by taking

X
(1)
0 , . . . , X

(N)
0

i.i.d∼ fX0|Y0=y0

and then repeating the three steps described above for t = 1, 2, . . . .

The justification for the weights (115) is as follows. Note first that (X
(i)
t−1, X̃

(i)
t ) for i =

1, . . . , N are i.i.d samples from the joint density:

(xt−1, xt) 7→ fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)qt(xt | xt−1, yt, θ).

The target should have, as its second marginal, the filtering density at time t. This suggests
the target density:

(xt−1, xt) 7→ fXt−1,Xt|Y0=y0,...,Yt=yt,θ(xt−1, xt).

The importance weights will then be given by

cfXt−1,Xt|Y0=y0,...,Yt=yt,θ(xt−1, xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)qt(xt | xt−1, yt, θ)
(112)

with xt−1 = X
(i)
t−1 and xt = X̃

(i)
t . The above expression can be simplified using Bayes rule as

cfXt−1,Xt|Y0=y0,...,Yt=yt,θ(xt−1, xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)qt(xt | xt−1, yt, θ)

=
c
fXt−1,Xt|Y0=y0,...,Yt−1=yt−1,θ

(xt−1,xt)fYt|Xt−1=xt−1,Xt=xt,θ
(yt)

fYt|Y0=y0,...,Yt−1=yt−1,θ
(yt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)qt(xt | xt−1, yt, θ)

=
c

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

fXt−1,Xt|Y0=y0,...,Yt−1=yt−1,θ(xt−1, xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)qt(xt | xt−1, yt, θ)
fYt|Xt=xt,θ(yt)

=
c

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)fXt|Xt−1=xt−1,θ(xt)

fXt−1|Y0=y0,...,Yt−1=yt−1,θ(xt−1)qt(xt | xt−1, yt, θ)
fYt|Xt=xt,θ(yt)

=
c

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

qt(xt | xt−1, yt, θ)
.

As a result, we can view the weights in the SIR algorithm as the weights given by (112) with
c = fYt|Y0=y0,...,Yt−1=yt−1,θ(yt). This justifies the choice of weights in the SIR algorithm. Note
also that because c = fYt|Y0=y0,...,Yt−1=yt−1,θ(yt), the average of the unnormalized weights
provides an approximation of fYt|Y0=y0,...,Yt−1=yt−1,θ(yt):

1

n

N∑
i=1

w
(i)
t ≈ fYt|Y0=y0,...,Yt−1=yt−1,θ(yt) for each t = 1, . . . , T .

The product of these averages for t = 1, . . . , T (additionally multiplied by fY0(y0)) gives an
approximation for the likelihood.
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17.4 Weights when qt(u | x, y, θ) := fXt|Xt−1=x,Yt=y,θ(u)

As already remarked, the two most common choices of qt in the SIR algorithm are qt(u |
x, y, θ) = fXt|Xt−1=x(u) (which corresponds to the bootstrap filter) and qt(u | x, y, θ) =
fXt|Xt−1=x,Yt=y(u). The weights for the latter choice can be simplified (using Bayes rule in
the denominator) as:

fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

qt(xt | xt−1, yt, θ)
=
fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

fXt|Xt−1=xt−1,Yt=yt,θ(xt)

=
fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

fXt|Xt−1=xt−1,θ
(xt)fYt|Xt=xt,Xt−1=xt−1,θ

(yt)

fYt|Xt−1=xt−1,θ
(yt)

=
fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)
fXt|Xt−1=xt−1,θ

(xt)fYt|Xt=xt,θ(yt)

fYt|Xt−1=xt−1,θ
(yt)

= fYt|Xt−1=xt−1,θ(yt).

In other words, the weight corresponding to (X
(i)
t−1, X̃

(i)
t ) for SIR with qt(u | x, y, θ) =

fXt|Xt−1=x,Yt=y(u) is given by

w
(i)
t = f

Yt|Xt−1=X
(i)
t−1,θ

(yt).

It is interesting to contrast this weight with the weight f
Yt|Xt=X̃(i)

t ,θ
(yt) used in the bootstrap

particle filter.

17.5 Example: Local Level Model

As already remarked, the bootstrap particle filter is widely applicable because, in order to
use it, one only needs to be able to simulate from the state transition density fXt|Xt−1=xt−1

and be able to compute the density fYt|Xt=xt(yt). On the other hand, in order to apply the
Guided Particle Filter algorithm with

qt(u | x, y, θ) := fXt|Xt−1=x,Yt=y,θ(u) (113)

one should be able to simulate from fXt|Xt−1=x,Yt=y,θ and evaluate fYt|Xt−1=xt−1
(yt). While

this may not always possible, here is a simple setting where the method can be easily applied.
This is the case of the local level model:

X0 ∼ N(0, C) Xt = Xt−1 + Zt Yt = Xt + εt

where X0, Z1, Z2, . . . , ε0, ε1, . . . are independent with Zt
i.i.d∼ N(0, σ2

Z) and εt
i.i.d∼ N(0, σ2

ε ).
For this model, we have

Xt | Xt−1 = xt−1, θ ∼ N(xt−1, σ
2
Z) and Yt | Xt = xt, Xt−1 = xt−1, θ ∼ N(xt, σ

2
ε )

from which it readily follows that

Xt | Xt−1 = xt−1, Yt = yt, θ ∼ N

 xt−1

σ2
Z

+ yt
σ2
ε

1
σ2
Z

+ 1
σ2
ε

,
1

1
σ2
Z

+ 1
σ2
ε

 .

Thus the Guided Particle Filter Algorithm with (113) is feasible in this case and the gener-
ation step simulates observations as:

X̃
(i)
t ∼ N

 X
(i)
t−1

σ2
Z

+ yt
σ2
ε

1
σ2
Z

+ 1
σ2
ε

,
1

1
σ2
Z

+ 1
σ2
ε

 .
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We also have

Yt | Xt−1 = xt−1, θ ∼ N(xt−1, σ
2
Z + σ2

ε )

so that the weights are computed as

w
(i)
t = φ(yt;X

(i)
t−1, σ

2
Z + σ2

ε )

where φ(y;µ, σ2) denotes the normal density with mean µ and variance σ2 evaluated at y.
Initialization is done by generating observations from the distribution:

X0 | Y0 = y0, θ ∼ N
(

y0/σ
2
ε

1/C + 1/σ2
ε

,
1

1/C + 1/σ2
ε

)
.

It can easily be seen (in simulations) that when σ2
ε is small, the bootstrap particle filter

suffers from particle degeneracy. The performance of the guided particle filter with (113) is
much better.

17.6 Recommended Reading for Today

1. Good references for the SIR or Guided Particle Filter algorithms are:

a) Section 5.1 of the Petris-Petrone-Campagnoli book

b) Section 7.4 of the Särkkä book

c) Section 6.7.3 of the Triantafyllopoulos book

d) Sections 10.3.1 and 10.3.2 of the Chopin-Papaspiliopoulos (they derive these al-
gorithms from a slightly more general viewpoint involving Feynman-Kac models
which are described in Chapter 5 of their book)

18 Lecture Eighteen

18.1 Sequential Importance Resampling

In the last class, we looked at the Sequential Importance Resampling (SIR) algorithm (we
also used the term “Guided Particle Filter”) which generates, for each t ≥ 0, samples

X
(1)
t , . . . , X

(N)
t such that

Unif
{
X

(1)
t , . . . , X

(N)
t

}
≈ Xt | Y0 = y0, . . . , Yt = yt, θ. (114)

The algorithm proceeds sequentially. At time t−1, one has access to the samplesX
(1)
t−1, . . . , X

(N)
t−1

satisfying (114) for t − 1 and using these, one generates the samples X
(1)
t , . . . , X

(N)
t by fol-

lowing the three steps given below.

1. Generation: For each i = 1, . . . , N , generate independent samples:

X̃
(i)
t ∼ q(· | x = X

(i)
t−1, y = yt, θ)

To execute this step, we obviously need to be able to simulate from q(· | x = X
(i)
t−1, y =

yt).

84



2. Weights: For each i = 1, . . . , N , compute

w
(i)
t :=

f
Xt|Xt−1=X

(i)
t−1,θ

(X̃
(i)
t )f

Yt|Xt=X̃(i)
t ,θ

(yt)

qt(X̃
(i)
t | x = X

(i)
t−1, y = yt, θ)

(115)

Normalize these weights so they sum to one:

W
(i)
t =

w
(i)
t

w
(1)
t + · · ·+ w

(N)
t

for i = 1, . . . , N.

To execute this step, we need to be able to evaluate fXt|Xt−1=xt−1
(xt) and fYt|Xt=xt(yt).

3. Resampling: Generate

X
(1)
t , . . . , X

(N)
t

i.i.d∼
N∑
i=1

Wiδ{X̃(i)
t }

This algorithm is initialized by taking

X
(1)
0 , . . . , X

(N)
0

i.i.d∼ fX0|Y0=y0

and then repeating the three steps described above for t = 1, 2, . . . .

The density q(· | xt−1, yt) appearing above is often referred to as a proposal density. The
SIR algorithm works for pretty much any proposal density (the only requirement is the
ability to simulate from it). The two most common choices of the proposal density are:

1. Bootstrap Particle Filter: q(xt | xt−1, yt) = fXt|Xt−1=xt−1
(xt). Note that this choice

of q does not depend on yt. The weights corresponding to this proposal are fYt|Xt=xt(yt)

i.e., w
(i)
t = f

Yt|Xt=X̃(i)
t

(yt).

2. “Optimal” Guided Particle Filter: q(xt | xt−1, yt) = fXt|Xt−1=xt−1,Yt=yt(xt). This
algorithm is only feasible if it is possible to simulate from the conditional density
of Xt given Xt−1 = xt−1 and Yt = yt. The reason why this choice of q for the
Guided Particle Filter algorithm is called “optimal” can be found, for example, in
Theorem 10.1 of the Chopin-Papaspiliopoulos book. We shall not make any use of this
optimality criterion. The weights corresponding to this proposal are fYt|Xt−1=xt−1

(yt)

i.e., w
(i)
t = f

Yt|Xt−1=X
(i)
t−1

(yt). Note that these weights do not depend on the particles

X̃
(i)
t generated in this iterate of the algorithm.

The second algorithm above (optimal guided particle filter) usually suffers from less particle
degeneracy compared to the Bootstrap particle filter because the function

x 7→ fYt|Xt−1=x(yt)

is less concentrated compared to the function

x 7→ fYt|Xt=x(yt).

18.2 Example: Local Level Model with non-Gaussian evolution errors

Consider the local level model:

Xt = Xt−1 + Zt with Zt
i.i.d∼ (1− α)N(0, σ2

0) + αN(0, σ2
a)

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε ).
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This model can be used to model trend functions that are piecewise constant. The parameter
α and the variance σ2

0 will both be small in such applications.

The Kalman filter is obviously not applicable here as the evolution error is non-Gaussian.
The bootstrap filter algorithm is quite easy to implement: in the generation step, the chal-
lenge is to simulate

x̃t ∼ (1− α)N(xt−1, σ
2
0) + αN(xt−1, σ

2
a)

for xt−1 = X
(i)
t−1. This is a mixture of Gaussian distributions. One can simulate from this

mixture by first simulating a Bernoulli random variable B with success probability α. If
α = 1, then one would simulate x̃t from N(xt−1, σ

2
a) and if α = 1, then one would simulate

x̃t from N(xt−1, σ
2
0). The weights are given by

wt = fYt|Xt=x̃t(yt) = φ(yt; x̃t, σ
2
ε ) (116)

where φ(x;µ, σ2) stands for the normal density with mean µ and variance σ2. Note that
if yt is far from x̃t and σε is relatively small, then there will be particle degeneracy. Also
note that, when the parameters α and σ2

0 are small, most ((1−α) fraction) of the generated
observations x̃t will be close to xt−1.

Now let us consider applying the optimal guided particle filter for this model. Particle
generation will have to be done from the conditional density fXt|Xt−1=xt−1,Yt=yt . By Bayes
rule:

fXt|Xt−1=xt−1,Yt=yt(xt) ∝ fXt|Xt−1=xt−1
(xt)fYt|Xt=xt,Xt−1=xt−1

(yt)

= fXt|Xt−1=xt−1
(xt)fYt|Xt=xt(yt)

=
{

(1− α)φ(xt;xt−1, σ
2
0) + αφ(xt;xt−1, σ

2
a)
}
φ(yt;xt, σ

2
ε )

= (1− α)φ(xt;xt−1, σ
2
0)φ(yt;xt, σ

2
ε ) + αφ(xt;xt−1, σ

2
a)φ(yt;xt, σ

2
ε ).

We now use the following elementary identity (which can be proved by direct calculation):
For every θ, x, µ ∈ (−∞,∞) and τ, σ > 0, we have

φ(θ;µ, τ2)φ(x; θ, σ2) = φ

(
θ;
x/σ2 + µ/τ2

1/σ2 + 1/τ2
,

1

1/σ2 + 1/τ2

)
φ(x;µ, τ2 + σ2). (117)

We get

fXt|Xt−1=xt−1,Yt=yt(xt) ∝ (1− α)φ

(
xt;

yt/σ
2
ε + xt−1/σ

2
0

1/σ2
ε + 1/σ2

0

,
1

1/σ2
ε + 1/σ2

0

)
φ(yt;xt−1, σ

2
ε + σ2

0)

+ αφ

(
xt;

yt/σ
2
ε + xt−1/σ

2
a

1/σ2
ε + 1/σ2

a

,
1

1/σ2
ε + 1/σ2

a

)
φ(yt;xt−1, σ

2
ε + σ2

a).

The integral of the right hand side above with respect to xt is

(1− α)φ(yt;xt−1, σ
2
ε + σ2

0) + αφ(yt;xt−1, σ
2
ε + σ2

a).

As a result

fXt|Xt−1=xt−1,Yt=yt(xt)

=
(1− α)φ(yt;xt−1, σ

2
ε + σ2

0)

(1− α)φ(yt;xt−1, σ2
ε + σ2

0) + αφ(yt;xt−1, σ2
ε + σ2

a)
φ

(
xt;

yt/σ
2
ε + xt−1/σ

2
0

1/σ2
ε + 1/σ2

0

,
1

1/σ2
ε + 1/σ2

0

)
+

αφ(yt;xt−1, σ
2
ε + σ2

a)

(1− α)φ(yt;xt−1, σ2
ε + σ2

0) + αφ(yt;xt−1, σ2
ε + σ2

a)
φ

(
xt;

yt/σ
2
ε + xt−1/σ

2
a

1/σ2
ε + 1/σ2

a

,
1

1/σ2
ε + 1/σ2

a

)
.
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This is just a mixture of two normal distributions so one can simulate observations from it
by first generating a Bernoulli random variable B with success probability:

αφ(yt;xt−1, σ
2
ε + σ2

a)

(1− α)φ(yt;xt−1, σ2
ε + σ2

0) + αφ(yt;xt−1, σ2
ε + σ2

a)

If B = 1, one simulates from

N

(
yt/σ

2
ε + xt−1/σ

2
a

1/σ2
ε + 1/σ2

a

,
1

1/σ2
ε + 1/σ2

a

)
,

and if B = 0, one simulates from

N

(
yt/σ

2
ε + xt−1/σ

2
0

1/σ2
ε + 1/σ2

0

,
1

1/σ2
ε + 1/σ2

0

)
.

Finally note that

fYt|Xt−1=xt−1
(yt) = (1− α)φ(yt;xt−1, σ

2
ε + σ2

0) + αφ(yt;xt−1, σ
2
ε + σ2

a)

which is useful for weight calculation. Note that, as a function of xt−1, the right hand side
above is more diffuse compared to the weight function in the Bootstrap filter (116). This
implies that, in this example, the optimal guided particle filter suffers from less particle
degeneracy compared to the Bootstrap particle filter.

It should be noted that it is not always possible to implement the optimal guided particle
filter in closed form (as in the above example). For example, consider the local level model
again where the N(0, σ2

a) distribution in the evolution error is replaced by the standard
Cauchy distribution:

Xt = Xt−1 + Zt with Zt
i.i.d∼ (1− α)N(0, σ2

0) + αC(0, 1)

Yt = Xt + εt with εt
i.i.d∼ N(0, σ2

ε )

where C(0, 1) denotes the standard Cauchy distribution with density proportional to (1 +
x2)−1. In this case, fXt|Xt−1=xt−1,Yt=yt is given by

fXt|Xt−1=xt−1,Yt=yt(xt) ∝ fXt|Xt−1=xt−1
(xt)fYt|Xt=xt(yt)

=
{

(1− α)φ(xt;xt−, σ
2
0) + αγ(xt;xt−1)

}
φ(yt;xt, σ

2
ε )

= (1− α)φ(xt;xt−, σ
2
0)φ(yt;xt, σ

2
ε ) + αγ(xt;xt−1)φ(yt;xt, σ

2
ε )

where γ(xt;xt−1) is the density of a Cauchy random variable centered at xt−1 (and scale
parameter equal to 1):

γ(x;µ) =
1

π

1

1 + (x− µ)2
.

Using the fact (117), we obtain

fXt|Xt−1=xt−1,Yt=yt(xt)

∝ (1− α)φ

(
xt;

yt/σ
2
ε + xt−1/σ

2
0

1/σ2
ε + 1/σ2

0

,
1

1/σ2
ε + 1/σ2

0

)
φ(yt;xt−1, σ

2
ε + σ2

0) + αγ(xt;xt−1)φ(yt;xt, σ
2
ε ).

Letting

V (y;µ, σ2) :=

∫
γ(x;µ)φ(y;x, σ2)dx,
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we can write

fXt|Xt−1=xt−1,Yt=yt(xt)

∝ (1− α)φ

(
xt;

yt/σ
2
ε + xt−1/σ

2
0

1/σ2
ε + 1/σ2

0

,
1

1/σ2
ε + 1/σ2

0

)
φ(yt;xt−1, σ

2
ε + σ2

0)

+ α

[
γ(xt;xt−1)φ(yt;xt, σ

2
ε )

V (yt;xt−1, σ2
ε )

]
V (yt;xt−1, σ

2
ε ).

The integral of the right hand side above with respect to xt equals

(1− α)φ(yt;xt−1, σ
2
ε + σ2

0) + αV (yt;xt−1, σ
2
ε )

so that

fXt|Xt−1=xt−1,Yt=yt(xt)

=
(1− α)φ(yt;xt−1, σ

2
ε + σ2

0)

(1− α)φ(yt;xt−1, σ2
ε + σ2

0) + αV (yt;xt−1, σ2
ε )
φ

(
xt;

yt/σ
2
ε + xt−1/σ

2
0

1/σ2
ε + 1/σ2

0

,
1

1/σ2
ε + 1/σ2

0

)
+

αV (yt;xt−1, σ
2
ε )

(1− α)φ(yt;xt−1, σ2
ε + σ2

0) + αV (yt;xt−1, σ2
ε )

[
γ(xt;xt−1)φ(yt;xt, σ

2
ε )

V (yt;xt−1, σ2
ε )

]
.

The density function y 7→ V (y;µ, σ2) is known as the Voigt profile (see https://en.

wikipedia.org/wiki/Voigt_profile) and efficient algorithms exist for its computation.
In order to simulate x̃t from the above conditional density, the main challenge is to simulate
from the conditional density:

xt 7→
γ(xt;xt−1)φ(yt;xt, σ

2
ε )

V (yt;xt−1, σ2
ε )

. (118)

It is not clear if this can be done in closed form. One can use some numerical techniques
for this. For example, a straightforward approach is to use discretization: one can discretize
the domain and approximate the continuous distribution with density given by (118) by a
discrete distribution supported on the discrete set of values. One can then simulate from the
discrete distribution.

Note that the filter algorithms can be used for obtaining the likelihood (which is the
joint density of Y0, . . . , YT given the parameters) which can be used for maximum likelihood
estimation of the parameters.

18.3 Recommended Reading for Today

1. Good references for the SIR or Guided Particle Filter algorithms are:

a) Section 5.1 of the Petris-Petrone-Campagnoli book

b) Section 7.4 of the Särkkä book

c) Section 6.7.3 of the Triantafyllopoulos book

d) Sections 10.3.1 and 10.3.2 of the Chopin-Papaspiliopoulos (they derive these al-
gorithms from a slightly more general viewpoint involving Feynman-Kac models
which are described in Chapter 5 of their book)

2. The local level model with non-Gaussian errors for estimating piecewise constant trend
functions is discussed in Section 15.2.6 of the Kitagawa book, and in Section 8.4 of the
Kitagawa-Gersch book.
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19 Lecture Nineteen

The goal today is to study Monte Carlo methodology for smoothing in general state space
models. We shall focus on two smoothing algorithms:

1. Complete Smoothing: This method is simple and is just an extension of the particle
filter algorithm. However it generally suffers from particle degeneracy.

2. FFBS: This is based on general smoothing ideas that we previously saw in the context
of linear Gaussian models. The method works well but is computationally intensive.

19.1 Complete Smoothing

This algorithm is an extension of particle filtering (and can also be termed complete filtering).
It generates, for each t ≥ 0, samples

(X
(i)
0|t , X

(i)
1|t , . . . , X

(i)
t|t ), 1 ≤ i ≤ N

such that the discrete uniform distribution over these samples approximates the smoothing
distribution at time t:

1

N

N∑
i=1

δ{(X(i)
0|t ,X

(i)
1|t ,...,X

(i)
t|t )} ≈ (X0, . . . , Xt) | Y0 = y0, . . . , Yt = yt, θ (119)

for each t = 0, . . . , T .

The algorithm proceeds sequentially over time t = 0, 1, . . . , T . At time t − 1, one has

access to samples (X
(i)
0|t−1, X

(i)
1|t−1, . . . , X

(i)
t−1|t−1), 1 ≤ i ≤ N satisfying (119) for time t − 1

and using these, one generates the samples (X
(i)
0|t , X

(i)
1|t , . . . , X

(i)
t|t ), 1 ≤ i ≤ N by following the

three steps given below.

1. Generation: For each i = 1, . . . , N , let

X̃
(i)
0|t = X

(i)
0|t−1, . . . , X̃

(i)
t|t = X

(i)
t−1|t−1

and
X̃

(i)
t|t ∼ q(· | x = X

(i)
t−1|t−1, y = yt, θ).

2. Weights: For each i = 1, . . . , N , compute

w
(i)
t :=

f
Xt|Xt−1=X

(i)
t−1|t−1

,θ
(X̃

(i)
t|t )f

Yt|Xt=X̃(i)
t|t ,θ

(yt)

qt(X̃
(i)
t|t | x = X

(i)
t−1|t−1, y = yt, θ)

(120)

Normalize these weights so they sum to one:

W
(i)
t =

w
(i)
t

w
(1)
t + · · ·+ w

(N)
t

for i = 1, . . . , N.

3. Resampling: Generate

(X
(i)
0|t , X

(i)
1|t , . . . , X

(i)
t|t ), 1 ≤ i ≤ N i.i.d∼

N∑
i=1

W
(i)
t δ{(X̃(i)

0|t ,...,X̃
(i)
t|t )}.
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The following are useful things to know about this algorithm:

1. The weights in (120) can be deduced from importance sampling. To see this, note that

the generation of (X̃
(i)
0|t , . . . , X̃

(i)
t|t ) is from (approximately) the density:

ft−1|t−1(x0, . . . , xt−1)q(xt | xt−1, yt, θ).

where we are using the notation:

fs|t(x0, . . . , xs) := fX0,...,Xs|Y0=y0,...,Yt=yt,θ(x0, . . . , xs).

On the other hand, the target density equals

ft|t(x0, . . . , xt) = fX0,...,Xt|Y0=y0,...,Yt=yt,θ(x0, . . . , xt)

=
ft|t−1(x0, . . . , xt−1)fYt|Xt=xt,θ(yt)

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

=
ft−1|t−1(x0, . . . , xt−1)fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

where we used Bayes rule in the second step. The importance weights are therefore
given by

ft|t(x0, . . . , xt)

ft−1|t−1(x0, . . . , xt−1)q(xt | xt−1, yt, θ)

=
fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

q(xt | xt−1, yt, θ)

1

fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)

Note that second term above (inverse of fYt|Y0=y0,...,Yt−1=yt−1,θ(yt)) is a constant as it
does not depend on xt−1 or xt. We can thus view the importance weight as simply

fXt|Xt−1=xt−1,θ(xt)fYt|Xt=xt,θ(yt)

q(xt | xt−1, yt, θ)
.

This is exactly the importance weight w
(i)
t in (120) with xt−1 = X

(i)
t−1|t−1 and xt = X̃

(i)
t|t .

2. This algorithm needs to be initialized with samples from X0 | Y0 = y0, θ:

X
(1)
0|0 , . . . , X

(N)
0|0 .

After the first iteration, it outputs samples:

X
(1)
0|1 , . . . , X

(N)
0|1

X
(1)
1|1 , . . . , X

(N)
1|1 .

Note that X
(1)
0|1 , . . . , X

(N)
0|1 is a resample drawn from the initial sample X

(1)
0|0 , . . . , X

(N)
0|0 .

After the second iteration, the algorithm outputs samples:

X
(1)
0|2 , . . . , X

(N)
0|2

X
(1)
1|2 , . . . , X

(N)
1|2

X
(1)
2|2 , . . . , X

(N)
2|2
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Here X
(1)
0|2 , . . . , X

(N)
0|2 is a resample of X

(1)
0|1 , . . . , X

(N)
0|1 which was already a resample

from X
(1)
0|0 , . . . , X

(N)
0|0 . Also X

(1)
1|2 , . . . , X

(N)
1|2 is a resample from X

(1)
1|1 , . . . , X

(N)
1|1 . One

then proceeds iteratively ending in the final step where the algorithm ouputs:

X
(1)
0|T , . . . , X

(N)
0|T

X
(1)
1|T , . . . , X

(N)
1|T

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

X
(1)
T |T , . . . , X

(N)
T |T

(121)

The columns of the above output (121) in the final iteration of the algorithm are
samples from the smoothing distribution of interest: (X0, . . . , XT ) | Y0 = y0, . . . , YT =
yT , θ.

3. This algorithm is very similar to the Sequential Importance Resampling (SIR) algo-
rithm from the last couple of lectures for filtering. Indeed, if we keep track of only the
filtering samples i.e., the samples

X
(1)
t|t , . . . X

(N)
t|t

for t = 0, 1, . . . , T , and ignore the set of time indices s | t for s < t, we get back the
SIR algorithm.

4. Particle Degeneracy: This algorithm suffers from serious particle degeneracy. Specif-

ically, the number of unique values Nt among X
(1)
t|T , . . . , X

(N)
t|T can be much smaller

than N and this is especially true for small values of t. This is because the samples

X
(1)
t|t , . . . , X

(N)
t|t are created in the tth iteration and the subsequent samples

X
(1)
t|s , . . . , X

(N)
t|s s = t+1, . . . , T

are all obtained by resampling from X
(1)
t|t , . . . , X

(N)
t|t with various choices of weights.

This means thatX
(1)
t|T , . . . , X

(N)
t|T are obtained after resampling T−t times fromX

(1)
t|t , . . . , X

(N)
t|t .

Every resampling leads to a decrease in the effective sample size, and thus if T − t is
large (which will be the case for small t), the number of unique samples will be much
smaller than N .

Computational Complexity: The complexity of this algorithm is O(NT ). This is
because in each iteration of the algorithm, O(N) computations are done (note that
weights need to be calculated for each of the generated samples). The final complexity
is therefore O(NT ) as there are T iterations.

19.2 FFBS

This algorithm is similar to the FFBS (Forward Filtering Backward Sampling) algorithms
that we studied previously for linear Gaussian state space models (we also previously looked
at a numerical version of FFBS for general state space models).

The goal of FFBS is to generate M samples:

(X
(i)
0|T , X

(i)
1|T , . . . , X

(i)
T |T ) for i = 1, . . . ,M
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form the conditional distribution

(X0, . . . , XT ) | Y0 = y0, . . . , YT = yT , θ.

Note that we are using the notation M for the number of smoothing samples.

The first step in FFBS is to run a particle filtering algorithm. This will result in samples:

X (1)
t|t , . . . ,X

(N)
t|t (122)

for each t = 0, . . . , T . The discrete uniform distribution over the samples (122) approximates
the filtering distribution Xt | Y0 = y0, . . . , Yt = yt, θ for each t = 0, 1, . . . , T . Note that,
because of the resampling steps that are used in particle filtering algorithms, there need

not be any connection between X (i)
t−1|t−1 and X (i)

t|t for fixed i (in the notation of our filtering

algorithms, X (i)
t−1|t−1 and X̃ (i)

t would be related but there won’t be any connection between

X̃ (i)
t and X (i)

t|t because of resampling). I am using the notation X (instead of the usual X)
for the filtering particles to distinguish them from the smoothing samples which will be
subsequently generated by FFBS.

Observe that we have N filtering samples for each time t. This N can be distinct from
the desired number M of smoothing samples.

The step of running a particle filter algorithm represents the “FF” part of FFBS. We
shall now describe the “BS” (Backward Sampling) part of the algorithm. Here, for each
i = 1, . . . ,M , we shall generate samples

X
(i)
T |T , X

(i)
T−1|T , . . . , X

(i)
0|T

in backward order for t = T, . . . , 0. The first sample X
(i)
T |T is just drawn from the discrete

filtering approximation for t = T (this is because the filtering and smoothing marginal
distributions for t = T coincide):

X
(i)
T |T ∼ Unif

{
X (1)
T |T , . . . ,X

(N)
T |T

}
=

1

N

N∑
j=1

δ{X (j)
T |T }

.

The recursive process for obtaining the subsequent samples X
(i)
T−1|T , . . . , X

(i)
0|T is described

next. To go from X
(i)
t+1|T to X

(i)
t|T , we would need to generate from the conditional density

(below xt+1 := X
(i)
t+1|T )

fXt|Xt+1=xt+1,Y0=y0,...,YT=yT ,θ(xt) = fXt|Xt+1=xt+1,Y0=y0,...,Yt=yt,θ(xt)

=
fXt|Y0=y0,...,Yt=yt,θ(xt)fXt+1|Xt=xt,θ(xt+1)

fXt+1|Y0=y0,...,Yt=yt,θ(xt+1)
.

A natural idea of generating X
(i)
t|T is to therefore use importance sampling where we first

generate from a proposal density q(xt | xt+1,data, θ) and then use the weight:

weight(xt) =
fXt|Xt+1=xt+1,Y0=y0,...,YT=yT ,θ(xt)

q(xt | xt+1,data, θ)

=
fXt|Y0=y0,...,Yt=yt,θ(xt)fXt+1|Xt=xt,θ(xt+1)

q(xt | xt+1, data, θ)

1

fXt+1|Y0=y0,...,Yt=yt,θ(xt+1)

∝
fXt|Y0=y0,...,Yt=yt,θ(xt)fXt+1|Xt=xt,θ(xt+1)

q(xt | xt+1, data, θ)
. (123)
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The proportionality sign above is in terms of xt (factors not depending on xt can be taken
as part of the proportionality).

Any proposal density q(xt | xt+1,data, θ) can be used for this purpose. However, it is
especially convenient to take it as the filtering density at time t:

q(xt | xt+1,data, θ) = fXt|Y0=y0,...,Yt=yt,θ(xt) (124)

for the following two reasons:

1. We already have access to samples X (1)
t|t , . . . ,X

(N)
t|t from the filtering density at time t

because of implementing a filtering algorithm in the first step of FFBS.

2. With the choice (124), the weights in (123) become quite simple:

weight(xt) ∝ fXt+1|Xt=xt,θ(xt+1).

With the choice (124), the method for generating X
(i)
t|T from X

(i)
t+1|T becomes:

X
(i)
t|T ∼

N∑
j=1

Wjδ{X (j)
t|t }

(125)

where
Wj =

wj
w1 + . . . wN

and wj = f
Xt+1|Xt=X (j)

t|t ,θ
(X

(i)
t+1|T ).

(125) just means that X
(i)
t|T is just sampled from the discrete distribution that is concentrated

on the filtering samples X (1)
t|t , . . . ,X

(N)
t|t with weights w1, . . . , wN .

The overall FFBS algorithm is therefore:

1. Filtering: Run a particle filter algorithm to generate samples X (1)
t|t , . . . ,X

(N)
t|t which

approximate the filtering distribution Xt | Y0 = y0, . . . , Yt = yt, θ at each time t =
0, 1, . . . , T .

2. Repeat the following for i = 1, . . . ,M

a) Initialization for Backward Recursion: Draw one sample X
(i)
T |T from the

discrete uniform distribution on X (1)
T |T , . . . ,X

(N)
T |T .

b) Backward Recursion: Repeat the following t = T − 1, . . . , 0:

i. Calculate weights wj = f
Xt+1|Xt=X (j)

t|t ,θ
(X

(i)
t+1|T ) for each j = 1, . . . , N . Nor-

malize these weights to obtain W1, . . . ,WN which sum to one.

ii. Generate X
(i)
t|T from the discrete distribution on X (1)

t|t , . . . ,X
(N)
t|t with proba-

bilities W1, . . . ,WN .

19.3 Recommended Reading for Today

1. The complete smoothing algorithm is described in Section 15.3 of the Kitagawa book,
Section 11.1 of the Särkkä book, and Section 12.1.2 of the Chopin-Papaspiliopoulos
book.

93



2. The FFBS algorithm is described in Section 12.3.2 of the Chopin-Papaspiliopoulos
book, and in Section 11.2 of the Särkkä book (Särkkä calls it the Backward-Simulation
Particle Smoother algorithm).

20 Lecture Twenty

20.1 Recap: Complete Smoothing

In the last class, we studied two algorithms for smoothing in general state space models.
These algorithms produce samples

(X
(i)
0|T , . . . , X

(i)
T |T ), 1 ≤ i ≤M

which approximate the smoothing distribution (X0, . . . , XT ) | Y0 = y0, . . . , YT = yT , θ. The
first of these algorithms was the complete smoothing algorithm (also known as the SIR-
PS: Sequential Importance Resampling Particle Smoother). This algorithm works in the
following way:

1. Draw M samples X
(1)
0 , . . . , X

(M)
0 from the conditional distribution of X0 | Y0 = y0, θ.

2. Repeat the following for each t = 1, . . . , T :

a) Draw M new samples X
(1)
t , . . . , X

(M)
t from the importance distribution:

X
(i)
t

independent∼ q(· | xt−1 = X
(i)
t−1, Yt = yt, θ) for i = 1, . . . ,M.

b) Calculate weights

w
(i)
t =

f
Yt|Xt=X(i)

t
(yt)fXt|Xt−1=X

(i)
t−1

(X
(i)
t )

q(X
(i)
t | X

(i)
t−1, yt)

for i = 1, . . . ,M.

Renormalize these weights to obtain W
(i)
t , i = 1, . . . ,M which sum to one.

c) Append the samples to the state histories:

X
(i)
0:t =

(
X

(i)
0:t−1, X

(i)
t

)
.

d) Resample from state trajectoriesX
(1)
0:t , . . . , X

(M)
0:t with probabilitiesW

(1)
t , . . . ,W

(M)
t .

The above description of the complete smoothing algorithm is slightly different from that
given in the previous class but algorithm is exactly the same. Its computational complexity
is O(MT ).

20.2 Complete Smoothing with partial trajectory resampling

The main problem with the complete smoothing algorithm is particle degeneracy. Specifi-

cally, for the samples (X
(i)
0 , . . . , X

(i)
T ), 1 ≤ i ≤M obtained in the final iteration, the number

of unique values among X
(1)
t , . . . , X

(M)
t will be quite small (compared to M) especially for
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small values of t. This is because a fixed number of particles (M) are repeatedly being re-
sampled. One, somewhat adhoc, fix to this problem is to resample, instead of the full state

trajectories X
(1)
0:t , . . . , X

(M)
0:t , just the trajectories

X
(1)
t−L:t, . . . , X

(M)
t−L:t

for some fixed L. Of course, here we are assuming that t ≥ L (if t < L, the resamping is done
as before from the full trajectories). This method fixes the particle degeneracy issue and the

marginal samples X
(1)
t , . . . , X

(M)
t will have distribution which is nearly the same as Xt | Y0 =

y0, . . . , YT = yT , θ (if L is not too small). However, the final trajectories X
(1)
0:T , . . . , X

(M)
0:T can

no longer be treated as samples from X0, . . . , XT | Y0 = y0, . . . , YT = yT , θ.

Another way of thinking about this partial trajectory resampling fix is the following. The
main problem with the complete smoothing algorithm is that it gives poor approximation,
due to particle degeneracy, to the smoothing distributions of Xs (given Y0 = y0, . . . , YT =
yT , θ) when s is small. More generally, the samples will provide a poor approximation to the
joint distribution:

Xs1 , Xs2 , . . . , Xsk | Y0 = y0, . . . , YT = yT , θ (126)

when s1 < · · · < sk and sk is small. One heuristic way to obtain better approximation of
this joint density is as follows. First reason that

Xs1 , Xs2 , . . . , Xsk | Y0 = y0, . . . , YT = yT , θ

≈ Xs1 , Xs2 , . . . , Xsk | Y0 = y0, . . . , Ysk+L = ysk+L, θ
(127)

for some fixed L that is much smaller than T − sk. The idea is that the observation values
Yt = yt for t larger than sk + L probably do not have much influence on the distribution
of Xs1 , . . . , Xsk . Under the approximation (127), the full smoothing distribution (126) can
therefore be obtained by the right hand side of (127) which is well-approximated by the
complete smoothing algorithm at iteration sk + L. In other words, we don’t need to run
the complete smoothing algorithm till iteration T to approximate (126). The amount of
resampling at iteration sk + L will be much smaller than until time T and this will lead to
much less particle degeneracy. It is tricky however to choose an appropriate value of L (one
usually just takes an arbitrary value such as L = 30).

20.3 Recap: FFBS

The FFBS algorithm is:

1. Filtering: Run a particle filter algorithm to generate samples X (1)
t|t , . . . ,X

(N)
t|t which

approximate the filtering distribution Xt | Y0 = y0, . . . , Yt = yt, θ at each time t =
0, 1, . . . , T .

2. Repeat the following for i = 1, . . . ,M

a) Initialization for Backward Recursion: Draw one sample X
(i)
T |T from the

discrete uniform distribution on X (1)
T |T , . . . ,X

(N)
T |T .

b) Backward Recursion: Repeat the following t = T − 1, . . . , 0:

i. Calculate weights wj = f
Xt+1|Xt=X (j)

t|t ,θ
(X

(i)
t+1|T ) for each j = 1, . . . , N . Nor-

malize these weights to obtain W1, . . . ,WN which sum to one.
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ii. Generate X
(i)
t|T from the discrete distribution on X (1)

t|t , . . . ,X
(N)
t|t with proba-

bilities W1, . . . ,WN .

The level of particle degeneracy of this algorithm can be checked by looking at the number

of unique values among X
(1)
t|T , . . . , X

(M)
t|T for each t = 0, . . . , T . Generally, particle degeneracy

is not a problem for FFBS. The issue however is speed. Notice the double loop present in
the algorithm (an outer loop over i = 1, . . . ,M and then an inner loop over t = T −1, . . . , 0).
In the inner loop, there is a calculation of N weights. The total computational complexity
is therefore O(MNT ). The FFBS algorithm will therefore be much slower compared to the
complete smoothing algorithms. However, as there is not much particle degeneracy, one can
afford to choose M to be much smaller than N (e.g., M can be of the order of a few hundreds
while N is in the order of tens of thousands).

20.4 Recommended Reading for Today

1. The complete smoothing algorithm and the partial trajectory resampling variant are
described in Section 15.3 of the Kitagawa book (see also Section 12.1 of the Chopin-
Papaspiliopoulos book).

2. The FFBS algorithm is described in Section 12.3.2 of the Chopin-Papaspiliopoulos
book, and in Section 11.2 of the Särkkä book (Särkkä calls it the Backward-Simulation
Particle Smoother algorithm). A technique for making FFBS faster is described in
Section 12.3.3 of the Chopin-Papaspiliopoulos book.

21 Lecture Twenty One

21.1 Model Selection

We shall next look at the topic of model selection. This important problem appears in almost
every data analysis. In our context of state space models, consider, for example, the problem
of deciding between a local level model or a local linear model. This is the problem of Model
Selection. There are Frequentist and Bayesian approaches to Model Selection. One popular
frequentist approach is the AIC (Akaike Information Criterion) and one popular Bayesian
approach is the BIC (Bayesian Information Criterion). We shall study these procedures.

21.2 Akaike Information Criterion (AIC)

The AIC for a model M is defined as:

AIC(M) := −2× (Maximized log-likelihood for M) + 2× (number of parameters in M) .

This can be calculated for any model for which we can maximize likelihood. Let us look at
the logic behind this criterion in the case of i.i.d models. State Space Models are not of this
i.i.d kind but the analysis can be extended to them. Consider a dataset y1, . . . , yn. By an
i.i.d model M , we mean a model which postulates that y1, . . . , yn are realizations of random
variables Y1, . . . , Yn which satisfy

Y1, . . . , Yn
i.i.d∼ pθ
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for some family of densities pθ with a p-dimensional parameter θ. The log-likelihood for this
model is:

n∑
i=1

log pθ(yi).

The maximizer of this log-likelihood is the MLE (Maximum Likelihood Estimator) θ̂n. The
AIC for this model is thus:

AIC(M) = −2

n∑
i=1

log pθ̂n(yi) + 2p (128)

The AIC for a different model M̃ which says that Y1, . . . , Yn are i.i.d qα with a q-dimensional
parameter α is

AIC(M̃) = −2

n∑
i=1

log qα̂n(yi) + 2q (129)

The logic behind the AIC formulae (128) and (129) is explained below.

21.2.1 The simple case of no parameters

Consider first the case where we consider models with no parameters. Specifically, M is

the model Y1, . . . , Yn
i.i.d∼ p and M̃ is the model Y1, . . . , Yn

i.i.d∼ q. In this case, the AIC is
simply the negative log-likelihood (multiplied by 2). In other words, we prefer the model
with the higher loglikelihood. This makes sense and one of the explanations for looking at
the loglikelihood is the following. Suppose that the true data generating process is given by:

Y1, . . . , Yn
i.i.d∼ f∗. (130)

It then makes sense to pick p or q depending on how close they are to f∗. This obviously
depends on the specific way in which “closeness” is measured. One common choice is the
Kullback-Leiber divergence:

D(f∗‖p) :=

∫
f∗ log

f∗

p
=

∫
f∗ log f∗ −

∫
f∗ log p,

and similarly

D(f∗‖q) :=

∫
f∗ log

f∗

q
=

∫
f∗ log f∗ −

∫
f∗ log q,

Note that the first term
∫
f∗ log f∗ is the same for both D(f∗‖p) and D(f∗‖q). Thus com-

paring D(f∗‖p) and D(f∗‖q) is equivalent to comparing
∫
f∗ log p and

∫
f∗ log q. However

f∗ is unknown so we cannot directly compare
∫
f∗ log p and

∫
f∗ log q. But a simple unbiased

estimate of
∫
f∗ log p is simply:

1

n

n∑
i=1

log p(Yi)

because the true data generating mechanism is (130). Similarly

1

n

n∑
i=1

log q(Yi)

is unbiased for
∫
f∗ log q. We thus compare

1

n

n∑
i=1

log p(Yi) and
1

n

n∑
i=1

log q(Yi)

and pick the model with the higher value. This is clearly the same as comparing likelihoods.
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21.2.2 Models with parameters

Now suppose that the two models are given by

Model M : Y1, . . . , Yn
i.i.d∼ pθ

and
Model M̃ : Y1, . . . , Yn

i.i.d∼ qα.

The true data generating process is still (130). One can again consider the accuracy of
estimating f∗ under the Kullback-Leibler divergence. Model M would provide the estimate
pθ̂n and Model M̃ would provide the estimate qα̂n for f∗. Here θ̂n is the MLE of θ under

Model M and α̂n is the MLE of α under Model M̃ . The Kullback-Leibler divergences are

D(f∗‖pθ̂n) =

∫
f∗ log f∗ −

∫
f∗ log pθ̂n

and

D(f∗‖qα̂n) =

∫
f∗ log f∗ −

∫
f∗ log qα̂n

Thus comparing the Kullback-Leibler divergences is equivalent to comparing∫
f∗ log pθ̂n and

∫
f∗ log qα̂n .

As we do not know f∗, we would need to estimate the above integrals from the data y1, . . . , yn
generating according to (130). Natural estimators are given by

1

n

n∑
i=1

log pθ̂n(Yi) and
1

n

n∑
i=1

log qα̂n(Yi).

However, unlike in the case where there are no parameters, these are no longer unbiased esti-
mators of

∫
f∗ log pθ̂n and

∫
f∗ log qα̂n respectively. Indeed, we would expect 1

n

∑n
i=1 log pθ̂n(Yi)

to be larger than
∫
f∗ log pθ̂n and this will be especially true if pθ is a complicated model

which overfits the data. In order to correct the bias, we need to understand the quantity:∫
f∗ log pθ̂n −

1

n

n∑
i=1

log pθ̂n(Yi), (131)

and the analogous quantity for the second model. In order to estimate the above quantity,
we need to know something about the behaviour of the maximum likelihood estimator θ̂n.

21.2.3 Digression: MLE asymptotic distribution

Given data y1, . . . , yn and a candidate model which stipulates Y1, . . . , Yn
i.i.d∼ pθ, consider the

behaviour of the MLE:

θ̂n := argmax
θ

(
n∑
i=1

log pθ(yi)

)
.

The asymptotic behaviour of the MLE is usually studied under two assumptions: well-
specified model and misspecified model.

MLE Asymptotics when model is correctly specified: By “model is correctly speci-
fied”, we assume that the observed data are realizations of random variables Y1, . . . , Yn which
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are independent and identically distributed according to pθ∗ for some θ∗. In other words, the
true data generating distribution belongs to the candidate model class {pθ}. In this case,
the MLE θ̂n is an accurate estimator of θ∗. More precisely, it can be shown that

√
n
(
θ̂n − θ∗

)
L→ N

(
0, (I(θ∗))−1

)
(132)

where I(θ∗) is the Fisher information matrix:

I(θ∗) := Eθ∗
{(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)T}

= Eθ∗


(
∇θpθ(Y )

∣∣∣∣
θ=θ∗

)(
∇θpθ(Y )

∣∣∣∣
θ=θ∗

)T
p2
θ∗(Y )

 =

∫ (
∇θpθ(y)

∣∣∣∣
θ=θ∗

)(
∇θpθ(y)

∣∣∣∣
θ=θ∗

)T
pθ∗(y)

dy.

Here Eθ∗ denotes Expectation taken under the assumption Y ∼ pθ∗ . I(θ∗) is a p× p matrix
where p is the dimension of θ∗. According to the above definition, the (i, j)th entry of I(θ∗)
is given by

Eθ∗
{
∂(log pθ(Y ))

∂θi

∣∣∣∣
θ=θ∗

∂(log pθ(Y ))

∂θj

∣∣∣∣
θ=θ∗

}
(133)

A sketch of the proof of (132) can be found in the next subsection in the more general setting
of model misspecification.

It is important to note that the Fisher Information Matrix has two alternative formulae
in this correctly specified case. The first is that

I(θ∗) = Covθ∗

(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)
(134)

where Covθ∗ denotes covariance taken under the assumption Y ∼ pθ∗ . To see this, note first
that Cov(Z) = E(ZZT )− (EZ)(EZ)T . Thus to see why this alternative formula of I(θ∗) is
true, we only need to show that

Eθ∗
(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)
= 0

This is true because

Eθ∗
(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)
= Eθ∗

∇θpθ(Y )

∣∣∣∣
θ=θ∗

pθ∗(Y )

=

∫ ∇θpθ(y)

∣∣∣∣
θ=θ∗

pθ∗(y)
pθ∗(y)dy

=

∫
∇θpθ(y)

∣∣∣∣
θ=θ∗

dy = ∇θ
(∫

pθ(y)dy

) ∣∣∣∣
θ=θ∗

= ∇θ(1)

∣∣∣∣
θ=θ∗

= 0.

Note that we have interchanged the two operations of integation with respect to y and differ-
entiation with respect to θ. Some regularity conditions are necessary for such an interchange
which we are ignoring in this treatment. This mean zero property validates the alternative
formula (134).
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The second alternative formula of Fisher Information is:

I(θ∗) = −Eθ∗
{
Hθ log pθ(Y )

∣∣∣∣
θ=θ∗

}
(135)

where Hθ denotes Hessian. The (i, j)th entry of I(θ∗) according to this formula is

− Eθ∗
{
∂2 log pθ(Y )

∂θi∂θj

∣∣∣∣
θ=θ∗

}
(136)

To verify the validity of this alternative formula, we need to prove that (133) and(136) are
equal. For this, observe first that

∂2 log pθ(y)

∂θi∂θj
=

∂

∂θi

[
∂ log pθ(y)

∂θj

]
=

∂

∂θi

[
1

pθ(y)

∂pθ(y)

∂θj

]
=

1

pθ(y)

∂2pθ(y)

∂θi∂θj
− 1

(pθ(y))2

[
∂pθ(y)

∂θi

] [
∂pθ(y)

∂θj

]
=

1

pθ(y)

∂2pθ(y)

∂θi∂θj
−
[
∂ log pθ(y)

∂θi

] [
∂ log pθ(y)

∂θj

]
.

As a result

− Eθ∗
{
∂2 log pθ(Y )

∂θi∂θj

∣∣∣∣
θ=θ∗

}
= −

∫
1

pθ∗(y)

∂2pθ(y)

∂θi∂θj

∣∣∣∣
θ=θ∗

pθ∗(y)dy + Eθ∗
{
∂(log pθ(Y ))

∂θi

∣∣∣∣
θ=θ∗

∂(log pθ(Y ))

∂θj

∣∣∣∣
θ=θ∗

}
The first term in the right hand side above equals zero because

−
∫

1

pθ∗(y)

∂2pθ(y)

∂θi∂θj

∣∣∣∣
θ=θ∗

pθ∗(y)dy

= −
∫
∂2pθ(y)

∂θi∂θj

∣∣∣∣
θ=θ∗

dy = − ∂2

∂θi∂θj

(∫
pθ(y)dy

) ∣∣∣∣
θ=θ∗

= − ∂2

∂θi∂θj
(1)

∣∣∣∣
θ=θ∗

= 0

and this proves that (133) and (136) are equal.

Here is some popular terminology that is used to describe these results:

1. The quantity θ 7→ ∇θ log pθ(y) is called the score function corresponding to the model
{pθ}.

2. The Fisher Information Matrix is defined as the second moment of the score function
evaluated at the true parameter value.

3. When the model is correctly specified, The Fisher Information Matrix equals the co-
variance matrix of the score function evaluated at the true parameter value.

4. When the model is correctly specified, the Fisher Information Matrix equals the neg-
ative of the Hessian of the log-likelihood evaluated at the true parameter value.

MLE Asymptotics when model is misspecified: Here we assume that the data

y1, . . . , yn are generated according to the model Y1, . . . , Yn
i.i.d∼ f∗ where f∗ does not neces-

sarily belong to the class pθ. In other words, f∗ may not equal pθ for any parameter value
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θ. This means that there is no “true” parameter value θ∗ anymore. So what exactly is the
MLE θ̂n estimating? It turns out that the MLE θ̂n is really estimating the parameter value
θ∗ for which pθ∗ is closest to f∗ in Kullback-Leibler divergence:

θ∗ := argmin
θ

D(f∗‖pθ)

Because D(f∗‖pθ) =
∫
f∗ log f∗ −

∫
f∗ log pθ, we can also define θ∗ as

θ∗ := argmax
θ

∫
f∗(y) log pθ(y)dy.

In other words, θ∗ can also be thought of as the maximizer of the average loglikelihood
(averaged with respect to the true data generating density).

In this misspecified case, it again turns out that
√
n
(
θ̂n − θ∗

)
converges to a zero mean

multivariate normal distribution with some covariance matrix. However the covariance ma-
trix now is not simply the inverse of the Fisher Information Matrix. To understand this,
first let us consider the following simple example.

Example 21.1 (Normal Mean Model). Suppose Y1, . . . , Yn
i.i.d∼ f∗ for some density f∗.

Consider the model N(θ, 1) i.e.,

pθ(y) := (2π)−1/2 exp

(
−(y − θ)2

2

)
.

Let us consider the misspecified setting where f∗ is not equal to N(θ, 1) for any θ. What is
θ∗ in this case? The loglikelihood averaged with respect to f∗ is:∫

f∗(y) log pθ(y)dy =

∫
f∗(y)

{
−(y − θ)2

2
− 1

2
log(2π)

}
dy

= −1

2

∫
(y − θ)2f∗(y)dy − 1

2
log(2π).

It is clear that the minimizer of
∫
f∗ log pθ over all θ ∈ R equals the mean corresponding to

the density f∗. We thus take

θ∗ =

∫
yf∗(y)dy.

On the other hand, given data Y1, . . . , Yn, the MLE of θ is easily seen to be

θ̂n := Ȳn :=
Y1 + · · ·+ Yn

n
.

By the Central Limit Theorem (assuming that the variance corresponding to f∗ is finite), we
have √

n
(
θ̂ − θ∗

)
=
√
n
(
Ȳn − θ∗

) L→ N(0, V ∗) (137)

where V ∗ is the variance corresponding to f∗. What is the Fisher Information Matrix in this
case? The loglikelihood and the score function equal respectively

log pθ(y) = −(y − θ)2

2
− 1

2
log(2π),

and
d

dθ
log pθ(y) = y − θ.
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The second moment of the score function evaluated at θ = θ∗ is therefore:

I(θ∗) = Ef∗(Y − θ∗)2 = V ∗.

Thus the asymptotic variance of the MLE does not equal the inverse of I(θ∗) (in this case,
it equals exactly the Fisher Information).

Let us now state the result for the asymptotic distribution of the MLE θ̂n in the misspeci-
fied case. We need some definitions. First the Fisher Information Matrix as before is defined
as the second moment of the score function:

I(θ∗) := Ef∗
{(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)T}

= Ef∗


(
∇θpθ(Y )

∣∣∣∣
θ=θ∗

)(
∇θpθ(Y )

∣∣∣∣
θ=θ∗

)T
p2
θ∗(Y )


=

∫ (
∇θpθ(y)

∣∣∣∣
θ=θ∗

)(
∇θpθ(y)

∣∣∣∣
θ=θ∗

)T
p2
θ∗(y)

f∗(y)dy.

The crucial difference from the correctly specified case is that the Expectation is taken to
be with respect to the true density f∗ (and not pθ∗). As in the well-specified case, I(θ∗) also
equals the covariance matrix of the score function evaluated at θ∗. This is because

Ef∗
(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)
=

∫
∇θ log pθ(y)

∣∣∣∣
θ=θ∗

f∗(y)dy = ∇θ
(∫

log pθ(y)f∗(y)dy

) ∣∣∣∣
θ=θ∗

= 0.

(138)
The last equality above is because the gradient of

∫
log pθ(y)f∗(y)dy equals zero at θ = θ∗

as θ∗ maximizes the average loglikelihood (with respect to f∗) over θ (this is the definition
of θ∗). Therefore

I(θ∗) = Covf∗

(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

)
. (139)

In the well-specified setting, we have seen that the Fisher Information Matrix also equals the
negative of the Expected Hessian of the loglikelihood evaluated at θ = θ∗ (see the formula
(135)). This is no longer in the case of misspecification. Specifically here I(θ∗) is not
necessarily the same as J(θ∗) where

J(θ∗) := −Ef∗
{
Hθ log pθ(Y )

∣∣∣∣
θ=θ∗

}
. (140)

That I(θ∗) and J(θ∗) can be distinct is seen in the simple normal example.

Example 21.2 (Normal Mean Model continued). Consider the same setting of Example

(21.1). Here the Hessian of the loglikelihood is easily seen to be d2

dθ2
log pθ(y) = −1 so that

J(θ∗) = 1. On the other hand, we saw in Example (21.1) that I(θ∗) = V ∗ where V ∗ is the
variance corresponding to f∗. Thus, unless V ∗ = 1, the two quantities I(θ∗) and J(θ∗) will
be different. Note that if we insist on correct specification, f∗ = N(θ∗, 1), then the variance
corresponding to f∗ will be 1 so that I(θ∗) and J(θ∗) will be the same.
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Here is the correct asymptotic distribution result for the MLE in the misspecified setting:
√
n
(
θ̂n − θ∗

)
L→ N

(
0, J(θ∗)−1I(θ∗)J(θ∗)−1

)
. (141)

The formula J(θ∗)−1I(θ∗)J(θ∗)−1 for the covariance is sometimes called the “Sandwich For-
mula” (see e.g., http://www.econ.uiuc.edu/~roger/courses/476/lectures/L10.pdf). In
the case of correct specification, we have J(θ∗) = I(θ∗) as we saw in the previous section so
that (141) is identical to (132).

It is easy to see that (141) gives the correct answer in the simple normal mean example.

Example 21.3 (Normal Mean Model Continued). Here I(θ∗) = V ∗ and J(θ∗) = 1 so that
(141) gives

√
n
(
θ̂n − θ∗

)
L→ N

(
0, J(θ∗)−1I(θ∗)J(θ∗)−1

)
= N(0, V ∗)

which coincides with (137).

Here is a sketch of the proof of (141).

Proof of (141). By definition, the MLE θ̂n maximizes the loglikelihood function:

`(θ) :=
n∑
i=1

log pθ(Yi).

Thus the gradient of the loglikelihood evaluated at the MLE θ̂n will be zero:

∇θ`(θ)
∣∣
θ=θ̂n

= ∇`(θ̂n) = 0.

Now intuitively, θ̂n should be close to θ∗. So we do a Taylor expansion of ∇`(θ̂n) around θ∗:

0 = ∇`(θ̂n) ≈ ∇`(θ∗) +H`(θ∗)
(
θ̂n − θ∗

)
which immediately gives

θ̂n − θ∗ ≈ − (H`(θ∗))−1 [∇`(θ∗)] .
We rewrite the above as

√
n
(
θ̂n − θ∗

)
≈
(
− 1

n
H`(θ∗)

)−1 [ 1√
n
∇`(θ∗)

]
.

Now
1√
n
∇`(θ∗) =

1√
n

n∑
i=1

∇θ log pθ(Yi)

∣∣∣∣
θ=θ∗

By (138), each random variable ∇θ log pθ(Yi) (note Yi
i.i.d∼ f∗) has mean zero. Thus by the

Central Limit Theorem (and (139)),

1√
n
∇`(θ∗) =

1√
n

n∑
i=1

∇θ log pθ(Yi)

∣∣∣∣
θ=θ∗

L→ N

(
0,Covf∗

(
∇θ log pθ(Y )

∣∣∣∣
θ=θ∗

))
= N (0, I(θ∗)) .

Further, by the law of large numbers (and (140)),

− 1

n
H`(θ∗) =

1

n

n∑
i=1

(
−Hθ log pθ(Yi)

∣∣∣∣
θ=θ∗

)
P→ −Ef∗

{
Hθ log pθ(Y )

∣∣∣∣
θ=θ∗

}
= J(θ∗).

Thus

√
n
(
θ̂n − θ∗

)
≈
(
− 1

n
H`(θ∗)

)−1 [ 1√
n
∇`(θ∗)

]
L→ N

(
0, J(θ∗)−1I(θ∗)J(θ∗)−1

)
which proves (141).
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21.3 Back to AIC

Let us now get back to the setting of Section 21.2.2. Our goal is to understand the quantity
(131). This is a random variable (as it is a function of Y1, . . . , Yn which are independently
distributed according to f∗). We shall concentrate on finding the expectation of (131):

Q := E

{∫
f∗ log pθ̂n −

1

n

n∑
i=1

log pθ̂n(Yi)

}

We write
Q = Q1 +Q2 +Q3

where

Q1 := E
{∫

f∗ log pθ̂n −
∫
f∗ log pθ∗

}
, Q2 := E

{∫
f∗ log pθ∗ −

1

n

n∑
i=1

log pθ∗(Yi)

}

and

Q3 := E

{
1

n

n∑
i=1

log pθ∗(Yi)−
1

n

n∑
i=1

log pθ̂n(Yi)

}
It is clear that Q2 = 0 so we only need to focus on Q1 and Q3. For Q1, Taylor expansion
around θ∗ gives

Q1 = E
{∫

f∗ log pθ̂n −
∫
f∗ log pθ∗

}
≈ E

{〈
∇θ
∫
f∗ log pθ

∣∣∣∣
θ=θ∗

, θ̂n − θ∗
〉

+
1

2

(
θ̂n − θ∗

)T
Hθ

∫
f∗ log pθ

∣∣∣∣
θ=θ∗

(
θ̂n − θ∗

)}
The gradient in the first term above equals zero (because of (138)). The Hessian equals

Hθ

∫
f∗ log pθ

∣∣∣∣
θ=θ∗

=

∫
f∗Hθ log pθ

∣∣∣∣
θ=θ∗

= −J(θ∗)

because of the definition (140) of J(θ∗). Thus

Q1 ≈ −
1

2
E
{(

θ̂n − θ∗
)T

J(θ∗)
(
θ̂n − θ∗

)}
= −1

2
E
[
trace

{
J(θ∗)

(
θ̂n − θ∗

)(
θ̂n − θ∗

)T}]
= −1

2
trace E

{
J(θ∗)

(
θ̂n − θ∗

)(
θ̂n − θ∗

)T}
= −1

2
trace

{
J(θ∗)E

(
θ̂n − θ∗

)(
θ̂n − θ∗

)T}
Because of (141), we take

E
(
θ̂n − θ∗

)(
θ̂n − θ∗

)T
=

1

n
J(θ∗)−1I(θ∗)J(θ∗)−1

to get

Q1 ≈ −
1

2n
trace

{
J(θ∗)J(θ∗)−1I(θ∗)J(θ∗)−1

}
= − 1

2n
trace

{
I(θ∗)J(θ∗)−1

}
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For Q3, we use Taylor expansion around the MLE θ̂n to get

Q3 = E

{
1

n

n∑
i=1

log pθ∗(Yi)−
1

n

n∑
i=1

log pθ̂n(Yi)

}

≈ E

{〈
∇θ

1

n

n∑
i=1

log pθ(Yi)

∣∣∣∣
θ=θ̂n

, θ̂n − θ∗
〉

+
1

2

(
θ̂n − θ∗

)T
Hθ

1

n

n∑
i=1

log pθ(Yi)

∣∣∣∣
θ=θ̂n

(
θ̂n − θ∗

)}
.

The gradient in the first term above equals zero because θ̂n maximizes log-likelihood. The
Hessian for large n can be approximated by −J(θ∗) (this is because θ̂n will be close to θ∗).
Thus

Q3 ≈ −
1

2
E
{(

θ̂n − θ∗
)T

J(θ∗)
(
θ̂n − θ∗

)}
which (just as in the computation of Q1) leads to

Q3 ≈ −
1

2n
trace

{
I(θ∗)J(θ∗)−1

}
.

We have thus proved

Q ≈ − 1

2n
trace

{
I(θ∗)J(θ∗)−1

}
− 1

2n
trace

{
I(θ∗)J(θ∗)−1

}
= − 1

n
trace

{
I(θ∗)J(θ∗)−1

}
This suggests the estimator:

1

n

n∑
i=1

log pθ̂n(Yi)−
1

n
trace

{
I(θ∗)J(θ∗)−1

}
(142)

for ∫
f∗ log pθ̂n . (143)

(142) is not really an estimator because the second term depends on θ∗. However if we
assume that the model is well-specified, then I(θ∗) = J(θ∗) so that the second term equals
p (note p is the dimension of θ∗). We then get

1

n

n∑
i=1

log pθ̂n(Yi)−
p

n

as the estimate for (143). The quantity (142) is simply the AIC multiplied by the constant
− 1

2n . This motivates the use of AIC for model selection.

21.4 Recommended Reading for Today

1. A description of the AIC can be found in Chapter 4 (especially Section 4.5) of the
Kitagawa book.

2. Various applications of the AIC for model selection in state space models can be found
throughout the Kitagawa-Gersch and the Kitagawa books.

3. More details on the AIC and other related model selection criteria can be found in the
book Information Criteria and Statistical Modeling by Konishi and Kitagawa (acces-
sible through the Berkeley library website).
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22 Lecture Twenty Two

22.1 Recap: AIC

In the last class, we looked at frequentist model selection using the Akaike Information
Criterion (AIC) which is defined as:

AIC(M) := −2× (Maximized log-likelihood for M) + 2× (number of parameters in M) .
(144)

This criterion arises in the process of estimation of the out-of-sample accuracy of the model.

More precisely, suppose that the data is y1, . . . , yn and the model is Y1, . . . , Yn
i.i.d∼ pθ with

parameter θ. The in-sample accuracy of this model is

1

n

n∑
i=1

log pθ̂n(yi) (145)

where θ̂n is the MLE. Its out-of-sample accuracy is defined as∫
f∗(y) log pθ̂n(y)dy (146)

where f∗ denotes the true data generating density. As we discussed last class, asymptotics
(under a bunch of assumptions) justify

1

n

n∑
i=1

log pθ̂n(yi)−
p

n
(147)

as an estimator of (146) where p is the dimension of the parameter θ. The AIC is just the
above quantity multiplied by the constant factor −2n.

It can be noted that the out-of-sample accuracy can also be estimated more directly

(without using any asymptotics) if additional independent data ỹ1, . . . , ỹm
i.i.d∼ f∗ is available.

In this case, we can use

1

m

m∑
j=1

log pθ̂n(ỹj) (148)

as an estimate of (146). If additional data is not available, one can split the existing dataset
y1, . . . , yn into two parts, and use one part to calculate θ̂n and the other part as ỹj for
the calculation of (148). To summarize, AIC and related test-data out-of-sample accuracy
evaluations have the following issues:

1. AIC is popular but it uses many difficult to verify assumptions for obtaining the simple
estimate (147) for (146).

2. Heldout/Test-set methodology is more popular but requires additional data. In the
absence of additional data, one needs to construct training and test datasets whose
choices can be adhoc. If the test dataset is too small, the estimate (148) will be noisy.
On the other hand, if the tranining dataset set is too small, the MLE calculated from
the training dataset will be quite different from the MLE calculated on the full dataset
and which create bias in the estimation of (146).

We shall next study Bayesian Model Selection.
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22.2 Bayesian Model Selection

Bayesian model selection works for comparing Bayesian models. By a Bayesian model, I
mean a model in which both the likelihood as well as the prior are specified. For example,
given data y1, . . . , yn, consider the two models:

Y1, . . . , Yn
i.i.d∼ N(θ, 1) with θ ∈ [−5, 5], (149)

and
Y1, . . . , Yn

i.i.d∼ N(θ, 1) with θ ∼ unif[−5, 5]. (150)

Model (149) is not a Bayesian model because the prior is not specified. The constraint
θ ∈ [−5, 5] does not precisely say how θ is distributed on [−5, 5]. On the other hand, the
model (150) is a Bayesian model.

An important advantage of Bayesian models is that they allow calculation of the proba-
bility of the observed data under the model. For example, the Bayesian model (150) would
calculate the probability of the observed data y1, . . . , yn as

1

10

∫ 5

−5
(2π)−n/2 exp

(
−1

2

n∑
i=1

(yi − θ)2

)
dθ.

On the other hand, the non-Bayesian model (149) would not allow computation of the
probability of the observed dataset. Indeed, under the model (149), one can write the
probability of the observed data as

(2π)−n/2 exp

(
−1

2

n∑
i=1

(yi − θ)2

)

for some θ ∈ [−5, 5]. But this not give a precise answer to the probability of the observed
data as it involves the unknown value θ about which we only know that θ ∈ [−5, 5].

Note the slight abuse of terminology here. By probability of the observed data under a
model, I actually mean the joint density:

fY1,...,Yn(y1, . . . , yn)

when the underlying random variables are continuous. In the case where the random variables
are discrete, probability of the observed data will mean

P{Y1 = y1, . . . , Yn = yn}.

In the continuous case, one really should think of an observation 1.29 as not being exactly
equal to the number 1.29 but rather as [1.29 − δ, 1.29 + δ] for some very small number δ
which represents recording precision. The observed dataset y1, . . . , yn is then really [y1 −
δ, y1 + δ], . . . , [yn − δ, yn + δ]. In such a case, the probability of the observed dataset will be
represented by

P{Y1 ∈ [y1 − δ, y1 + δ], . . . , Yn ∈ [yn − δ, yn + δ]} ≈ fY1,...,Yn(y1, . . . , yn)(2δ)n.

Thus, up to multiplication by the constant factor (2δ)n (which will be the same across
different models), the probability of the observed dataset is proportional to the joint density.
This justifies the abuse of notation referring to the joint density as the probability of the
observed dataset.
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Consider now a generic dataset y (y could be a vector or matrix or something even more
general). We have two Bayesian models for y:

M1 : Y | θ ∼ pθ with θ ∼ fθ(·) (151)

and
M2 : Y | α ∼ qα with α ∼ fα(·) (152)

Bayesian Model Selection compares M1 and M2 by simply calculating the probabiliity of the
observed data y under both M1 and M2. Specifically, we compare

fY |M1
(y) =

∫
pθ(y)fθ(θ)dθ and fY |M2

(y) =

∫
qα(y)fα(α)dα.

Preference will be given to the model for which the probability of observed data is higher.
The following are alternative terms for fY |M1

(y):

1. Marginal or Integrated Likelihood: fY |M1
(y) is simply the integration of the

likelihood pθ(y) with respect to the prior density fθ(θ).

2. Evidence: fY |M1
(y) is often referred to as the Evidence of the model M1 under the

observed data y.

Thus Bayesian Model Selection compares the Integrated Likelihoods or Evidences of models.
The following simple example is a good illustration of the basic idea behind Bayesian Model
Selection.

Example 22.1 (MacKay). This example is from Chapter 28 of David MacKay’s book titled
Information Theory, Inference, and Learning Algorithms. We have the dataset −1, 3, 7, 11.
Consider the following two Bayesian models for this dataset:

1. Model 1 (linear): Y1 = α and Yn+1 = Yn + β for n ≥ 1. This model has the two
parameters α and β. We assume that α and β are integer-valued that they are indepen-
dently uniformly distributed over the set {−50,−49, . . . , 49, 50} which has cardinality
101.

2. Model 2 (cubic): Y1 = a and Yn+1 = bY 3
n + cY 2

n + d. This model has the four
parameters a, b, c, d. We assume that these four parameters are independent with a
having the uniform on {−50,−49, . . . , 49, 50} and b, c, d each having the distribution of
x/y where x ∼ Unif{−50,−49, . . . , 49, 50} and y ∼ Unif{1, . . . , 50} are independent.

Which of these two models would you use for the data? Bayesian model selection is readily
applicable here as both the models are Bayesian. We only need to calculate the probability of
the observed data for the two models. For the linear model (M1):

P{Y1 = −1, Y2 = 3, Y3 = 7, Y4 = 11 | M1}

=
∑
i,j

P{Y1 = −1, Y2 = 3, Y3 = 7, Y4 = 11 | α = i, β = j,M1}P{α = i, β = j | M1}

= P{Y1 = −1, Y2 = 3, Y3 = 7, Y4 = 11 | α = −1, β = 4,M1}P{α = −1, β = 4 | M1}

= (1)P{α = −1 | M1}P{β = 4 | M1} =

(
1

101

)2

= 9.8× 10−5.

For the cubic model:

P{Y1 = −1, Y2 = 3, Y3 = 7, Y4 = 11 | M2}

=
∑
a,b,c,d

P{Y1 = −1, Y2 = 3, Y3 = 7, Y4 = 11 | a, b, c, d,M2}P{a = a, b = b, c = c, d = d | M2}
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It turns out that the cubic model explains the given data perfectly if and only if its four
parameters a, b, c, d are chosen as a = −1, b = −1/11, c = 9/11, d = 23/11. As a result

P{Y1 = −1, Y2 = 3, Y3 = 7, Y4 = 11 | M2}
= P {a = −1, b = −1/11, c = 9/11, d = 23/11 |M2}
= P{a = −1}P{b = −1/11}P{c = 9/11}P{d = 23/11}

=

(
1

101

)(
4 · 1

101
· 1

50

)(
4 · 1

101
· 1

50

)(
2 · 1

101
· 1

50

)
= 2.5× 10−12.

Clearly the probability of the observed data is much smaller for the cubic model compared to
the simpler linear model. Bayesian model selection here will prefer the linear model and this
would align with common sense. Note here both the models explain the data equally well.
The cubic model gets downgraded however because the prior in the cubic model gives a much
smaller probability to the correct parameter values compared to the linear model. We shall
come back to this point later.

Bayesian model selection can also be understood from the perspective of hierarchical mod-
eling. Specifically consider the following hierarchical model which converts the two models
M1 and M2 (defined as in (151) and (152) respectively) into a single Bayesian model.

I takes the values 1 and 2 with probabilities ρ and 1− ρ
Y | I = 1, θ ∼ pθ and θ | I = 1 ∼ fθ
Y | I = 2, θ ∼ qα and α | I = 2 ∼ fα

(153)

The random variable I represents one of the two models M1 and M2. More precisely I = 1
represents M1 and I = 2 represents M2. ρ and 1− ρ represent the prior probabilities of M1

and M2. Under this single Bayesian model, we can calculate the posterior distribution of I
given the data Y = y as:

P {I = 1 | Y = y} =
fY |M1

(y)P{I = 1}
fY |M1

(y)P{I = 1}+ fY |M2
(y)P{I = 2}

and

P {I = 2 | Y = y} =
fY |M2

(y)P{I = 2}
fY |M1

(y)P{I = 1}+ fY |M2
(y)P{I = 2}

.

These are the posterior probabilities of the two models given the data Y = y. Model M1

will be preferred compared to Model M2 if and only if

P {I = 1 | Y = y} > P {I = 2 | Y = y} .

As the denominators of the above probabilities are the same, this is equivalent to

fY |M1
(y)P{I = 1} > fY |M2

(y)P{I = 2}.

Now if P{I = 1} = P{I = 2} i.e., if the two models are a priori equally likely, then
the above comparison is equivalent to comparing fY |M1

(y) and fY |M2
(y). Thus Bayesian

model selection in terms of evidences is equivalent to looking at posterior probabilities of the
two models in a hierarchical model where the prior probabilities are the same. When the
prior model probabilities are not the same, we need to multiply the evidences by the prior
probabilities before evaluating the models.
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22.3 Two Alternative Expressions for the Evidence

The evidence fY |M1
(y) satisfies the following two alternative expressions which bear some

similarities to the AIC formula (144). Both these formulae are consequences of the following
expression for posterior density of the parameter θ in the model M1:

posterior(θ) =
prior(θ)pθ(y)

fY |M1
(y)

for every θ.

Here prior(θ) = fθ(θ) and posterior(θ) is the density of θ conditional on Y = y in the model
M1. As a result, we have

fY |M1
(y) =

prior(θ)pθ(y)

posterior(θ)
for every θ. (154)

Taking θ to be the MLE θ̂ in the model M1, we obtain

fY |M1
(y) =

prior(θ̂)pθ̂(y)

posterior(θ̂)
.

This immediately gives the formula:

−2 log fY |M1
(y) = −2 log pθ̂(y) + 2 log

[
posterior(θ̂)

prior(θ̂)

]
log pθ̂(y) is simply the maximized log-likelihood for the model M1. Thus

− 2 log (Evidence(M1)) = −2× (Maximized log-likelihood for M1) + 2 log

[
posterior(θ̂)

prior(θ̂)

]
(155)

Note the similarity of (155) with (144). The first term above measures the fit of the best
model in M1 to the observed data, while the second term measures model complexity. The
model complexity term is more complicated compared to (144). The posterior evaluated at
the MLE will generally be larger than the prior evaluated at the MLE which means that the
model complexity term in (155) will be positive.

Example 22.2 (Example 22.1 continued). Here both the models M1 (linear) and M2 (cubic)
perfectly explain the observed data. Therefore the maximized log-likelihood value is the same
for both M1 and M2. Also both the models have exactly one parameter setting which explains
the data perfectly, and every other setting gives zero probability to the observed data. This
means that posterior(θ̂) equals 1 for both the models. The only difference in the models will
be in the prior evaluated at the best parameter setting. This term is much higher for the
linear model compared to the cubic model. The reason is that the prior for the cubic model is
supported on a much larger set (compared to the prior for the linear model) and consequently
the prior mass assigned to each individual element of the large set is much smaller.

For the second alternative formula, take logarithms on both sides of (154) to get

log fY |M1
(y) = log pθ(y)− log

[
posterior(θ)

prior(θ)

]
for every θ.

Integrating both sides of the above equation with respect to posterior(θ), we get (note left
hand side does not depend on θ):

log fY |M1
(y) =

∫
posterior(θ) log pθ(y)dθ −

∫
posterior(θ) log

[
posterior(θ)

prior(θ)

]
dθ

= Eθ∼posterior log pθ(y)−D (posterior‖prior)
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where D(·‖·) denotes Kullback-Leibler divergence. In other words

− 2 log (Evidence(M1)) = Eθ∼posterior [−2 log pθ(y)] + 2D (posterior‖prior) (156)

This is similar to (156) except that maximized log-likelihood is replaced by the expected log-
likelihood where the expectation is taken with respect to the posterior, and the complexity
term is replaced by the Kullback-Leibler divergence between the posterior and the prior.
Generally, for complex models, the posterior will be quite different from the prior leading to
greater penalization (for a concrete example, consider the setting of Example 22.1).

22.4 The BIC

The BIC (Bayesian Information Criterion) is obtained as an approximation for (155) when
the posterior is replaced by its normal approximation. As we have seen previously, in some
cases, the posterior distribution is well approximated by a normal distribution Np(θ̂,Σ/n)

where θ̂ is the MLE, n denotes sample size and Σ is a p× p covariance matrix (generally Σ
is related to the Hessian of the log-likelihood evaluated at θ̂). In such cases,

posterior(θ) = (2π)−p/2 (det(Σ/n))−1/2 exp
(
−n

2
(θ − θ̂)′Σ−1(θ − θ̂)

)
which implies that

posterior(θ̂) = (2π)−p/2 (det(Σ/n))−1/2 .

As a result

log

[
posterior(θ̂)

prior(θ̂)

]
= log

(2π)−p/2 (det(Σ/n))−1/2

prior(θ̂)

= log
(2π)−p/2np/2 (det(Σ))−1/2

prior(θ̂)

=
p

2
(log n)− p

2
(log(2π))− 1

2
log detΣ− log prior(θ̂)

=
p

2
(log n)

{
1−

p
2(log(2π)) + 1

2 log detΣ + log prior(θ̂)
p
2(log n)

}
.

Now if the sum of the terms p
2(log(2π)), 1

2 log detΣ and log prior(θ̂) is small compared to
p
2 log n: ∣∣∣∣∣ p2(log(2π)) + 1

2 log detΣ + log prior(θ̂)
p
2(log n)

∣∣∣∣∣� 1, (157)

then we can approximate the term in the parantheses by just 1 leading to

log

[
posterior(θ̂)

prior(θ̂)

]
≈ p

2
(log n).

The formula (156) then simplifies to

−2 log (Evidence(M1)) ≈ −2× (Maximized log-likelihood for M1) + p log n. (158)

The right hand side above is called the BIC (Bayesian Information Criterion). It is similar
to the AIC with a more stringent penality for model complexity. As a result, BIC leads to
smaller models compared to the AIC. Also note that because of (157), the formula (158)
does not depend on the prior π making this convenient to use in practice.

111



22.5 Recommended Reading for Today

1. For a very good treatment of Bayesian Model Comparison, see Chapter 28 of the book
Information Theory, Inference and Learning Algorithms by David MacKay, or Chapter
20 of the book Probability Theory: the logic of science by E. T. Jaynes.

2. The formulae (155) and (156) can be found in the 2010 paper titled Bayesian system
identification based on probability logic by James L. Beck.

23 Lecture Twenty Three

23.1 Recap: Frequentist and Bayesian Model Selection

We studied frequentist and Bayesian methods for model selection in the last couple of classes.
Frequentist methods aim to estimate the generalization accuracy of each model with the best

parameter choices. For example, in the case of a model Y1, . . . , Yn
i.i.d∼ pθ, frequentist methods

aim to estimate generalization accuracy defined as:∫
f∗(y) log pθ̂n(y)dy (159)

where f∗ denotes the true data generating density (it is assumed here that data are actu-
ally generated independently from the density f∗), and θ̂n denotes the MLE of θ. Several
estimators exist for the generalization error. The AIC is constructed based on the following
estimate of the generalization error:

1

n

n∑
i=1

log pθ̂n(yi)−
p

n
. (160)

In fact, the AIC for the model is simply the above generalization accuracy estimate multiplied
by constant factor −2n.

In practice, people often estimate the generalization accuracy (159) by splitting the ob-
served dataset into two parts called training data and test data respectively, and then using
the estimator:

1

m

m∑
j=1

log pθ̂n−m(ỹj) (161)

where ỹ1, . . . , ỹm denotes the test data and θ̂n−m is the MLE of θ computed from the training
data. While this methodology is popular, there don’t exist principled ways of doing the test-
training split.

Bayesian Model Selection compares models in terms of the total probability each model
assigns to the observed data. In the above context where the data is y1, . . . , yn and the model

is Y1, . . . , Yn
i.i.d∼ pθ, the model is evaluated via

fY1,...,Yn(y1, . . . , yn) =

∫ ( n∏
i=1

pθ(yi)

)
fθ(θ)dθ

where fθ denotes the prior distribution of θ. This marginal probability fY1,...,Yn(y1, . . . , yn)
is often referred to as the Evidence of the model. In the last class, we looked at the following
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alternative formula for the evidence:

− 2 log (Evidence(M)) = −2× (Maximized log-likelihood for M) + 2 log

[
posterior(θ̂)

prior(θ̂)

]
(162)

We remarked that this formula bears some resemblance to the formula for the AIC.

The Evidence also has some connection to estimates of generalization accuracy such as
(161). This is because we can decompose the Evidence as

Evidence(M) = fY1,...,Yn(y1, . . . , yn)

= fY1(y1)fY2|Y1=y1(y2)fY3|Y1=y1,Y2=y2(y3) . . . fYn|Y1=y1,...,Yn−1=yn−1
(yn).

(163)

Thus the Evidence is simply the product of all the predictive probabilities for each of the
data points, using the model “trained” on the previous data points. Note that

fYi|Y1=y1,...,Yi−1=yi−1
(yi) =

∫
pθ(yi)fθ|Y1=y1,...,Yi−1=yi−1

(θ)dθ.

When i is not too small, the posterior density fθ|Y1=y1,...,Yi−1=yi−1
(θ) should be peaked near

the MLE based on the data Y1, . . . , Yi−1 so this can be viewed as measuring the generalization
accuracy of the MLE similar to (161).

The main issue that people have with Bayesian Model Selection is the reliance on the
priors. The next section contains a simple example where the dependence on the prior can
be seen explicitly.

23.2 Example: Normal Mean

We use Bayesian Model Selection to evaluate the following two models for the observed data
y1, . . . , yn:

Model 1 : Y1, . . . Yn
i.i.d∼ N(0, 1),

and
Model 2 : Y1, . . . , Yn

i.i.d∼ N(θ, 1) with θ ∼ unif(−C,C).

The prior in Model 2 depends on the quantity C. We assume that C is large. The Evidence
for M1 is

Evidence(M1) =

(
1√
2π

)n
exp

(
−1

2

n∑
i=1

y2
i

)
.

The Evidence for M2 is

Evidence(M2) =
1

2C

∫ C

−C

(
1√
2π

)n
exp

(
−1

2

n∑
i=1

(yi − θ)2

)
dθ

=
1

2C

(
1√
2π

)n
exp

(
−1

2

n∑
i=1

(yi − ȳ)2

)∫ C

−C
exp

(
−n

2
(ȳ − θ)2

)
dθ.

Because C is large, the limits −C and C can be replaced by −∞ and∞ respectively without
nontrivially changing the value of the integral above. Thus

Evidence(M2) ≈ 1

2C

(
1√
2π

)n
exp

(
−1

2

n∑
i=1

(yi − ȳ)2

)∫ ∞
−∞

exp
(
−n

2
(ȳ − θ)2

)
dθ

=
1

2C

(
1√
2π

)n
exp

(
−1

2

n∑
i=1

(yi − ȳ)2

)√
2π

n
.
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The ratio of the two Evidences is thus:

Evidence(M1)

Evidence(M2)
= 2C

√
n

2π
exp

(
1

2

n∑
i=1

(yi − ȳ)2 − 1

2

n∑
i=1

y2
i

)

which can be simplified to

Evidence(M1)

Evidence(M2)
= 2C

√
n

2π
exp

(
−nȳ2

2

)
where ȳ :=

y1 + · · ·+ yn
n

.

Note that if ȳ is exactly equal to zero or is close to zero, then the factors C and
√
n appearing

in the formula above make the ratio of evidences quite large. Thus, when ȳ is close to zero,
the simpler model M1 will be preferred. On the other hand, if ȳ is far from zero, the factor of
n appearing in the exponent of exp(−nȳ2/2) will make the evidence small. This, of course,
is in line with intuition. If ȳ is neither very close to zero nor very far from zero, then the
value of C will be crucial for determining whether the ratio of evidences is larger or smaller
than 1. This example shows how Bayes model selection based on evidences depends on the
priors chosen in the individual models.

The ratio of the Evidence of model M1 to the Evidence of model M2 is often referred to
as the Bayes Factor especially in the statistics literature (see, for example, https://en.
wikipedia.org/wiki/Bayes_factor).

23.3 Application: Linear Regression

Let us now calculate the Evidence for a linear regression model under a natural choice of
prior. These evidences can be used for comparing various linear regression models (such as
those obtained by different choices of covariates) for the same dataset.

The observed dataset is y1, . . . , yn. For each response value yi, we also associate a p × 1
covariate vector xi. The response values y1, . . . , yn are usually placed in a n × 1 vector
denoted by Y . The covariate vectors are placed as rows of the n × p matrix X. We shall
consider the matrix X to be deterministic. The linear model is given by

Y ∼ Nn(Xβ, σ2In)

for two parameters β and σ2. The parameter vector is θ = (β, σ). The Maximum Likelihood
Estimate of θ is θ̂ := (β̂, σ̂) where

β̂ := argmin
β
‖Y −Xβ‖2 = (X ′X)−1X ′Y and σ̂ :=

√
1

n
‖Y −Xβ̂‖2 =

‖Y −Xβ̂‖√
n

To make this into a Bayesian model, we need a prior on θ. Let us consider a generic prior
fθ(θ) for now which will be specified shortly. The Evidence is then given by

Evidence =

∫
(2π)−n/2σ−n exp

(
−‖Y −Xβ‖

2

2σ2

)
fθ(θ)dθ

The likelihood function

θ = (β, σ) 7→ (2π)−n/2σ−n exp

(
−‖Y −Xβ‖

2

2σ2

)
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will have a single peak at θ̂ and usually the likelihood is concentrated around θ̂. The prior
fθ(θ), on the other hand, will be quite diffuse. As a result, we can approximate the Evidence
as

Evidence =

∫
(2π)−n/2σ−n exp

(
−‖Y −Xβ‖

2

2σ2

)
fθ(θ)dθ

≈ fθ(θ̂)
∫

(2π)−n/2σ−n exp

(
−‖Y −Xβ‖

2

2σ2

)
dθ.

The integral above can be evaluated explicitly as∫ ∫
(2π)−n/2σ−n exp

(
−‖Y −Xβ‖

2

2σ2

)
dβdσ

=

∫
(2π)−n/2σ−n exp

(
−‖Y −Xβ̂‖

2

2σ2

){∫
exp

(
−‖Xβ̂ −Xβ‖

2

2σ2

)
dβ

}
dσ

=

∫
(2π)−n/2σ−n exp

(
−‖Y −Xβ̂‖

2

2σ2

){∫
exp

(
−(β − β̂)′X ′X(β − β̂)

2σ2

)
dβ

}
dσ

=

∫
(2π)−n/2σ−n exp

(
−‖Y −Xβ̂‖

2

2σ2

){
(
√

2πσ)p|X ′X|−1/2
}
dσ

= (
√

2π)−(n−p)|X ′X|−1/2

∫ ∞
0

σ−(n−p) exp

(
−‖Y −Xβ̂‖

2

2σ2

)
dσ.

Using the change of variable σ = t−1/2, the above integral can be checked to equal:∫ ∞
0

σ−(n−p) exp

(
−‖Y −Xβ̂‖

2

2σ2

)
dσ = 2(n−p−3)/2 Γ(n−p−1

2 )

‖Y −Xβ̂‖n−p−1
.

We have thus proved

Evidence ≈ fθ(θ̂)(
√

2π)−(n−p)|X ′X|−1/22(n−p−3)/2 Γ(n−p−1
2 )

‖Y −Xβ̂‖n−p−1

= fθ(θ̂)2
−3/2π−(n−p)/2|X ′X|−1/2 Γ(n−p−1

2 )

‖Y −Xβ̂‖n−p−1
.

We shall now specify the prior fθ(θ). We take β and σ to be independent with

β ∼ N(0, τ2(X ′X)−1) and log σ ∼ Unif(−C,C).

This prior depends on the two hyperparameters τ and σ. The normality assumption for β is
standard and facilitates computation. Note that we have taken the covariance to be propor-
tional to (X ′X)−1 as opposed to the identity matrix. This is because usually the different
components of β correspond to widely different covariates (e.g., X1 might be age, X2 might
be current weight in pounds, X3 might be weight a year ago in kilograms etc.). In such cases,
we should not treat the different components in the same footing and β ∼ N(0, τ2(X ′X)−1)
is a more sensible assumption than β ∼ N(0, τ2Ip). The prior β ∼ N(0, τ2(X ′X)−1) is
usually referred to as the Zellner prior. The uniform prior for log σ is quite standard. Thus

fθ(θ) = (2π)−p/2τ−p|X ′X|1/2 exp

(
−β
′X ′Xβ

2τ2

)
I{e−C < σ < eC}

2Cσ
.
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Our formula for the Evidence then becomes

Evidence ≈ 2−(p+3)/2π−n/2τ−p exp

(
− β̂
′X ′Xβ̂

2τ2

)
Γ(n−p−1

2 )

‖Y −Xβ̂‖n−p−1

I{e−C < σ̂ < eC}
2Cσ̂

.

Plugging in the value of σ̂ = n−1/2‖Y −Xβ̂‖, we get

Evidence(τ) ≈ 2−(p+3)/2π−n/2τ−p exp

(
− β̂
′X ′Xβ̂

2τ2

) √
nΓ(n−p−1

2 )

‖Y −Xβ̂‖n−p
I{e−C < σ̂ < eC}

2C
.

This quantity depends on the two prior hyperparameters τ and C. The dependence on C is
not very problematic because the indicator term I{e−C < σ̂ < eC} will always be positive as
C is large, and the other factor (1/(2C)) will be common across the various linear regression
models provided we choose the same value of C in every model. The dependence on τ is
more sensitive however. This means that the probability assigned to the data by the Bayesian
linear regression model depends sensitively on the parameter τ . For some values of τ , the
probability of the observed data will be high and for some other values of τ , the probability
of the observed data will be low. Furthermore, the values of τ where the probability of the
observed data will be high (or low) will depend on the specific regression model (i.e., they
will be different from one regression model to another, and this will have a bearing on the
model selection problem).

To deal with this, the sensible way (from a Bayes perspective) is to take a prior on τ and
then integrate the evidence formula above with respect to that prior. For a prior fτ (τ) on
τ , the integrated evidence (with respect to fτ ) equals

Evidence = 2−(p+3)/2π−n/2
√
nΓ(n−p−1

2 )

‖Y −Xβ̂‖n−p
I{e−C < σ̂ < eC}

2C

∫ ∞
0

τ−p exp

(
− β̂
′X ′Xβ̂

2τ2

)
fτ (τ)dτ.

We take the prior

log τ ∼ Unif(−C1, C1) =⇒ fτ (τ) =
I{e−C1 < τ < eC1}

2C1τ
.

This leads to∫ ∞
0

τ−p exp

(
− β̂
′X ′Xβ̂

2τ2

)
fτ (τ)dτ =

1

2C1

∫ eC1

e−C1

τ−p−1 exp

(
−‖Xβ̂‖

2

2τ2

)
dτ

≈ 1

2C1

∫ ∞
0

τ−p−1 exp

(
−‖Xβ̂‖

2

2τ2

)
dτ

=
2(p−2)/2

2C1

Γ
(p

2

)
‖Xβ̂‖p

.

We thus have

Evidence ≈ π−n/2

27/2

√
nΓ(n−p−1

2 )

‖Y −Xβ̂‖n−p
Γ
(p

2

)
‖Xβ̂‖p

I{e−C < σ̂ < eC}
4CC1

This formula depends on C and C1. The indicator will usually equal 1. The rest of the
formula is proportional to CC1. If these constants are chosen to be equal across the different
linear regression models, then all the evidences will be affected by C and C1 in the same way.
In that case, we can write (ignoring terms that do not depend on the particular regression
model):

Evidence ∝
Γ(n−p−1

2 )

‖Y −Xβ̂‖n−p
Γ
(p

2

)
‖Xβ̂‖p
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23.4 Recommended Reading for Today

1. For more comments on the relation between the Bayesian Evidence (163) and gen-
eralization accuracy estimates via cross validation, see David MacKay’s Bayes FAQ
webpage http://www.inference.org.uk/mackay/Bayes_FAQ.html#gcv. In particu-
lar, see MacKay’s response to the question on the relation between Bayes and GCV.

2. The simple normal mean example in Section 23.2 is taken from Section 5.3 of the 1990
paper titled From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics
by Tom Loredo.

3. Model selection via calculations similar to Section 23.3 can be found in Chapter 5 of
the book Bayesian spectrum analysis and parameter estimation by Larry Bretthorst.
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