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1 Lecture 1

The first topic of the class will be Empirical Process Theory. I will give a high-level overview of what we
plan to cover in the empirical processes part of the class.

1.1 Some Aspects of Empirical Process Theory

Empirical process theory usually deals with two fundamental questions.

1.1.1 Uniform Laws of Large Numbers

The first question concerns uniform strong laws of large numbers. Suppose X1, X2, . . . are independent and
identically distributed random objects taking values in a set X . Let F denote a class of real-valued functions
on X . What can one say about the random variable:

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ (1)

Specifically,

1. Does the random variable (5) concentrate around its expectation?

2. Can one provide finite-sample (i.e., bounds that hold for every n) bounds for (5) in terms of the class
of functions F and the common distribution P of X1, X2, . . . ?

3. Can one provide conditions on F such that (5) converges to zero in probability or almost surely (if this
is true, we say that the uniform strong law of large numbers holds)?

Empirical process theory provides answers to these questions. Why are these questions relevant to theo-
retical statistics? The two examples that we shall study in detail are given below.

Example 1.1 (Classification). Consider a pair of random objects X and Y having some joint distribution
where X takes values in a space X and Y takes only the two values: −1 or +1. A classifier is a function
g : X → {−1,+1}. The error of the classifier is given by

L(g) := P {g(X) 6= Y } .
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The goal of classification is to construct a classifier with small error based on n i.i.d observations (X1, Y1), . . . , (Xn, Yn)
having the same distribution as (X,Y ).

For a classifier g, its empirical error (i.e., its error on the observed sample) is given by

Ln(g) :=
1

n

n∑
i=1

I{g(Xi) 6= Yi}.

A natural strategy for classification is to select a class of classifiers C and then to choose the classifier in C
which has the smallest empirical error on the observed sample i.e.,

ĝn := argmin
g∈C

Ln(g).

How good a classifier is ĝn i.e., how small is its error:

L(ĝn) := P
{
ĝn(X) 6= Y

∣∣X1, Y1, . . . , Xn, Yn
}
.

Two questions are relevant about L(ĝn):

1. Is L(ĝn) comparable to infg∈C L(g)? i.e., is the error of ĝn comparable to the best achievable error in
the class C?

2. is L(ĝn) comparable to Ln(ĝn)? i.e., is the error of ĝn comparable its “in-sample” empirical error?

It is quite easy to relate these two questions to the size of supg∈C |Ln(g)−L(g)|. Indeed, if g∗ := argming∈C L(g),
then

L(ĝn) = L(g∗) + L(ĝn)− Ln(ĝn) + Ln(ĝn)− L(g∗)

≤ L(g∗) + L(ĝn)− Ln(ĝn) + Ln(g∗)− L(g∗) ≤ L(g∗) + 2 sup
g∈C
|Ln(g)− L(g)| .

Also
L(ĝn) ≤ Ln(ĝn) + L(ĝn)− Ln(ĝn) ≤ Ln(ĝn) + sup

g∈C
|Ln(g)− L(g)|.

Thus the key quantity to answering the above questions is

sup
g∈C
|Ln(g)− L(g)|.

It is now easy to see that the above quantity is a special case of (5) when F is taken to be the class of all
functions I{g(x) 6= y} as g varies over C. Also the Xis in (5) need to be replaced by (Xi, Yi).

Sometimes, the two inequalities above can sometimes be quite loose. Later, we shall see more sharper
inequalities which utilize a technique known as “localization”.

Example 1.2 (Consistency and Rates of convergence of M-estimators). Many problems in statistics are
concerned with estimators of the form

θ̂n := argmax
θ∈Θ

1

n

n∑
i=1

mθ(Xi) (2)

for i.i.d observations X1, . . . , Xn taking values in a space X . Here Θ denotes the parameter space and,
for each θ ∈ Θ, mθ denotes a real-valued function (known as a loss or criterion function) on X . Such an

estimator θ̂ is called an M -estimator as it is obtained by maximizing an objective function. The most standard
examples of M -estimators are:

1. Maximum Likelihood Estimators: These correspond to mθ(x) := log pθ(x) for a class of densities
{pθ, θ ∈ Θ} on X .
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2. Location Estimators:

(a) Mean: corresponds to mθ(x) := (x− θ)2.

(b) Median: corresponds to mθ(x) := |x− θ|.
(c) Mode: may correspond to mθ(x) := I{|x− θ| ≤ 1}.

The target quantity for the estimator θ̂n is

θ0 := argmax
θ∈Θ

Emθ(X1).

The main question of interest while studying M -estimators concerns the accuracy of θ̂n for estimating θ0. In
the asymptotic framework (n→∞), the two key questions are:

1. Is θ̂n consistent for estimating θ0 i.e., does d(θ̂n, θ0) converge to zero almost surely or in probability as
n→∞? Here d(·, ·) is a metric on Θ (for example, the usual Euclidean metric when Θ is a subset of
Rk for some k).

2. What is the rate of convergence of d(θ̂n, θ0)? For example, is it Op(n
−1/2)? or Op(n

−1/3)?.

To answer these questions, it is obvious that one must investigate the closeness of
∑n
i=1mθ(Xi)/n to Emθ(X1)

in some sort of uniform sense over θ which leads to investigation of (5) for appropriate subclasses F of
{mθ, θ ∈ Θ}.

Indeed, the standard argument involves first writing

P
{
d(θ̂n, θ0) ≥ ε

}
≤ P

{
sup

θ∈Θ:d(θ,θ0)≥ε
(Mn(θ)−Mn(θ0)) ≥ 0

}
(3)

where

Mn(θ) :=
1

n

n∑
i=1

mθ(Xi) and M(θ) := Emθ(X1).

One then bounds the right hand side of (3) by

P

{
sup

θ∈Θ:d(θ,θ0)≥ε
[(Mn(θ)−M(θ))− (Mn(θ0)−M(θ0))] ≥ − sup

θ∈Θ:d(θ,θ0)≥ε
(M(θ)−M(θ0))

}
.

Empirical process results provide bounds for the above probability (some assumptions on the relation between
M and the metric d will be needed).

Note that one can further bound the above probability by replacing the left hand side by

2 sup
θ∈Θ
|Mn(θ)−M(θ)|

but this can sometimes be too loose.

The strategy for controlling (5) is as follows (we will mostly focus on the case when F is a uniformly
bounded class of functions):

1. The key observation is that the random variable (5) “concentrates” around its mean (or expectation).

2. Because of concentration, it is enough to control the mean of (5). The mean will be bounded by a
quantity called “Rademacher Complexity” of F via a technique called “symmetrization”.
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3. The Rademacher complexity involves the expected supremum over a “sub-Gaussian process”. This
is further controlled via a technique known as “chaining”. In the process, we shall also encounter a
quantity known as the “Vapnik-Chervonenkis dimension”.

The best reference for these topics is the book Boucheron et al. [3]. The viewpoint that we shall take is the
nonasymptotic viewpoint where bounds are proved which hold for every n. The more classical viewpoint
is the asymptotic one where statements are made that hold as n → ∞. In the asymptotic viewpoint, it
is said that the class F is “Glivenko-Cantelli” provided (5) converges almost surely as n → ∞. Using our
nonasymptotic bounds, it will be possible to put appropriate conditions on F under which F becomes a
Glivenko-Cantelli class.

2 Lecture 2

2.1 Uniform Central Limit Theorems

Let us now describe the second fundamental question that is addressed by the theory of empirical process.

By the usual Central Limit Theorem (CLT), we have that

√
n

(
1

n

n∑
i=1

f(Xi)− Ef(X1)

)

converges in distribution to the normal distribution with mean zero and variance V ar(f(X1)) as n → ∞.
This statement is true for every f ∈ F . Does this convergence hold uniformly over f in the class F in a
reasonable sense? To illustrate this, let us look at the following example.

Example 2.1. Suppose that X1, . . . , Xn are i.i.d observations from the uniform distribution on [0, 1]. Also
suppose that F consists of all indicator functions {I(−∞,t] : t ∈ R}. In this case, for f = I−∞,t], the quantity

1

n

n∑
i=1

f(Xi) = Fn(t)

where Fn is the empirical distribution function of the observations X1, . . . , Xn. Define

Un(t) :=
√
n(Fn(t)− t) for t ∈ [0, 1].

Un(t) represents a collection of random variables as t varies in [0, 1]. The stochastic process {Un(t), t ∈ [0, 1]}
is known as the “Uniform Empirical Process”. It is easy to see that every realization of {Un(t), t ∈ [0, 1]},
viewed as a function on [0, 1], is piecewise linear with jump discontinuities at the n data points X1, . . . , Xn.
Also Un(0) = Un(1) = 0 for every n.

The CLT states that for each t ∈ [0, 1], the sequence of real random variables {Un(t)} converges in
distribution to N(0, t− t2) as n→∞. Moreover, the multivariate CLT states that for every fixed t1, . . . , tk,
the sequence of random vectors (Un(t1), . . . , Un(tk)) converges in distribution to the multivariate normal
distribution with zero means and covariances given by min(ti, tj)− titj.

At this point, let us introduce an object called Brownian Bridge. The Brownian Bridge on [0, 1] is a
stochastic process {U(t), 0 ≤ t ≤ 1} that is characterized by the following two requirements:

1. Every realization is a continuous function on [0, 1] with U(0) and U(1) always fixed to be equal to 0.

2. For every fixed t1, . . . , tk in [0, 1], the random vector (U(t1), . . . , U(tk)) has the multivariate normal
distribution with zero means and covariances given by min(ti, tj)− titj.
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We therefore see that the “finite dimensional distributions” of the process {Un(t), 0 ≤ t ≤ 1} converge
to the “finite dimensional distributions” of {U(t), 0 ≤ t ≤ 1}. It is natural to ask here if one can claim
anything beyond finite-dimensional convergence here. Does the entire process {Un(t), 0 ≤ t ≤ 1} converge to
{U(t), 0 ≤ t ≤ 1}? This was first conjectured by Doob and rigorously proved by Donsker.

What is the meaning of the statement that the sequence of stochastic processes {Un(t), t ∈ [0, 1]} converges
in distribution to {U(t), t ∈ [0, 1]}? To understand, let us first recall the usual notion of convergence in
distribution for sequences of random vectors. We say that a sequence of random vectors {Zn} taking values
in Rk converges in distribution to Z if and only if

Eh(Zn)→ Eh(Z) as n→∞

for every bounded continuous real-valued function h : Rk → R.

One can attempt a direct generalization of this to define convergence of Un(·) to U(·) as a stochastic
process. These processes take values not in Rk but in the space of all bounded functions on [0, 1]. Let us
denote this space by `∞([0, 1]). This space can be metrized by the supremum metric: sup0≤t≤1 |g1(t)− g2(t)|.
We can then say that Gn converges in distribution to U as a stochastic process provided

Eh(Un)→ Eh(U) as n→∞ (4)

for every bounded and continuous real valued function h : `∞[0, 1] → R. This definition almost makes sense
except for one measure-theoretic issue. It turns out that there exist bounded and continuous real valued
functions h : `∞[0, 1] → R for which the random variable h(Un) is not measurable. One therefore replaces
the left hand side in (4) by its outer expectation E∗h(Un) (formally defined later).

In this sense, Donsker showed that Un converges in distribution to Brownian Bridge.

Let us now return to the general case. Here we consider the stochastic process:

Gn(f) :=
√
n

(
1

n

n∑
i=1

f(Xi)− Ef(X1)

)
for f ∈ F .

Under a simple assumption such as supf∈F |f(x)| <∞ for every x ∈ X , the function f 7→ Gn(f) belongs to
the space `∞(F). We say then that the uniform central limit theorem holds over F if the stochastic process
Gn(f), f ∈ F converges in distribution in `∞(F) to a process G(f), f ∈ F as n → ∞. The limit process
G(f), f ∈ F will have the property that for every f1, . . . , fk ∈ F , the random vector (G(f1), . . . , G(fk)) will
have a multivariate normal distribution having the same covariance as (Gn(f1), . . . , Gn(fk)).

We shall characterize convergence in distribution in `∞(F) and then see some sufficient conditions on F
that ensure that the Uniform CLT holds.

The following are some statistical applications of Uniform CLTs.

Example 2.2 (Classical Motivation: Goodness of Fit Testing). Suppose one observes i.i.d observations
X1, . . . , Xn from a distribution (cdf) F and wants to test the null hypothesis H0 : F = F0 against the
alternative hypothesis H1 : F 6= F0. Here F0 is a fixed distribution function.

Kolmogorov recommended testing this hypothesis via the quantity

Dn :=
√
n sup
x∈R
|Fn(x)− F0(x)|

where Fn is the empirical cdf of the data X1, . . . , Xn. The idea is to reject H0 when Dn is large. To calculate
the p-value of this test, the null distribution (i.e., the distribution of Dn under H0) needs to be determined.
An interesting property of the null distribution of Dn is that the null distribution does not depend on F0 as
long as F0 is continuous. (I will leave this fact as an exercise; it can, for example, be proved via the quantile
transformation).
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Because of this fact, one can compute the null distribution of Dn assuming that F0 is the uniform distri-
bution on (0, 1). In this case, we can write

Dn = sup
0≤t≤1

|Un(t)|

where Un(t) is the uniform empirical process from Example 180.

The fact that {Un(t), t ∈ [0, 1]} converges in distribution to a Brownian bridge {U(t), t ∈ [0, 1]} as n→∞
actually allows one to claim that

lim
n→∞

P{Dn ≤ x} = P
{

sup
0≤t≤1

|U(t)| ≤ x
}

for every x > 0.

The latter probability can be exactly computed (see, for example, Dudley [5, Proposition 12.3.4]). Thus the
uniform central limit theorem gives a way of computing asymptotically valid p-values for Goodness of fit
testing via the Kolmogorov Statistic.

The same argument can be used for many related goodness of fit statistics such as

1. Cramer-Von Mises Statistic: Defined as

Wn := n

∫
(Fn(x)− F0(x))

2
dF0(x).

2. Anderson-Darling Statistic: Defined as

An := n

∫
(Fn(x)− F0(x))2

F0(x)(1− F0(x))
dF0(x).

3. Smirnov statistics: Defined as

D+
n :=

√
n sup

x
(Fn(x)− F0(x)) and D+

n :=
√
n sup

x
(F0(x)− Fn(x)) .

The asymptotic null distribution of all these statistics can be computed from Brownian bridge and this will
be validated by the uniform CLT.

Example 2.3 (Asymptotic Distribution of MLE). Suppose X1, . . . , Xn are i.i.d from an unknown density

pθ0 belonging to a known class {pθ : θ ∈ Θ ⊆ Rk}. Let θ̂n denote the maximum likelihood estimator of θ0

defined as the maximizer of

1

n

n∑
i=1

log pθ(Xi)

over θ ∈ Θ. A classical result is that, under some smoothness assumptions,
√
n
(
θ̂n − θ0

)
converges in

distribution to Nk(0, I−1(θ0)) where I(θ0) denotes the k × k Fisher information matrix defined as

I(θ0) := E
(
∇θ log pθ(X) (∇θ log pθ(X))

T
)

where the gradient ∇θ is evaluated at θ = θ0 and the expectation is taken with respect to the density pθ0 .

What smoothness assumptions need to be imposed on pθ, θ ∈ Θ for this result to hold? Because the
result involves the information matrix I(θ0) which involves gradients, a minimal assumption seems to be that
θ 7→ log pθ(x) needs to be differentiable with respect to θ. Also because of the presence of the expectation in
the definition of I(θ0), it should be okay if the derivative with respect to θ does not exist on sets of measure
zero with respect to pθ0 (think about the model pθ(x) := exp(−|x− θ|)/2).

The classical proofs of this result assume however that this map allows two (or sometimes even three)
derivatives. Using uniform central limit theorems, we shall present later a proof using a minimal differentia-
bility assumption called Differentiability in Quadratic Mean (DQM).
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Example 2.4 (Asymptotic Distribution Results for M-estimators). Uniform central limit theorems can be
used to derive limiting distributions of other M-estimators as well.

For example, consider the sample median defined as:

θ̂n := argmax
θ∈R

1

n

n∑
i=1

|Xi − θ|.

Assuming that the distribution function F of the observations is differentiable at its median θ0 with positive
derivative f(θ0), it can be proved that

√
n
(
θ̂n − θ0

)
converges in distribution to N(0, (4f2(θ0))−1).

For the mode defined as argmaxθ∈R
∑n
i=1mθ(Xi) with mθ(x) := I{|x−θ| ≤ 1} and Θ = R, the asymptotic

distribution is much more complicated. The result is that

n1/3
(
θ̂n − θ0

)
converges in distribution to

argmax
h∈R

(
aZ(h)− bh2

)
where Z is a standard two-sided Brownian motion starting from 0,

a2 := p(θ0 + 1) + p(θ0 − 1) and b :=
1

2
(p′(θ0 − 1)− p′(θ0 + 1)) .

Here p(·) represents the density of the observations and it is assumed that p is unimodal and symmetric with
mode θ0 i.e., p′(x) > 0 for x < θ0 and p′(x) < 0 for x > θ0. This result is stated here just to illustrate that
the limiting distributions of even simple-looking M-estimators can be quite complicated. We shall later see
how to prove these results via Uniform CLTs.

2.2 Concentration Results

Let us now start with our discussion of uniform laws of large numbers. The key object of study is

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ (5)

where X1, . . . , Xn are i.i.d random objects taking values in a space X and F is a collection of real-valued
functions on X . We shall argue that (5) concentrates around its expectation. This is fairly easy to prove
when it is assumed that the all functions in F are bounded by a positive constant B:

sup
x∈X
|f(x)| ≤ B for every f ∈ F . (6)

Under the above assumption, we shall prove a concentration result for (5). We shall do this as a consequence
of the bounded differences concentration inequality.

Theorem 2.5 (Bounded Differences Concentration Inequality). Suppose X1, . . . , Xn are independent random
variables taking values in a set X . Suppose g : X × · · · × X → R be a function that satisfies the following
“bounded differences” assumption’:

sup
x1,...,xn,x′i∈X

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci (7)
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for every i = 1, . . . , n. Then for every t ≥ 0, we have

P {g(X1, . . . , Xn)− Eg(X1, . . . , Xn) ≥ t} ≤ exp

(
−2t2∑n
i=1 c

2
i

)
(8)

and

P {g(X1, . . . , Xn)− Eg(X1, . . . , Xn) ≤ −t} ≤ exp

(
−2t2∑n
i=1 c

2
i

)
. (9)

Remark 2.1. The bounded differences condition (211) is equivalent to the following:

|g(x1, . . . , xn)− g(z1, . . . , zn)| ≤ ci

whenever (x1, . . . , xn) and (z1, . . . , zn) differ in exactly the ith coordinate.

It is also equivalent to the following condition:

|g(x1, . . . , xn)− g(z1, . . . , zn)| ≤
n∑
i=1

ciI{xi 6= zi} for all x1, . . . , xn, z1, . . . , zn ∈ X .

Theorem 2.5 can be seen as a quantification of the following qualitative statement of Talagrand (see
Talagrand [22, Page 2]): A random variable that depends on the influence of many independent variables (but
not too much on any of them) concentrates’. The numbers ci control the effect of the ith variable on the
function g.

We shall prove Theorem 2.5 in the next class. Let us argue here that it implies a concentration inequality
for

Z := sup
f∈F
| 1
n

n∑
i=1

f(Xi)− Ef(X1)|.

under the condition (6). Indeed, let

g(x1, . . . , xn) := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− Ef(X1)

∣∣∣∣∣ .
We shall show below that g satisfies the bounded differences assumption (211) with ci := 2B/n for i = 1, . . . , n.
To see this, note that

g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) = sup

f∈F

∣∣∣∣∣∣ 1n
∑
j 6=i

f(xj) +
f(x′i)

n
− Ef(X1)

∣∣∣∣∣∣
= sup
f∈F

∣∣∣∣∣∣ 1n
n∑
j=1

f(xj)− Ef(X1) +
f(x′i)

n
− f(xi)

n

∣∣∣∣∣∣ .
For every f ∈ F , by triangle inequality and the fact that |f(xi)| ≤ B and |f(x′i)| ≤ B, we have∣∣∣∣∣∣ 1n

n∑
j=1

f(xj)− Ef(X1) +
f(x′i)

n
− f(xi)

n

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n∑
j=1

f(xj)− Ef(X1)

∣∣∣∣∣∣+
2B

n
.

Taking supremum over f ∈ F on both sides, we obtain

g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) ≤ g(x1, . . . , xn) +

2B

n
.
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Interchanging the roles of xi and x′i, we can deduce that

|g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)− g(x1, . . . , xn)| ≤ 2B

n

so that (211) holds with ci = 2B/n. Theorem 2.5 (specifically inequality (8)) then gives

P {Z ≥ EZ + t} ≤ exp

(
−nt2

2B2

)
for every t ≥ 0.

Setting

δ := exp

(
−nt2

2B2

)
,

we deduce that the following inequality:

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ ≤ E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣
)

+B

√
2

n
log

1

δ
(10)

holds with probability at least 1− δ for every δ > 0.

This inequality implies that E(Z) is usually the dominating term for understanding the behavior of Z.
This is because typically E(Z) dominates the last term on the right hand side of (10). Indeed, for every
f ∈ F ,

E(Z) ≥ E

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ . (11)

Because

E

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣
2

=
var(f(X1))

n
,

it is reasonable to believe that the right hand side of (11) will typically be of order
√
var(f(X1))/n. Thus

(unless var(f(X1)) is much smaller compared to B2 for every f ∈ F), the first term on the right hand side
of (10) usually dominates the second term and hence in order to control the random variable Z, it is enough
to focus on the expectation EZ.

3 Lecture 3

3.1 Hoeffding’s Inequality and Proof of the Bounded Differences Concentration
Inequality

One of the goals of this lecture is to prove the Bounded Differences Concentration Inequality. We shall
prove another standard concentration inequality called Hoeffding’s inequality and then tweak the proof of
Hoeffding’s inequality to yield the Bounded Differences Concentration Inequality.

Theorem 3.1 (Hoeffding’s Inequality). Suppose ξ1, . . . , ξn are independent random variables. Suppose
a1, . . . , an, b1, . . . , bn are constants such that ai ≤ ξi ≤ bi almost surely for each i = 1, . . . , n. Then for
every t ≥ 0, we have

P

{
n∑
i=1

(ξi − Eξi) ≥ t

}
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
(12)

and

P

{
n∑
i=1

(ξi − Eξi) ≤ −t

}
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
.
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Proof. Let S :=
∑n
i=1(ξi = Eξi) and write (for a fixed λ ≥ 0)

P{S ≥ t} ≤ P{eλS ≥ eλt} ≤ e−λtEeλS = exp (−λt+ ψS(λ))

where

ψS(λ) := logEeλS

is the log moment generating function of S. Now by the independence of ξ1, . . . , ξn,

ψS(λ) = logE exp

(
λ

n∑
i=1

(ξi − Eξi)

)
=

n∑
i=1

logE exp (λ(ξi − Eξi)) =

n∑
i=1

ψξi−Eξi(λ)

where ψξi−Eξi(·) denotes the log moment generating function of ξi−Eξi. Fix 1 ≤ i ≤ n and let U := ξi−Eξi.
We shall bound ψU (λ) below. We know that EU = 0 and that ai − Eξi ≤ U ≤ bi − Eξi almost surely. By
second order Taylor expansion of ψU (λ) around 0, we can write

ψU (λ) = ψU (0) + λψ′U (0) +
λ2

2
ψ′′U (λ′)

for some 0 ≤ λ′ ≤ λ. Note now that ψU (0) = logE(1) = 0. Also

ψ′U (λ) =
1

EeλU
d

dλ
E(eλU ) =

E(UeλU)

EeλU

so that

ψ′U (0) = EU = 0.

And

ψ′′U (λ) = E
(
U2 eλU

EeλU

)
−
(
E
UeλU

EeλU

)2

.

Consider now a random variable V whose density with respect to the distribution of U is eλU/(EeλU ) i.e.,

dPV
dPU

=
eλU

EeλU
.

Based on the calculation above, it is then clear that ψ′′U (λ) = var(V ) ≥ 0. Note also that V is supported on
the interval [ai−Eξi, bi−Eξi] (because U is supported on this interval and PV is absolutely continuous with
respect to PU ). As a result,

ψ′′U (λ) = var(V ) = inf
m∈R

E (V −m)
2 ≤ E (V − η)

2 ≤
(
bi − ai

2

)2

=
(bi − ai)2

4

where η is the mid-point of the interval [ai − Eξi, bi − Eξi]. We have thus proved that ψ′′U (λ) ≤ (bi − ai)2/4
for every λ ≥ 0. This, along with ψU (0) = 0 and ψ′U (0) = 0, gives

ψU (λ) ≤ (bi − ai)2

8
λ2.

As a result

ψS(λ) =

n∑
i=1

ψξi−Eξi(λ) ≤ λ2

8

n∑
i=1

(bi − ai)2
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and consequently

P {S ≥ t} ≤ exp

(
−λt+

λ2

8

n∑
i=1

(bi − ai)2

)

for every λ ≥ 0. We can optimize this bound over λ ≥ 0 by setting

λ =
4t∑n

i=1(bi − ai)2

to prove (12). To prove the lower tail inequality, just apply (12) to −ξ1, . . . ,−ξn.

The proof given above bounds the probability P{S ≥ t} in terms of the Moment Generating Function of
S. This technique is known as the Cramer-Chernoff Method.

3.1.1 Remarks on Hoeffding’s inequality

Consider the following special case of Hoeffding’s inequality: Suppose X1, . . . , Xn are i.i.d with EXi = µ,
var(Xi) = σ2 and a ≤ Xi ≤ b almost surely (a and b are constants). Suppose X̄n := (X1 + · · · + Xn)/n.
Hoeffding’s inequality then gives

P
{√

n(X̄n − µ) ≥ t
}
≤ exp

(
−2t2

(b− a)2

)
for all t ≥ 0. (13)

Is this a good bound? By “good” here, we mean if the probability on the right hand side above is close to
the bound on the right or if the bound is much looser. To answer this question, we of course need a way of
approximately computing the probability on the left hand side. A natural way of doing this is via invoking
the Central Limit Theorem (assuming that the CLT is valid). Indeed CLT states that

√
n
(
X̄n − µ

) L→N(0, σ2) as n→∞

provided that the distribution of Xi (and in particular the quantities µ, σ2, a and b) do not depend on n (note
that Hoeffding’s inequality needs no such assumption; in particular, (13) is valid even when µ, σ2, a and b
all depend on n). Thus we may expect

P
{√

n(X̄n − µ) ≥ t
}
≈ P

{
N(0, σ2) ≥ t

}
when n is large and when CLT holds. What is P{N(0, σ2) ≥ t}? We can bound this again by the Cramer-
Chernoff method:

P
{
N(0, σ2) ≥ t

}
≤ exp

(
−λt+ ψN(0,σ2)(λ)

)
for every λ ≥ 0 where ψN(0,σ2) is the log moment generating function of N(0, σ2). By a straightforward
calculation, it can be seen that ψN(0,σ2)(λ) is exactly equal to λ2σ2/2. Thus

P
{
N(0, σ2) ≥ t

}
≤ inf
λ≥0

exp

(
−λt+

1

2
λ2σ2

)
= exp

(
−t2

2σ2

)
for every t ≥ 0 (14)

Is this bound accurate? It is quite good as can be seen from the following inequality (see, for example, Feller
[7, Section 7.1]):

1√
2π

(
σ

t
− σ3

t3

)
exp

(
−t2

2σ2

)
≤ P

{
N(0, σ2) ≥ t

}
≤ σ

t
√

2π
exp

(
−t2

2σ2

)
.
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So exp
(
−t2
2σ2

)
is the correct exponential term controlling the behavior of P{N(0, σ2) ≥ t}. Now let us compare

Hoeffding with the bound (14). Hoeffding gives the bound

exp

(
−2t2

(b− a)2

)
while normal approximation suggests

exp

(
−t2

2σ2

)
.

Note now that because a ≤ X1 ≤ b almost surely,

σ2 = var(X1) ≤ E
(
X1 −

a+ b

2

)2

≤ (b− a)2

4
.

Thus in the regime where CLT holds, Hoeffding is a looser inequality where the variance σ2 is replaced by
the upper bound (b − a)2/4. This looseness can be quite pronounced when X1 puts less mass near the end
points a and b. Here is a potential statistical implication of this looseness.

Example 3.2. Suppose X1, . . . , Xn are i.i.d with EXi = µ, var(Xi) = σ2 and a ≤ Xi ≤ b almost surely
(a and b are constants). Suppose σ2, a and b are known while µ is unknown and that we seek a confidence
interval for µ. There are two ways of solving this problem.

The first method uses the CLT (normal approximation). Indeed, by CLT:

P
{∣∣∣∣√n(X̄n − µ)

σ

∣∣∣∣ ≤ t}→ P{N(0, 1) ≤ t}

as n→∞ for each t. Thus

P
{∣∣∣∣√n(X̄n − µ)

σ

∣∣∣∣ ≤ zα/2}→ P{N(0, 1) ≤ zα/2} = 1− α

where zα/2 is defined so that the last equality above holds. This leads to the following C.I for µ:[
X̄n −

σ√
n
zα/2, X̄n +

σ√
n
zα/2

]
. (15)

Note that this is an “asymptotically valid” 100(1− α)% confidence interval for µ. Its finite sample coverage,
on the other hand, may not be 100(1− α)%.

The second method for constructing a confidence interval for µ uses the Hoeffding inequality which states
that

P
{
|
√
n(X̄n − µ)| ≥ t

}
≤ 2 exp

(
−2t2

(b− a)2

)
for every t ≥ 0.

Thus, by taking,

t = (b− a)

√
1

2
log

2

α
,

one gets the following confidence interval for µ:[
X̄n −

b− a√
n

√
1

2
log

2

α
, X̄n +

b− a√
n

√
1

2
log

2

α

]
. (16)

This inequality has guaranteed finite sample coverage 100(1 − α)%. But this interval might be much too big
compared to (15). Which of the two intervals (15) and (16) would you prefer?
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3.1.2 Hoeffding’s inequality for Martingale Differences

Theorem 3.3 (Hoeffding’s inequality for Martingale Differences). Suppose F1, . . . ,Fn are increasing σ-fields
and suppose ξ1, . . . , ξn are random variables with ξi being Fi-measurable. Assume that

E (ξi − Eξi|Fi−1) = 0 almost surely (17)

for all i = 1, . . . , n. Also assume that, for each 1 ≤ i ≤ n, the conditional distribution of ξi given Fi−1 is
supported on an interval whose length is bounded from above by the deterministic quantity Ri. Then

P

{
n∑
i=1

(ξi − Eξi) ≥ t

}
≤ exp

(
−2t2∑n
i=1R

2
i

)
(18)

and

P

{
n∑
i=1

(ξi − Eξi) ≤ −t

}
≤ exp

(
−2t2∑n
i=1R

2
i

)
for every t ≥ 0.

Remark 3.1. The assumption (17) means that (Sj ,Fj), j = 1, . . . , n is a martingale where Sj :=
∑j
i=1(ξi−

Eξi). Therefore the sequence {ξi − Eξi, i = 1, . . . , n} is a martingale difference sequence.

Proof. Let S =
∑n
i=1(ξi − Eξi). As before, for every t ≥ 0 and λ ≥ 0,

P {S ≥ t} ≤ exp (−λt+ ψS(λ))

with

ψS(λ) := logEeλS = logE exp

(
λ

n∑
i=1

(ξi − Eξi)

)
.

Observe now that

E
(
eλS |Fn−1

)
= exp

(
λ

n−1∑
i=1

(ξi − Eξi)

)
E
(
eλ(ξn−Eξn)|Fn−1

)
.

Now because Eξn = E(ξn|Fn−1), we can use exactly the same argument as in the proof of Hoeffding’s
inequality in the independent case (via second order Taylor expansion of the log Moment Generating Function)
to deduce that

E
(
eλ(ξn−Eξn)|Fn−1

)
≤ exp

(
λ2R2

n

8

)
and this gives

EeλS ≤ exp

(
λ2R2

n

8

)
E exp

(
λ

n−1∑
i=1

(ξi − Eξi)

)
.

Now repeat the above argument (by conditioning on Fn−2, then Fn−3 and so on) to deduce that

EeλS ≤ exp

(
λ2

8

n∑
i=1

R2
i

)
.

This gives

P {S ≥ t} ≤ exp

(
−λt+

λ2

8

n∑
i=1

R2
i

)
.

Optimize over λ to deduce (18). For the proof of the lower tail inequality, argue with −ξi in place of ξi.
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3.1.3 Proof of the Bounded Differences Concentration Inequality

We shall now prove the bounded differences concentration inequality as a simple consequence of Theorem
3.3. Recall the statement of the Bounded Differences Concentration Inequality:

Theorem 3.4 (Bounded Differences Concentration Inequality). Suppose X1, . . . , Xn are independent random
variables taking values in a set X . Suppose g : X × · · · × X → R be a function that satisfies the following
“bounded differences” assumption’:

|g(x1, . . . , xn)− g(z1, . . . , zn)| ≤
n∑
i=1

ciI{xi 6= zi} (19)

for some constants c1, . . . , cn. Then for every t ≥ 0, we have

P {g(X1, . . . , Xn)− Eg(X1, . . . , Xn) ≥ t} ≤ exp

(
−2t2∑n
i=1 c

2
i

)
(20)

and

P {g(X1, . . . , Xn)− Eg(X1, . . . , Xn) ≤ −t} ≤ exp

(
−2t2∑n
i=1 c

2
i

)
.

Proof of Theorem 3.4. We shall apply the martingale Hoeffding inequality to

ξi := E (g(X1, . . . , Xn)|X1, . . . , Xi)− E (g(X1, . . . , Xn)|X1, . . . , Xi−1) for i = 1, . . . , n

and Fi taken to be the sigma field generated by X1, . . . , Xi for i = 1, . . . , n. Clearly ξi is Fi measurable and
Eξi = 0. Also

E (ξi|Fi−1) = E (ξi|X1, . . . , Xi−1)

= E (E (g(X1, . . . , Xn)|X1, . . . , Xi) |X1, . . . , Xi−1)− E [g(X1, . . . , Xn)|X1, . . . , Xi−1]

= E [g(X1, . . . , Xn)|X1, . . . , Xi−1]− E [g(X1, . . . , Xn)|X1, . . . , Xi−1] = 0.

Thus (ξi,Fi) is a martingale difference sequence. We shall now argue that the conditional distribution of ξi
given Fi−1 is supported on an interval of length bounded from above by ci. For this, we need to look at
the condition distribution of ξi given X1, . . . , Xi−1. So let us fix X1, . . . , Xi−1 at x1, . . . , xi−1. Then ξi is a
function solely of Xi and we need to look at the range of values of ξi as Xi = x varies. We therefore need to
look at the values:

x 7→ E [g(X1, . . . , Xn)|X1 = x1, . . . , Xi−1 = xi−1, Xi = x]− E [g(X1, . . . , Xn)|X1 = x1, . . . , Xi−1 = xi−1]

as x varies and x1, . . . , xi−1 are fixed. Now, by independence of X1, . . . , Xn, the right hand side above
equals

Eg(x1, . . . , xi−1, x,Xi+1, . . . , Xn)− constant

where the “constant” term only depends on x1, . . . , xi−1. Thus we can take Ri to be

Ri := sup
x,x′∈X

|Eg(x1, . . . , xi−1, x,Xi+1, . . . , Xn)− Eg(x1, . . . , xi−1, x
′, Xi+1, . . . , Xn)|

≤ sup
x,x′∈X

E |g(x1, . . . , xi−1, x,Xi+1, . . . , Xn)− g(x1, . . . , xi−1, x
′, Xi+1, . . . , Xn)| .

It is clear now that Ri ≤ ci by the bounded differences assumption (19). We can therefore apply Theorem
3.3 with Ri = ci which finishes the proof of Theorem 3.4.
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4 Lecture 4

4.1 Bennett’s Inequality

Let us recall the Hoeffding inequality from last lecture. It states that

P

{
n∑
i=1

(Xi − EXi) ≥ t

}
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
for every t ≥ 0 where X1, . . . , Xn are independent random variables with ai ≤ Xi ≤ bi almost surely. We
remarked that when

∑n
i=1 var(Xi) is much smaller than

∑n
i=1(bi−ai)2/4 and when the CLT holds, then the

tail bound given by Hoeffding can be loose. Bennett’s inequality attempts to given tail bounds which involve
variances.

Theorem 4.1 (Bennett’s inequality). Suppose X1, . . . , Xn are independent random variables having finite
variances. Suppose Xi ≤ B almost surely for each i = 1, . . . , n (here B is deterministic). Let V :=

∑n
i=1 EX2

i .
Then for every t ≥ 0, we have

P

{
n∑
i=1

(Xi − EXi) ≥ t

}
≤ exp

(
− V

B2
h

(
tB

V

))
(21)

where

h(u) := (1 + u) log(1 + u)− u for u ≥ 0. (22)

Remark 4.1. Bennett’s inequality, as stated above, gives only the upper tail bound. To get the lower bound,
one needs to impose the assumption Xi ≥ −B. In this case, one gets

P

{
n∑
i=1

(Xi − EXi) ≤ −t

}
≤ exp

(
− V

B2
h

(
tB

V

))
Remark 4.2. For the function h defined in (22), it is easy to see that h(0) = 0, h′(0) = 0 and h′′(0) = 1.
Therefore for u near zero, we have h(u) ≈ u2/2. Thus when tB/V is small, the bound given by Bennett
inequality looks like:

P

{
n∑
i=1

(Xi − EXi) ≤ −t

}
≤ exp

(
− V

B2
h

(
tB

V

))
≈ exp

(
−t2

2V

)
.

Thus Bennett’s inequality gives Gaussian like tails with V =
∑n
i=1 EX2

i in some regimes.

As an example, suppose that EXi = 0, var(Xi) = σ2 and Xi ≤ 1. Then V = nσ2 and Bennett’s inequality
gives

P

{
1√
n

n∑
i=1

Xi ≥ t

}
≤ exp

(
−V h

(
t
√
n

V

))
= exp

(
−nσ2h

(
t

σ2
√
n

))
.

When t is small compared to
√
nσ2, we get a Gaussian type bound.

Proof of Theorem 4.1. Without loss of generality, takeB = 1 (by working with the variablesX1/B, . . . ,Xn/B
instead of X1, . . . , Xn).

This proof relies on the following observation: Let φ : R→ R denote the function φ(u) := eu−u−1. Then
the map u 7→ φ(u)/u2 is increasing on R (we take φ(0)/02 = 1/2). I will leave as homework the verification
of this fact.
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Let S :=
∑n
i=1(Xi − EXi). Then for every λ ≥ 0 as before

P {S ≥ t} ≤ e−λtEeλ
∑n
i=1(Xi−EXi) = e−λte−λ

∑n
i=1 EXi

n∏
i=1

EeλXi (23)

where we have used the independence of X1, . . . , Xn. Now because Xi ≤ 1, we have λXi ≤ λ and hence
(using the fact that φ(u)/u2 is increasing), we deduce that

φ(λXi)

(λXi)2
≤ φ(λ)

λ2

which implies that
eλXi ≤ λXi + 1 +X2

i φ(λ).

Using this bound in the right hand side of (23), we obtain

P {S ≥ t} ≤ exp(−λt− λ
n∑
i=1

EXi)

n∏
i=1

(
1 + λEXi + φ(λ)EX2

i

)
.

We now use the trivial inequality (1 + x ≤ ex)

1 + λEXi + φ(λ)EX2
i ≤ exp

(
λEXi + φ(λ)EX2

i

)
to obtain

P {S ≥ t} ≤ exp(−λt− λ
n∑
i=1

EXi) exp

(
λ

n∑
i=1

EXi + φ(λ)

n∑
i=1

EX2
i

)
= exp (−λt+ φ(λ)V )

for every λ ≥ 0. We now optimize the above bound by taking the derivative with respect to λ and setting it
equal to zero to obtain:

−t+ V (eλ − 1) = 0 =⇒ λ = log

(
1 +

t

V

)
.

For this value of λ, it is straightforward to deduce (21).

The form of the bound in Bennett’s inequality can be simplified by using the following inequality (whose
proof is left as exercise):

h(u) = (1 + u) log(1 + u)− u ≥ u2

2(1 + u
3 )

for all u ≥ 0.

This leads to the following result which is known as Bernstein’s inequality.

Theorem 4.2 (Bernstein’s Inequality). Suppose X1, . . . , Xn are independent random variables with finite
variances and suppose that |Xi| ≤ B almost surely for each i = 1, . . . , n (B is deterministic). Let V :=∑n
i=1 EX2

i . Then for every t ≥ 0, we have

P

{
n∑
i=1

(Xi − EXi) ≥ t

}
≤ exp

(
−t2

2(V + tB
3 )

)

and

P

{
n∑
i=1

(Xi − EXi) ≤ −t

}
≤ exp

(
−t2

2(V + tB
3 )

)
.

Remark 4.3. There is a version of Bernstein’s inequality that replaces the boundedness assumption by weaker
moment restrictions. See Boucheron et al. [3, Theorem 2.10].

20



The two bounds in Bernstein’s inequality can be combined to write

P

{∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−t2

2(V + tB
3 )

)
.

We can now attempt to find the value of t which makes the bound on the right hand side above exactly equal
to α i.e., we want to solve the equation

2 exp

(
−t2

2(V + tB
3 )

)
= α.

This leads to the quadratic equation

t2 − 2tB

3
log

2

α
− 2V log

2

α
= 0

whose nonnegative solution is given by

t =
B

3
log

2

α
+

√
B2

9

(
log

2

α

)2

+ 2V log
2

α
≤
√

2V log
2

α
+

2B

3
log

2

α

where, in the last inequality, we used the fact that
√
a+ b ≤

√
a +
√
b. Thus Bernstein’s inequality implies

that ∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≤
√

2V log
2

α
+

2B

3
log

2

α

with probability at least 1 − α. Now if X1, . . . , Xn are i.i.d with mean zero, variance σ2 and bounded in
absolute value by B, then V = nσ2 which gives that the inequality

|X̄n| ≤
σ√
n

√
2 log

2

α
+

2B

3n
log

2

α
(24)

holds with probability at least 1−α. Note that if X̄n is normal, then |X̄n| will be bounded by the first term
in the right hand side above with probability at least 1− α. Therefore the deviation bound (24) agrees with
the normal approximation bound except for the smaller order term (which if of order 1/n; the leading term
being of order 1/

√
n).

4.2 Back to Concentration of supf∈F | . . . |

Let us now get back to the concentration behavior of

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ . (25)

Let us introduce some notation here. We denote the empirical measure of X1, . . . , Xn by Pn. The common
distribution of the i.i.d random observations X1, . . . , Xn will be denoted by P . We also let

Pf := Ef(X1) and Pnf :=
1

n

n∑
i=1

f(Xi).

The quantity can therefore be written as

sup
f∈F
|Pnf − Pf | or sup

f∈F
|(Pn − P )f | .
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The concentration inequality that we proved via the Bounded Differences Inequality is the following. Suppose
that F consists of functions that are uniformly bounded by B, then

sup
f∈F
|Pnf − Pf | ≤ E

(
sup
f∈F
|Pnf − Pf |

)
+B

√
2

n
log

1

α
(26)

with probability 1− α.

We remarked previously that when var(f(X1)) is small compared to B for every f ∈ F , this inequality
is not sharp. In such situations, it is much more helpful to use Talagrand’s concentration inequality for the
suprema of empirical processes which is stronger than (26) and also deeper and harder to prove. We shall
give the statement of this inequality but not the proof (for a proof, you can refer to Boucheron et al. [3,
Section 12.4]). Before stating Talagrand’s inequality, let us look at a statistical application where it becomes
necessary to deal with function classes F where the variances are small compared to the uniform bound.
This application concerns the regression problem (it also applies similarly to the classification problem).

Example 4.3 (Bounded Regression). We have two random objects X and Y taking values in spaces X and
Y respectively. Assume that Y is a bounded subinterval of the real line. The problem is to predict Y ∈ Y on
the basis of X ∈ X . A predictor (or estimator) is any function g which maps X to R. The (test) error of an
estimator g is defined by

L(g) := E (Y − g(X))
2
.

The goal of regression is to construct an estimator with small error based on n i.i.d observations (X1, Y1), . . . , (Xn, Yn)
having the same distribution as (X,Y ). For an estimator g, its empirical error is given by

Ln(g) :=
1

n

n∑
i=1

(Yi − g(Xi))
2
.

A natural strategy is to select a class of predictors G and then to choose the predictor in G which has the
smallest empirical error i.e.,

ĝn := argmin
g∈G

Ln(g).

The key question now is how good a predictor is ĝn in terms of test error i.e., how small is its error:

L(ĝn) := E
[
(Y − ĝn(X))

2 |X1, Y1, . . . , Xn, Yn

]
.

In particular, we are interested in how small L(ĝn) is compared to infg∈G L(g). Suppose that this infimum is
achieved at some g∗ ∈ G. To bound L(ĝn)− L(g∗), it is natural to write:

L(ĝn)− L(g∗) = (Ln(ĝn)− Ln(g∗)) + (L(ĝn)− Ln(ĝn)) + (Ln(g∗)− L(g∗))

≤ (L(ĝn)− Ln(ĝn)) + (Ln(g∗)− L(g∗)) .

We can now use Empirical Process Notation. Let P denote the joint distribution of (X,Y ) and Pn denote the
empirical distribution of (X1, Y1), . . . , (Xn, Yn). Let F denote the class of all functions (x, y) 7→ (y − g(x))2

as g varies over G.

With this notation, the above inequality becomes

P (f̂n − f∗) ≤ (P − Pn)(f̂n − f∗) (27)

where f̂n(x, y) := (y − ĝn(x))2 and f∗(x, y) := (y − g∗(x))2. In order to proceed further, we need to bound
the right hand side above. A crude bound is

(P − Pn)(f̂n − f∗) ≤ 2 sup
f∈F
|Pnf − Pf | . (28)

If we now assume that the class of functions F is uniformly bounded by B, we can use the concentration
inequality (26). This will give some bound on L(ĝn) − L(g∗) provided one can control the Expectation (we
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shall study how to do this later). It is important now to note that this method will never give a bound better
than 1/

√
n for L(ĝn)−L(g∗). This is because there is already a term of n−1/2 in the right hand side of (26).

But in regression, at least for small classes G (such as finite dimensional function class), we would expect the
test error to decay much faster than n−1/2 (such as at the n−1 rate). Such fast rates cannot be proved by this
method.

To prove faster rates, one needs to use a technique called “localization” instead of the crude bound (28).

Let δ̂ denote the left hand side of (27) and the goal is to get bounds for δ̂. The inequality (27) implies that

δ̂ ≤ sup
f∈F :P (f−f∗)≤δ̂

(P − Pn)(f − f∗).

Thus we really need to understand how to bound

sup
f∈F :P (f−f∗)≤δ̂

(P − Pn)(f − f∗).

This is a bit complicated because the class of functions in the supremum is random and depends on δ̂. But
let us ignore that for the moment and focus on obtaining bounds for

sup
f∈F :P (f−f∗)≤δ

(P − Pn)(f − f∗). (29)

for a deterministic but small δ. The key now is to realize that the functions involved here have small variances
(at least in the well specified case where g∗(x) = E(Y |X = x)). Indeed, in the well specified case, we have

P (f − f∗) = E
[
(Y − g(X))2 − (Y − g∗(X))2

]
= E(g(X)− g∗(X))2.

Hence when P (f − f∗) ≤ δ, we have

var(f − f∗) ≤ E(f(X,Y )− f∗(X,Y ))2

= E
[
(Y − g(X))2 − (Y − g∗(X))2

]2
= E [(2Y − g(X)− g∗(X))(g(X)− g∗(X))]

2 ≤ CBE(g(X)− g∗(X))2 ≤ CBδ.

If we use the concentration inequality (26) to control (29), the resulting bound will be atleast
√
B/n indepen-

dent of δ. This will not lead to any faster rates. However Talagrand’s inequality will make sure of the small
variances to give a better bound. Together wil suitable bounds for the expectation, one will obtain faster rates
for regression under appropriate assumptions on G.

Similar analysis can be done for classification but certain assumptions.

Let us now state Talagrand’s concentration inequality for empirical processes. As before, assume that F
is uniformly bounded by a constant B. Then, letting, Z := supf∈F |Pnf − Pf |, we have

Z ≤ CE(Z) + C

√
supf∈F var(f(X1))

n
log

1

α
+ C

B

n
log

1

α

with probability at least 1 − α. Here C is a universal constant which can be made explicit. Note that the
leading terms are EZ and the second term which involves only the variances. The final term is of order 1/n.

After learning how to control EZ, we shall come back to regression and classification to provide explicit
error bounds on the test error for various classes G. We shall use Talagrand’s inequality together with
localization.

5 Lecture 5

This lecture was delivered by Chi Jin. He made some changes to the notes (his modified notes are in the
folder).
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5.1 Bounds for the Expected Suprema

The next major topic of the course involves bounding the quantity:

E sup
f∈F
|Pnf − Pf |. (30)

The two main ideas here are Symmetrization and Chaining. We shall go over symmetrization first.

Symmetrization bounds (30) from above using the Rademacher complexity of the class F . Let us first
define the Rademacher complexity. A Rademacher random variable is a random variable ε that takes the two
values +1 and −1 with probability 1/2 each. For a subset A ⊆ Rn, its Rademacher average is defined by

Rn(A) := E sup
a∈A

1

n

∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣
where the expectation is taken with respect to i.i.d Rademacher random variables ε1, . . . , εn. Note first that∑n
i=1 εiai/n measures the “correlation” between the values a1, . . . , an and independent Rademacher noise.

This means therefore that Rn(A) is large when there exists vectors (a1, . . . , an) ∈ A that fit the Rademacher
noise very well. This usually means that the set A is large. In this sense, Rn(A) measures the size of the set
A.

In the empirical process setup, we have i.i.d random observations X1, . . . , Xn taking values in X as well
as a class of real-valued functions F on X . Let

F(X1, . . . , Xn) := {(f(X1), . . . , f(Xn)) : f ∈ F} .

This is a random subset of Rn and its Rademacher average, Rn(F(X1, . . . , Xn)), is a random variable. The
expectation of this random variable with respect to the distirbution of X1, . . . , Xn is called the Rademacher
Complexity of F :

Rn(F) := ERn(F(X1, . . . , Xn)).

It is easy to see that

Rn(F) = E sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
where the expectation is taken with respect to ε1, . . . , εn and X1, . . . , Xn which are all independent (εi’s are
i.i.d Rademachers and Xi’s are i.i.d having distribution P ).

The next result shows that the expectation in (30) is bounded from above by twice the Rademacher
complexity Rn(F).

Theorem 5.1 (Symmetrization). We have

E sup
f∈F
|Pnf − Pf | ≤ 2Rn(F) := E sup

f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
where the expectation on the left hand side is taken with respect to X1, . . . , Xn being i.i.d with distribution P
while the expectation on the right hand side is taken both with respect to the X’s and independent Rademachers
ε1, . . . , εn.

Proof. Suppose X ′1, . . . , X
′
n are random variables such that X1, . . . , Xn, X

′
1, . . . , X

′
n are all independent having

the same distribution P . We can then write

Ef(X1) = E

(
1

n

n∑
i=1

f(X ′i)

)
.
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As a result, we have

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E

(
1

n

n∑
i=1

f(X ′i)

)∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣E
(

1

n

n∑
i=1

f(Xi)−
1

n

n∑
i=1

f(X ′i)

∣∣∣∣X1, . . . , Xn

)∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
1

n

n∑
i=1

f(X ′i)

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(X ′i))

∣∣∣∣∣ .
The method used above is basically called symmetrization. We now introduce i.i.d Rademacher variables
ε1, . . . , εn. Because Xi and X ′i are independent copies, it is clear that the distribution of f(Xi) − f(X ′i) is
the same as that of εi (f(Xi)− f(X ′i)). As a result, we have

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi (f(Xi)− f(X ′i))

∣∣∣∣∣
≤ E sup

f∈F

(
1

n

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣+
1

n

∣∣∣∣∣
n∑
i=1

εif(X ′i)

∣∣∣∣∣
)
≤ 2Rn(F).

Theorem 5.1 implies that we can control (30) by bounding from above Rn(F). The usual strategy used
for bounding Rn(F) is the following. One first fixes points x1, . . . , xn ∈ X and bounds the Rademacher
average of the set

F(x1, . . . , xn) := {(f(x1), . . . , f(xn)) : f ∈ F} . (31)

If an upper bound is obtained for this Rademacher average that does not depend on x1, . . . , xn, then it
automatically also becomes an upper bound for Rn(F). Note that in order to bound Rn(F(x1, . . . , xn)) for
fixed points x1, . . . , xn, we only need to deal with the simple distribution of ε1, . . . , εn which makes this much
more tractable.

The main technique for bounding Rn(F(x1, . . . , xn)) will be chaining. Before we get to chaining however,
we shall first look at a more elementary bound that work well in certain situations for Boolean classes F . As
we shall see later, this bound will not be as accurate as the bounds given by chaining however.

5.2 Simple bounds on the Rademacher Average Rn(F(x1, . . . , xn))

These bounds are based on the following simple result.

Proposition 5.2. Suppose A is a finite subset of Rn with cardinality |A|. Then

Rn(A) = Emax
a∈A

1

n

∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣ ≤ √6

√
log(2|A|)

n
max
a∈A

√√√√ 1

n

n∑
i=1

a2
i . (32)

Proof of Proposition 5.2. It is trivial to see that for every nonnegative random variable X, one has

EX =

∫ ∞
0

P{X > x}dx
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which can, for example, be proved by interchanging the integral and the probability on the right hand side.
We shall use this identity below.

For every a ∈ A, we have

E exp

[
(
∑n
i=1 aiεi)

2

6
∑n
i=1 a

2
i

]
=

∫ ∞
0

P

{
exp

[
(
∑n
i=1 aiεi)

2

6
∑n
i=1 a

2
i

]
> x

}
dx

≤ 1 +

∫ ∞
1

P


∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ >
√√√√6

n∑
i=1

a2
i

√
log x

 dx

≤ 1 + 2

∫ ∞
1

exp

(
−

(6
∑n
i=1 a

2
i )(log x)

2
∑n
i=1 a

2
i

)
dx = 1 + 2

∫ ∞
1

x−3dx = 2.

The probability bound above comes from Hoeffding’s inequality. From the above, we have

E exp

[
max
a∈A

(
∑n
i=1 aiεi)

2

6
∑n
i=1 a

2
i

]
= Emax

a∈A
exp

[
(
∑n
i=1 aiεi)

2

6
∑n
i=1 a

2
i

]

≤ E
∑
a∈A

exp

[
(
∑n
i=1 aiεi)

2

6
∑n
i=1 a

2
i

]
≤ 2|A|

where |A| is the cardinality of A. This can be rewritten as

E exp

(
max
a∈A

∣∣∣∣∣
∑n
i=1 aiεi√

6
∑n
i=1 a

2
i

∣∣∣∣∣
)2

≤ 2|A|.

Now the function x 7→ ex
2

is convex (as can be easily checked by computing the second derivative) so that
Jensen’s inequality gives

exp

(
Emax
a∈A

∣∣∣∣∣
∑n
i=1 aiεi√

6
∑n
i=1 a

2
i

∣∣∣∣∣
)2

≤ E exp

(
max
a∈A

∣∣∣∣∣
∑n
i=1 aiεi√

6
∑n
i=1 a

2
i

∣∣∣∣∣
)2

≤ 2|A|

so that

Emax
a∈A

∣∣∣∣∣
∑n
i=1 aiεi√

6
∑n
i=1 a

2
i

∣∣∣∣∣ ≤√log(2|A|).

From here, the inequality given in (32) follows by the trivial inequality:

max
a∈A

∣∣∣∣∣
∑n
i=1 aiεi√

6
∑n
i=1 a

2
i

∣∣∣∣∣ ≥ maxa∈A |
∑n
i=1 aiεi|

maxa∈A
√

6
∑n
i=1 a

2
i

.

Let us now apply Proposition 5.2 to control the Rademacher complexity of Boolean Function Classes. We
say that F is a Boolean class if f(x) takes only the two values 0 and 1 for every function f and every x ∈ X .
Boolean classes F arise in the problem of classification (where F can be taken to consist of all functions f
of the form I{g(X) 6= Y }). They are also important for historical reasons: empirical process theory has its
origins in the study of supt(Fn(t)− F (t)) which corresponds to taking F := {I(−∞, t] : t ∈ R}.

Let us now fix a Boolean class F and points x1, . . . , xn. The set F(x1, . . . , xn) (defined as in (31)) is
obviously then finite and we can apply Proposition 5.2 to control Rn(F(x1, . . . , xn)). This gives

Rn(F(x1, . . . , xn)) ≤
√

6

√
log(2|F(x1, . . . , xn)|)

n
max
f∈F

√√√√ 1

n

n∑
i=1

f2(xi).
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Because F is Boolean, we can bound each f2(xi) by 1 in the right hand side above to obtain

Rn(F(x1, . . . , xn)) ≤
√

6

√
log(2|F(x1, . . . , xn)|)

n
. (33)

Now for some classes F , the cardinality |F(x1, . . . , xn)| can be bounded from above by a polynomial in n for
every set of n points x1, . . . , xn ∈ X . We refer to such classes as classes having polynomial discrimination.
For such classes, we can bound Rn(F(x1, . . . , xn)) by a constant multiple of

√
(log n)/n for every x1, . . . , xn.

Because Rn(F) is defined as the expectation of Rn(F(X1, . . . , Xn)), we would obtain that, for such Boolean
classes, the Rademacher complexity is bounded by a constant multiple of

√
(log n)/n.

Definition 5.3. The class of Boolean functions F is said to have polynomial discrimination if there
exists a polynomial ρ(·) such that for every n ≥ 1 and every set of n points x1, . . . , xn in X , the cardinality
of F(x1, . . . , xn) is atmost ρ(n).

How does one check that a given Boolean class F has polynomial discrimination? The most popular way
is via the Vapnik Chervonenkis dimension (or simply the VC dimension) of the class.

Definition 5.4 (VC dimension). The VC dimension of a class of Boolean functions F on X is defined as
the maximum integer D for which there exists a finite subset {x1, . . . , xD} of X satisfying

F(x1, . . . , xD) = {0, 1}D.

The VC dimension is taken to be ∞ if the above condition is satisfied for every integer D.

Definition 5.5 (Shattering). A finite subset {x1, . . . , xm} of X is said to be shattered by the Boolean class
F if

F(x1, . . . , xm) = {0, 1}m.
By convention, we extend the definition of shattering to empty subsets as well by saying that the empty set
is shattered by every nonempty class F .

It should be clear from the above pair of definitions that an alternative definition of VC dimension is:
The maximum cardinality of a finite subset of X that is shattered by F .

The link between VC dimension and polynomial discrimination comes via the following famous result,
knows as the Sauer-Shelah lemma or the VC lemma.

Lemma 5.6 (Sauer-Shelah-Vapnik-Chevronenkis). Suppose that the VC dimension of a Boolean class F of
functions on X is D. Then for every n ≥ 1 and x1, . . . , xn ∈ X , we have

|F(x1, . . . , xn)| ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

D

)
.

Here
(
n
k

)
is taken to be 0 if n < k. Moreoever, if n ≥ D, then

|F(x1, . . . , xn)| ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

D

)
≤
(en
D

)D
.

Combining (33) with Lemma 5.6, we obtain the following bound on the control of Rademacher complexity
and Expected suprema for Boolean classes with finite VC dimension.

Proposition 5.7. Suppose F is a Boolean function class with VC dimension D. Then, for n ≥ D, we have

Rn(F) ≤ C
√
D

n
log
(en
D

)
and

E sup
f∈F
|Pnf − Pf | ≤ C

√
D

n
log
(en
D

)
.

Here C is a universal positive constant.
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Remark 5.1. It turns out that the logarithmic term is not needed in the bounds given by the above proposition.
We shall see later that the bounds given by chaining do not have the superfluous logarithmic factor.

We shall provide the proof of Lemma 5.6 in the next subsection. Before that, we give two examples of
Boolean classes with finite VC dimension.

Example 5.8. Let V be a D-dimensional vector space of real functions on X . Let F := {I(f ≥ 0) : f ∈ V}.
The VC dimension of F is at most D.

Proof. For any D + 1 points {x1, ..., xD+1}, consider the set

T = {(f(x1), ..., f(xD+1) : f ∈ V}.

Since V is a D-dimensional vector space, T is a linear subspace of RD+1 with dimension at most D. Therefore
there exists y ∈ RD+1 and y 6= 0 such that y is orthogonal to the subspace T , i.e.∑

i

yif(xi) = 0 for all f ∈ V. (34)

Without loss of generality, we can assume that there is an index k such that yk > 0. Now suppose F shatters
{x1, ..., xD+1}. Then there is f ∈ V satisfying

f(xi) < 0 for all i such that yi > 0;

f(xi) ≥ 0 for all i such that yi ≤ 0;

Then we have
∑
i yif(xi) =

∑
i:yi≤0 yif(xi) +

∑
i:yi>0 yif(xi) < 0, which is a contradiction to (34). Thus F

cannot shatter {x1, ..., xD+1} and so the VC dimension is at most D.

Example 5.9. Let Hk denote the indicators of all closed half-spaces in Rk. The VC dimension of Hk is
exactly equal to k + 1.

Proof. Left as a homework problem.

6 Lecture 6

This lecture was delivered by Max Rabinovich. He made some changes to the notes (his modified notes are
in the folder).

6.1 Proof of the Sauer-Shelah-Vapnik-Chevronenkis Lemma

This section contains the proof of Lemma 5.6. The proof uses an idea called downshifting.

Fix a Boolean class F with VC dimension D and also fix n ≥ 1 and x1, . . . , xn. To simplify notation, let
us denote the set F(x1, . . . , xn) by ∆. Observe first that the set ∆ can be represented by a Boolean n×N
matrix where N := |∆|. Indeed, every element of ∆ is an element of {0, 1}n; so write this element as a
column in a matrix; append all the columns corresponding to the different elements to form an n×N matrix
all of whose columns are distinct. In the proof of Lemma 5.6, we will use both these representations of ∆:
as a subset of {0, 1}n and also as a Boolean n×N matrix.

For a subset S of {x1, . . . , xn}, let ∆S denote the |S|×N submatrix of ∆ formed by taking only the rows
of ∆ corresponding to S. For example, if S := {x1, x5, x8}, then ∆S is the 3×N submatrix of ∆ consisting
of only the first, fifth and eighth rows of ∆.
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Note that a subset S of {x1, . . . , xn} is shattered by F if and only if every element of {0, 1}|S| appears
as a column of ∆S . Because the VC dimension of F is D, the number of subsets of {x1, . . . , xn} that can be
shattered by F is clearly at most (

n

0

)
+ · · ·+

(
n

D

)
.

We therefore have to show that the number of columns of ∆ is atmost the number of subsets of {x1, . . . , xn}
that are shattered by F . We can isolate this into the following result which applies only to Boolean matrices.

Result 6.1. Let ∆ denote a n×N matrix with Boolean entries all of whose columns are distinct. Say that
a subset S of {1, . . . , n} is shattered by ∆ if every element of {0, 1}|S| appears as a column of ∆S (the empty
set is always shattered). Let S(∆) denote the number of subsets of {1, . . . , n} that are shattered by ∆. Then

N ≤ S(∆).

Proof of Result 6.1. The proof follows an idea called downshifting. Pick an arbitrary row of the matrix ∆,
say the first row. Change each 1 in that row of ∆ to 0 unless the change would create a column already
present in ∆. This will create a new Boolean matrix, call it ∆′, all of whose columns are distinct. This
operation is called downshifting. I claim that

S(∆′) ≤ S(∆). (35)

This claim is the key component of the proof. Once this is established, the rest of the proof is immediate.

To prove (35), it is enough to show that whenever a subset S of {1, . . . , n} is not shattered by ∆, it is
not shattered by ∆′ as well. This means that there will be fewer subsets shattered by ∆′ compared to ∆
which implies (35). So let us fix a subset S that is not shattered by ∆. S is a subset of the rows of ∆. If S
does not contain the first row, then we have nothing to do because ∆′ and ∆ are identical in all rows except
the first. So assume that 1 ∈ S. In fact, assume, purely for notational simplicity, that S = {1, 2, 3, 4}.

Because S is not shattered by ∆, there exists an element u ∈ {0, 1}4 that is not present in ∆S . If u1 = 1,
then it is clear that u is not present in ∆′S as well because the downshifting operation which created ∆′ from
∆ cannot create new ones. So let us assume that u1 = 0 and write u = (1, v). The fact that u is not in
∆S means that an element of the form (0, v) is not present as a column in ∆S . This would then mean that
(1, v) is not present in ∆′S . If not, then ∆′ would include a column of the form (1, v, x). But then ∆ would
have to include the column (1, v, x) as well. But if ∆ did have (1, v, x), then it would have been converted
to (0, v, x) by the downshifting operation because (0, v, x) is not alredy present as a column in ∆ to prevent
this shifting. This completes the proof of (35).

Now, consider ∆′. Again, pick an arbitrary row and perform downshifting on ∆′. Repeat this procedure
of picking an arbitrary row and performing downshifting until we get a matrix that cannot be altered by
further downshifts. Call this matrix ∆∗. Repeated application of (35) will imply that S(∆∗) ≤ S(∆). The
proof will now be completed by showing that N ≤ S(∆∗). To see this, consider the first column of ∆∗ and let
S be the indices among {1, . . . , n} for which there is a 1 in the first column of S∗. I claim that S is shattered
by ∆∗. To see this, assume that S is non-empty because empty sets are always shattered. For notational
simplicity, assume that S = {1, 2}. We need to show that all elements in {0, 1}2 appear as columns in ∆∗S .
There are only four elements in {0, 1}2: (1, 1), (1, 0), (0, 1) and (0, 0). Obviously (1, 1) appears in the first
column of ∆∗S . (1, 0) should also appear somewhere because otherwise, it should be possible to alter ∆∗ by
downshifting. Similarly for (0, 1) and (0, 0). The proof is complete.

As mentioned previously, Result 6.1 almost gives proves Lemma 5.6. The only thing remaining is to argue
that (

n

0

)
+

(
n

1

)
+ · · ·+

(
n

D

)
≤
(en
D

)D
when n ≥ D.

To see this, let B have the Binomial distribution corresponding to n tosses with probability of success 1/2.
Then the left hand side above equals

2nP{B ≤ D}
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The function I{B ≤ D} is bounded from above by (D/n)B−D which gives

2nP{B ≤ D} ≤ 2nE(D/n)B−D = (D/n)−D(1 + (D/n))n ≤
(en
D

)D
because 1 + (D/n) ≤ eD/n. The proof of Lemma 5.6 is now complete.

6.2 Covering and Packing Numbers

As mentioned before, chaining gives much better bounds for Rn(F(x1, . . . , xn)) compared to the simple
bound of Proposition 5.2. In order to discuss chaining, we need to be familiar with the notions of covering
and packing numbers.

Let T be a set equipped with a pseudometric d. A pseudometric satisfies (a) d(x, x) = 0 for all x ∈ T , (b)
d(x, y) = d(y, x), and (c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z. If, in addition, it also satisfies d(x, y) > 0
for x 6= y, then d(·, ·) becomes a metric. We shall need to work with pseudometrics because the function:

(f, g) 7→

√√√√ 1

n

n∑
i=1

(f(xi)− g(xi))
2

is usually not a metric over F (because it only depends on the values of functions in F at x1, . . . , xn). But
this is a valid pseudometric.

Definition 6.2 (Covering Numbers). For a subset F of T and δ > 0, the δ-covering number of F is denoted
by NT (δ, F, d) and is defined as the smallest number of closed δ-balls needed to cover F . In other words,
NT (δ, F, d) is the smallest N for which there exist points t1, . . . , tN ∈ T with min1≤i≤N d(t, ti) ≤ δ for each
t ∈ F . The set of centers {ti} is called a δ-net for F . The logarithm of NT (δ, F, d) is called the δ-metric
entropy of F .

Remark 6.1. Note that the centers t1, . . . , tN are not constrained to be in F . This is related to the presence
of the subscript T in the definition NT (δ, F, d) of the covering numbers of F . If we regard F as a metric space
in its own right, not just as a subset of T , then the covering numbers NF (δ, F, d) might be larger because the
centers ti would then be forced to lie in F . It is an easy exercise to prove that NF (2δ, F, d) ≤ NT (δ, F, d) and
the extra factor of 2 would usually be of little consequence.

If NT (δ, T, d) <∞ for every δ > 0, we say that T is totally bounded.

The notion of covering numbers is closely related to that of packing numbers which are defined next.

Definition 6.3. For δ > 0, the δ-packing number of F is defined as the largest N for which there exist points
t1, . . . , tN ∈ F with d(ti, tj) > δ for every i 6= j (these points t1, . . . , tN are said to be δ-separated). The
δ-packing number will be denoted by M(δ, F, d). x

The following result shows that covering and packing numbers are closely related to each other.

Lemma 6.4. For every δ > 0, we have

NF (δ, F, d) ≤M(δ, F, d) ≤ NT (δ/2, F, d) ≤ NF (δ/2, F, d). (36)

Proof. For the first inequality in (43), let t1, . . . , tM ∈ F be maximal set of δ-separated points in F with
M = M(δ, F, d). Because of the maximality, every other point of F is within δ of one of the points t1, . . . , tM .
This means that t1, . . . , tM is a δ-net for F so that NF (δ, F, d) ≤ M and this proves the first inequality in
(43).

For the second inequality, again let t1, . . . , tM ∈ F be maximal set of δ-separated points in F with
M = M(δ, F, d). Now if one tries to cover F by closed balls of radius δ/2, it is clear that each ball can at
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most contain one of the points t1, . . . , tM . This because the distance between any two points ti and tj is
strictly larger than δ while the diameter of a δ/2 ball is at most δ. Therefore the number of closed δ/2-balls
required to cover F is at least M which proves the second inequality.

The third inequality is trivial.

Below we see some examples where explicit bounds for covering/packing numbers are possible.

Proposition 6.5. Suppose ‖·‖ denotes any norm in Rk. For example, it might be the usual Euclidean norm

or the `n norm, ‖x‖1 :=
∑k
i=1 |xi|. Let

BR := {x ∈ Rn : ‖x‖ ≤ R} .

Then, for every ε > 0, we have

M(εR,BR, d) ≤
(

1 +
2

ε

)k
(37)

where d denotes the metric corresponding to the norm ‖·‖.

Proof. Let x1, . . . , xN denote any set of points in BR that is εR-separated i.e., ‖xi − xj‖ > εR for all i 6= j.
Then the closed balls

B(xi, εR/2) := {x ∈ Rn : ‖x− xi‖ ≤ εR/2}

for i = 1, . . . , N are disjoint. Moreover, all these balls B(xi, εR/2) are contained in BR+εR/2 (the ball of
radius R+ εR/2 centered at the origin). As a result,

N∑
i=1

Vol(B(xi, εR/2)) ≤ Vol(BR+εR/2)

where Vol denotes volume (Lebesgue measure). If we let Λ denote the volume of the unit ball B1, then the
above inequality becomes

N∑
i=1

(
εR

2

)k
Λ ≤

(
R+

εR

2

)k
Λ

which immediately proves (37).

The argument used above to prove (37) is known as the volumetric argument because it is based on a
volume comparison.

We shall consider covering/packing numbers of some function classes. Loosely, function classes can be
categorized into two groups: parametric classes and nonparametric classes. The ε-covering numbers of
parametric classes will be of the order ε−k for some integer k while the ε-covering numbers of nonparametric
classes will be of the form exp(∼ ε−k) for some k. This reflects the fact that the nonparametric classes will
be much larger compared to parametric classes.

The following proposition gives an example of a parametric class of functions. Note that when D and
‖Γ‖Q below are constants, the covering number bound given by the result below is of the form ε−k.

Proposition 6.6. Let Θ ⊆ Rk be a non-empty bounded subset with Euclidean diameter D and let F :=
{fθ : θ ∈ Θ} be a class of functions on X indexed by Θ such that for some nonnegative function Γ : X → R,
we have

|fθ1(x)− fθ2(x)| ≤ Γ(x) ‖θ1 − θ2‖ (38)

for all x ∈ X and θ1, θ2 ∈ Θ. Here ‖·‖ denotes the usual Euclidean norm on Rk.
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Fix a probability measure Q on X and let d denote the pseudometric on F defined by

d(f, g) :=

√∫
X

(f(x)− g(x))
2
dQ(x).

Then, for every ε > 0,

M(ε,F , d) ≤
(

1 +
2D ‖Γ‖Q

ε

)k
where ‖Γ‖Q :=

(∫
|Γ(x)|2dQ(x)

)1/2

Proof. The condition (46) implies that for every θ1, θ2 ∈ Θ, we have

d(fθ1 , fθ2) ≤ ‖θ1 − θ2‖ ‖Γ‖Q .

As a result, every ε-separated subset F in the metric d is automatically an ε/ ‖Γ‖Q separated subset of Θ.
Consequently

M(ε,F , d) ≤M

(
ε

‖Γ‖Q
,Θ, ‖·‖

)
.

To bound the Euclidean packing number, we shall use the assumption that Θ has diameter ≤ D so that Θ
is contained in B(a,D) := {x ∈ Rk : ‖x− a‖ ≤ D} for every a ∈ Θ. As a result

M

(
ε

‖Γ‖Q
,Θ, ‖·‖

)
≤M

(
ε

‖Γ‖Q
, B(a,D), ‖·‖

)
.

To bound the right hand side above, we use Proposition 7.6 (note that we can a = 0 above because balls of
the same radius will have the same packing numbers regardless of their center). This gives

M

(
ε

‖Γ‖Q
, B(a,D), ‖·‖

)
≤
(

1 +
2D

ε
‖Γ‖Q

)k
which finishes the proof of Proposition 7.8.

The most standard examples of nonparametric function classes are smoothness classes. These will have
covering numbers that are exponential in 1/ε. We shall first introduce smoothness classes and describe their
covering numbers in one dimension and then generalize to multiple dimensions. For proofs of the covering
number results, see Dudley [6, Chapter 8].

Fix α > 0. Let β denote the largest integer that is strictly smaller than α. For example, if α = 5, then
β = 4 and if α = 5.2, then β = 5.

The class Sα is defined to consist of functions f on [0, 1] that satisfy all the following properties:

1. f is continuous on [0, 1].

2. f is differentiable β times on (0, 1).

3. |f (k)(x)| ≤ 1 for all k = 0, . . . , β and x ∈ [0, 1] where f (0)(x) := f(x).

4. |f (β)(x)− f (β)(y)| ≤ |x− y|α−β for all x, y ∈ (0, 1).

Let ρ denote the supremum metric on Sα defined by

ρ(f, g) := sup
x∈[0,1]

|f(x)− g(x)|. (39)
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Theorem 6.7. There exist positive constants ε0, C1 and C2 denpending on α alone such that for all ε > 0,
we have

exp
(
C2ε
−1/α

)
≤M(ε,Sα, ρ) ≤ exp

(
C1ε
−1/α

)
Thus the ε-metric entropy (logarithm of the ε-covering number) of the smoothness class Sα in one dimen-

sion grows as ε−1/α. Here α denotes the degree of smoothness (the higher α is, the smoother the functions
in Sα). When α = 1, the class Sα consists of all bounded 1-Lipschitz functions on [0, 1].

This result has a direct generalization to multidimensions. As before, α > 0 and β is the largest integer
that is strictly smaller than α.

For a vector p = (p1, . . . , pd) consisting of nonnegative integers p1, . . . , pd, let 〈p〉 := p1 + · · ·+ pd. Let

Dp := ∂〈p〉/∂xp11 . . . ∂xpdd

The class Sα,d is defined to consist of all functions f on [0, 1]d that satisfy:

1. f is continuous on [0, 1]d.

2. All partial derivatives Dp of f exist on (0, 1)d for 〈p〉 ≤ β.

3. |Dp(x)| ≤ 1 for all p with 〈p〉 ≤ β and x ∈ [0, 1]d.

4. |Dpf(x)−Dpf(y)| ≤ |x− y|α−β for all p with 〈p〉 = β and x, y ∈ (0, 1)d.

Once again, we consider the supremum metric defined by ρ(f, g) := supx∈[0,1]d |f(x)− g(x)|.

Theorem 6.8. There exist positive constants C1 and C2 depending only on α and the dimension d such that
for all ε > 0, we have

exp(C2ε
−d/α) ≤M(ε,Sα,d, ρ) ≤ exp(C1ε

−d/α).

Thus the metric entropy of a smoothness class of functions with smoothness α and dimension d scales as
ε−d/α. This grows as d increases and goes down as α increases.

7 Lecture 7

The next main topic in the class is chaining. Before we go to chaining, we shall review the topics that were
covered last week by Chi and Max.

We are discussing the problem of controlling:

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)

∣∣∣∣∣ = E sup
f∈F
|Pnf − Pf | .

The symmetrization technique introduced last week allows us to bound the above as:

E sup
f∈F
|Pnf − Pf | ≤ 2E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
where ε1, . . . , εn are independent Rademacher random variables which are also independent of X1, . . . , Xn.
The expectation on the right hand side above is with respect to both ε1, . . . , εn and X1, . . . , Xn. To control
the expectation on the right hand side above, one usually works conditionally on X1, . . . , Xn. The conditional
expectation is then of the form

Rn(T ) := E sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

εiti

∣∣∣∣∣
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for a subset T of Rn. Rn(T ) is easier to handle because the expectation is with respect to ε1, . . . , εn which
have a particularly simple distribution (i.i.d Rademachers).

In Lecture 5, we have seen the following elementary bound on Rn(T ).

Proposition 7.1. Suppose T is a finite subset of Rn with cardinality |T |. Then

Rn(T ) = Emax
t∈T

∣∣∣∣∣ 1n
n∑
i=1

εiti

∣∣∣∣∣ ≤ C
√

log(2|T |)
n

max
t∈T

√√√√ 1

n

n∑
i=1

t2i

 (40)

for a universal constant C.

The bound given by (40) has some shortcomings. It does not give anything when T is infinite. Even when
T is finite, the bound is weak in some special situations. For example, when

T :=
{

(I(−∞,t](x1), . . . , I(−∞,t](x1)) : t ∈ R
}

for some fixed points x1 < · · · < xn in R, then it is easy to check that |T | = n + 1 so that the bound (40)
gives

Rn(T ) ≤ C
√

log(n+ 1)

n
.

It turns out that for this particular T , the logarithmic term log(n + 1) is redundant and that Rn(T ) is of
the order Cn−1/2. The bound on Rn(T ) derived from chaining will be of the form C/n−1/2. The extra
logarithmic factor is because of the inefficiency of (40).

In spite of these drawbacks, the bound (40) is important and crucially used for deriving the chaining
bound. Before proceeding further, we shall provide a proof of Proposition 7.1. This proof will be slightly
different from the way it was proved last week. We shall actually prove a stronger version of (40).

Proposition 7.2. Let T be a finite set and let {Xt, t ∈ T} be a stochastic process. Suppose that for every
t ∈ T and u ≥ 0, the inequality

P {|Xt| ≥ u} ≤ 2 exp

(
−u2

2Σ2

)
(41)

holds. Here Σ is a fixed positive real number. Then, for a universal positive constant C, we have

Emax
t∈T
|Xt| ≤ CΣ

√
log(2|T |). (42)

Remark 7.1. Note that Proposition 7.2 is indeed a generalization of Proposition 7.1. This is because for
Xt :=

∑n
i=1 εiti (with t ∈ T ), Hoeffding’s inequality assures that (260) holds with

Σ2 := max
t∈T

(
n∑
i=1

t2i

)
.

Proposition 7.2 holds for every set of random variables Xt satisfying (260) so in addition to Xt =
∑n
i=1 εiti,

it also holds for Xt ∼ N(0, σ2) with σ ≤ Σ.

Proof of Proposition 7.2. Because

Emax
t∈T
|Xt| =

∫ ∞
0

P
{

max
t∈T
|Xt| ≥ u

}
du,

we can control Emaxt∈T |Xt| by bounding the tail probability

P
{

max
t∈T
|Xt| ≥ u

}
du
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for every u ≥ 0. For this, write

P
{

max
t∈T
|Xt| ≥ u

}
du = P {∪t∈T {|Xt| ≥ u}} ≤

∑
t∈T

P {|Xt| ≥ u} ≤ 2|T | exp

(
−u2

2Σ2

)
.

This bound is good for large u but not so good for small u (it is quite bad for u = 0 for example). It is
therefore good to use it only for u ≥ u0 for some u0 to be specified later. This gives

Emax
t∈T
|Xt| =

∫ ∞
0

P
{

max
t∈T
|Xt| ≥ u

}
du

=

∫ u0

0

P
{

max
t∈T
|Xt| ≥ u

}
du+

∫ ∞
u0

P
{

max
t∈T
|Xt| ≥ u

}
du

≤ u0 +

∫ ∞
u0

2|T | exp

(
−u2

2Σ2

)
du

≤ u0 +

∫ ∞
u0

2|T | u
u0

exp

(
−u2

2Σ2

)
du = u0 +

2|T |
u0

Σ2 exp

(
−u2

0

2Σ2

)
.

One can try to minimize the above term over u0. A simpler strategy is to realize that the large term here is
2|T | so one can choose u0 to kill this term by setting

exp

(
u2

0

2Σ2

)
= 2|T | or u0 =

√
2Σ
√

log(2|T |).

This gives

Emax
t∈T
|Xt| ≤

√
2Σ
√

log(2|T |) +
Σ2√

2Σ2 log(2|T |)
≤ CΣ

√
log(2|T |)

which proves the result.

It is not hard to construct examples where the bound given by Proposition 7.2 is loose. For example, it
is loose when the tail bound (260) is loose for many t ∈ T (this can happen for instance when Xt ∼ N(0, σ2)
for some σ2 that is much smaller than Σ2). It can also be loose when many of the X ′ts are close to each
other: for instance, in the extreme case when maxt∈T |Xt| ≈ Xt0 for a single t0 ∈ T , the bound in (42) is
loose by a factor of log |T |.

However there exist examples where the bound in (42) is tight. The simplest example is the following.
Suppose Xt, t ∈ T are independently distributed as N(0,Σ2). Then it can be shown that

Emax
t∈T
|Xt| ≥ cΣ

√
log(2|T |)

for a positive constant c. Therefore, in this case, (42) is tight up to a constant factor. I will leave the
proof of the above inequality as a homework exercise. This example means that Proposition 7.2 cannot
be improved without additional assumptions on the process {Xt, t ∈ T}. Chaining gives improved bounds
for Emaxt∈T |Xt| under an assumption on {Xt, t ∈ T} that is different from (260). The assumption (260)
pertains to the marginal distribution of each Xt but does not say anything about how close Xt is to another
Xs etc. In contrast, for chaining, one assumes the existence of a metric d on T such that

P {|Xs −Xt| ≥ u} ≤ 2 exp

(
−u2

2d2(s, t)

)
.

Under this assumption, chaining provides a bound on Emaxt∈T |Xt| which involves the metric properties of
(T, d). Before proceeding to chaining, let us recall the notions of covering and packing numbers of a metric
space.
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7.1 Review of Covering and Packing numbers

Let (T, d) be a metric or pseudometric space. Covering and packing numbers are defined as follows.

Definition 7.3 (Covering Numbers). For a subset F of T and δ > 0, the δ-covering number of F is denoted
by NT (δ, F, d) and is defined as the smallest number of closed δ-balls needed to cover F . In other words,
NT (δ, F, d) is the smallest N for which there exist points t1, . . . , tN ∈ T with min1≤i≤N d(t, ti) ≤ δ for each
t ∈ F . The set of centers {ti} is called a δ-net for F . The logarithm of NT (δ, F, d) is called the δ-metric
entropy of F .

Remark 7.2. Note that the centers t1, . . . , tN are not constrained to be in F . This is related to the presence
of the subscript T in the definition NT (δ, F, d) of the covering numbers of F . If we regard F as a metric space
in its own right, not just as a subset of T , then the covering numbers NF (δ, F, d) might be larger because the
centers ti would then be forced to lie in F . It is an easy exercise to prove that NF (2δ, F, d) ≤ NT (δ, F, d) and
the extra factor of 2 would usually be of little consequence.

If NT (δ, T, d) <∞ for every δ > 0, we say that T is totally bounded.

The notion of covering numbers is closely related to that of packing numbers which are defined next.

Definition 7.4. For δ > 0, the δ-packing number of F is defined as the largest N for which there exist points
t1, . . . , tN ∈ F with d(ti, tj) > δ for every i 6= j (these points t1, . . . , tN are said to be δ-separated). The
δ-packing number will be denoted by M(δ, F, d).

Because of the following result (proved in last lecture), we shall treat covering and packing numbers as
roughly the same.

Lemma 7.5. For every δ > 0, we have

NF (δ, F, d) ≤M(δ, F, d) ≤ NT (δ/2, F, d) ≤ NF (δ/2, F, d). (43)

Below we see some examples where explicit bounds for covering/packing numbers are possible. It is useful
to be aware of these results.

7.1.1 Euclidean/Parametric Covering Numbers

Proposition 7.6. For R > 0, let

B(a,R) :=
{
x ∈ Rk : ‖x− a‖ ≤ R

}
.

denote the ball of radius R centered at a point a. ‖·‖ here is the usual Euclidean norm. Then, for every
ε > 0, we have

M(ε, B(a,R), d) ≤
(

1 +
2R

ε

)k
(44)

and

NRk(ε, B(a,R), d) ≥
(
R

ε

)k
(45)

where d denotes the usual Euclidean metric.

These bounds are simple to prove (proved in last lecture) and the proofs are based on volume comparison
(as a result, these bounds are often referred to as volumetric bounds). The following is an immediate corollary
of (44)
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Corollary 7.7. Suppose S ⊆ Rk is contained in some ball of radius R. Then

M(ε, S, d) ≤
(

1 +
2R

ε

)k
.

with d denoting the usual Euclidean metric.

The above result implies that the covering numbers of bounded sets in Rk grow as ε−k. Equivalently,
the metric entropy of sets in Rk grows as k log(1/ε). If k is constant, then the metric entropy grows
logarithmically with 1/ε. The same conclusion can often be drawn for function classes that are indexed by
a bounded set in Rk provided the mapping between the index and the function is smooth. The following
proposition provides one way of making this precise.

Proposition 7.8. Let Θ ⊆ Rk be a non-empty bounded subset with Euclidean diameter D and let F :=
{fθ : θ ∈ Θ} be a class of functions on X indexed by Θ such that for some nonnegative function Γ : X → R,
we have

|fθ1(x)− fθ2(x)| ≤ Γ(x) ‖θ1 − θ2‖ (46)

for all x ∈ X and θ1, θ2 ∈ Θ. Here ‖·‖ denotes the usual Euclidean norm on Rk.

Fix a probability measure Q on X and let d denote the pseudometric on F defined by

d(f, g) :=

√∫
X

(f(x)− g(x))
2
dQ(x).

Then, for every ε > 0,

M(ε,F , d) ≤
(

1 +
2D ‖Γ‖Q

ε

)k
where ‖Γ‖Q :=

(∫
|Γ(x)|2dQ(x)

)1/2

Function classes whose covering numbers grow as ε−k (or whose metric entropy grows as log(1/ε)) will
often be referred to as parametric or Euclidean or finite-dimensional.

7.1.2 Nonparametric Function Classes

Nonparametric function classes are much more massive in comparison to parametric classes in the sense that
their metric entropy grows as a polynomial in (1/ε). Some standard examples of nonparametric functions
classes are provided below.

7.1.3 One-dimensional smoothness classes

Fix α > 0. Let β denote the largest integer that is strictly smaller than α. For example, if α = 5, then
β = 4 and if α = 5.2, then β = 5.

The class Sα is defined to consist of functions f on [0, 1] that satisfy all the following properties:

1. f is continuous on [0, 1].

2. f is differentiable β times on (0, 1).

3. |f (k)(x)| ≤ 1 for all k = 0, . . . , β and x ∈ [0, 1] where f (0)(x) := f(x).

4. |f (β)(x)− f (β)(y)| ≤ |x− y|α−β for all x, y ∈ (0, 1).
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Let ρ denote the supremum metric on Sα defined by

ρ(f, g) := sup
x∈[0,1]

|f(x)− g(x)|. (47)

The following result shows that the metric entropy of Sα grows as ε−1/α. Its proof can be found in Dudley
[6, Chapter 8].

Theorem 7.9. There exist positive constants ε0, C1 and C2 denpending on α alone such that for all ε > 0,
we have

exp
(
C2ε
−1/α

)
≤M(ε,Sα, ρ) ≤ exp

(
C1ε
−1/α

)
Thus the ε-metric entropy (logarithm of the ε-covering number) of the smoothness class Sα in one dimen-

sion grows as ε−1/α. Here α denotes the degree of smoothness (the higher α is, the smoother the functions
in Sα). When α = 1, the class Sα consists of all bounded 1-Lipschitz functions on [0, 1].

7.1.4 One-dimensional Monotone Functions

Let M denote the class of all functions f on [0, 1] such that

1. f is nondecreasing on [0, 1]

2. |f(x)| ≤ 1 for all x ∈ [0, 1].

For a probability measure Q on [0, 1], let ρQ denote the metric on M given by

ρQ(f, g) :=

(∫
(f(x)− g(x))2dQ(x)

)1/2

Then it can be proved that

M(ε,M, ρQ) ≤ exp

(
C

ε

)
for every probability measure Q on [0, 1]. There exist probability measures Q for which a lower bound of
exp(C2/ε) also holds on the packing number. Comparing this result with Theorem 7.9, it is clear that the
covering numbers of M are comparable to the smoothness class S1 i.e., Sα with α = 1. Thus bounded
monotone functions have the same metric entropy as bounded Lipschitz functions even though monotone
functions need not be continuous.

7.1.5 Multidimensional smoothness classes

As in the one-dimensional case, let α > 0 and β is the largest integer that is strictly smaller than α.

For a vector p = (p1, . . . , pd) consisting of nonnegative integers p1, . . . , pd, let 〈p〉 := p1 + · · ·+ pd. Let

Dp := ∂〈p〉/∂xp11 . . . ∂xpdd

The class Sα,d is defined to consist of all functions f on [0, 1]d that satisfy:

1. f is continuous on [0, 1]d.

2. All partial derivatives Dp of f exist on (0, 1)d for 〈p〉 ≤ β.

3. |Dp(x)| ≤ 1 for all p with 〈p〉 ≤ β and x ∈ [0, 1]d.
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4. |Dpf(x)−Dpf(y)| ≤ |x− y|α−β for all p with 〈p〉 = β and x, y ∈ (0, 1)d.

Once again, we consider the supremum metric defined by ρ(f, g) := supx∈[0,1]d |f(x)− g(x)|.

Theorem 7.10. There exist positive constants C1 and C2 depending only on α and the dimension d such
that for all ε > 0, we have

exp(C2ε
−d/α) ≤M(ε,Sα,d, ρ) ≤ exp(C1ε

−d/α).

Thus the metric entropy of a smoothness class of functions with smoothness α and dimension d scales as
ε−d/α. This grows as d increases and goes down as α increases.

7.1.6 Bounded Lipschitz Convex Functions

Let C denote the class of all functions f on 0, 1]d such that

1. f is convex on [0, 1]d.

2. |f(x)| ≤ 1 for all x ∈ [0, 1]d

3. |f(x)− f(y)| ≤ ‖x− y‖.

It can then be showed that (ρ is the supremum metric on [0, 1]d):

exp
(
C2ε
−d/2

)
≤M(ε, C, ρ) ≤ exp

(
C1ε
−d/2

)
where C1 and C2 depend on d alone. Comparing this to Theorem 7.10, it is clear that, in terms of metric
entropy, C is comparable to the smoothness class Sd,2. This is interesting because convex functions are not
necessarily twice differentiable in the usual sense. Yet, they possess the regularity of second order smoothness
in terms of metric entropy.

8 Lecture 8

8.1 Dudley’s Metric Entropy Bound

The main goal for today is to state and prove Dudley’s entropy bound for the suprema of subgaussian
processes. The proof involves an idea called chaining. Before we start with chaining, let us recall the
following basic result from last class.

Proposition 8.1. Let T be a finite set and let {Xt, t ∈ T} be a stochastic process. Suppose that for every
t ∈ T and u ≥ 0, the inequality

P {|Xt| ≥ u} ≤ 2 exp

(
−u2

2Σ2

)
(48)

holds. Here Σ is a fixed positive real number. Then, for a universal positive constant C, we have

Emax
t∈T
|Xt| ≤ CΣ

√
log(2|T |). (49)

As we remarked in the last lecture, the bound (49) can be tight (up to a multiplicative constant) in
some situations. For example, this is the case when Xt, t ∈ T are i.i.d N(0,Σ2). Because of this example,
Proposition 8.1 cannot be improved without imposing additional conditions on the process {Xt, t ∈ T}.
It is also easy to construct examples where (49) is quite weak. For example, if Xt = X0 + ηZt for some
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X0 ∼ N(0,Σ2) and Zt, t ∈ T ∼i.i.d N(0, 1) and η is very very small, then it is clear that maxt∈T |Xt| ≈ X0

so that (49) will be loose by a factor of log(2|T |). In order to improve on (49), we need to make assumptions
on how close to each other the X ′ts are. Dudley’s entropy bound makes such an assumption explicit and
provides improved upper bounds for Emaxt∈T |Xt|.

We shall first state Dudley’s bound when the index set T is finite and subsequently improve it to the case
when T is infinite.

Theorem 8.2 (Dudley’s Metric Entropy Bound for finite T ). Suppose (T, d) is a finite metric space and
{Xt, t ∈ T} is a stochastic process such that for every s, t ∈ T and u ≥ 0,

P {|Xt −Xs| ≥ u} ≤ 2 exp

(
−u2

2d2(s, t)

)
. (50)

Then, for a universal positive constant C, the following inequality holds for every t0 ∈ T :

Emax
t∈T
|Xt −Xt0 | ≤ C

∫ ∞
0

√
logM(ε, T, d)dε. (51)

The following remarks mention some alternative forms of writing the inequality (51) and also describe
some implications.

1. Let D denote the diameter of the metric space T (i.e., D = maxs,t∈T d(s, t)). Then the packing number
M(ε, T, d) clearly equals 1 for ε ≥ D (it is impossible to have two points in T whose distance is strictly
larger than ε when ε > D). Therefore∫ ∞

0

√
logM(ε, T, d)dε =

∫ D

0

√
logM(ε, T, d)dε.

Moreover∫ D

0

√
logM(ε, T, d)dε =

∫ D/2

0

√
logM(ε, T, d)dε+

∫ D

D/2

√
logM(ε, T, d)dε

≤
∫ D/2

0

√
logM(ε, T, d)dε+

∫ D/2

0

√
logM(ε+ (D/2), T, d)dε

≤ 2

∫ D/2

0

√
logM(ε, T, d)dε

because M(ε+ (D/2), T, d) ≤M(ε, T, d) for every ε. We can thus state Dudley’s bound as

Emax
t∈T
|Xt −Xt0 | ≤ C

∫ D/2

0

√
logM(ε, T, d)dε

where the C above equals twice the constant C in (51). Similarly, again by splitting the above integral
in two parts (over 0 to D/4 and over D/4 to D/2), we can also state Dudley’s bound as

Emax
t∈T
|Xt −Xt0 | ≤ C

∫ D/4

0

√
logM(ε, T, d)dε.

The constant C above now is 4 times the constant in (51).

2. The left hand side in (51) is bounded from below (by triangle inequality) by Emaxt∈T |Xt| − E|Xt0 |.
Thus, (51) implies that

Emax
t∈T
|Xt| ≤ E|Xt0 |+ C

∫ D/2

0

√
logM(ε, T, d)dε for every t0 ∈ T .

40



3. If Xt, t ∈ T have mean zero and are jointly Gaussian , then Xt − Xs is a mean zero normal random
variable for every s, t ∈ T so that (50) holds with

d(s, t) :=
√
E(Xs −Xt)2.

4. The advantages of Theorem 8.2 over Proposition 8.1 is clear from the following example. Suppose
Xt, t ∈ T are given by

Xt = X0 + ηZt

for some positive but very very small η and X0 ∼ N(0,Σ2 and Zt, t ∈ T ∼i.i.d N(0, 1). We have seen
before that in this case Emaxt∈T |Xt| should behave like CΣ but Proposition 8.1 will give an extra
factor of log(2|T |). On the other hand, because

d(s, t) =
√
E(Xt −Xs)2 ≤ η

√
2,

the packing number M(ε, T, d) will equal 1 for all but extremely small values of ε (say for ε > ε0). Thus
Dudley’s bound will give Σ + C(log |T |)ε0 which is much smaller than the bound given by Proposition
8.1 (because ε0 is small).

We shall now give the proof of Theorem 8.2. The proof will be based on an idea called chaining. Specifi-
cally, we shall split maxt∈T (Xt −Xt0) in chains and use the bound given by Proposition 8.1 within the links
of each chain.

Proof of Theorem 8.2. Recall that D is the diameter of T . For n ≥ 1, let Tn be a maximal D2−n-separated
subset of T i.e., mins,t∈Tn:s 6=t d(s, t) > D2−n and Tn has maximal cardinality subject to the separation
restriction. The cardinality of Tn is given by the packing number M(D2−n, T, d). Because of the maximality,

max
t∈T

min
s∈Tn

d(s, t) ≤ D2−n. (52)

Because T is finite and d(s, t) > 0 for all s 6= t, the set Tn will equal T when n is large. Let

N := min{n ≥ 1 : Tn = T}.

For each n ≥ 1, let πn : T 7→ Tn denote the function which maps each point t ∈ T to the point in Tn that
is closest to T (if there are multiple closest points to T in Tn, then choose one arbitrarily). In other words,
πn(t) is chosen so that

d(t, πn(t)) = min
s∈Tn

d(t, s).

As a result, from (52), we have

d(t, πn(t)) ≤ D2−n for all t ∈ T and n ≥ 1. (53)

Note that πN (t) = t. Finally let T0 := {t0} and π0(t) = t0 for all t ∈ T .

We now note that

Xt −Xt0 =

N∑
n=1

(
Xπn(t) −Xπn−1(t)

)
for every t ∈ T . (54)

The sequence
t0 → π1(t)→ π2(t)→ · · · → πN−1(t)→ πN (t) = t

can be viewed as a chain from t0 to t. This is what gives the argument the name chaining.

By (54), we obtain

max
t∈T
|Xt −Xt0 | ≤ max

t∈T

N∑
n=1

|Xπn(t) −Xπn−1(t)| ≤
N∑
n=1

max
t∈T
|Xπn(t) −Xπn−1(t)|
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so that

Emax
t∈T
|Xt −Xt0 | ≤

N∑
n=1

Emax
t∈T
|Xπn(t) −Xπn−1(t)|. (55)

Now to bound Emaxt∈T |Xπn(t)−Xπn−1(t)| for each 1 ≤ n ≤ N , we shall use the elementary bound given by
Proposition 8.1. For this, note first that by (50), we have

P
{
|Xπn(t) −Xπn−1(t)| ≥ u

}
≤ 2 exp

(
−u2

2d2(πn(t), πn−1(t))

)
.

Now
d(πn(t), πn−1(t)) ≤ d(πn(t), t) + d(πn−1(t), t) ≤ D2−n +D2−(n−1) = 3D2−n.

Thus Proposition 8.1 can be applied with Σ := 3D2−n so that we obtain (note that the value of C might
change from occurrence to occurrence)

Emax
t∈T
|Xπn(t) −Xπn−1(t)| ≤ C

3D

2n

√
log (2|Tn||Tn−1|)

≤ CD2−n
√

log (2|Tn|2) ≤ CD2−n
√

log (2M(D2−n, T, d))

Plugging the above bound into (55), we deduce

Emax
t∈T
|Xt −Xt0 | ≤ C

N∑
n=1

D

2n

√
log (2M(D2−n, T, d))

≤ 2C

N∑
n=1

∫ D/(2n)

D/(2n+1)

√
log(2M(ε, T, d))dε

= C

∫ D/2

D/(2N+1)

√
log(2M(ε, T, d))dε

≤ C
∫ D/2

0

√
log(2M(ε, T, d))dε

= C

∫ D/4

0

√
log(2M(ε, T, d))dε+ C

∫ D/4

0

√
log(2M(ε+ (D/4), T, d))dε

≤ 2C

∫ D/4

0

√
log(2M(ε, T, d))dε.

Note now that for ε ≤ D/4, the packing number M(ε, T, d) ≥ 2 so that

log(2M(ε, T, d)) ≤ log 2 + logM(ε, T, d) ≤ 2 logM(ε, T, d).

We have thus proved that

Emax
t∈T
|Xt −Xt0 | ≤ 2

√
2C

∫ D/4

0

√
logM(ε, T, d)dε

which proves (51).

8.2 Dudley’s bound for infinite T

We shall next prove Dudley’s bound for the case of infinite T . This requires a technical assumption called
separability which will always be satisfied in our applications.

Definition 8.3 (Separable Stochastic Process). Let (T, d) be a metric space. The stochastic process {Xt, t ∈
T} indexed by T is said to be separable if there exists a null set N and a countable subset T̃ of T such that for
all ω /∈ N and t ∈ T , there exists a sequence {tn} in T̃ with limn→∞ d(tn, t) = 0 and limn→∞Xtn(ω) = Xt(ω).
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Note that the definition of separability requires that T̃ is a dense subset of T which means that the metric
space (T, d) is separable (a metric space is said to be separable if it has a countable dense subset).

The following fact is easy to check: If (T, d) is a separable metric space and if Xt, t ∈ T has
continuous sample paths (almost surely), then Xt, t ∈ T is separable. The statement that Xt, t ∈ T
has continuous sample paths (almost surely) means that there exists a null set N such that for all ω /∈ N ,
the function t 7→ Xt(ω) is continous on T .

The following fact is also easy to check: If {Xt, t ∈ T} is a separable stochastic process, then

sup
t∈T
|Xt −Xt0 | = sup

t∈T̃
|Xt −Xt0 | almost surely (56)

for every t0 ∈ T . Here T̃ is a countable subset of T which appears in the definition of separability of Xt, t ∈ T .

In particular, the statement (56) implies that supt∈T |Xt − Xt0 | is measurable (note that uncountable
suprema are in general not guaranteed to be measurable; but this is not an issue for separable processes).

We shall now state Dudley’s theorem for separable processes. This theorem does not impose any cardi-
nality restrictions on T (it holds for both finite and infinite T ).

Theorem 8.4. Let (T, d) be a separable metric space and let {Xt, t ∈ T} be a separable stochastic process.
Suppose that for every s, t ∈ T and u ≥ 0, we have

P {|Xs −Xt| ≥ u} ≤ 2 exp

(
−u2

2d2(s, t)

)
.

Then for every t0 ∈ T , we have

E sup
t∈T
|Xt −Xt0 | ≤ C

∫ D/2

0

√
logM(ε, T, d)dε

where D is the diameter of the metric space (T, d).

Proof of Theorem 8.4. Let T̃ be a countable subset of T such that (56) holds. We may assume that T̃
contains t0 (otherwise simply add t0 to T̃ ). For each k ≥ 1, let T̃k be the finite set obtained by taking the
first k elements of T̃ (in an arbitrary enumeration of the entries of T̃ ). We can ensure that T̃k contains t0 for
every k ≥ 1.

Applying the finite index set version of Dudley’s theorem (Theorem 8.2) to {Xt, t ∈ T̃k}, we obtain

Emax
t∈T̃k
|Xt −Xt0 | ≤ C

∫ diam(T̃k)/2

0

√
logM(ε, T̃k, d)dε ≤ C

∫ D/2

0

√
logM(ε, T, d)dε.

Note that the right hand side does not depend on k. Letting k → ∞ on the left hand side, we use the
Monotone Convergence Theorem to obtain

sup
t∈T̃
|Xt −Xt0 | ≤ C

∫ D/2

0

√
logM(ε, T, d)dε.

The proof is now completed by (56).

8.3 Application of Dudley’s Bound to Rademacher Averages

Suppose T ⊆ Rn and consider the stochastic process Xt, t ∈ T given by

Xt :=
1√
n

n∑
i=1

εiti
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where ε1, . . . , εn are i.i.d Rademacher random variables.

Let us define the following norm on Rn:

‖t‖n :=

√√√√ 1

n

n∑
i=1

t2i .

In other words, ‖t‖n is the usual Euclidean norm of t divided by
√
n. Also let dn(s, t) := ‖s− t‖n be the

corresponding metric on Rn.

By Hoeffding’s inequality, for every u ≥ 0,

P {|Xt −Xs| ≥ u} ≤ 2 exp

(
−nu2

2
∑n
i=1(si − ti)2

)
= 2 exp

(
−u2

2 ‖s− t‖2n

)
= 2 exp

(
−u2

2d2
n(s, t)

)
so that Xt, t ∈ T satisfies the assumptions in Dudley’s theorems with the metric dn. Also note that T = Rn
is trivially separable and that the map

t 7→ 1√
n

n∑
i=1

εiti

is linear (and hence continuous in t). This means that Xt, t ∈ T is separable. We can therefore apply Dudley’s
theorem. We apply Theorem 8.4 with t0 = (0, . . . , 0) (since this vector may not be contained in T , we shall
apply Theorem 8.4 to T ∪ {0}) to obtain

E sup
t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣ ≤ C
∫ diam(T∪{0})/2

0

√
logM(ε, T ∪ {0}, dn)dε

where the diameter and packing numbers above are with respect to the dn metric. It is now easy to see that

diam(T ∪ {0}) = sup
s,t∈T∪{0}

‖s− t‖n ≤ 2σn where σn := sup
t∈T
‖t‖n.

We thus obtain the following upper bound:

E sup
t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣ ≤ C
∫ σn

0

√
logM(ε, T ∪ {0}, dn)dε

In the next class, we shall combine the above bound with the technique of symmetrization which will give us
an important upper bound on the suprema of empirical processes.

9 Lecture 9

Let us start by recalling Dudley’s entropy bound from the last class: Suppose (T, d) is a metric space and
{Xt, t ∈ T } is a separable stochastic process satisfying

P {|Xs −Xt| ≥ u} ≤ 2 exp

(
−u2

2d2(s, t)

)
for all u ≥ 0, s ∈ T, t ∈ T .

Then for every t0 ∈ T , we have

E sup
t∈T
|Xt −Xt0 | ≤ C

∫ D/2

0

√
logM(ε, T, d)dε

where D denotes the diameter of the metric space (T, d).
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We applied this bound to control the expected suprema of Rademacher averages. Suppose T is a subset
of Rn. Then

E sup
t∈R

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣ ≤ C
∫ σn

0

√
logM(ε, T ∪ {0}, dn)dε (57)

where

σn := sup
t∈T
‖t‖n , ‖t‖n :=

√√√√ 1

n

n∑
i=1

t2i , and dn(s, t) := ‖s− t‖n .

Note that if T is finite, then
logM(ε, T ∪ {0}, dn) ≤ 1 + log |T |

and hence the bound (57) implies that

Emax
t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣ ≤ C√log(2|T |) max
t∈T

√√√√ 1

n

n∑
i=1

t2i .

Note that we had proved the above bound earlier by the elementary bound on the expected maxima of
subgaussian random variables.

We shall now apply (57) together with symmetrization to obtain our main bound for the Expected suprema
of an empirical process.

9.1 Main Bound on the Expected Suprema of Empirical Processes

Consider the usual Empirical Process setup. Our goal is to obtain upper bounds on ∆ where

∆ := E sup
f∈F

1√
n

∣∣∣∣∣
n∑
i=1

(f(Xi)− Ef(X1))

∣∣∣∣∣ = E sup
f∈F

{√
n|Pnf − Pf |

}
Note the presence of the

√
n in the supremums above. We have seen that symmetrization gives

∆ ≤ 2E sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣ .
We write the expectation in two parts conditioning on X1, . . . , Xn to get

∆ ≤ 2E

[
E

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣X1, . . . , Xn

)]
.

The inner expectation above can be controlled via the bound (57). This gives

E

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣X1, . . . , Xn

)
≤ C

∫ σn

0

√
logM(ε,F(X1, . . . , Xn) ∪ {0}, dn)dε.

where F(X1, . . . , Xn) := {(f(X1), . . . , f(Xn)) : f ∈ F} is a subset of Rn,

σn := sup
f∈F

√√√√ 1

n

n∑
i=1

f2(Xi) = sup
f∈F

√
Pnf2

and dn is the Euclidean metric on Rn scaled by
√
n.
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We shall now write

M(ε,F(X1, . . . , Xn) ∪ {0}, dn) = M(ε,F ∪ {0}, L2(Pn))

where L2(Pn) refers to the pseudometric on F given by

(f, g) 7→

√√√√ 1

n

n∑
i=1

(f(Xi)− g(Xi))2.

Note the trivial inequality
M(ε,F ∪ {0}, L2(Pn)) ≤ 1 +M(ε,F , L2(Pn))

We thus obtain

E

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣X1, . . . , Xn

)
≤ C

∫ supf∈F

√
Pnf2

0

√
1 + logM(ε,F , L2(Pn))dε.

Taking expectations, we obtain

E sup
f∈F

(√
n|Pnf − Pf |

)
≤ CE

[∫ supf∈F

√
Pnf2

0

√
1 + logM(ε,F , L2(Pn))dε

]
.

This is our first bound on the expected supremum of an empirical process. We can simplify this bound
further using envelopes. We say that a nonnegative valued function F : X → [0,∞) is an envelope for the
class F if

sup
f∈F
|f(x)| ≤ F (x) for every x ∈ X .

It is clear then that supf∈F
√
Pnf2 ≤

√
PnF 2 so that

E sup
f∈F

(√
n|Pnf − Pf |

)
≤ CE

[∫ supf∈F

√
Pnf2

0

√
1 + logM(ε,F , L2(Pn))dε

]

≤ CE

[∫ √PnF 2

0

√
1 + logM(ε,F , L2(Pn))dε

]

= CE
[√

PnF 2

∫ 1

0

√
1 + logM(ε

√
PnF 2,F , L2(Pn))dε

]
≤ CE

[√
PnF 2

∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q))dε

]

= C

[∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q))dε

]
E
√
PnF 2

≤ C

[∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q))dε

]√
EPnF 2

= C

[∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q))dε

]
√
PF 2.

In the above chain of inequalities, the supremum is over all probability measures Q supported on a set of
cardinality at most n in X . Also PF 2 stands for EF 2(X1).

We have therefore proved the following result.
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Theorem 9.1. Let F be an envelope for the class F such that PF 2 <∞. Then

E sup
f∈F

(√
n|Pnf − Pf |

)
≤ C ‖F‖L2(P ) J(F,F)

where

J(F,F) :=

∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q))dε.

9.2 Application to Boolean Function Classes with finite VC dimension

Let F be a Boolean function class with finite VC dimension and let D denote its VC dimension. Recall that
the VC dimension is defined as the maximum cardinality of a set in X that is shattered by the class F . An
important fact about the VC dimension is the Sauer-Shelah-Vapnik-Chervonenkis lemma which states that

|F(x1, . . . , xn)| ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

D

)
. (58)

for every n ≥ 1 and x1, . . . , xn ∈ X where

F(x1, . . . , xn) := {(f(x1), . . . , f(xn)) : f ∈ F} .

Note that
(
n
k

)
in (58) is taken to be 0 if n < k. The right hand of (58) equals 2D if n ≤ D and is bounded

from above by (en/D)D if n ≥ D.

We have seen previously that

E sup
f∈F

(√
n|Pnf − Pf |

)
≤ C

√
D log

(en
D

)
for n ≥ D (59)

and this bound was proved by symmetrization and the elementary bound on the Rademacher averages. This
elementary bound involved the cardinality of F(X1, . . . , Xn) which we bounded via (58).

It turns out however that the logarithmic factor is redundant in (59) and one actually has the bound

E sup
f∈F

(√
n|Pnf − Pf |

)
≤ C
√
D. (60)

This can be deduced as a consequence of Theorem 9.1 as we shall demonstrate in this section. Since Theorem
9.1 gives bounds in terms of packing numbers, it becomes necessary to relate the packing numbers of F to
its VC dimension. This is done in the following important result due to Dudley.

Theorem 9.2. Suppose F is a Boolean function class with VC dimension D. Then

sup
Q
M(ε,F , L2(Q)) ≤

(c1
ε

)c2D
for all 0 < ε ≤ 1. (61)

Here c1 and c2 are universal positive constants and the supremum is over all probability measures Q on X .

Note that Theorem 9.2 gives upper bounds for the ε-packing numbers when ε ≤ 1. Since the functions in
F take only the two values 0 and 1, it is clear that M(ε,F , L2(Q)) = 1 for all ε ≥ 1.

Proof of Theorem 9.2. Fix 0 < ε ≤ 1 and a probability measure Q on X . Let N = M(ε,F , L2(Q)) and let
f1, . . . , fN be a maximal ε-separated subset of F in the L2(Q) metric. This means therefore that for every
1 ≤ i 6= j ≤ N , we have

ε2 <

∫
(fi − fj)2

dQ =

∫
I{fi 6= fj}dQ = Q{fi 6= fj}.
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Now let Z1, Z2, . . . be i.i.d observations from Q. By the above, we have

P {fi(Z1) = fj(Z1)} = 1−Q{fi 6= fj} < 1− ε2 ≤ e−ε
2

.

By the independence of Z1, Z2, . . . , we deduce then that for every k ≥ 1,

P {fi(Z1) = fj(Z1), fi(Z2) = fj(Z2), . . . , fi(Zk) = fj(Zk)} ≤ e−kε
2

.

In words, this means that the probability that fi and fj agree on every Z1, . . . Zk is at most e−kε
2

. By the
union bound, we have

P {(fi(Z1), . . . , fi(Zk)) = (fj(Z1), . . . , fj(Zk)) for some 1 ≤ i < j ≤ N} ≤
(
N

2

)
e−kε

2

≤ N2

2
e−kε

2

.

This immediately gives

P {|F(Z1, . . . , Zk)| ≥ N} ≥ 1− N2

2
e−kε

2

.

Thus if we take

k =

⌈
2 logN

ε2

⌉
≥ 2 logN

ε2
, (62)

then

P {|F(Z1, . . . , Zk)| ≥ N} ≥ 1

2
.

Thus for the choice (62) of k, there exists a subset {z1, . . . , zk} of cardinality k such that

N ≤ |F(z1, . . . , zk)|

We now apply the Sauer-Shelah-VC lemma and deduce that

N ≤
(
k

0

)
+

(
k

1

)
+ · · ·+

(
k

D

)
. (63)

We now split into two cases depending on whether k ≤ D or k ≥ D.

Case 1: k ≤ D: Here (63) gives

M(ε,F , L2(Q)) = N ≤ 2D ≤
(

2

ε

)D
which proves (61).

Case 2: k ≥ D: Here (63) gives

N ≤
(
ek

D

)D
so that (using (62))

N1/D ≤ ek

D
≤ 4e

Dε2
logN =

8e

ε2
logN1/(2D) ≤ 8e

ε2
N1/(2D)

where we have used log x ≤ x. This immediately gives

M(ε,F , L2(Q)) = N ≤
(

8e

ε2

)2D

.

The proof of Theorem 9.2 is complete.

The bound (60) immediately follows from Theorem 9.1 and Theorem 9.2 as shown below.
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Theorem 9.3. Suppose F is a Boolean class of functions with VC dimension D, then

E sup
f∈F
|Pnf − Pf | ≤ C

√
D

n
. (64)

Proof. Since F is a Boolean class, we can apply Theorem 9.1 with F (x) = 1 for all x. This gives

E sup
f∈F
|Pnf − Pf | ≤

C√
n
J(1,F) with J(1,F) :=

∫ 1

0

√
1 + log sup

Q
M(ε,F , L2(Q))dε.

The packing numbers above can be bounded by Theorem 9.2 which gives

J(1,F) :=

∫ 1

0

√
1 + log sup

Q
M(ε,F , L2(Q))dε

≤
∫ 1

0

√
1 + 2D log

8e

ε2
dε

≤ 1 +

∫ 1

0

√
2D log

8e

ε2
dε because

√
a+ b ≤

√
a+
√
b

= 1 +
√
D

∫ 1

0

√
2 log

8e

ε2
dε ≤ C

√
D.

This completes the proof of Theorem 9.3.

The following are immediate applications of Theorem 9.3.

Example 9.4. Suppose X1, . . . , Xn are i.i.d real valued observations having a common cdf F . Let Fn denote
the empirical cdf of the data X1, . . . , Xn. Then Theorem 9.3 immediately gives

E sup
x∈R
|Fn(x)− F (x)| ≤ C√

n
. (65)

This is because the Boolean class F := {I(−∞,x] : x ∈ R} has VC dimension 1.

One can also obtain a high probability upper bound on supx |Fn(x)−F (x)| using the Bounded Differences
concentration inequality that we discussed previously. This (together with (65)) gives

sup
x∈R
|Fn(x)− F (x)| ≤ C√

n
+

√
2

n
log

1

α
with probability ≥ 1− α.

Example 9.5 (Classification with VC Classes). Consider the classification problem where we observe i.i.d
data (X1, Y1), . . . , (Xn, Yn) with Xi ∈ X and Yi ∈ {0, 1}. Let C be a class of functions from X to {0, 1} (these
are classifiers). For a classifier g, we define its test error and training error by

L(g) = P{g(X1) 6= Y1} and Ln(g) :=
1

n

n∑
i=1

I{g(Xi) 6= Yi}

respectively. The ERM (Empirical Risk Minimizer) classifier is given by

ĝn := argmin
g∈C

Ln(g).

It is usually of interest to understand the test error of ĝn relative to the best test error in the class C i.e.,

L(ĝn)− inf
g∈C

L(g).
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If g∗ minimizes L(g) over g ∈ C, then we can bound the discrepancy above as

L(ĝn)− L(g∗) = Ln(ĝn)− Ln(g∗) + L(ĝn)− Ln(ĝn) + L(g∗)− Ln(g∗)

≤ L(ĝn)− Ln(ĝn) + L(g∗)− Ln(g∗)

≤ 2 sup
g∈C
|Ln(g)− L(g)|.

The last inequality above can be quite loose (we shall look at improved bounds later). The term above can be
written as supf∈F |Pnf − Pf | where

F := {(x, y) 7→ I{g(x) 6= y} : g ∈ C} ,

Pn is the empirical distribution of (Xi, Yi), i = 1, . . . , n and P is the distribution of (X1, Y1).

Using the bounded differences concentration inequality and the bound given by Theorem 9.3, we obtain
(for every α ∈ (0, 1))

L(ĝn)− L(g∗) ≤ C
√
V C(F)

n
+

√
8

n
log

1

α
(66)

with probability ≥ 1− α.

It can now be shown that V C(F) ≤ V C(C). To see this, it is enough to argue that if F can shatter
(x1, y1), . . . , (xn, yn), then C can shatter x1, . . . , xn. For this, let η1, . . . , ηn be arbitary in {0, 1}. We need to
obtain a function g ∈ C for which g(xi) = ηi. Define δ1, . . . , δn by

δi = ηiI{yi = 0}+ (1− ηi)I{yi = 1}.

Because F can shatter (x1, y1), . . . , (xn, yn), there exists a function f ∈ F with f(xi, yi) = δi for i = 1, . . . , n.
If f(x, y) = I{g(x) 6= y} for some g ∈ C, then it is now easy to verify that g(xi) = ηi. This proves that C
shatters x1, . . . , xn. The proof of V C(F) ≤ V C(C) is complete.

We thus obtain from (66),

L(ĝn)− inf
g∈C

L(g) ≤ C
√
V C(C)
n

+

√
8

n
log

1

α
with prob ≥ 1− α.

Thus, as long as V C(C) = o(n), the test error of ĝn relative to the best test error in C converges to zero as
n→∞.

10 Lecture 10

10.1 Recap of the Main Empirical Process Bound from last class

Let us first recall our main bound on the expected suprema of empirical processes. If F is a class of real-valued
functions on X with envelope F , then (assuming that PF 2 <∞), we have

E sup
f∈F
|Pnf − Pf | ≤

C√
n
‖F‖L2(P ) J(F,F) (67)

where

J(F,F) :=

∫ 1

0

√
1 + log sup

Q
M(ε ‖F‖L2(Q) ,F , L2(Q))dε.

An important implication of this bound is that when F is a Boolean function class with finite VC dimension
D,

E sup
f∈F
|Pnf − Pf | ≤ C

√
D

n
. (68)
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Today, we shall discuss an application of the bounds (67) and (68) to a problem in M -estimation. My
treatment here will be a mix of rigor and heuristics. We shall come back to M -estimation next week when
all the heuristic arguments will be rigorized.

10.2 Application to an M-estimation problem

This can be seen as a mode estimation problem. Suppose X1, . . . , Xn are i.i.d observations from a univariate
density p. We shall assume that p has a single mode θ0 and that it is symmetric about θ0 ∈ R. In addition,
we shall assume that p is smooth and bounded and that p′(x) > 0 for x < θ0 and that p′(x) < 0 for x > θ0.
You can think of p as the normal density with mean θ0 or the Cauchy density centered at θ0.

Consider now the problem of estimating θ0. For this, let us define

M(θ) :=

∫ θ+1

θ−1

p(x)dx = P {|X1 − θ| ≤ 1} = PI{θ−1≤X1≤θ+1}. (69)

Note that
M ′(θ) = p(θ + 1)− p(θ − 1).

Because of the assumptions on p, it is clear that M ′(θ0) = 0 and for θ 6= θ0, we have M ′(θ) < 0 for
θ > θ0 and M ′(θ) > 0 for θ < θ0. This implies that θ 7→ M(θ) has a unique maximum at θ0. Also
M ′′(θ0) = p′(θ0 + 1)− p′(θ0 − 1) < 0.

Because θ0 uniquely maximizes M(θ) over θ ∈ R, a reasonable method of estimating θ0 is to estimate it

by θ̂n where θ̂n is any maximizer of Mn(θ) over θ ∈ R with

Mn(θ) :=
1

n

n∑
i=1

I {Xi ∈ [θ − 1, θ + 1]}

It is now natural to ask the following questions:

1. Is θ̂n consistent as an estimator for θ0 i.e., is it true that |θ̂n − θ0| converges in probability to zero.

2. One does have consistency in this example as we shall show. One can then ask: what is the rate of
convergence rn of |θ̂n − θ0| to zero?

3. What is the limiting distribution of rn(θ̂n − θ0)?

Below we shall prove consistency of θ̂n rigorously. I will also provide a heuristic argument for finding the
rate rn which we shall make rigorous next week. The limiting distribution will be addressed in a few weeks
after the discussion on uniform central limit theorems.

The fundamental first step for analyzing M-estimators is the following inequality:

0 ≤M(θ0)−M(θ̂n) = Mn(θ0)−Mn(θ̂n) +M(θ0)−Mn(θ0)−M(θ̂n) +Mn(θ̂n)

≤M(θ0)−Mn(θ0)−M(θ̂n) +Mn(θ̂n)

where we have used the inequality Mn(θ0) ≤ Mn(θ̂n) which holds because θ̂n maximizes Mn(·). We can
rewrite the above inequality in Empirical Process notation. For θ ∈ R, let us define the function mθ : R→ R
by

mθ(x) := I {θ − 1 ≤ x ≤ θ + 1} .

With this notation, the inequality becomes

0 ≤ P
(
mθ0 −mθ̂n

)
≤ (Pn − P )

(
mθ̂n

−mθ0

)
. (70)
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This inequality is so fundamental that is has been referred to as the basic inequality.

To derive the consistency of θ̂n from (70), we can crudely bound the right hand side of (70) as

(Pn − P )
(
mθ̂n

−mθ0

)
≤ 2 sup

θ∈R
|Pnmθ − Pmθ| .

It is now easy to check that {mθ, θ ∈ R} is a Boolean class of functions with VC dimension 2 and hence
inequality (68) implies that

sup
θ∈R
|Pnmθ − Pmθ|

P→0.

Combining this with (70), we obtain

M(θ0)−M(θ̂n) = P
(
mθ0 −mθ̂n

)
P→0. (71)

Now because of our assumptions on p, the following is true:

sup
θ∈R:|θ−θ0|≥ε

M(θ) < M(θ0) for every ε > 0. (72)

Indeed, for M(θ) as in (69), under our assumptions on p, we have

sup
θ∈R:|θ−θ0|≥ε

M(θ) = M(θ0 ± ε) < M(θ0)

because M(·) has a unique maximum at θ0. The two assumptions (71) and (72) imply together that |θ̂n −
θ0|

P→0. To see this, first fix ε > 0 and use (72) to obtain η > 0 such that

sup
θ∈R:|θ−θ0|≥ε

M(θ) < M(θ0)− η.

It follows then that

P
{
|θ0 − θ̂n| ≥ ε

}
≤ P

{
M(θ̂n) < M(θ0)− η

}
= P

{
M(θ0)−M(θ̂n) > η

}
→ 0

where the last (converging to zero) assertion follows from (71). This proves that |θ̂n − θ0|
P→0.

This argument for proving consistency of an M -estimator is quite general and can be isolated in the
following theorem (which can be found, for example, in Van der Vaart [24, Theorem 5.7]).

Theorem 10.1 (Consistency). Let {Mn} be a sequence of random functions of θ ∈ Θ and let {M} be a

fixed deterministic function of θ ∈ Θ. Let θ̂n be any maximizer of {Mn(θ), θ ∈ Θ} and let θ0 be the unique
maximizer of {M(θ), θ ∈ Θ}. Suppose the following two conditions hold

1. supθ∈Θ |Mn(θ)−M(θ)| P→0.

2. For every ε > 0, the inequality supθ∈Θ:d(θ,θ0)≥εM(θ) < M(θ0). Here d is a metric on Θ.

Then d(θ̂n, θ0)
P→0 as n→∞.

The assumption supθ∈Θ |Mn(θ)−M(θ)| P→0 is often too strong for consistency (and also not always easy
to check) but there exist results with weaker conditions.

Now that the consistency of θ̂n is established, the next natural question is about the rate of convergence.
We can first try to go over the consistency argument again to see it gives an explicit rate of convergence for
|θ̂n − θ0|. I shall argue heuristically.
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The consistency argument given above was based on the inequality:

0 ≤M(θ0)−M(θ̂n) ≤ (Pn − P )
(
mθ̂n

−mθ0

)
≤ 2 sup

θ∈R
|Pnmθ − Pmθ|. (73)

For consistency, we used that the right hand side above converges in probability to zero. But the inequality
(68) actually implies that

E sup
θ∈R
|Pnmθ − Pmθ| ≤

C√
n

which gives
sup
θ∈R
|Pnmθ − Pmθ| = OP (n−1/2).

Inequality (73) then gives

0 ≤M(θ0)−M(θ̂n) = OP (n−1/2). (74)

From here, to obtain an explicit rate for |θ̂n − θ0| we need to use some structure of the function M(·). Note
that the second derivative of M at θ0 equals

M ′′(θ0) = p′(θ0 + 1)− p′(θ0 − 1)

which is strictly negative because, by assumption, p′(θ0 + 1) < 0 and p′(θ0 − 1) > 0. As a result, there exists
a constant C and aneighbourhood of θ0 such that for all θ in that neighbourhood, we can write

M(θ0)−M(θ) ≥ C(θ − θ0)2. (75)

The value of C is related to M ′′(θ0). Using this, we can heuristically write

M(θ0)−M(θ̂n) ≥ C(θ̂n − θ0)2. (76)

In other words, I am assuming that θ̂n belongs to the neighborhood of θ0 where (75) holds. Because of the

consistency of θ̂n (which we have rigorously proved), the inequality (76) can be made rigorous. Combining
(76) with (74), we deduce that (

θ̂n − θ0

)2

= OP (n−1/2)

which gives ∣∣∣θ̂n − θ0

∣∣∣ = OP (n−1/4).

We have therefore obtained n−1/4 as a rate of convergence for |θ̂n − θ0|. It turns out however that∣∣∣θ̂n − θ0

∣∣∣ = OP (n−1/3).

In other words, n−1/4 is slower than the actual rate of convergence and is a reflection of some loosness in our
proof technique. The main source of looseness is in the inequality:

(Pn − P )
(
mθ̂n

−mθ0

)
≤ 2 sup

θ∈R
|Pnmθ − Pmθ| = OP (n−1/2) (77)

It turns out that the left hand side above is much smaller than the right hand side. To get a heuristic
understanding of the size of the left hand side above, let us first compute bounds for

E |(Pn − P ) (mθ −mθ0)|

for a fixed θ which is close to θ0. Clearly

E |(Pn − P ) (mθ −mθ0)| ≤
√

Var (Pn(mθ −mθ0))

=
1√
n

√
Var (mθ(X1)−mθ0(X1)) ≤ 1√

n

√
E (mθ(X1)−mθ0(X1))

2
(78)
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Now for θ close to θ0 (and θ < θ0), we have

mθ(x)−mθ0(x) = I {θ − 1 ≤ x ≤ θ0 − 1}+ I {θ + 1 ≤ X1 ≤ θ0 + 1} .

Thus

E (mθ(X1)−mθ0(X1))
2 ≤ P {θ − 1 ≤ X1 ≤ θ0 + 1}+ P {θ + 1 ≤ X1 ≤ θ0 + 1} ≤ 2p(θ0)|θ − θ0|.

where, in the last inequality, we used the fact that the density of X1 has a mode at θ0 (so that the density
at every other point is bounded by p(θ0)). Combining this with (78), we obtain

E |(Pn − P ) (mθ −mθ0)| ≤
√

2p(θ0)

n

√
|θ − θ0|

so that

(Pn − P ) (mθ −mθ0) = OP

(√
|θ − θ0|
n

)
.

This is true for a fixed θ that is close to θ0. Heuristically, this suggests that

(Pn − P )
(
mθ̂n

−mθ0

)
= OP

√ |θ̂n − θ0|
n

 .

We shall formally justify this later. Note that this bound is an stronger compared to our earlier bound (77).
Plugging this in the right hand side of the basic inequality (70) and using the quadratic bound (76) on the
left hand side of (70), we deduce that

C
(
θ̂n − θ0

)2

≤ OP

√ |θ̂n − θ0|
n


“Cancelling” |θ̂n − θ0|1/2 from both sides, we deduce that∣∣∣θ̂n − θ0

∣∣∣ = OP (n−1/3). (79)

As mentioned earlier, this is the correct rate for θ̂n − θ0. Indeed, it turns out that

n1/3
(
θ̂n − θ0

)
L→ argmax

h∈R

{
aZh − bh2

}
as n→∞ where Zh, h ∈ R is two-sided Brownian motion starting from 0 and a, b are two constants depending
on p and θ0. We shall prove this limiting result later but it tells us now that n−1/3 is the correct rate of
convergence.

We shall make the rate result (79) rigorous next week. A key ingredient in the rigorous argument will
involve establishing the inequality

E sup
θ:|θ−θ0|≤δ

|(Pn − P )(mθ −mθ0)| ≤ C
√
δ

n
(80)

for δ sufficiently small. The above inequality can be derived as a consequence of (67). Indeed, to apply (67),
we first need to obtain an envelope for the class {mθ −mθ0 : |θ − θ0| ≤ δ}. It is not hard to see that

F (x) := I[θ0−1−δ,θ0−1+δ](x) + I[θ0+1−δ,θ0+1+δ](x)
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is an envelope function. Further

PF 2 ≤ 2P {θ0 − 1− δ ≤ X1 ≤ θ0 − 1 + δ}+ 2P {θ0 + 1− δ ≤ X1 ≤ θ0 + 1 + δ} ≤ Cp(θ0)δ ≤ Cδ.

Thus (67) gives

E sup
θ:|θ−θ0|≤δ

|(Pn − P )(mθ −mθ0)| ≤ C
√
δ

n
J(F,F)

where F := {mθ −mθ0 : |θ− θ0| ≤ δ}. This will prove (80) provided J(F,F) <∞. This will follow from the
fact that the class {mθ −mθ0} has finite VC subgraph dimension (to be defined shortly). Note that this is
not a Boolean class of functions so we need VC subgraph dimension as opposed to VC dimension.

Let us now summarize this discussion of a heuristic argument for the rate of M -estimators. Although we
did for a special M -estimator which corresponded to mθ(x) := I{θ − 1 ≤ x ≤ θ + 1}, the ideas are actually
fairly general. The most important ingredient is the Basic inequality (70). The left hand side P (mθ0 −mθ̂n

)
is bounded from below by an assumption on the second derivative of θ 7→ Pmθ at θ = θ0. The right hand
side can be understood by calculating

E (mθ(X1)−mθ0(X1))
2
.

For the specific choice of mθ(x) = I{θ − 1 ≤ x ≤ θ + 1}, it turned out that

E (mθ(X1)−mθ0(X1))
2 ≤ C|θ − θ0|.

For other mθ, the right hand side might be different (for example, it is common to have C|θ − θ0|2 on the

right hand side). Plugging these bounds in the basic inequality will yield an inequality involving |θ̂n−θ0| and
n which can be solved to get explicit rates (such as n−1/3) in this problem. This heuristic will be justified
next week. Before concluding this section, let us state a result from Van der Vaart and Wellner [25, Page
294] on the rate of convergence of M -estimators. We shall formally prove this result later but, based on the
above heuristics, its conclusion should be quite obvious.

Theorem 10.2 (Van der Vaart and Wellner, Page 294). Let X1, X2, . . . be i.i.d observations from a distri-
bution P . Suppose Θ ⊆ R is an open set and let mθ, θ ∈ Θ be a collection of real-valued functions on X that
are indexed by Θ. Suppose there exist α > 0 and a function M on X with PM2 <∞ for which

|mθ1(x)−mθ2(x)| ≤M(x)|θ1 − θ2|α for all θ1, θ2 ∈ Θ. (81)

Let θ̂n and θ0 denote maximizers of Pnmθ and Pmθ over θ ∈ Θ. If θ 7→ Pmθ has two derivatives at θ0 with
the second derivative strictly negative, then

|θ̂n − θ0| = OP (n−1/(4−2α)). (82)

Heuristic Argument. We use the heuristics summarized above to justify (82) based on the assumptions made
in the theorem. Note that assumption (81) implies that

E (mθ(X1)−mθ0(X1))
2 ≤ E

(
M2(X1)|θ − θ0|2α

)
≤ |θ − θ0|2αPM2 ≤ C|θ − θ0|2α.

This suggests the heuristic

(Pn − P )
(
mθ̂n

−mθ0

)
≤ n−1/2|θ̂n − θ0|α.

Combining with the basic inequality (and the lower bound C(θ̂n − θ0)2 on P (mθ0 − mθ̂n
), we obtain the

inequality
(θ̂n − θ0)2 . n−1/2|θ̂n − θ0|α

which gives
|θ̂n − θ0| . n−1/(4−2α).

Note that when α = 1, Theorem 10.2 gives the usual n−1/2 rate for |θ̂n − θ0|.
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11 Lecture 11

For Boolean function classes F , we have seen that the VC dimension gives useful upper bounds on covering
numbers:

sup
Q

logM(ε,F , L2(Q)) ≤
(c1
ε

)c2V C(F)

for all 0 < ε ≤ 1. (83)

What happens for function classes that are not Boolean? We shall see today that there exist two notions
of combinatorial dimension for general function classes which allow control of covering numbers via bounds
similar to (83). These are the notions of VC subgraph dimension and fat shattering dimension which we shall
go over today.

11.1 VC Subgraph Dimension

The VC subgraph dimension of F is simply the VC dimension of the Boolean class obtained by taking the
indicators of the subgraphs of functions in F . To formally define this, let us first define the notion of subgraph
of a function.

Definition 11.1 (Subgraph). For a function f : X → R, its subgraph sg(f) is a subset of X × R that is
defined as

sg(f) := {(x, t) ∈ X × R : t < f(x)} .

In other words, sg(f) consists of all points that lie below the graph of the function f .

We can now define the VC subgraph dimension of F as:

Definition 11.2 (VC Subgraph Dimension). The VC subgraph dimension of F is defined as the VC dimen-
sion of the Boolean class {Isg(f) : f ∈ F}. We shall denote this by just V C(F).

The VC subgraph dimension can be related to covering numbers in the same way as (83). This is done
in the following result.

Theorem 11.3. Suppose F is a class of functions with envelope F . Let the VC-subgraph dimension of F be
equal to D. Then

sup
Q
M(ε ‖F‖L2(Q) ,F , L

2(Q)) ≤
(c1
ε

)c2D
for all 0 < ε ≤ 1 (84)

where c1 and c2 are universal positive constants.

Proof. The idea is to relate the L2(Q) norm between two functions in F to an L2 norm between their
subgraphs. Fix f, g ∈ F and write∫

|f − g|2dQ ≤
∫

2F (x)|f(x)− g(x)|dQ(x)

where we used the fact that |f(x)− g(x)| ≤ 2F (x) (this is true because F is the envelope of F). We now use
the fact that for every two real numbers a and b, we have the identity

|a− b| =
∫
|I{t < a} − I{t < b}|dt
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This gives∫
|f − g|2dQ ≤

∫
2F (x)|f(x)− g(x)|dQ(x)

=

∫
2F (x)

(∫
|I{t < f(x)} − I{t < g(x)}| dt

)
dQ(x)

=

∫ ∫ ∣∣Isg(f)(x, t)− Isg(g)(x, t)
∣∣ 2F (x)dQ(x)dt

=

∫ ∫
(x,t):|t|≤F (x)

∣∣Isg(f)(x, t)− Isg(g)(x, t)
∣∣ 2F (x)dQ(x)dt as Isg(f)(x, t) = Isg(g)(x, t) for |t| > F (x)

=

 ∫ ∫
(x,t):|t|≤F (x)

2F (x)dQ(x)dt

 ∫ ∫
(x,t):|t|≤F (x)

∣∣Isg(f)(x, t)− Isg(g)(x, t)
∣∣ 2F (x)dQ(x)dt∫ ∫

(x,t):|t|≤F (x)

2F (x)dQ(x)dt

=

(
4

∫
F 2(x)dQ(x)

) ∫ ∫
(x,t):|t|≤F (x)

∣∣Isg(f)(x, t)− Isg(g)(x, t)
∣∣2 2F (x)dQ(x)dt∫ ∫

(x,t):|t|≤F (x)

2F (x)dQ(x)dt
.

We have thus proved that

‖f − g‖L2(Q) ≤ 2 ‖F‖L2(Q)

∥∥Isg(f) − Isg(g)
∥∥
L2(Q′)

(85)

where Q′ is the probability measure on X × R whose density with respect to Q× Leb is proportional to

2F (x)I {(x, t) : |t| ≤ F (x)} .

It is routine to deduce from (85) that

M(ε ‖F‖L2(Q) ,F , L
2(Q)) ≤M(ε/2, {Isg(f), f ∈ F}, L2(Q′))

To bound the right hand side, we simply use the earlier result for Boolean classes (see (83)). This completes
the proof of Theorem 11.3.

The following is an immediate corollary of Theorem 11.3 and our main bound on the Expected suprema
of empirical processes.

Corollary 11.4. If F has envelope F and VC subgraph dimnension D, then

E sup
f∈F
|Pnf − Pf | ≤ C ‖F‖L2(P )

√
D

n
.

Proof. Our main bound on the expected suprema of empirical processes gives

E sup
f∈F
|Pnf − Pf | ≤ C ‖F‖L2(P )

J(F,F)√
n

and we bound J(F,F) (using Theorem 11.3) as

J(F,F) =

∫ 1

0

√
1 + log sup

Q
M(ε ‖F‖L2(Q) ,F , L2(Q))dε

≤
∫ 1

0

√
1 + c2D log

c1
ε
dε ≤ 1 +

√
D

∫ 1

0

√
c2 log

c1
ε
dε ≤ C

√
D

which completes the proof of Corollary 11.4.
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Example 11.5. In the last lecture, I remarked that

E sup
θ∈R:|θ−θ0|≤δ

|(Pn − P )(mθ −mθ0)| ≤ C
√
δ

n

where mθ(x) := I{θ− 1 ≤ x ≤ θ+ 1}. I gave a partial proof of this fact in the last class. Complete this proof
by proving that the function-class {

I[θ−1,θ+1] − I[θ0−1,θ0+1] : θ ∈ R
}

has finite VC subgraph dimension (≤ 3??).

Let us now look at a reformulation of the VC subgraph dimension. This defines the dimension directly
in terms of the class F without going to subgraphs. This reformulation will also make clear the connection
to fat shattering dimension.

We say that a subset {x1, . . . , xn} of X is subgraph-shattered by F if there exist real numbers t1, . . . , tn
such that for every subset S ⊆ {1, . . . , n}, there exists f ∈ F with

(xs, ts) /∈ sg(f) for s ∈ S and (xs, ts) ∈ sg(f) for s /∈ S. (86)

Note that (86) is equivalent to

f(xs) ≤ ts for s ∈ S and f(xs) > ts for s /∈ S. (87)

In words, we say that {x1, . . . , xn} is subgraph-shattered by F if there exist levels t1, . . . , tn such that for
every subset S ⊆ {1, . . . , n}, there exists a function f which goes under the level for each xs, s ∈ S and
strictly over the level for xs, s /∈ S.

The VC subgraph dimension V C(F) is defined as the maximum cardinality of a finite subset of X that
is subgraph shattered by F .

Let us now describe a potential problem with using the VC subgraph dimension to control covering
numbers. Let M denote the class of all nondecreasing functions f : R → [−1, 1] i.e., M consists of all
nondecreasing functions on R that are bounded by 1. It turns out then that

sup
Q
M(ε,M, L2(Q)) ≤ exp

(
C

ε

)
for all ε > 0. (88)

It is also easy to see that the VC-subgraph dimension of M equals ∞ (i.e., for every n ≥ 1, there exists a
finite subset of R that is subgraph shattered byM). Therefore, the notion of VC-subgraph dimension is not
useful here and Theorem 11.3 does not give anything meaningful for this class M. It is actually possible to
prove (88) using the notion of fat shattering dimension which is discussed next.

11.2 Fat Shattering Dimension

Fat Shattering is a scale sensitive notion of dimension. Specifically, fat shattering dimension is actually a
function on (0,∞) i.e., it is defined for each ε > 0. We shall denote this by fatF (ε) and is defined in the
following way.

Definition 11.6 (ε-shattering). We say that a subset {x1, . . . , xn} of X is ε-shattered by F if there exist real
numbers t1, . . . , tn such that for every S ⊆ {1, . . . , n}, there exists a function f ∈ F such that

f(xs) ≤ ts for s ∈ S and f(xs) ≥ ts + ε for s /∈ S. (89)
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In words, we say that {x1, . . . , xn} is subgraph-shattered by F if there exist levels t1, . . . , tn such that
for every subset S ⊆ {1, . . . , n}, there exists a function f which goes under the level for each xs, s ∈ S and
exceeds by ε the level for xs, s /∈ S. Note that the only difference between the notion of ε-shattering and
the notion of subgraph-shattering from the previous subsection is that the words “strictly over” are replaced
by “exceeds by ε”.

Definition 11.7 (Fat Shattering Dimension). For ε > 0, the fat shattering dimension fatF (ε) is defined as
the maximum cardinality of a finite subset of X that is ε-shattered by F .

It is clear that fatF (ε) is a decreasing function of ε. In fact, it can be shown (exercise) that

V C(F) = sup
ε>0

fatF (ε)

where V C(F) above refers to VC subgraph dimension. This inequality means, in particular, that fatF (ε) is
always bounded from above by V C(F). Another easy fact is that when F is Boolean, then fatF (ε) equals
V C(F) for every 0 < ε ≤ 1.

Recall now the classM from the last subsection consisting of all nondecreasing functions f : R→ [−1, 1].
It was mentioned before that the VC subgraph dimension of M is infinity. We shall show now that fatM(ε)
is finite for every ε > 0 and in fact

fatM(ε) ≤ 1 +
2

ε
for every ε > 0.

In fact, the above fat shattering dimension bound holds for the larger class of all functions f : R→ R whose
variation is bounded by 2. This is proved in the following result. Recall that the variation of a function
f : R→ R is defined by

‖f‖TV := sup
n≥1

sup
x1<x2···<xn

n−1∑
i=1

|f(xi)− f(xi+1)|.

Lemma 11.8. Fix V > 0 and let F denote the class of all functions f : R→ R with ‖f‖TV ≤ V . Then

fatF (ε) = 1 +

⌊
V

ε

⌋
for every ε > 0.

Proof. Fix ε > 0. Let us first prove that

fatF (ε) ≤ 1 +

⌊
V

ε

⌋
(90)

For this, {x1, . . . , xn} be ε-shattered by F . We shall show then that n cannot be larger than the right hand
side of (90) which will prove (90). Note first that because {x1, . . . , xn} are ε-shattered, there exist real
numbers t1, . . . , tn which satisfy the condition in the definition of ε-shattering. This means, in particular,
that there exist two functions f1 and f2 in F which satisfy the following:

f1(xi) is

{
≤ ti : for odd i
≥ ti + ε : for even i

and

f2(xi) is

{
≤ ti : for even i
≥ ti + ε : for odd i

Now let f = (f1 − f2)/2. The conditions above imply together that

f(xi) is

{
≤ −ε/2 : for odd i
≥ ε/2 : for even i
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which immediately implies that

‖f‖TV =

n−1∑
i=1

|f(xi)− f(xi+1)| ≥ (n− 1)ε.

On the other hand,

‖f‖TV = ‖(f1 − f2)/2‖TV ≤
‖f1‖TV + ‖f2‖TV

2
≤ V.

Combining the above two inequalities, we obtain (n− 1)ε ≤ V which implies (90) (note that n has to be an
integer which allows us to put integer part around V/ε).

We now show that fatF (ε) is larger than or equal to the right hand side of (90). For this, let d = bV/εc.
Consider any set of d points y1 < · · · < yd. These form d + 1 intervals Ij := [yj , yj+1) for j = 1, . . . , d − 1
and I0 := (−∞, y1] and Id := [yd,∞). Let G consist of the 2d+1 functions from R to {0, ε} that are piecewise
constant on each of the intervals I0, . . . , Id. Let {x1, . . . , xd+1} be any finite set obtained by picking one point
from each of the d+ 1 intervals I0, . . . , Id. It is then clear that {x1, . . . , xd+1} is ε-shattered by G. Further,
the variation of every function in G is atmost dε = εbV/εc ≤ V . Thus F shatters {x1, . . . , xd+1} which means

fatF (ε) ≥ 1 + d = 1 +

⌊
V

ε

⌋
.

This completes the proof of Lemma 11.8.

Let us now describe a result which bound covering numbers in terms of the fat-shattering dimension
fatF (ε), ε > 0. This is the following theorem due to Mendelson and Vershynin [16].

Theorem 11.9 (Mendelson-Vershynin). Suppose F is a class of functions that are uniformly bounded by 1.
Then there exist a universal positive constant C ≥ 1 such that

sup
Q
M(ε,F , L2(Q)) ≤

(
2

ε

)CfatF (ε/C)

for all 0 < ε ≤ 1. (91)

Let us see what this result gives for classM of all nondecreasing functions f : R→ [−1, 1]. Every function
in this class has variation at most 2 and thus Lemma 11.8 implies that

fatM(ε) ≤ 1 +
2

ε
. (92)

This, together with Theorem 11.9, allows us to deduce that

sup
Q
M(ε,M, L2(Q)) ≤ exp

(
C

ε
log

2

ε

)
for 0 < ε ≤ 1.

Note that this result is weaker compared to (88) by a factor of log(2/ε) in the exponent. We can now ask if it
is possible to derive (88) via the fat shattering dimension. This is possible if the bound (91) can be improved
to exp(CfatF (ε/C)). Note that this cannot be done in general. For example, when F is Boolean with finite
VC dimension, then fatF (ε) = V C(F) for every 0 < ε ≤ 1 and in this case, one obviously cannot replace 2/ε
by a constant in (91). However, Rudelson and Vershynin [21] have showed that under a technical regularity
assumption on fatF (ε) (which rules out the case when F is Boolean with finite VC dimension), it is indeed
possible to improve Theorem 11.9. This result is given below.

Theorem 11.10 (Rudelson-Vershynin). Suppose F is a class of functions. Suppose a > 2 and a decreasing
function v : (0,∞)→ (0,∞) are such that

fatF (ε) ≤ v(ε) and v(aε) ≤ 1

2
v(ε) (93)

for all ε > 0. Then

sup
Q
M(ε,F , L2(Q)) ≤ exp

(
C(log a)v

( ε
C

))
(94)

for every ε > 0. C as usual is a universal constant.
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Note that the regularity condition (93) rules out situations such as the case when v(ε) is constant. Also
notice that there is no explicit boundedness assumption on the functions in F ; this is hidden in the regularity
condition.

Let us now show that Theorem 11.10 does indeed imply the result (88) for the class M of nondecreasing
functions that are constrained to take values in [−1, 1]. Indeed, for this class we first have (92). Also because
the functions in M are constrained to take values in [−1, 1], the fat shattering dimension will be zero for
large ε. In fact, it is easy to see that fatM(ε) = 0 for ε ≥ 3. This, along with (92), implies that

fatM(ε) ≤ 5

ε
for all ε > 0.

We can therefore apply Theorem 11.10 with v(ε) := 5/ε. The condition v(aε) ≤ v(ε)/2 is easily seen to be
satisfied with a = 3. It is straightforward then to show that inequality (88) is a consequence of (94).

12 Lecture 12

12.1 Bracketing Control

Our main empirical process bound so far is the following. Under the usual notation:

E sup
f∈F
|Pnf − Pf | ≤

C√
n
‖F‖L2(P ) J(F,F) (95)

where

J(F,F) :=

∫ 1

0

√
1 + log sup

Q
M(ε ‖F‖L2(Q) ,F , L2(Q))dε.

Bracketing methods provide another upper bound for E supf∈F |Pnf − Pf | which we shall describe next.
This bound will be very similar to (95) except that supQM(ε ‖F‖L2(Q) ,F , L2(Q)) will be replaced by the

ε-bracketing number of F in L2(P ). Before we state this result, let us first define the notion of bracketing
numbers:

1. Given two real-valued functions ` and u on X , the bracket [`, u] is defined as the collection of all
functions f : X → R for which `(x) ≤ f(x) ≤ u(x) for all x ∈ X .

2. Given a probability measure P on X , the L2(P )-size of a bracket [`, u] is defined as ‖u− `‖L2(P ).

3. Let F be a class of real-valued functions on X . For ε > 0, the bracketing number N[](ε,F , L2(P )) is
defined as the smallest number of brackets each having L2(P )-size at most ε such that every f ∈ F
belongs to one of the brackets.

It is important to notice that the bracketing numbers are larger than covering numbers as shown below.

Lemma 12.1. For every ε > 0,

NF (ε,F , L2(P )) ≤ NFall(ε/2,F , L2(P )) ≤ N[](ε,F , L2(P )).

Here Fall denotes the class of all real-valued functions on X .

Proof. The first inequality is something we have already seen when discussing covering numbers. The second
inequality is proved as follows. First get brackets [`i, ui], i = 1, . . . , N each of L2(P )-size ε which cover F .
Then it is obvious to see that the mid-point functions (`i + ui)/2, i = 1, . . . , N form an ε/2-net for F in the
L2(P ) metric.
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Next, we provide an example where the bracketing numbers can be explicitly computed.

Example 12.2. Let F := {I(∞,t] : t ∈ R} and let P be a fixed probability measure on R. Then we shall argue
that

N[](ε,F , L2(P )) ≤ 1 +
1

ε2
for every ε > 0. (96)

Here is an argument for (96). Let t0 := −∞ and recursively define

ti := sup {x > ti−1 : P (ti−1, x] ≤ ε} .

Then, for every δ > 0 sufficiently small, it is clear that P (ti−1, ti − δ] ≤ ε (because otherwise ti − ε would be
the supremum) and hence (by letting δ → 0), we deduce that P (ti−1, ti) ≤ ε. Also if ti < ∞, then for every
δ > 0, we have P (ti−1, ti + δ] > ε so that (by letting δ ↓ 0), P (ti−1, ti] ≥ ε.

Let k ≥ 1 be the smallest integer for which tk = ∞. Then, by the above, we have P (ti−1, ti] ≥ ε for
i = 1, . . . , k − 1 so that

1 = P (−∞,∞) =

k∑
i=1

P (ti−1, ti] ≥ (k − 1)ε

which gives k ≤ 1 + ε−1. Now consider the brackets [I(−∞,ti−1], I(−∞,ti)] for i = 1, . . . , k. These obviously
cover F (i.e., each function in F belongs to one of these brackets) and their L2(P )-size is√

P (ti−1, ti) ≤
√
ε.

We have thus proved that

N[](
√
ε,F , L2(P )) ≤ 1 +

1

ε

This, being true for all ε > 0, is the same as (96).

Before stating the analogue of (95) involving bracketing numbers, let us first state and prove a simple clas-
sical asymptotic result which shows that bracketing number bounds can be used to control E supf∈F |Pnf −
Pf |.

Proposition 12.3. Suppose F is a function class such that N[](ε,F , L2(P )) <∞ for every ε > 0. Then

sup
f∈F
|Pnf − Pf |

P→0 as n→∞. (97)

Proof. Fix ε > 0. Let [`i, ui], i = 1, . . . , N denote brackets of L2(P )-size ≤ ε which cover F . We shall first
argue that

sup
f∈F
|Pnf − Pf | ≤ max

1≤i≤N
max (|Pnui − Pui|, |Pn`i − P`i|) + ε (98)

Let us first complete the proof of (97) assuming that (98) is true. To see this, note that the right hand
side above converges to 0 almost surely as n → ∞. This is because, by the strong law of large numbers,
|Pnui − Pui| and |Pn`i − P`i| converge to zero almost surely as n → ∞ for each i (note that the functions
ui and `i do not change with n) and hence the finite maximum of these over i = 1, . . . , N also converges to
zero. Thus, from (98), we deduce that

lim sup
n→∞

sup
f∈F
|Pnf − Pf | ≤ ε almost surely for every ε > 0.

Applying this for each ε = 1/m and letting m→∞, it is possible to deduce (97).

It remains therefore to prove (98). Fix f ∈ F and get a bracket [`i, ui] which contains f . This means
that `i(x) ≤ f(x) ≤ ui(x) for every x ∈ X . Write

Pnf − Pf ≤ Pnui − Pui + Pui − Pf
≤ Pnui − Pui + Pui − P`i
≤ Pnui − Pui + ‖ui − `i‖L2(P ) ≤ Pnui − Pui + ε.
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It can similarly be proved that Pnf −Pf ≥ Pn`i−P`i− ε. Both these inequalities together imply (98) which
completes the proof of Proposition 12.3.

We shall now state the analogue of (95) involving bracketing numbers. This will be our second main
result for bounding the expected suprema of empirical processes (the first main result being (95)).

Theorem 12.4. Let F be an envelope for the class F such that PF 2 <∞. Then

E sup
f∈F

(√
n|Pnf − Pf |

)
≤ C ‖F‖L2(P ) J[](F,F) (99)

where

J[](F,F) :=

∫ 1

0

√
1 + logN[](ε ‖F‖L2(P ) ,F , L2(P ))dε.

The bound (99) is very similar to (95) the only difference being that the “uniform” covering numbers
supQM(ε ‖F‖L2(Q) ,F , L2(Q)) are replaced by the bracketing numbers N[](ε ‖F‖L2(P ) ,F , L2(P )) with re-

spect to L2(P ). Importantly, note that there is supremum over Q in (99) and the bracketing numbers
involving only the measure P . In contrast, the bound (95) would be false if supQM(ε ‖F‖L2(Q) ,F , L2(Q))

is replaced by M(ε ‖F‖L2(P ) ,F , L2(P )).

Example 12.5. Suppose X1, . . . , Xn are i.i.d observations having cdf F and let Fn be the empirical cdf. We
have seen previously that

E sup
x∈R
|Fn(x)− F (x)| ≤ C√

n

for every n ≥ 1. This was deduce as a consequence of (95). We shall show here that this can also be deduced
via (99). Indeed for F := {I(−∞,t] : t ∈ R}, we have obtained bounds for N[](ε,F , L2(P )) in (96). We deduce
from these and (99) that

E sup
f∈F
|Pnf − Pf | ≤

C√
n

∫ 1

0

√
1 + log

(
1 +

1

ε2

)
dε ≤ C√

n
.

The following presents a situation where bounding the bracketing numbers is much more tractable com-
pared to bounding the uniform covering numbers.

Proposition 12.6. Let Θ ⊆ Rd be contained in a ball of radius R. Let F := {mθ : θ ∈ Θ} be a function
class indexed by Θ. Suppose there exists a function M with ‖M‖L2(P ) <∞ such that

|mθ1(x)−mθ2(x)| ≤M(x) ‖θ1 − θ2‖ (100)

for all x ∈ X and θ1, θ2 ∈ Θ (here ‖·‖ denotes the usual Euclidean norm). Then for every ε > 0,

N[](ε ‖M‖L2(P ) ,F , L
2(P )) ≤

(
1 +

4R

ε

)d
. (101)

Proof. Let θ1, . . . , θN be a maximal ε/2-packing subset of Θ in the Euclidean metric. Consider the brackets
[mθi − εM/2,mθi + εM/2] for i = 1, . . . , N . Note that

1. These brackets cover F . Indeed, for every θ ∈ Θ, there exists 1 ≤ i ≤ N with ‖θ − θi‖ ≤ ε/2. Then by
the condition (100),

|mθ(x)−mθi(x)| ≤M(x) ‖θ − θi‖ ≤
εM(x)

2
which implies that mθ lies in the bracket [mθi − εM/2,mθi + εM/2].

2. The L2(P )-size of these brackets is at most ε. This is obvious.

Because of these two observations, N[](ε ‖M‖L2(P ) ,F , L2(P )) is bounded from above the Euclidean ε/2-
packing number of Θ which we bounded previously. This completes the proof of Proposition 12.6.
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12.2 M-estimation

We shall now come to the first statistics topic of the course: M -estimation. The basic abstract setting is the
following.

Let Θ be an abstract parameter space. Usually, it is a subset of Rd for parametric estimation problems
or it is a function class for nonparametric estimation problems. We have two processes (one stochastic and
one deterministic) that are indexed by θ ∈ Θ. The stochastic process will usually depend on a “sample” size
n and will be denoted by Mn(θ), θ ∈ Θ. The deterministic process will usually not depend on n and will
simply be denoted by M(θ), θ ∈ Θ. We expect Mn to be close to M for large n.

Let θ̂n denote a maximizer of Mn(θ) over θ ∈ Θ and let θ0 denote a maximizer of M(θ) over θ ∈ Θ. The

goal in M -estimation is to study the behavior of θ̂n in relation to θ0.

Some concrete M -estimators are described below.

1. Classical Parametric Estimation: The most classical M -estimator is the Maximum Likelihood
Estimator (MLE). Here one typically has data X1, . . . , Xn in X that are i.i.d having distribution P .
One also has a class {pθ, θ ∈ Θ} of densities over the space. The MLE maximizes Mn(θ) := Pn log pθ
over θ ∈ Θ. The process M(θ) here is M(θ) := P log pθ and θ0 can then be taken to the parameter
value in Θ for which pθ is closest to P in terms of the Kullback-Leibler divergence.

More generally, one can take Mn(θ) = Pnmθ and M(θ) = Pmθ for other functions mθ. For example,

mθ(x) := |x−θ| corresponds to median estimation (here θ̂n is the sample median and θ0 is the population
median) and mθ(x) := I{|x− θ| ≤ 1} can be taken to correspond to mode estimation.

2. Least Squares Estimators in Regression: In regression problems, one observes data (X1, Y1), . . . , (Xn, Yn)
with Xi ∈ X and Yi ∈ R which can be modeled as i.i.d observations having some distribution P . Let
Θ be a class of functions from X to R. The least squares estimator over the class Θ corresponds to the
maximizer of

Mn(θ) := −Pn(y − θ(x))2

over θ ∈ Θ. It is natural to compare this θ̂n to θ0 which is the maximizer of

M(θ) := −P (y − θ(x))2.

3. Empirical Risk Minimization Procedures in Classification: Here one observes data (X1, Y1), . . . , (Xn, Yn)
where Xi ∈ X and Yi ∈ {−1,+1}. We model the data as i.i.d having a distribution P . Let Θ denote a
class of functions from X to R; we are thinking of the sign of θ(x) as the output of the classifier. It is
natural to consider

Mn(θ) := −PnI{y 6= sign(θ(x))} and M(θ) := −P{y 6= sign(θ(x))}.

In this case, θ̂n will be the empirical minimizer of the misclassification rate and θ0 will be the minimizer
of the test error, both in the class Θ. It is therefore natural to compare the performance of θ̂n to that
of θ0.

Note that it is difficult to compute θ̂n as the minimization of Mn(θ) is a combinatorial problem. For
this, one also studies other choices of Mn(θ) in classification. To motivate these other choices, let us
first rewrite the above Mn(θ) as

Mn(θ) = −PnI{y 6= sign(θ(x))} = −Pnφ0(−yθ(x)) where φ0(t) := I{t ≥ 0}.

For computational considerations, one often replaces φ0 by another loss function φ that is convex and
similar to φ0. Common choices of φ include (a) Hinge loss: φ(t) := (1 + t)+, (b) Exponential loss:
φ(t) := exp(t), and (c) Logistic loss: φ(t) := log(1 + et). Note that these three functions are convex
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on R and they are similar to φ0 (note that they also satisfy φ(t) ≥ φ0(t) for al t). We shall study

procedures θ̂n which minimize

Mn(θ) := −Pnφ(−yθ(x)) over θ ∈ Θ

and compare their performance to θ0.

The theory of M -estimation concerns itself usually with three questions: (a) Consistency, (b) Rate of Con-

vergence, and (c) Limiting Behavior. Consistency asserts that the discrepancy between θ̂n and θ0 converges
to zero as n → ∞. Rate of convergence aims to characterize the precise rate of this convergence. The goal
of the third question will be to give a precise characterization of the limiting distribution of the discrepancy
in the asymptotic setting where n→∞.

Consistency usually always holds and we have already seen a theorem last week on consistency. We
shall mainly concentrate on the problem of rates of convergence. In many cases, a rate of convergence result
automatically implies consistency. In other cases, one needs a preliminary consistency result so that attention
can be focused in a local neighbourhood of θ0 in order to determine the rate of convergence. In cases where
preliminary consistency is required and our consistency theorem last week is not sufficient, we shall provide
a different argument for consistency. Let us ignore consistency for the time being and proceed directly to the
rates. For studying limiting behavior, we need theory on uniform central limit theorems which we are yet to
cover; we shall come back to these in a few weeks.

12.3 Rates of Convergence of M-estimators

It is cleanest to work in the abstract setting where θ̂n maximizes a stochastic process Mn(θ) over θ ∈ Θ
and θ0 maximizes a deterministic process M(θ) over θ ∈ Θ. The argument for deriving rates starts from the
following basic inequaility:

M(θ0)−M(θ̂n) ≤
[
Mn(θ̂n)−M(θ̂n)

]
− [Mn(θ0)−M(θ0)]

We have already seen this inequality multiple times and it is a consequence of the simple inequality Mn(θ̂n) ≥
Mn(θ0). For convenience, we shall denote the right hand side above by (Mn −M)(θ̂n − θ0) so that

M(θ0)−M(θ̂n) ≤ (Mn −M)(θ̂n − θ0). (102)

We shall use this inequality to study rates of convergence of θ̂n to θ0. We need to first fix a measure of
discrepancy between θ̂n and θ0. Let this be given by d(θ̂n, θ0). In cases where Θ is a subset of Rd, it is
natural to take d(·, ·) as the usual Euclidean metric. In general, we shall not require that d(·, ·) is a metric;
at this stage, we only require it to be nonnegative.

Note that the discrepancy measure d(·, ·) is somewhat external to the problem and, therefore, to under-

stand the behavior of d(θ̂n, θ0), we need to connect it to M(θ) or Mn(θ). The usual assumption for this is to
assume that:

M(θ0)−M(θ) & d2(θ, θ0). (103)

Here the notation a & b means that a ≥ Cb for a universal constant C (the notation a . b is defined
analogously).

Let us assume that (103) is true for all θ ∈ Θ. In some situations, it is only true in a neighborhood of θ0

(we can come back to this later). Note that (103) is automatically true if we define d as

d2(θ, θ0) := M(θ0)−M(θ).

This is the most natural choice for studying rates of M -estimators. In parametric estimation problems, this
usually does not correspond to the Euclidean metric so this choice is not usually used. However in function
estimation problems, this is a very common choice.
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Combining (102) and (103), we obtain

d2(θ̂n, θ0) . (Mn −M)(θ̂n − θ0).

Let δ̂n := d(θ̂n, θ0). Then the above inequality clearly implies

δ̂2
n . sup

θ∈Θ:d(θ,θ0)≤δ̂n
(Mn −M)(θ − θ0)

This suggests that δ̂n . δn for any rate δn that satisfies

δ2
n . E sup

θ∈Θ:d(θ,θ0)≤δn
(Mn −M)(θ − θ0). (104)

We shall rigorize this intuition in the next class. The critical inequality (104) gives a nice way to determine
the rate of convergence of M -estimators in a variety of problems. The expectation on the right hand side
can be controlled via the empirical process methods that we have studied in the past many weeks.

13 Lecture 13

13.1 Rigorous Derivation of Rates of Convergence of M-estimators

Let us recall the setup. Θ is an abstract parameter space. We have two processes (one stochastic and one
deterministic) that are indexed by θ ∈ Θ. The stochastic process will usually depend on a “sample” size n
and will be denoted by Mn(θ), θ ∈ Θ. The deterministic process will usually not depend on n and will simply
be denoted by M(θ), θ ∈ Θ. We expect Mn to be close to M for large n.

Let θ̂n denote a maximizer of Mn(θ) over θ ∈ Θ and let θ0 denote a maximizer of M(θ) over θ ∈ Θ. Let

d(θ̂n, θ0) be a nonnegative discrepancy measure gauging the gap between θ̂n and θ0. We shall assume that

M(θ0)−M(θ) & d2(θ, θ0) (105)

for every θ ∈ Θ. Here the notation a & b means that a ≥ Cb for a universal positive constant C (the notation
a . b is defined analogously). In light of (105), the canonical choice for d will be

d(θ, θ0) :=
√
M(θ0)−M(θ). (106)

When d is not the canonical choice above, it usually happens that (105) holds only in a neighbourhood of
θ0. We shall come back to this situation later.

We shall now rigorously find upper bounds for the rate of convergence of d(θ̂n, θ0). Formally, we say that

δn is a rate of convergence of d(θ̂n, θ0) to zero if for every ε > 0, there exists a constant Cε such that

d(θ̂n, θ0) ≤ Cεδn with probability ≥ 1− ε. (107)

Note that this is equivalent to

P
{
d(θ̂n, θ0) > 2Mδn

}
→ 0 as M →∞. (108)

It should be noted that (107) and (108) are nonasymptotic statements (they hold for each finite n). They

imply, in particular, the asymptotic rate statement: d(θ̂n, θ0) = OP (δn) which means the following: For every
ε > 0, there exists Cε and an integer Nε such that

P{d(θ̂n, θ0) ≤ Cεδn} ≥ 1− ε for all n ≥ Nε. (109)
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The difference between the (109) and (107) is that (109) holds for all n ≥ Nε while (107) holds for all n.

Let us now study the probability

P
{
d(θ̂n, θ0) > 2Mδn

}
for fixed δn and large M . We need to understand for which δn does this probability become small as M →∞.

Write
P
{
d(θ̂n, θ0) > 2Mδn

}
=
∑
j>M

P
{

2j−1δn < d(θ̂n, θ0) ≤ 2jδn

}
.

We shall now use the basic inequality (together with the condition (105)):

d2(θ̂n, θ0) .M(θ0)−M(θ̂n) ≤ (Mn −M)(θ̂n − θ0)

This clearly gives

P
{

2j−1δn < d(θ̂n, θ0) ≤ 2jδn

}
≤ P

{
(Mn −M)(θ̂n − θ0) & 22j−2δ2

n, d(θ̂n, θ0) ≤ 2jδn

}
≤ P

{
sup

θ:d(θ,θ0)≤2jδn

(Mn −M)(θ − θ0) & 22j−2δ2

}

.
1

22j−2δ2
E sup
θ:d(θ,θ0)≤2jδ

(Mn −M)(θ − θ0).

Suppose that the function φn(·) is such that

E sup
θ:d(θ,θ0)≤u

(Mn −M)(θ − θ0) . φn(u) for every u. (110)

We thus get

P
{

2j−1δn < d(θ̂n, θ0) ≤ 2jδn

}
.
φn(2jδn)

22jδ2
n

for every j. As a consequence,

P
{
d(θ̂n, θ0) > 2Mδn

}
.
∑
j>M

φn(2jδn)

22jδ2
n

.

The following assumption on φn(·) is usually made to simplify the expression above: There exists α < 2 such
that

φn(cx) ≤ cαφn(x) for all c > 1 and x > 0. (111)

Under this assumption, we get

P
{
d(θ̂n, θ0) > 2Mδn

}
.
φn(δn)

δ2
n

∑
j>M

2j(α−2).

The quantity
∑
j>M 2j(α−2) converges to zero as M →∞. Therefore if δn is such that

φn(δn) . δ2
n,

then
d(θ̂n, θ0) ≤ 2Mδn with probability at least 1− uM

where uM → 0 as M →∞.

This gives us the following nonasymptotic rate of convergence theorem:

Theorem 13.1. Assume the condition (105) and that the function φn(·) satisfies (110) and (111). Then

for every M > 0, we get d(θ̂n, θ0) ≤ 2Mδn with probability at least 1 − uM provided φn(δn) . δ2
n. Here

uM =
∑
j>M 2j(α−2) → 0 as M →∞.
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13.2 Application to Bounded Lipschitz Regression

Suppose f0 is an unknown function on [0, 1]. We observe data Y1, . . . , Yn on f0 that are generated according
to the model:

Yi = f0(i/n) + εi for i = 1, . . . , n

where ε1, . . . , εn are i.i.d N(0, 1) random variables.

Suppose that we assume that f0 is 1-Lipschitz on and that it is bounded by 1 on [0, 1]. In other words
we assume that f0 ∈ F where F is the collection of all functions on [0, 1] that are bounded in absolute value
by 1 and that are 1-Lipschitz. Under this assumption, it is reasonable to estimate f0 by

f̂n = argmin
f∈F

1

n

n∑
i=1

(Yi − f(i/n))
2
.

f̂n is clearly an M -estimator and we can use Theorem 13.1 to study some aspects of its behavior. For this,
we first write (using Yi = f0(i/n) + εi):

1

n

n∑
i=1

(Yi − f(i/n))
2

=
1

n

n∑
i=1

(εi + f0(i/n)− f(i/n))
2

=
1

n

n∑
i=1

(f0(i/n)− f(i/n))
2 − 2

n

n∑
i=1

εi (f(i/n)− f0(i/n)) +
1

n

n∑
i=1

ε2i .

As a result

f̂n = argmax
f∈F

(
2

n

n∑
i=1

εi (f(i/n)− f0(i/n))− 1

n

n∑
i=1

(f0(i/n)− f(i/n))
2

)
.

In order to use Theorem 13.1, we can thus take

Mn(f) :=
2

n

n∑
i=1

εi (f(i/n)− f0(i/n))− 1

n

n∑
i=1

(f0(i/n)− f(i/n))
2
.

It is then natural to take

M(f) := EMn(f) = − 1

n

n∑
i=1

(f0(i/n)− f(i/n))
2
.

For the discrepancy d, we can use the canonical choice (106):

d(f, f0) :=
√
M(f0)−M(f) =

√√√√ 1

n

n∑
i=1

(f0(i/n)− f(i/n))
2
.

To find the rate, we need to control

E sup
f∈F :d(f,f0)≤δ

(Mn −M)(f − f0) = 2E sup
f∈F :d(f,f0)≤δ

1

n

n∑
i=1

εi (f(i/n)− f0(i/n)) .

For this, we can use Dudley’s entropy bound. Let

Xf :=
1√
n

n∑
i=1

εi (f(i/n)− f0(i/n))
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and note that

Xf −Xg =
1√
n

n∑
i=1

εi (f(i/n)− g(i/n)) ∼ N(0, d2(f, g)).

This implies that

P {|Xf −Xg| ≥ u} ≤ 2 exp

(
−u2

2d2(f, g)

)
for all u ≥ 0.

Dudley’s entropy bound then immediately gives

E sup
f∈F :d(f,f0)≤δ

1

n

n∑
i=1

εi (f(i/n)− f0(i/n)) ≤ 1√
n
E sup
f∈F :d(f,f0)≤δ

|Xf −Xf0 |

≤ C√
n

∫ δ

0

√
logM(ε, {f ∈ F : d(f, f0) ≤ δ}, d)dε

≤ C√
n

∫ δ

0

√
logM(ε,F , d)dε.

We have previously noted that

M(ε,F , d) ≤M(ε,F , ‖·‖∞) ≤ exp

(
C

ε

)
.

This gives

E sup
f∈F :d(f,f0)≤δ

1

n

n∑
i=1

εi (f(i/n)− f0(i/n)) ≤ C√
n

∫ δ

0

√
logM(ε,F , d)dε ≤ C√

n

∫ δ

0

√
C

ε
dε .

√
δ

n
.

We can thus take φn(δ) :=
√
δ/n in Theorem 13.1. Note that this clearly satisfies the condition φn(cx) ≤

cαφn(x) with α = 1/2 < 2. The critical rate determining equation then becomes:

φn(δ) =

√
δ

n
. δ2

which gives δn & n−1/3. Thus Theorem 13.1 is valid here with δn = n−1/3 which allows us to deduce the
following:

1

n

n∑
i=1

(
f̂n(i/n)− f0(i/n)

)2

= OP (n−2/3)

or, more specifically,

P

{
1

n

n∑
i=1

(
f̂n(i/n)− f0(i/n)

)2

> 22Mn−2/3

}
. 2−M .

We have therefore proved that the rate of convergence in Lipschitz regression is n−2/3. We shall prove later
that, in a minimax or worst case sense (worst case over all functions f0 ∈ F), this n−2/3 rate cannot be
improved by any other estimator. In other words, n−2/3 is the minimax optimal rate of convergence for
Lipschitz functions on [0, 1].

More generally, suppose we now assume that f0 is in the smoothness class Sα that we previously defined.
In that case, the same argument as above leads to the inequality:

E sup
f∈Sα:d(f,f0)≤δ

(Mn −M)(f − f0) = 2E sup
f∈Sα:d(f,f0)≤δ

1

n

n∑
i=1

εi (f(i/n)− f0(i/n))

≤ C√
n

∫ δ

0

√
logM(ε,Sα, d)dε

≤ C√
n

∫ δ

0

(
1

ε

)1/(2α)

. (112)
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Suppose now that α > 1/2. In that case the integral above is finite and we get

E sup
f∈Sα:d(f,f0)≤δ

(Mn −M)(f − f0) .
1√
n
δ1−(1/(2α))

We can thus take

φn(δ) :=
1√
n
δ1−(1/(2α))

so that the critical inequality for determining the rate becomes

1√
n
δ1−(1/(2α))
n . δ2

n

which gives

δn & n−α/(2α+1)

leading us to the conclusion

1

n

n∑
i=1

(
f̂n(i/n)− f0(i/n)

)2

= OP (n−2α/2α+1)

It turns out that n−2α/(2α+1) is indeed the minimax optimal rate of estimation of functions in Sα.

Suppose now that α ≤ 1/2. In this case, the integral in (112) is infinite so Dudley’s bound in the form that
we used does not give us anything useful. In this case, one can use a modification of Dudley’s bound where
the lower limit in the integral is not zero but strictly positive (this is Problem 6 Homework 3). However the

resulting rate for d2(f̂n, f0) will be slower than n−2α/(2α+1). It is not known if the least squares estimator
over Sα is minimax optimal for α ≤ 1/2.

13.3 Back to the rate theorem

Now let us get back to Theorem 13.1. For proving the theorem, we assumed that

M(θ)−M(θ0) . −d2(θ, θ0) (113)

for all θ ∈ Θ. We also assumed that

E sup
θ∈Θ:d(θ,θ0)≤u

(Mn −M)(θ − θ0) . φn(u) (114)

for all u > 0. Here φn(u) is some function on (0,∞) which satisfies φn(cx) ≤ cαφn(x) for some α < 2.

Under these two assumptions, Theorem 13.1 asserted that d(θ̂n, θ0) = OP (δn) for every δn that satisfies
φn(δn) . δ2

n.

In some situations, it is not possible to ensure that (113) holds for all θ ∈ Θ. It is also not possible to
ensure that (114) holds for all u > 0. On the contrary, it is usually possible to ensure the existence of a
positive real number u∗ (not depending on n) such that (113) holds for all θ ∈ Θ with d(θ, θ0) ≤ u∗ and

such that (114) holds for all u ≤ u∗. In that case, it is still possible to assert that d(θ̂n, θ0) = OP (δn) under

the additional assumption that d(θ̂n, θ0) converges in probability to 0. This is the content of the following
theorem (which is Theorem 3.2.5 in Van der Vaart and Wellner [25]).

Theorem 13.2. Let u∗ be a strictly positive real number (not depending on n) such that (113) holds for
all θ ∈ Θ with d(θ, θ∗) ≤ u∗. Let φn be a function on (0,∞) which satisfies the condition for some α < 2:
φn(cx) ≤ cαφn(x) for all c > 1 and x > 0. Suppose that (114) holds for all 0 < u ≤ u∗. Assume that

d(θ̂n, θ0) = OP (1). Then d(θ̂n, θ0) = OP (δn) for every δn satisfying φn(δn) . δ2
n.
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Proof. Write

P
{
d(θ̂n, θ0) > 2Mδn

}
≤

∑
j>M :2jδn≤u∗

P
{

2j−1δn < d(θ̂n, θ0) ≤ 2jδn

}
+ P

{
2d(θ̂n, θ0) > u∗

}
.

The first term can be bounded in exactly the same way as in the proof of Theorem 13.1. This gives

P
{
d(θ̂n, θ0) > 2Mδn

}
.
φn(δn)

δ2
n

∑
j>M

2j(α−2) + P
{

2d(θ̂n, θ0) > u∗
}
.

If δn is chosen such that φn(δn) . δ2
n, the first term above converges to zero as M →∞. The second term, on

the other hand, converges to 0 as n → ∞ by the assumption that d(θ̂n, θ0) converges to zero in probability.
This concludes the proof of Theorem 13.2.

14 Lecture 14

14.1 Recap of the main rate theorem

θ̂n maximizes a stochastic process Mn(θ) over θ ∈ Θ while θ0 maximizes a deterministic process M(θ) over
θ ∈ Θ. Assume that d(·, ·) is such that

M(θ)−M(θ0) . −d2(θ, θ0)

for all θ ∈ Θ. Let φn(·) be a function satisfying a mild condition (there exists α < 2 such that φn(cx) ≤
cαφn(x)) such that

E sup
θ∈Θ:d(θ,θ0)≤u

(Mn −M)(θ − θ0) . φn(u)

for all u > 0. Then the random quantity d(θ̂n, θ0) will be controlled by δn for every δn satisfying

φn(δn) . δ2
n.

Formally, we have

P
{
d(θ̂n, θ0) > 2Mδn

}
.
∑
j>M

2j(α−2). (115)

Here are some strengths and weaknesses of this theorem. Let us start with the strengths:

1. It rigorizes the heuristic argument well. Indeed, the heuristic argument starts with the basic inequality:

d2(θ̂n, θ0) .M(θ0)−M(θ̂n) ≤ (Mn −M)(θ̂n − θ0).

From here, it is easy to derive that δ̂n := d(θ̂n, θ0) satisfies(
δ̂n

)2

. sup
θ∈Θ:d(θ̂n,θ0)≤δ̂n

(Mn −M)(θ − θ0).

From here, it is reasonable to conjecture that the d(θ̂n, θ0) will be controlled by any δn satisfying

δ2
n . E sup

θ∈Θ:d(θ,θ0)≤δn
(Mn −M)(θ − θ0).

The theorem basically proves this if the . inequality above is changed to &. This also suggests that
the rate obtained by solving φn(δn) ∼ δ2

n should be the correct rate for d(θ̂n, θ0).
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2. It is very general. The theorem is quite general and applies to a variety of problems. We have already
seen examples of this and we shall some more examples in the near future.

3. It is very simple to prove. The proof is only a few lines long and does not use any complicated machinery.

Here are some important weaknesses of the rate theorem.

1. The most important weakness is that, although the rate obtained is usually correct, the deviation
inequaiity (115) is usually quite weak. To see this, observe that when α = 1 (for example), inequality
(115) becomes

P
{
d(θ̂n, θ0) > 2Mδn

}
. 2−M

from which it follows that

P
{
d(θ̂n, θ0) > tδn

}
.

1

t

for all t. This inequality is quite weak in the sense that it does not even imply that

Ed2(θ̂n, θ0) . δ2
n.

The main reason for the looseness comes from the use of Markov’s inequality in the proof:

P

{
sup

θ∈Θ:d(θ,θ0)≤2jδn

(Mn −M)(θ − θ0) & 22j−2δ2
n

}
≤ 1

22j−2δ2
n

E sup
θ∈Θ:d(θ,θ0)≤2jδn

(Mn −M)(θ − θ0).

This inequality is quite loose. More sophisticated arguments (under more specialized settings) can be

used in place of this and these give improved bounds for P{d(θ̂n, θ0) > tδn}. We shall see some examples
of such improved results later.

2. Calculating the rate via the theorem requires one to bound

E sup
θ∈Θ:d(θ,θ0)≤u

(Mn −M)(θ − θ0).

Although there exist general techniques for this, getting good bounds in specific situations can still be
quite hard.

We shall next apply the rate theorem for understanding the loss behavior of convex penalized least squares
estimators in the Gaussian sequence model. Before that, let us first introduce the Gaussian sequence model.

14.2 The Gaussian Sequence Model

The (finite) Gaussian Sequence Model is an important model for studying the theoretical performance of
many commonly used statistical procedures. For a comprehensive treatment of estimation theory under the
Gaussian sequence model, see Johnstone [11].

Suppose we observe real-valued observations Y1, . . . , Yn. Under the Gaussian sequence model, we model
the observed data as

Yi = θ∗i + εi for i = 1, . . . , n

where ε1, . . . , εn are i.i.d N(0, 1). In other words, ε ∼ N(0, In) and Y ∼ N(θ∗, In). The goal is to estimate
θ∗1 , . . . , θ

∗
n from data Y1, . . . , Yn under the loss function:

1

n

n∑
i=1

(
θ̂i − θ∗i

)2

=
1

n

∥∥∥θ̂ − θ∗∥∥∥2

.
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The risk of an estimator θ̂ will be defined as

R(θ̂, θ∗) :=
1

n
E
∥∥∥θ̂ − θ∗∥∥∥2

.

Usually one imposes some additional structure on the unknown parameters θ∗1 , . . . , θ
∗
n. Here are some standard

examples of such additional structure:

1. No Structure: In this case, no information is available on θ∗1 , . . . , θ
∗
n. It is intuitively clear then that

one cannot do much better than the simple estimator θ̂i = Yi, i = 1, . . . , n. The risk of this estimator
clearly equals 1. It turns out that

inf
θ̃

sup
θ∈Rn

R(θ̃, θ) = 1.

This means that the simple estimator Y is minimax optimal over Rn (or equivalently, the worst case
risk over θ ∈ Rn of every other estimator is at least 1).

2. Fixed Linear Subspace: Here it is assumed that θ∗ ∈ S for a known linear subspace S. In this case,
the most natural estimator is the projection of Y onto S. This estimator has risk k/n where k is the
dimension of S. The minimax risk over S equals k/n i.e.,

inf
θ̃

sup
θ∈S

R(θ̃, θ) =
k

n
.

3. Smoothness: Suppose θ∗ = (f∗(1/n), . . . , f∗(1)) for some function f∗ : [0, 1] → [−1, 1] which is 1-

Lipschitz. In the last class, we saw that if we consider the estimator θ̂ = (f̂(1/n), . . . , f̂(1)) where f̂ is
any least squares estimator over the class of all 1-Lipschitz functions that are bounded by 1, then

1

n

∥∥∥θ̂ − θ∗∥∥∥ = OP (n−2/3).

It is possible to also prove that the above bound also holds in expectation i.e.,

R(θ̂, θ∗) . n−2/3.

It turns out that n−2/3 is actually the minimax risk over the class of all vectors (f(1/n), . . . , f(1)) where

f : [0, 1] → [−1, 1] is 1-Lipschitz. We shall prove this later. The estimator θ̂ is actually non-linear.
However it is possible to achieve the risk n−2/3 also with a linear estimator based on local averaging of
Y1, . . . , Yn.

4. Sparsity: Suppose the vector θ∗ is sparse in the sense that only a few of its entries are non-zero. More
precisely assume that θ∗ ∈ Θk where Θk is the class of all vectors in Rn which have at most k non-zero
entries. Assume that k is small compared to n (specifically, assume that k/n→ 0 as n→∞). In this

case, there exist estimators θ̂ which satisfy

sup
θ∈Θk

R(θ̂, θ∗) =
2k

n
log

n

k
(1 + o(1)) . (116)

It can be proved that the minimax risk over Θk also equals the right hand side above (we shall prove

this later). The estimator θ̂ achieving (116) can be taken to be LASSO or soft-thresholding with an
appropriate choice of the tuning parameter. This is an M-estimator that can be studied via the rate
theorem. We shall do this later.

5. Low Rank Structure: Suppose θ∗ is the vectorization of a d × d matrix A∗ with n = d2. Suppose
it is assumed that A∗ is rank at most r. Then a penalized estimator based on penalizing the nuclear
norm (sum of singular values) can be shown to be minimax optimal.
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14.3 Convex Penalized Estimators in the Gausssian Sequence Model

In the Gaussian sequence model Y = θ∗ + ε with ε ∼ N(0, In), a very standard class of estimators is given
by estimators of the form:

θ̂λ,f := argmin
θ∈Rn

(
1

2
‖Y − θ‖2 + λf(θ)

)
(117)

where f : Rn → R is a convex function and λ > 0 is an appropriate tuning parameter. The function
f will be the L1 norm of θ when we believe that the true signal is sparse and will be the nuclear norm
of the matrix corresponding to θ under a low rank assumption. Other functions f are also used (such as

f(θ) :=
∑n−1
i=1 |θi − θi−1| for piecewise constant structure).

The estimator (117) is obviously an M -estimator so we can use our general rate theorem to study:

1

n

n∑
i=1

∥∥∥θ∗ − θ̂λ,f∥∥∥2

.

For this, we first write (using Y = θ∗ + ε),

1

2
‖Y − θ‖2 + λf(θ) =

1

2
‖θ∗ − θ‖2 − 〈ε, θ − θ∗〉+ λf(θ) + ‖ε‖2 .

Therefore, we can write

θ̂λ,f = argmax
θ∈Rn

(
〈ε, θ − θ∗〉 − 1

2
‖θ − θ∗‖2 − λf(θ)

)
.

We can therefore apply the rate theorem with Θ = Rn and

Mn(θ) := 〈ε, θ − θ∗〉 − 1

2
‖θ − θ∗‖2 − λf(θ) and M(θ) :=

−1

2
‖θ − θ∗‖2 .

Note that M(θ) is maximized at θ∗ and the condition

M(θ)−M(θ∗) . −d2(θ, θ∗)

is trivially satisfied when

d(θ, θ∗) := ‖θ − θ∗‖ .

We can therefore apply the rate theorem which will require us to bound the expectation of

sup
θ∈Rn:‖θ−θ∗‖≤u

(Mn −M)(θ − θ∗) = sup
θ∈Rn:‖θ−θ∗‖≤u

(〈ε, θ − θ∗〉 − λf(θ) + λf(θ∗)) .

We now bound this term in the following way. Because f is convex, for every subgradient s of f at θ∗, we
have

f(θ) ≥ f(θ∗) + 〈s, θ − θ∗〉 .

As a result,

sup
θ∈Rn:‖θ−θ∗‖≤u

(Mn −M)(θ − θ∗) = sup
θ∈Rn:‖θ−θ∗‖≤u

(〈ε, θ − θ∗〉 − λf(θ) + λf(θ∗))

≤ sup
θ∈Rn:‖θ−θ∗‖≤u

(〈ε, θ − θ∗〉 − λ 〈s, θ − θ∗〉)

= sup
θ∈Rn:‖θ−θ∗‖≤u

〈ε− λs, θ − θ∗〉

≤ sup
θ∈Rn:‖θ−θ∗‖≤u

‖ε− λs‖ ‖θ − θ∗‖ ≤ u ‖ε− λs‖ .
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where, in the last inequality above, we used the Cauchy-Schwarz inequality. Note that the above is true for
every subgradient s of f at θ∗. The set of all subgradients of f at θ∗ is called the subdifferential of f at θ∗

and is denoted by ∂f(θ∗). Because the above chain of inequalities is true for every s ∈ ∂f(θ∗), we can take
an infimum over s ∈ ∂f(θ∗) which allows us to deduce that

sup
θ∈Rn:‖θ−θ∗‖≤u

(Mn −M)(θ − θ∗) ≤ u inf
s∈∂f(θ∗)

‖ε− λs‖ =: u dist(ε, λ∂f(θ∗))

and thus

E sup
θ∈Rn:‖θ−θ∗‖≤u

(Mn −M)(θ − θ∗) ≤ u Edist(ε, λ∂f(θ∗)).

The rate theorem therefore implies that
∥∥∥θ̂λ,f − θ∗∥∥∥ is controlled by δn which solves

δn Edist(ε, λ∂f(θ∗)) = δ2
n

which means that we can take

δn := Edist(ε, λ∂f(θ∗)).

The precise inequality given by the rate theorem for bounding
∥∥∥θ̂λ,f − θ∗∥∥∥ via δn is slightly weak (as mentioned

earlier, this happens in quite a few situations). However, in this context, it can be proved (see Oymak and
Hassibi [17]) that

E
∥∥∥θ̂λ,f − θ∗∥∥∥2

≤ Edist2(ε, λ∂f(θ∗)). (118)

I will include a sketch of the proof of this inequality in the homework. Inequality (118) implies that if ∂f(θ∗)

is a large set in Rn, then the risk of θ̂λ,f will be small. Note that inequality (118) holds for every convex
function f so it is applicable in a variety of situations. In the next section, we shall demonstrate its use for
studying risks in sparse signal estimation.

14.3.1 Application of inequality (118) for sparse signal estimation

We shall now apply the inequality (118) to the case when f(θ) = |θ1|+ · · ·+ |θn| is the L1 norm of θ. For a
fixed λ, we need to bound the squared expected distance of a standard Gaussian vector ε to λ∂f(θ∗). The
first step is to obtain a characterization of ∂f(θ∗). It is straightforward to see that ∂f(θ∗) consists of all
vectors (v1, . . . , vn) ∈ Rn such that

vi


= {1} if θ∗i > 0

= {−1} if θ∗i < 0

∈ [−1, 1] if θ∗i = 0.

As a result, λ∂f(θ∗) consists of all vectors (v1, . . . , vn) ∈ Rn such that

vi


= {λ} if θ∗i > 0

= {−λ} if θ∗i < 0

∈ [−λ, λ] if θ∗i = 0.

As a result,

dist2(ε, λ∂f(θ∗)) =
∑
i:θ∗i 6=0

(εi − sign(θ∗i )λ)
2

+
∑
i:θ∗i=0

(εi − pλ(εi))
2
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where pλ(εi) is the point in the interval [−λ, λ] that is closest to εi. It is now easy to see that

εi − pλ(εi) =


εi − λ if εi > λ

0 if − λ ≤ εi ≤ λ
εi + λ if εi < −λ.

This function above has a name and it is called the soft thresholding of εi with level λ. We thus have

εi − pλ(εi) = softλ(εi).

We have thus obtained:

Edist2(ε, λ∂f(θ∗)) =
∑
i:θ∗i 6=0

E (εi − sign(θ∗i )λ)
2

+
∑
i:θ∗i=0

E [softλ(εi)]
2

= k(1 + λ2) + (n− k)E [softλ(ε1)]
2

where k is the number of non-zero entries in θ∗. To proceed further, we need to compute E [softλ(ε1)]
2

which
we shall do in the next class.

15 Lecture 15

In the last lecture, we were studying the performance of estimators of the form:

θ̂λ,f := argmin
θ∈Rn

(
1

2
‖Y − θ‖2 + λf(θ)

)
under the model Y = θ∗ + ε with ε ∼ N(0, In). Here f : Rn → R is a convex function.

For this estimator, we remarked last time that the following inequality is true:

E
∥∥∥θ̂λ,f − θ∗∥∥∥2

≤ Endist2(ε, λ∂f(θ∗)). (119)

This inequality is due to Oymak and Hassibi [17]; it has a simple proof which is given below.

15.1 Proof of Inequality (119)

Let g(θ) := ‖y − θ‖2 /2+λf(θ) for θ ∈ Rn. The statement that θ̂λ,f minimizes g is equivalent to the statement

that 0 ∈ ∂g(θ̂λ,f ) (this is trivial because θ̂λ,f minimizing g is equivalent to g(θ) ≥ g(θ̂λ,f ) +
〈

0, θ − θ̂λ,f
〉

). It

is now easy to check that
∂g(θ̂λ,f ) = θ̂λ,f − Y + λ∂f(θ̂λ,f )n

so that we have
0 ∈ θ̂λ,f − Y + λ∂f(θ̂λ,f )

or equivalently
Y − θ̂λ,f ∈ λ∂f(θ̂λ,f ).

We now use Lemma 15.1 below to deduce that for every s ∈ ∂f(θ∗), we have〈
Y − θ̂λ,f − λs, θ̂λ,f − θ∗

〉
≥ 0.

Writing Y = θ∗ + ε, we obtain ∥∥∥θ̂λ,f − θ∗∥∥∥2

≤
〈
ε− λs, θ̂λ,f − θ∗

〉
.
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The Cauchy-Schwarz inequality can be used on the right hand side above which will give:∥∥∥θ̂λ,f − θ∗∥∥∥ ≤ ‖ε− λs‖ .
This is true for every s ∈ ∂f(θ∗) so we can take an infimum over all such s and deduce∥∥∥θ̂λ,f − θ∗∥∥∥ ≤ dist(ε, λ∂f(θ∗))

which completes the proof of inequality (119).

Lemma 15.1. Let f : Rn → R be a convex function. Then for every θ1, θ2 ∈ Rn and s1 ∈ ∂f(θ1),
s2 ∈ ∂f(θ2), we have

〈θ1 − θ2, s1 − s2〉 ≥ 0. (120)

Proof. By the definition of subgradients, we have

f(θ1) ≥ f(θ2) + 〈s2, θ1 − θ2〉 and f(θ2) ≥ f(θ1) + 〈s1, θ2 − θ1〉 .

Adding these two inequalities results in (120).

15.2 Application of (119) to f(x) = ‖x‖1

In the last lecture, we applied (119) to the situation when f(x) = ‖x‖1 = |x1|+ · · ·+ |xn| and argued that

Edist2(ε, λ∂f(θ∗)) =
∑
i:θ∗i 6=0

E (εi − sign(θ∗i )λ)
2

+
∑
i:θ∗i=0

E [softλ(εi)]
2

= k(1 + λ2) + (n− k)E [softλ(ε1)]
2

(121)

where

softλ(y) =


y − λ if y > λ

0 if − λ ≤ y ≤ λ
y + λ if y < −λ.

We now proceed via (below φ(x) = (2π)−1/2e−x
2/2 is the standard Gaussian density)

E [softλ(ε1)]
2

=

∫ ∞
−∞
{softλ(x)}2 φ(x)dx

= 2

∫ ∞
0

{softλ(x)}2 φ(x)dx

= 2

∫ ∞
λ

(x− λ)2φ(x)dx

= 2

[∫ ∞
λ

x2φ(x)dx− 2λ

∫ ∞
λ

xφ(x)dx+ λ2

∫ ∞
λ

φ(x)dx

]
.

We now apply integration by parts in the first integral above (with u = x and dv = xφ(x)dx), evaluate the
second integral in closed form and leave the third integral as is to obtain

E [softλ(ε1)]
2

= 2(1 + λ2) (1− Φ(λ))− 2λφ(λ)

where Φ(λ) =
∫ λ
−∞ φ(x)dx is the Gaussian cdf. We now use the standard Mill’s ratio Gaussian bound:

1− Φ(λ) ≤ φ(λ)

λ
for λ > 0
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to obtain

E [softλ(ε1)]
2 ≤ 2(1 + λ2)

φ(λ)

λ
− 2λφ(λ) =

2φ(λ)

λ
. (122)

Using this in (121), we obtain

Edist2(ε, λ∂f(θ∗)) ≤ k(1 + λ2) + 2(n− k)
φ(λ)

λ

which implies, via inequality (119),

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤ k(1 + λ2) + (n− k)
e−λ

2/2

λ

√
2

π
. (123)

If we now make the choice

λ =

√
2 log

n

k
, (124)

we obtain the risk bound

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤ k
(

1 + 2 log
n

k

)
+ (n− k)

k

n

√
2

π

(
2 log

n

k

)−1/2

=
(

2k log
n

k

)
(1 + o(1)) (125)

as n→∞ provided k/n→ 0. Thus the LASSO with the penality (124) achieves the risk 2k log(n/k).

Note that if the locations of the non-zero entries in θ∗ are known, then the naive estimator which estimates
the non-zero entries by Yi and the zero entries by 0 with achieve risk equal to k. This, in relation to (125),
means that the LASSO with tuning (124) is paying a price of 2 log(n/k) for not knowing the non-zero
locations. We shall later prove that every estimator will have to pay this price in a minimax sense. This is
not too hard to see intuitively. For example, if k = 1 and the magnitude of the non-zero signal is

√
c log n

for some c < 2, then the noise in the data will drown the signal so every estimator will most likely miss the
signal and incur a loss of c log n. We shall make this precise later.

In order to use the choice (124) for the tuning parameter λ, we need knowledge of k. One can instead use

λ =
√

2 log n (126)

which does not depend on k. With this choice, the bound (123) gives

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤ (2k log n)(1 + o(1)) (127)

which is only slightly worse compared to (125). If k is of constant order, then there is not much difference
between (125) and (127) but for k = n/(log n), there is a difference.

The bound (123) for the LASSO can actually be derived by a more direct method without relying on
the inequality (119). This is because the estimator can be written in closed form via the soft thresholding
operator. This is done next.

15.3 Soft Thresholding

The estimator

θ̂λ := argmin
θ∈Rn

(
1

2
‖Y − θ‖2 + λ

n∑
i=1

|θi|

)
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can be written in closed form. Indeed observe first that if θ̂λ = (θ̂λ(1), . . . , θ̂λ(n)), then

θ̂λ(i) = argmin
θi∈R

1

2
(Yi − θi)2 + λ|θi|.

The function Q(θi) := (Yi − θi)2/2 + λ|θi| is convex and

Q′(θi) =

{
θi − Yi − λ if θi < 0

θi − Yi + λ if θi > 0

The derivative Q′(θi) is therefore piecewise linear with positive slope except for an upward jump of 2λ at
θi = 0. Thus, Q′(θi) has exactly one sign change from negative to positive at a single point which must
therefore be the minimizing value of Q(θi). Depending on the value of Yi, this crossing point is positive, zero
or negative, and we can then check that

θ̂λ(i) =


Yi − λ if Yi > λ

0 if − λ ≤ Yi ≤ λ
Yi + λ if Yi < −λ

In other words,
θ̂λ(i) = softλ(Yi) for i = 1, . . . , n.

Using this, we can directly study the risk of θ̂λ as follows:

E
∥∥∥θ̂λ − θ∗∥∥∥2

=

n∑
i=1

E (softλ(Yi)− θ∗i )
2

=

n∑
i=1

rS(λ, θ∗i )

where
rS(λ, µ) := E (softλ(y)− µ)

2
with y ∼ N(µ, 1).

This quantity rS(λ, µ) is the risk of the soft thresholding estimator (at threshold λ) in the univariate problem
with data y ∼ N(µ, 1). We can explicitly write this as

rS(λ, µ) := E (softλ(y)− µ)
2

=

∫ λ

−λ
µ2φ(x− µ)dx+

∫ −λ
−∞

(x+ λ− µ)2φ(x− µ)dx+

∫ ∞
λ

(x− λ− µ)2φ(x− µ)dx

= µ2

∫ λ−µ

−λ−µ
φ(z)dz +

∫ −λ−µ
−∞

(z + λ)2φ(z)dz +

∫ ∞
λ−µ

(z − λ)2φ(z)dz.

The following are some basic properties of rS(λ, µ):

1. The function µ 7→ rS(λ, µ) is increasing on [0,∞). This is intuitive and easy to check via the calculation:

∂

∂µ
rS(λ, µ) = 2µ (Φ(λ− µ)− Φ(−λ− µ)) (128)

which is positive when µ > 0.

2. When µ = 0, we have

rS(λ, 0) ≤ 2φ(λ)

λ
=

√
2

π

1

λ
e−λ

2/2 for all λ > 0.

We proved this in (122).
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3. When µ approaches ±∞, the risk rS(λ, µ) behaves like 1 + λ2:

lim
µ→∞

rS(λ, µ) = 1 + λ2.

I will leave this as an exercise to prove this. Intuitively, this is obvious since for large µ, most likely
softλ(y) = y − λ and E(y − λ− µ)2 = 1 + λ2. Combined with the fact that µ 7→ rS(λ, µ) is increasing
on [0,∞), we can deduce that

sup
µ∈R

rS(λ, µ) = 1 + λ2. (129)

These facts imply that, compared to the naive estimator y, the risk of the soft thresholding estimator is much
smaller at µ = 0 while its worst case risk is larger. Therefore, it makes sense to use it only when it is believed
that µ is zero or small.

Using the above observations, we can give an alternative proof of the risk bound (123) for LASSO. Indeed,
we can write

E
∥∥∥θ̂λ − θ∗∥∥∥2

=
n∑
i=1

E (softλ(Yi)− θ∗i )
2

=

n∑
i=1

rS(λ, θ∗i ) =
∑
i:θ∗i 6=0

rS(λ, θ∗i ) +
∑
i:θ∗i=0

rS(λ, θ∗i ) ≤ k sup
µ
rS(λ, µ) + (n− k)rS(λ, 0).

Using the second and third facts above, we obtain

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤ k(1 + λ2) + 2(n− k)
φ(λ)

λ
.

This proves (123) which, we have seen in the last subsection, allows us to deduce the rate results (125) and
(127) under the choices (124) and (126) for the tuning parameter λ respectively.

Note that in the above bound, we used

rS(λ, θ∗i ) ≤ sup
µ∈R

rS(λ, µ) (130)

whenever θ∗i 6= 0. If more information is provided about the θ∗, then this might not be a very good bound.
For example, it is common to also study the performance of LASSO under the assumption:

‖θ∗‖1 ≤ Cn (131)

for some Cn > 0. Under this assumption, potentiall all of the θ∗i ’s can be non-zero so that use of (130)
will give very poor bounds. Note that, even though under (131), all entries of θ∗ can be non-zero, they
have to satisfy the property that the jth largest entry in absolute value (to be denoted by |θ∗|(j)) should be
bounded by Cn/j. This means that the entries of θ∗ have to satisfy a certain decay. The assumption (131)
can therefore be considered to be some form of weak sparsity assumption on θ∗.

Let us now study the risk of θ̂λ under the assumption (131). As mentioned earlier, we need some bound
for rS(λ, µ) for µ 6= 0 that is better than 1 + λ2. For this, we use inequality (128) to write

rS(λ, µ)− rS(λ, 0) =

∫ µ

0

∂

∂µ
rS(λ, dµ)dµ

=

∫ µ

0

2ν (Φ(λ− ν)− Φ(−λ− ν)) dν ≤
∫ µ

0

2νdν = µ2

which gives

rS(λ, µ) ≤ rS(λ, 0) + µ2.

80



Combining this with (129), we deduce

rS(λ, µ) ≤ rS(λ, 0) + min(µ2, 1 + λ2).

This implies that the risk of LASSO is bounded by

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤ nrS(λ, 0) +

n∑
i=1

min
(
(θ∗i )2, 1 + λ2

)
.

We shall further bound this under the assumption (131). Because min(a2, b2) ≤ ab for a, b ≥ 0, we obtain

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤ nrS(λ, 0) +
√

1 + λ2

n∑
i=1

|θ∗i | ≤ nrS(λ, 0) +
√

1 + λ2Cn ≤ 2n
φ(λ)

λ
+
√

1 + λ2Cn.

The choice λ =
√

2 log n will now lead to

E
∥∥∥θ̂λ − θ∗∥∥∥2

≤
√

2

log n
+ Cn

√
1 + 2 log n . Cn

√
log n

This further gives

1

n
E
∥∥∥θ̂λ − θ∗∥∥∥2

.
Cn
√

log n

n
.

If, for example, Cn .
√
n, then the bound above becomes

√
(log n)/n. We shall see later that this rate is

minimax under the assumption (131).

16 Lecture 16

In the last lecture, we studied the behavior of the soft thresholding estimator in the Gaussian sequence model
Y ∼ Nn(θ∗, In). We noted that this estimator is just the same as LASSO and looked at bounds on its risk
in the case where θ∗ has exact sparsity and in the case of weak sparsity. We start this lecture with hard
thresholding which has many similar properties to the soft thresholding estimator.

16.1 Hard Thresholding Estimator

The hard thresholding function is defined as:

hardλ(y) := yI{|y| > λ} or hardλ(y) := yI{|y| ≥ λ}

Let us fix on the first definition above for concreteness. In words, hardλ(y) equals 0 when −λ ≤ y ≤ λ and
equals y otherwise. It is similar to softλ(y) in that both equal 0 when |y| ≤ λ. However, it is different in that
it is discontinuous in y while softλ(y) is continuous.

The Hard Thresholding estimator θ̂Hλ for θ∗ in the Gaussian sequence model Y ∼ N(θ∗, In) is given by

θ̂Hλ = (hardλ(Y1), . . . ,hardλ(Yn)).

It is easy to see that θ̂Hλ is the solution to the optimization problem:

θ̂Hλ = argmin
θ∈Rn

(
‖Y − θ‖2 + λ2 ‖θ‖0

)
.

where ‖θ‖0 :=
∑n
i=1 I{θi 6= 0}.
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Note the similarity and dissimilarity of this optimization with the soft-thresholding (or LASSO) which is

θ̂Sλ = argmin
θ∈Rn

(
1

2
‖Y − θ‖2 + λ ‖θ‖1

)
.

Notice that the tuning parameter in θ̂Hλ is λ2 while it is λ in θ̂Sλ . Also there is no factor of 1/2 for the sum

of squares term in θ̂Hλ .

The hard thresholding estimator θ̂Hλ has very similar properties to the soft thresholding estimator in
sparse settings. For example, we shall show below that when θ∗ is k-sparse (i.e., ‖θ∗‖0 = k) with k/n→ 0,

E
∥∥∥θ̂Hλ − θ∗∥∥∥2

≤ (2k log(n/k)) (1 + o(1)) provided λ =
√

2 log(n/k). (132)

To see this, write

E
∥∥∥θ̂Hλ − θ∗∥∥∥2

=

n∑
i=1

rH(λ, θ∗i )

where

rH(λ, µ) := E (hardλ(y)− µ)
2

with y ∼ N(µ, 1).

Therefore

E
∥∥∥θ̂Hλ − θ∗∥∥∥2

=

n∑
i=1

rH(λ, θ∗i ) ≤ (n− k)rH(λ, 0) + k sup
µ∈R

rH(λ, µ).

It is now easy to see that

rH(λ, 0) = 2

∫ ∞
λ

x2φ(x)dx = 2λφ(λ) + 2 (1− Φ(λ))

where the integral above was computed by integration by parts. The standard Mills ratio bound now gives

rH(λ, 0) ≤ 2

(
λ+

1

λ

)
φ(λ) for all λ > 0.

It can also be shown (homework) that

sup
µ∈R

rH(λ, µ) ≤ 1 + λ2 for all λ > 0.

Unlike soft thresholding, the function µ 7→ rH(λ, µ) is not monotonically increasing in µ > 0. Indeed, it is
easy to see that limµ→∞ rH(λ, µ) = 1 but the maximum is achieved at some finite µ (near λ).

Because of the above facts, it follows that

E
∥∥∥θ̂Hλ − θ∗∥∥∥2

≤ (n− k)2(λ+ λ−1)φ(λ) + k(1 + λ2) = k

(
1 + λ2 +

(n
k
− 1
)√ 2

π
e−λ

2/2
(
λ+ λ−1

))
.

The choice λ =
√

2 log(n/k) now easily gives (132). It also follows that

E
∥∥∥θ̂Hλ − θ∗∥∥∥2

≤ (2k log n) (1 + o(1)) for λ =
√

2 log n.

It is also true that θ̂Hλ works similarly to soft thresholding under the assumption ‖θ∗‖1 ≤ Cn (this is home-
work).
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16.2 Linear Regression

We shall now study the linear regression model. Here we observe again a data vector Y ∈ Rn that we shall
model as

Y = Xθ∗ + ε with ε ∼ N(0, In)

for some known deterministic n× p matrix X. The p× 1 parameter θ∗ is the unknown parameter of interest.

Given an estimator θ̂ of θ∗, we will be interested in the prediction risk :

E
1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

. (133)

Depending on the particular context, it might be more or less natural to study E
∥∥∥θ̂ − θ∗∥∥∥2

/n but this will

usually require more assumptions on X and we shall refrain from studying this loss function.

Both the hard and soft thresholding estimators can be extended in a straightforward manner to the case
of Linear Regression. The extension of the hard thresholding estimator will be:

θ̂λ := argmin
θ∈Rp

(
‖Y −Xθ‖2 + λ2 ‖θ‖0

)
. (134)

Note that when X = I, we used this estimator under sparse settings with λ =
√

2 log(n/k) or λ =
√

2 log n.
Therefore the term multiplying ‖θ‖0 in (134) will involve log n. For this reason, we shall refer to this esti-
mator as the BIC estimator (see, for example, https://en.wikipedia.org/wiki/Bayesian_information_

criterion) and denote this by θ̂BIC
λ .

The extension of the soft thresholding estimator directly gives the LASSO estimator:

θ̂LASSO
λ := argmin

θ∈Rp

(
1

2
‖Y − θ‖2 + λ ‖θ‖1

)
. (135)

We shall analyze both these estimators in terms of the prediction risk (133). We shall focus mainly on the
exact sparsity setting where k := ‖θ∗‖0 is small compared to p and n. From the computational perspective,
it is easy to see that (135) can be computed via convex optimization while (134) can be very hard to compute
depending on X (in the worst case, computing (134) is NP hard).

Let us start with the analysis for the BIC estimator (134).

16.3 The Prediction Risk of θ̂BIC
λ

The key question is: when θ∗ is k-sparse, does the BIC estimator, properly regularized, have prediction
risk bounded by a constant multiple of (k/n)(log(ep/k))? We shall see that this will be true without any
assumptions on the design matrix X.

Before answering this question, let us first analyze a simple estimator that is given by

θ̂ := argmin
θ:‖θ‖0≤k

(
‖Y −Xθ‖2

)
.

This estimator simply minimizes the sum of squares over all θ having at most k entries. Remember that k is
the L0 norm of the true vector θ∗ so that ‖θ∗‖0 needs to be known for using this estimator. We shall prove
that for this estimator,

1

n
E
∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ C k
n

log
(ep
k

)
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for a universal constant C. Let us first use the rate theorem to see why this should be true. We can write θ̂
as

θ̂ = argmax
θ:‖θ‖0≤k

(
2 〈ε,Xθ −Xθ∗〉 − ‖Xθ −Xθ∗‖2

)
= argmax

θ∈Θ
Mn(θ)

where Θ := {θ ∈ Rn : ‖θ‖0 ≤ k} and

Mn(θ) := 2 〈ε,Xθ −Xθ∗〉 − ‖Xθ −Xθ∗‖2 .

We will use the rate theorem with this Mn and

M(θ) := −‖Xθ −Xθ∗‖2 and d(θ, θ∗) := ‖Xθ −Xθ∗‖ .

Thus to obtain the rate via the rate theorem, we need to bound

E sup
θ:‖θ‖0≤k,d(θ,θ∗)≤u

(Mn −M)(θ − θ∗) ≤ 2E sup
θ:‖θ‖0≤k,‖Xθ−Xθ∗‖≤u

〈ε,Xθ −Xθ∗〉 = E sup
v∈V
〈ε, v〉

where V consists of all vectors v ∈ Rn with ‖v‖ ≤ u and which satisfy v = X(θ − θ∗) for some θ with
‖θ‖0 ≤ k. We shall use Dudley’s entropy bound to control the expected supremum above:

E sup
v∈V
〈ε, v〉 ≤ C

∫ diam(V )/2

0

√
logM(ε, V )dε (136)

where M(ε, V ) and diam(V ) are the packing number and diameter in the usual Euclidean metric on Rn.

Note now that for every θ with ‖θ‖0 ≤ k, we have ‖θ − θ∗‖0 ≤ 2k (because ‖θ∗‖0 ≤ k). As a result, we
can write

V ⊆ ∪{VS : S ⊆ {1, . . . , p}, |S| ≤ 2k}

(where |S| denotes the cardinality of S) where VS denotes the set of all vectors v ∈ Rn for which ‖v‖ ≤ u
and v = Xβ for some β that is supported on S (i.e., {i : βi 6= 0} ⊆ S). Therefore, we deduce that

M(ε, V ) ≤
∑

S⊆{1,...,p}:|S|≤2k

M(ε, VS).

Because,

VS := {v ∈ Rn : ‖v‖ ≤ u, v ∈ C(XS)}

where XS is the matrix formed by including only those columns of X whose indices belong to S and C(XS)
denotes the column space of XS . This means that VS is a ball in a linear subspace of dimension at most 2k
so that (by an earlier result on packing numbers of balls in linear spaces)

M(ε, VS) ≤
(

1 +
2u

ε

)2k

.

Consequently,

M(ε, V ) ≤
(

1 +
2u

ε

)2k

|{S ⊆ {1, . . . , p} : |S| ≤ 2k}| ≤
(

1 +
2u

ε

)2k [(
p

0

)
+ · · ·+

(
p

2k

)]
≤
(

1 +
2u

ε

)2k ( ep
2k

)2k

.

Plugging this in (136), we obtain

E sup
v∈V
〈ε, v〉 ≤ C

∫ u

0

√
2k log

(
1 +

2u

ε

)
+ 2k log

ep

2k
dε

≤
∫ u

0

√
2k log

(
1 +

2u

ε

)
dε+

∫ u

0

√
2k log

ep

2k
dε . u

√
k

√
log

ep

2k
.
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Equating this to u2, we would obtain

u =

√
k log

ep

2k
.

This suggests therefore that

E
[

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2
]
≤ Ck

n
log

ep

2k
. (137)

As usual, our rate theorem is not strong enough to give this expectation control. To prove the above bound,
we can argue as follows. The basic inequality corresponding to the M -estimator θ̂ is: M(θ∗) − M(θ̂) ≤
(Mn −M)(θ̂ − θ∗) which is the same as

∥∥∥Xθ̂n −Xθ∗∥∥∥2

≤ 2
〈
ε,Xθ̂ −Xθ∗

〉
≤ 2

〈
ε,

Xθ̂ −Xθ∗∥∥∥Xθ̂ −Xθ∗∥∥∥
〉∥∥∥Xθ̂ −Xθ∗∥∥∥

so that ∥∥∥Xθ̂n −Xθ∗∥∥∥ ≤ 2

〈
ε,

Xθ̂ −Xθ∗∥∥∥Xθ̂ −Xθ∗∥∥∥
〉
≤ 2 sup

v∈V ∗
〈ε, v〉 .

where

V ∗ := {v : ‖v‖ ≤ 1, v = Xβ with ‖β‖0 ≤ 2k} .

This gives

E
∥∥∥Xθ̂n −Xθ∗∥∥∥2

≤ 4E

{(
sup
v∈V ∗

〈ε, v〉
)2
}

Note that we have just rigorously proved that

E sup
v∈V ∗

〈ε, v〉 .
√
k log

ep

2k
. (138)

From here and the fact that

ε 7→ sup
v∈V ∗

〈ε, v〉

is a Lipschitz function (with Lipschitz constant 2), one can prove that

E

{(
sup
v∈V ∗

〈ε, v〉
)2
}
≤ k log

ep

2k
(139)

which proves (137).

One way to see how (138) implies (139) is via the following important result on the concentration of
Lipschitz functions of Gaussian random vectors.

Theorem 16.1. Suppose f : Rn → R is an L-Lipschitz function i.e., |f(x)− f(y)| ≤ L ‖x− y‖ and suppose
Z ∼ N(0, In). Then for all t ≥ 0,

P {f(Z) ≥ Ef(Z) + t} ≤ exp

(
−t2

2L2

)
and P {f(Z) ≤ Ef(Z)− t} ≤ exp

(
−t2

2L2

)
(140)
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Theorem 16.1 can be used to derive (139) from (138). Indeed, let

f(ε) := sup
v∈V ∗

〈ε, v〉 .

It is easy to see then that f is 1-Lipschitz. Indeed,

f(ε1) = sup
v∈V ∗

〈ε1, v〉

= sup
v∈V ∗

{〈ε2, v〉+ 〈ε1 − ε2, v〉} ≤ f(ε2) + ‖ε1 − ε2‖ sup
v∈V ∗

‖v‖

Because every vector in V ∗ has norm at most 1, we conclude that f is 1-Lipschitz. Thus, by (140),

P {|f(ε)− Ef(ε)| ≥ u} ≤ 2 exp

(
−u2

2

)
.

so

P
{
|f(ε)− Ef(ε)|2 ≥ t

}
≤ 2 exp

(
−t
2

)
.

As a result

E |f(ε)− Ef(ε)|2 ≤
∫ ∞

0

2e−t/2dt ≤ 4.

This gives

Ef2(ε) ≤ 2 (Ef(ε))
2

+ 2E |f(ε)− Ef(ε)|2 ≤ 2 (Ef(ε))
2

+ 8.

This, combined with (138), allows us to deduce

E

{(
sup
v∈V ∗

〈ε, v〉
)2
}
≤ 2

(
E sup
v∈V ∗

〈ε, v〉
)2

+ 8 . k log
ep

2k

which proves (139).

17 Lecture 17

17.1 The Prediction Risk of θ̂BIC
λ (continued)

We will study the prediction risk of the estimator:

θ̂λ := argmin
θ∈Rp

(
‖Y −Xθ‖2 + λ2 ‖θ‖0

)
. (141)

in the linear regression model Y = Xθ∗ + ε where ε ∼ N(0, In). Recall that this is the Hard Thresholding

estimator when X = In. The following result will be true for θ̂BIC
λ : If

λ := c1
√

log(ep)

for a sufficiently large c1, then

1

n
E
∥∥∥Xθ̂BIC

λ −Xθ∗
∥∥∥2

≤ C(c1)
k

n
log(ep) where k := ‖θ∗‖0. (142)
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We shall not prove the expectation bound given above but we shall use the rate theorem which will imply

that the loss
∥∥∥Xθ̂BIC

λ −Xθ∗
∥∥∥ will be bounded by a constant multiple of

√
k log(ep) with high probability.

Before we proceed to this argument, let us recall first that in the last lecture, we proved

1

n
E
∥∥∥Xθ̂(k) −Xθ∗

∥∥∥2

≤ Ck

n
log
(ep
k

)
for θ̂(k) := argmin

θ:‖θ‖0≤k
‖Y −Xθ‖2. (143)

Note that this estimator θ̂(k) can be viewed as a constrained version of θ̂BIC
λ . In the process of proving (143),

we derived that

E sup
θ:‖θ‖0≤s,‖Xθ−Xθ∗‖≤u

〈ε,Xθ −Xθ∗〉 ≤ Cu
√

(s+ k) log
ep

s+ k
where k := ‖θ∗‖0. (144)

We shall use this inequality in the sequel. Now let us proceed to analyze
∥∥∥Xθ̂BIC

λ −Xθ∗
∥∥∥ via the rate

theorem. Note first that θ̂BIC
λ maximizes

Mn(θ) := 2 〈ε,Xθ −Xθ∗〉 − ‖Xθ −Xθ∗‖2 − λ2 ‖θ‖0 .

So we shall apply the rate theorem with this Mn(θ) and M(θ) taken to be

M(θ) := −‖Xθ −Xθ∗‖2 .

Also d(θ, θ∗) := ‖Xθ −Xθ∗‖. For applying the rate theorem, we would need to bound

Γ := E sup
θ:d(θ,θ∗)≤u

(Mn −M)(θ − θ∗)

from above and equate the resulting bound to u2. For this, note that

Γ = E sup
θ:‖Xθ−Xθ∗‖≤u

(
2 〈ε,Xθ −Xθ∗〉 − λ2 ‖θ‖0 + λ2 ‖θ∗‖0

)
= E max

1≤s≤p

{
sup

θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u
2 〈ε,Xθ −Xθ∗〉 − λ2s+ λ2k

}

≤ E max
1≤s≤p

{
sup

θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u
2 〈ε,Xθ −Xθ∗〉 − E sup

θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u
2 〈ε,Xθ −Xθ∗〉

}

+ max
1≤s≤p

{
E sup
θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u

2 〈ε,Xθ −Xθ∗〉 − λ2s+ λ2k

}
.

Let us denote the two terms above by Γ1 and Γ2 respectively. To bound Γ1, note that for every 1 ≤ s ≤ p,
the map

ε 7→ sup
θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u

2 〈ε,Xθ −Xθ∗〉

is 2u-Lipschitz so by the Gaussian concentration inequality from last time, we have

P

{
sup

θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u
2 〈ε,Xθ −Xθ∗〉 − E sup

θ:‖θ‖0=s,‖Xθ−Xθ∗‖≤u
2 〈ε,Xθ −Xθ∗〉 ≥ a

}
≤ exp

(
−a2

8u2

)
for every a > 0. As a result, we have

Γ1 ≤ Cu
√

log(ep).

For bounding Γ2, we simply use inequality (144) to obtain

Γ2 ≤ max
1≤s≤p

{
Cu

√
(s+ k) log

ep

s+ k
− λ2s+ λ2k

}
≤ max

1≤s≤p

{
Cu
√

(s+ k) log(ep)− λ2s+ λ2k
}
.
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Thus by enlarging the constant C appropriately, we have

Γ = Γ1 + Γ2 ≤ max
1≤s≤p

{
Cu
√

(s+ k) log(ep)− λ2s+ λ2k
}
.

We just maximize the above function in terms of s by calculus. Setting s to be such that

s+ k =
C2u2 log(ep)

4λ4
,

we obtain

Γ ≤ C2u2 log(ep)

4λ2
+ kλ2.

Thus, by the rate theorem,
∥∥∥Xθ̂BIC

λ −Xθ∗
∥∥∥ will be controlled by the solution to

C2u2 log(ep)

4λ2
+ kλ2 = u2.

Choosing λ = c1
√

log(ep), we obtain

C2

4c21
u2 + kλ2 = u2.

Now if c1 = C2/2, then we obtain the equation

1

2
u2 = kλ2 = kc21 log(ep)

which gives

u = c1
√

2k log(ep).

This, therefore, proves that
∥∥∥Xθ̂BIC

λ −Xθ∗
∥∥∥ will be controlled by

√
k log(ep) with high probability. This

argument does not yield the expecation bound (142) which can be proved a modification of the above
argument.

Here are two comments on (142):

1. It requires no assumptions on the design matrix X.

2. If λ is allowed to depend on k, then it is possible to derive the bound (k/n) log(ep/k) (i.e., log(ep) in
(142) can be replaced by log(ep/k)) (see, Johnstone [11, Chapter 11]).

17.2 Prediction Risk of θ̂LASSO
λ

We now study the LASSO estimator:

θ̂LASSO
λ := argmin

θ∈Rp

(
1

2
‖Y − θ‖2 + λ ‖θ‖1

)
. (145)

We shall prove two bounds on the prediction error

1

n
E
∥∥∥Xθ̂LASSO

λ −Xθ∗
∥∥∥2

.

The first bound involves ‖θ∗‖1 (weak or approximate sparsity regime) and the second bound involves ‖θ∗‖0
(strong or exact sparsity regime)
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17.2.1 Weak Sparsity Bound

Here we shall prove the following bound for the prediction risk of θ̂LASSO
λ . Let X1, . . . , Xp ∈ Rn denote the

p columns of the n× p design matrix X. If

λ = c1
√

log(ep) max
1≤i≤p

‖Xi‖ (146)

for a sufficiently large c1, then

1

n
E
∥∥∥Xθ̂LASSO

λ −Xθ∗
∥∥∥2

≤ C(c1)
‖θ∗‖1

√
log(ep)

n
max

1≤i≤p
‖Xi‖ (147)

for a constant C(c1) depending only on c1.

Note that this bound specializes to our earlier bound for soft thresholding if we take X = In. Usually,
the scaling for the design matrix is chosen so that max1≤i≤p ‖Xi‖ ≤

√
n. Under this assumption, the choice

of the tuning parameter becomes
λ = c1

√
n log(ep)

and the prediction risk bound (147) becomes

1

n
E
∥∥∥Xθ̂LASSO

λ −Xθ∗
∥∥∥2

≤ C(c1) ‖θ∗‖1

√
log(ep)

n
.

We shall now prove (147). Note first that θ̂LASSO
λ maximizes Mn(θ) over θ ∈ Rp where

Mn(θ) := 〈ε,Xθ −Xθ∗〉 − 1

2
‖Xθ −Xθ∗‖2 − λ ‖θ‖1 .

It is also easy to see that θ∗ maximizes M(θ), θ ∈ Rp where

M(θ) :=
−1

2
‖Xθ −Xθ∗‖2 .

The basic inequality therefore is

M(θ∗)−M(θ̂LASSO
λ ) ≤ (Mn −M)(θ̂LASSO

λ − θ∗)

which becomes

1

2

∥∥∥Xθ̂LASSO
λ −Xθ∗

∥∥∥2

≤
〈
ε,Xθ̂LASSO

λ −Xθ∗
〉
− λ

∥∥∥θ̂LASSO
λ

∥∥∥
1

+ λ ‖θ∗‖1 .

We shall bound the term involving ε on the right hand side above via〈
ε,Xθ̂LASSO

λ −Xθ∗
〉

=
〈
XT ε, θ̂LASSO

λ − θ∗
〉
≤
∥∥XT ε

∥∥
∞

∥∥∥θ̂LASSO
λ − θ∗

∥∥∥
1

which gives

1

2

∥∥∥Xθ̂LASSO
λ −Xθ∗

∥∥∥2

≤
∥∥XT ε

∥∥
∞

∥∥∥θ̂LASSO
λ − θ∗

∥∥∥
1
− λ

∥∥∥θ̂LASSO
λ

∥∥∥
1

+ λ ‖θ∗‖1 . (148)

Triangle inequality: ∥∥∥θ̂LASSO
λ − θ∗

∥∥∥
1
≤
∥∥∥θ̂LASSO
λ

∥∥∥
1

+ ‖θ∗‖1
now gives

1

2

∥∥∥Xθ̂LASSO
λ −Xθ∗

∥∥∥2

≤
(∥∥XT ε

∥∥
∞ − λ

) ∥∥∥θ̂LASSO
λ

∥∥∥
1

+
(∥∥XT ε

∥∥
∞ + λ

)
‖θ∗‖1 .

Therefore if λ is chosen so that
λ ≥

∥∥XT ε
∥∥
∞ , (149)

then we would obtain ∥∥∥Xθ̂LASSO
λ −Xθ∗

∥∥∥2

≤ 4λ ‖θ∗‖1 .

When the tuning parameter λ is chosen as in (146), it is easy to see that (149) holds with high probability
and then inequality (147) follows from the above inequality (rigorize this argument and complete the proof
of (147)).
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17.2.2 Strong Sparsity Bound

We shall now attempt to bound the prediction error in terms of ‖θ∗‖0 = k. Before proceeding further, let
us introduce the following notation. Let S denote the set of indices i among 1, . . . , p where θ∗i 6= 0. Then
|S| = k. For a vector θ ∈ Rn, let θS ∈ Rn denote the vector whose ith entry equals θi if i ∈ S and equals 0
if i /∈ S. We analogously define θSc . Let us start with inequality (148) (where, for simplicity of notation, we

write θ̂ for θ̂LASSO
λ )

1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤
∥∥XT ε

∥∥
∞

∥∥∥θ̂ − θ∗∥∥∥
1
− λ

∥∥∥θ̂∥∥∥
1

+ λ ‖θ∗‖1 .

We rewrite the right hand side above as

1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤
∥∥XT ε

∥∥
∞

(∥∥∥θ̂S − θ∗S∥∥∥
1

+
∥∥∥θ̂Sc − θ∗Sc∥∥∥

1

)
− λ

(∥∥∥θ̂S∥∥∥
1

+
∥∥∥θ̂Sc∥∥∥

1

)
+ λ (‖θ∗S‖1 + ‖θ∗Sc‖1) .

Because θ∗Sc = 0, we can simplify this as

1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤
∥∥XT ε

∥∥
∞

(∥∥∥θ̂S − θ∗S∥∥∥
1

+
∥∥∥θ̂Sc∥∥∥

1

)
− λ

(∥∥∥θ̂S∥∥∥
1

+
∥∥∥θ̂Sc∥∥∥

1

)
+ λ ‖θ∗S‖1 .

Rearranging terms, we deduce

1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

+ λ
∥∥∥θ̂Sc∥∥∥

1
≤
∥∥XT ε

∥∥
∞

∥∥∥θ̂S − θ∗S∥∥∥
1

+
∥∥XT ε

∥∥
∞

∥∥∥θ̂Sc∥∥∥
1

+ λ ‖θ∗S‖1 − λ
∥∥∥θ̂S∥∥∥

1
.

The last two terms can be bounded by triangle inequality as

λ ‖θ∗S‖1 − λ
∥∥∥θ̂S∥∥∥

1
≤ λ

∥∥∥θ̂S − θ∗S∥∥∥
1

and so we obtain

1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

+ λ
∥∥∥θ̂Sc∥∥∥

1
≤
(∥∥XT ε

∥∥
∞ + λ

) ∥∥∥θ̂S − θ∗S∥∥∥
1

+
∥∥XT ε

∥∥
∞

∥∥∥θ̂Sc∥∥∥
1
. (150)

Suppose now that we assume that the regularization parameter λ satisfies (149) as before. We can then

cancel the terms λ
∥∥∥θ̂Sc∥∥∥

1
and

∥∥XT ε
∥∥
∞

∥∥∥θ̂Sc∥∥∥
1

from both sides of the inequality above to obtain

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ 4λ
∥∥∥θ̂S − θ∗S∥∥∥

1
.

Applying the Cauchy-Schwarz inequality on the right hand side, we get∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ 4λ
∥∥∥θ̂S − θ∗S∥∥∥

1
≤ 4λ

√
k
∥∥∥θ̂S − θ∗S∥∥∥ ≤ 4λ

√
k
∥∥∥θ̂ − θ∗∥∥∥ . (151)

Further

∥∥∥θ̂ − θ∗∥∥∥ = n−1/2
∥∥∥X(θ̂ − θ∗)

∥∥∥
∥∥∥θ̂ − θ∗∥∥∥

n−1/2
∥∥∥X(θ̂ − θ∗)

∥∥∥
≤ n−1/2

∥∥∥X(θ̂ − θ∗)
∥∥∥ sup

∆∈Rp:∆ 6=0

‖∆‖
n−1/2 ‖X∆‖

= n−1/2
∥∥∥X(θ̂ − θ∗)

∥∥∥ 1

inf∆∈Rp:∆ 6=0 n−1/2 ‖X∆‖ / ‖∆‖
= n−1/2

∥∥∥X(θ̂ − θ∗)
∥∥∥ 1√

λmin(XTX/n)
.

This gives (from (151))∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ 4λ
√
k
∥∥∥θ̂ − θ∗∥∥∥ ≤ 4λ

√
k

n

∥∥∥Xθ̂ −Xθ∗∥∥∥ 1√
λmin(XTX/n)

.
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Cancelling one
∥∥∥Xθ̂ −Xθ∗∥∥∥, we obtain

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ 16λ2k

n

1

λmin(XTX/n)
.

We can now take λ to be as in (146) which ensures (149) with high probability (if c1 is sufficiently large)
which implies that

1

n

∥∥∥Xθ̂LASSO
λ −Xθ∗

∥∥∥2

≤ C(c1)
k

n2
log(ep)

maxi ‖Xi‖2

λmin(XTX/n)

with high probability (expecation bound can be derived as well). When X = In, this is a weaker form of
our earlier soft-thresholding risk bound for exact sparsity. However, a major problem of this bound is that
it depends on λmin(XTX/n). When p > n, we necessarily have λmin(XTX/n) = 0 so that the above bound
is vacuous. It is however to replace λmin(XTX/n) by a smaller quantity by a slight tweak on the above
argument with λ chosen to be 2

∥∥XT ε
∥∥
∞.

Indeed, if λ ≥ 2
∥∥XT ε

∥∥
∞, then one can first observe from (150) the inequality:

λ

2

∥∥∥θ̂Sc∥∥∥
1
≤ 3λ

2

∥∥∥θ̂S − θ∗S∥∥∥
1

which is identical to ∥∥∥θ̂Sc − θ∗Sc∥∥∥
1
≤ 3

∥∥∥θ̂S − θ∗S∥∥∥
1
.

In other words, the vector θ̂ − θ∗ belongs to the cone:

C := {∆ ∈ Rp : ‖∆Sc‖1 ≤ 3 ‖∆S‖1} .

Using this observation, one can replace the bound∥∥∥θ̂ − θ∗∥∥∥
n−1/2

∥∥∥X(θ̂ − θ∗)
∥∥∥ ≤ sup

∆∈Rp:∆6=0

‖∆‖
n−1/2 ‖X∆‖

by ∥∥∥θ̂ − θ∗∥∥∥
n−1/2

∥∥∥X(θ̂ − θ∗)
∥∥∥ ≤ sup

∆∈C:∆ 6=0

‖∆‖
n−1/2 ‖X∆‖

.

Note that the only difference between the above two bounds is that in the latter the supremum is over ∆ ∈ C
while, in the former, the supremum is over all ∆ ∈ Rp. As we shall see in the next lecture, this improvement
gives results that potentially work even when p > n.

18 Lecture 18

The main topic for study is to complete the discussion of the performance of the LASSO, in terms of prediction
risk, for the case of exact sparsity. Let us first recap the ideas from the previous couple of lectures and present
the main problem of interest.

18.1 Recap: linear regression with exact sparsity

We observe a data vector Y ∈ Rn that we model as

Y = Xθ∗ + ε with ε ∼ N(0, In).
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X is a deterministic n× p matrix and θ∗ is a vector in Rp. The dimension p can be larger than the sample
size n. We shall work with the assumption of exact sparsity where θ∗ is supported on a subset S ⊂ {1, . . . , p}
with |S| = k and k is assumed to be smaller than both p and n. The prediction error of an estimator θ̂ is
defined as

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

.

We shall study the prediction error of the LASSO defined as

θ̂LASSO
λ := argmin

θ∈Rp

(
1

2
‖Y −Xθ‖2 + λ ‖θ‖1

)
. (152)

Before proceeding, let us first recall the following observations:

1. If we know the support S of θ∗, then one can simply estimate θ∗ by linear regression of Y on XS (where
XS is the matrix obtained from X by dropping columns not present in S). It is elementary to check
that this Oracle estimator will satisfy the prediction error bound:

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ C k
n

in expectation and in high probability. It is important to note that there are no assumptions on the X
matrix here and the bound above is independent of scaling. If I change X by multiplying each column
by a constant, then the bound will not change.

2. We have seen in the last class that the BIC estimator defined by

θ̂BIC
λ := argmin

θ∈Rp

(
‖Y −Xθ‖2 + λ2 ‖θ‖0

)
(153)

achieves the prediction error bound

1

n

∥∥∥Xθ̂BIC
λ −Xθ∗

∥∥∥2

≤ C k
n

log(ep)

with high probability and in expectation provided that the tuning parameter λ is chosen as c1
√

log(ep)
for a large enough c1. Therefore compared to the Oracle estimator described above, the BIC estimator
only pays a price that is logarithmic in p. However, even though efficient computation of θ̂BIC

λ is possible
for certain special design matrices X (e.g., when X = In or when X(i, j) = I{i ≥ j} for 1 ≤ i, j ≤ n),
in most cases, it is computationally intractable.

In light of the above two observations, it is most interesting to see if θ̂LASSO
λ satisfies

1

n

∥∥∥Xθ̂LASSO
λ −Xθ∗

∥∥∥2

≤ C k
n

log(ep). (154)

Indeed, unlike θ̂BIC
λ , the lasso estimator is computationally tractable and can be obtained efficiently by convex

optimization for fairly large values of n and p. It is therefore of interest to see if any price is to be paid in
terms of prediction risk performance (compared to θ̂BIC

λ ) for this computational tractability.

We shall see below that (154) will be true under some assumptions on X. These assumptions are
unfortunately quite restrictive and cannot usually be checked in practice. At a high level, these assumptions
can be understood to be saying that X behaves like an identity matrix in a certain sense. Note that we
already know that (154) is true when X is the identity matrix (in this case, θ̂LASSO

λ is the soft thresholding
estimator).
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18.2 Prediction Error of the LASSO under Exact Sparsity

We shall complete the argument that we started in the last class to establish (154) under some assumptions
on X.

As a simple consequence of the basic inequality for the LASSO, we proved, in the last class, the following
inequality (where we write θ̂ for θ̂LASSO

λ for simplicity):

1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

+ λ
∥∥∥θ̂Sc∥∥∥

1
≤
(∥∥XT ε

∥∥
∞ + λ

) ∥∥∥θ̂S − θ∗S∥∥∥
1

+
∥∥XT ε

∥∥
∞

∥∥∥θ̂Sc∥∥∥
1
. (155)

We now take the tuning parameter λ to be such that

λ ≥ 2
∥∥XT ε

∥∥
∞ . (156)

The following analysis can be done with λ ≥ (1+η)
∥∥XT ε

∥∥
∞ for any η > 0 but it is customary to take η = 1.

The choice (156) for λ immediately implies that
∥∥XT ε

∥∥
∞ ≤ λ/2. Using this on the right hand side in (155),

we obtain
1

2

∥∥∥Xθ̂ −Xθ∗∥∥∥2

+ λ
∥∥∥θ̂Sc∥∥∥

1
≤ 3λ

2

∥∥∥θ̂S − θ∗S∥∥∥
1

+
λ

2

∥∥∥θ̂Sc∥∥∥
1
.

which readily simplifies to ∥∥∥Xθ̂ −Xθ∗∥∥∥2

+ λ
∥∥∥θ̂Sc∥∥∥

1
≤ 3λ

∥∥∥θ̂S − θ∗S∥∥∥
1
.

Note that this inequality simultaneously implies the following two inequalities:∥∥∥θ̂Sc∥∥∥
1
≤ 3

∥∥∥θ̂S − θ∗S∥∥∥
1

and
∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ 3λ
∥∥∥θ̂S − θ∗S∥∥∥

1
. (157)

The first inequality in (157) above can be rewritten as∥∥∥θ̂Sc − θ∗Sc∥∥∥
1
≤ 3

∥∥∥θ̂S − θ∗S∥∥∥
1

(158)

because θ∗Sc = 0 (note that S is the support of θ∗). This means that θ̂ − θ∗ ∈ CS where

CS := {∆ ∈ Rp : ‖∆Sc‖1 ≤ 3 ‖∆S‖1} .

Note that the set Cs is a convex cone.

The second inequality in (157) is obviously more relevant for proving the prediction risk bound (154) of

θ̂LASSO
λ . Indeed, dividing both sides by n, we obtain

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ 3λ

n

∥∥∥θ̂S − θ∗S∥∥∥
1
.

We shall now plug in an explicit value for λ. Indeed by the assumption that ε ∼ N(0, In), the assumption
(156) will be satisfied with high probability for

λ = c1 max
i
‖Xi‖

√
log(ep) (159)

for a sufficiently large value of c1. Here X1, . . . , Xp denote the columns of X. Plugging this value of λ in the
bound above, we obtain

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ C

n

(
max
i
‖Xi‖

)√
log(ep)

∥∥∥θ̂S − θ∗S∥∥∥
1

for a constant C depending on c1. We shall now impose a particular scaling on the columns of X. Specifically,
we assume that

‖Xi‖ =
√
n for each i = 1, . . . , p. (160)
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For this scaling, the above bound becomes

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ C
√

log(ep)

n

∥∥∥θ̂S − θ∗S∥∥∥
1

which we can rewrite as

1√
n

∥∥∥Xθ̂ −Xθ∗∥∥∥ ≤ C√k log(ep)

n


∥∥∥θ̂S − θ∗S∥∥∥

1
/
√
k∥∥∥Xθ̂ −Xθ∗∥∥∥ /√n
 .

From here, it is obvious that the required bound (154) holds provided∥∥∥θ̂S − θ∗S∥∥∥
1
/
√
k∥∥∥Xθ̂ −Xθ∗∥∥∥ /√n

is bounded from above by a constant. This is exactly the standard assumption under which (154) is proved.
To make the assumption seem less blatant, one usually bounds the above quantity as:∥∥∥θ̂S − θ∗S∥∥∥

1
/
√
k∥∥∥Xθ̂ −Xθ∗∥∥∥ /√n ≤

(
inf
‖X∆‖ /

√
n

‖∆S‖1 /
√
k

)−1

where the infimum can be taken over any set in Rp which contains θ̂− θ∗. Because we know that θ̂− θ∗ ∈ CS
when λ satisfies (156) (see (158)), we can take the infimum above over ∆ ∈ CS which gives

1√
n

∥∥∥Xθ̂ −Xθ∗∥∥∥ ≤ C√k log(ep)

n

(
inf

∆∈CS :∆S 6=0

‖X∆‖ /
√
n

‖∆S‖1 /
√
k

)−1

.

The quantity

φ(S) := inf
∆∈CS :∆S 6=0

‖X∆‖ /
√
n

‖∆S‖1 /
√
k

is called the compatibility factor. We thus have proved that

1

n

∥∥∥Xθ̂ −Xθ∗∥∥∥2

≤ C

φ2(S)

k log(ep)

n
(161)

with high probability and expectation when λ is chosen as in (159). If we now make the assumption that

φ(S) ≥ φ0 > 0 (162)

for a constant φ0, then we have proved that (154) holds. The assumption (162) above is called the compatibility
condition. It is a property of the design matrix X and the set S (which is the support of θ∗). Because it
depends on the unknown θ∗, it cannot be verified in practice. One therefore replaces it by the assumption
that

inf
S⊆{1,...,p}:|S|≤k

φ(S) ≥ φ0 > 0. (163)

This is, in principle, verifiable because it only depends on the design matrix X and the sparsity level k of
the unknown θ∗. But, unfortunately, even if k is known, verifying (163) requires going over all subsets of
{1, . . . , p} of size ≤ k which is computationally intractable.

Let us now quickly go over restricted eigenvalues which are closely related to compatibility factors. By
the Cauchy-Schwarz inequality, we have

‖∆S‖1√
k
≤ ‖∆S‖ for every ∆ ∈ Rp.
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As a result

φ(S) ≥ γ(S) := inf
∆∈CS :∆S 6=0

‖X∆‖ /
√
n

‖∆S‖
.

This quantity γ(S) is called a restricted eigenvalue of X. Clearly because γ(S) is smaller than φ(S), inequality
(161) also holds if φ(S) is replaced by γ(S) which means that (154) holds under the assumption that

inf
S⊆{1,...,p}:|S|≤k

γ(S) ≥ γ0 > 0 (164)

for a constant γ0. This is called the restricted eigenvalue (RE) conditon which implies (and hence weaker
than) the compatibility condition. Unfortunately, checking (164) is also computationally intractable and
hopeless in practice.

18.3 A simple sufficient condition for checking the RE and compatibility con-
ditons

The following lemma presents a simple sufficient condition for checking the assumptions (163) and (164). The
condition (165) on X that appears in this lemma is sometimes referred to by the phrase: “X is ρ-incoherent”.

Lemma 18.1. Suppose X is an n× p matrix such that(
XTX

n

)
(i, i) = 1 for all 1 ≤ i ≤ n and max

i6=j

∣∣∣∣XTX

n
(i, j)

∣∣∣∣ = ρ. (165)

Then for every S ⊆ {1, . . . , p} with cardinality k, we have

γ(S) ≥
√

(1− 16ρk)+ (166)

Note that the first assumption in (165) just means that each column of X is normalized to have norm
equal to

√
n. Also the conclusion (166) is non-trivial only when ρ < 1/(16k). For example, when ρ ≤ 1/(32k),

then (166) says that γ(S) ≥ 1/
√

2.

Proof of Lemma 18.1. We need to prove that

1

n
‖X∆‖2 ≥ (1− 16ρk) ‖∆S‖2

for every ∆ ∈ Rp satisfying ‖∆Sc‖1 ≤ 3 ‖∆S‖1. Fix such a ∆ and write

1

n
‖X∆‖2 =

1

n

∑
i,j

∆i∆j
XTX

n
(i, j)

=

n∑
i=1

∆2
i +

∑
i 6=j

∆i∆j
XTX

n
(i, j)

= ‖∆‖2 − ρ
∑
i 6=j

|∆i||∆j | ≥ ‖∆‖2 − ρ
∑
i,j

|∆i||∆j | ≥ ‖∆‖2 − ρ ‖∆‖21 .

Note now that ‖∆‖1 = ‖∆Sc‖1 + ‖∆S‖1 ≤ 4 ‖∆S‖1 under the assumption that ‖∆Sc‖1 ≤ 3 ‖∆S‖1. We
therefore obtain

1

n
‖X∆‖2 ≥ ‖∆‖2 − 16ρ ‖∆S‖21 ≥ ‖∆‖

2 − 16ρk ‖∆S‖2 ≥ (1− 16ρk) ‖∆S‖2

which completes the proof.
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18.4 The Restricted Isometry Property

The Restricted Isometry Property (RIP) is related to the RE and compatibility conditions. It is defined as
follows.

Definition 18.2 (RIP). Let X be an n×p matrix. For δ ∈ (0, 1) and k ≤ p, we say that X has the RIP (δ, k)
property if

(1− δ)2 ‖∆‖2 ≤ ∆T

(
XTX

n

)
∆ ≤ (1 + δ)2 ‖∆‖2 (167)

for all ∆ ∈ Rp with ‖∆‖0 ≤ k.

For S ⊆ {1, . . . , p}, let XS denote the n×|S| submatrix of X formed by dropping all the columns Xi of X
for i /∈ S. With this notation, it is easy to see that the above definition of RIP is equivalent to the following
definition.

Definition 18.3 (Alternative Definition of RIP). Let X be an n × p matrix. For δ ∈ (0, 1) and k ≤ p, we
say that X has the RIP (δ, k) property if

(1− δ)2 ≤ λmin(XT
SXS/n) ≤ λmax(XT

SXS/n) ≤ (1 + δ)2 (168)

for every subset S ⊆ {1, . . . , p} with |S| ≤ k. Here λmin and λmax refer to the smallest and largest eigenvalue
respectively.

From (168), it is clear that for Xn×p to satisfy the RIP (δ, k) property, it is necessary that n ≥ k. The
following result shows that the RIP property implies the RE condition.

Lemma 18.4. Suppose X satisfies RIP (δ, k +m). Then for every S ⊆ {1, . . . , p} with |S| ≤ k, we have

γ(S) ≥

(
1− δ − 3(1 + δ)

√
k

m

)
+

. (169)

From (169), it is trivial to deduce the following:

γ(S) ≥ (1− δ) u

1 + u
provided m ≥ (1 + u)2k

(
3(1 + δ)

1− δ

)2

.

This means

RIP

(
δ, k

{
1 + (1 + u)2

(
3(1 + δ)

1− δ

)2
})

=⇒ inf
S⊆{1,...,p}:|S|≤k

γ(S) ≥ (1− δ) u

1 + u
.

For example, by taking δ = 1/4 and u = 1/5, we obtain

RIP

(
1

4
, 37k

)
=⇒ inf

S⊆{1,...,p}:|S|≤k
γ(S) ≥ 1

8
.

Thus, using Lemma 18.4, we can deduce a positive lower bound on infS⊆{1,...,p}:|S|≤k γ(S) provided RIP (δ,m)
holds for a small constant δ and m equal to a constant (depending on δ) multiple of k.

Proof of Lemma 18.4. We need to prove that

1√
n
‖X∆‖ ≥

(
1− δ − 3

√
k

m
(1 + δ)

)
+

‖∆S‖
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for every ∆ ∈ Rp satisfying ‖∆Sc‖1 ≤ 3 ‖∆S‖1. Fix such a vector ∆. Let I1 consist of the indices in Sc

corresponding to the m largest (in absolute value) entries of ∆. Also, let I2 consist of the indices in (S ∪ I1)c

corresponding to the m largest (in absolute value) entries of ∆. Continue this way to define a partition
I1, . . . , Il of Sc with

|I1| = · · · = |Il−1| = m and |Il| ≤ m.

We now write

∆ = ∆S + ∆I1 + · · ·+ ∆Il = ∆S∪I1 +

l∑
i=2

∆Ii .

so that

1√
n
‖X∆‖ =

1√
n

∥∥∥∥∥X
(

∆S∪I1 +

l∑
i=2

∆i

)∥∥∥∥∥ ≥ 1√
n
‖X∆S∪I1‖ −

1√
n

l∑
i=2

‖X∆Ii‖ .

We now use the fact that X satisfies RIP (δ, k+m) which gives (note that |S ∪ I1| ≤ k+m and |Ii| ≤ m for
all i)

1√
n
‖X∆‖ ≥ (1− δ) ‖∆S∪I1‖ − (1 + δ)

l∑
i=2

‖∆Ii‖ ≥ (1− δ) ‖∆S‖ − (1 + δ)

l∑
i=2

‖∆Ii‖ .

Now, by construction, the absolute value of every entry in ∆Ii is smaller than the absolute value of every
entry in ∆Ii−1 . This implies, in particular, that the absolute value of every entry in ∆Ii is smaller than the
average of the absolute values of entries in ∆Ii−1

. This gives

‖∆Ii‖
2 ≤

(
1

m
‖∆i−1‖1

)2

+ · · ·+
(

1

m
‖∆i−1‖1

)2

=
1

m

∥∥∆Ii−1

∥∥2

1
for every 2 ≤ i ≤ l − 1.

As a result, we obtain

1√
n
‖X∆‖ ≥ (1− δ) ‖∆S‖ −

1 + δ√
m

l∑
i=2

∥∥∆Ii−1

∥∥
1
≥ (1− δ) ‖∆S‖ −

1 + δ√
m
‖∆Sc‖1 .

Using the cone condition ‖∆Sc‖1 ≤ 3 ‖∆S‖1, we further deduce

1√
n
‖X∆‖ ≥ (1− δ) ‖∆S‖ − 3

1 + δ√
m
‖∆S‖1 ≥ (1− δ) ‖∆S‖ − 3

1 + δ√
m

√
k ‖∆S‖ ≥

(
1− δ − 3(1 + δ)

√
k

m

)
‖∆S‖

which completes the proof.

An important fact is that the RIP will be satisfied by certain kinds of random matrices X with high
probability. It then means (by the above lemma) that for such matrices X, the RE condition will hold with
high probability. The simplest example of this is when the entries of X are i.i.d standard Gaussian. This is
proved below (the proof is taken from Baraniuk et al. [1]; see the paper for extensions to some other random
ensembles).

Theorem 18.5. Suppose that the entries of the n× p matrix X are independent and identically distributed
as N(0, 1). Then X satisfies RIP (δ, k) with probability at least 1− exp(−nδ2/64) provided

n ≥ 64

δ2
log

(
9e

δ

)
k log

(ep
k

)
.

Proof. It is easy to see that because the entries of X are i.i.d N(0, 1), we have

‖X∆‖2

‖∆‖2
∼ χ2

n.
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Now χ2
n random variables satisfy the standard concentration inequality (whose proof is left as exercise):

P
{∣∣∣∣χ2

n

n
− 1

∣∣∣∣ ≥ t} ≤ 2 exp
(
−nt2/8

)
for all 0 ≤ t ≤ 1.

This immediately gives that for every ∆ ∈ Rp and δ ∈ (0, 1)

P
{(

1− δ

2

)
‖∆‖2 ≤ ∆T X

TX

n
∆ ≤

(
1 +

δ

2

)
‖∆‖2

}
≥ 1− 2 exp

(
−nδ2

32

)
.

Because 1 + δ/2 ≤ (1 + δ/2)2 and 1− δ/2 ≥ (1− δ/2)2, we also have

P

{(
1− δ

2

)2

‖∆‖2 ≤ ∆T X
TX

n
∆ ≤

(
1 +

δ

2

)2

‖∆‖2
}
≥ 1− 2 exp

(
−nδ2

32

)
. (170)

Now let ∆1, . . . ,∆M be a maximal δ/4-packing subset (in the usual Euclidean metric) of the set

{∆ : ‖∆‖ = 1 and ‖∆‖0 ≤ k} .

By a standard volumetric argument, it can be shown that

M ≤
(

1 +
2

δ/4

)k ((
p

0

)
+

(
p

1

)
+ · · ·+

(
p

k

))
≤
(

9

δ

)k (ep
k

)k
.

By the union bound, it follows from (170) that the probability

Υ := P

{(
1− δ

2

)2

‖∆j‖2 ≤ ∆T
j

XTX

n
∆j ≤

(
1 +

δ

2

)2

‖∆j‖2 for all 1 ≤ j ≤M

}
satisfies the bound

Υ ≥ 1− 2M exp

(
−nδ2

32

)
≥ 1− 2

(
9ep

kδ

)k
exp

(
−nδ2

32

)
= 1− 2 exp

(
−n
{
δ2

32
− k

n
log

(
9ep

kδ

)})
.

Suppose now that n ≥ c1k log(ep/k) for some constant c1. Then

δ2

32
− k

n
log

(
9ep

kδ

)
≥ δ2

32
− 1

c1

(
1 +

log(9/δ)

log(ep/k)

)
≥ δ2

32
− 1

c1
log

(
9e

δ

)
.

Thus when

c1 =
64

δ2
log

(
9e

δ

)
we have

δ2

32
− k

n
log

(
9ep

kδ

)
≥ δ2

64

so that

Υ ≥ 1− 2 exp

(
−nδ2

64

)
.

To complete the proof therefore, we only need to argue that(
1− δ

2

)2

‖∆j‖2 ≤ ∆T
j

XTX

n
∆j ≤

(
1 +

δ

2

)2

‖∆j‖2 for all j = 1, . . . ,M (171)
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implies that

(1− δ)2 ‖∆‖2 ≤ ∆T X
TX

n
∆ ≤ (1 + δ)

2 ‖∆‖2 for all ∆ with ‖∆‖ = 1 and ‖∆‖0 ≤ k. (172)

The argument for proving this implication is the following. Let A be the smallest number for which

∆T X
TX

n
∆ ≤ (1 +A)

2 ‖∆‖2 for all ∆ with ‖∆‖ = 1 and ‖∆‖0 ≤ k. (173)

We shall show that A ≤ δ. Note first that A <∞ because λmax(XTX/n) <∞. Now fix ∆ such that ‖∆‖ = 1
and ‖∆‖0 ≤ k. By the packing property and construction of {∆1, . . . ,∆M}, there will exist 1 ≤ j ≤M such
that ‖∆−∆j‖ ≤ δ/4 and ‖∆−∆j‖0 ≤ k. Write

∆T X
TX

n
∆ =

∥∥∥∥ 1√
n
X∆

∥∥∥∥ ≤ ∥∥∥∥ 1√
n
X∆j

∥∥∥∥+

∥∥∥∥ 1√
n
X(∆−∆j)

∥∥∥∥ ≤ (1 +
δ

2

)
‖∆j‖+ (1 +A) ‖∆−∆j‖

where to get the final inequality we used (171) and (173) with ∆ replaced by ∆−∆j . Because ‖∆j‖ = 1 and
‖∆−∆j‖ ≤ δ/4, we obtain

∆T X
TX

n
∆ ≤ 1 +

δ

2
+ (1 +A)

δ

4
.

Comparing this with (173), we deduce that (by the definition of A)

A ≤ δ

2
+ (1 +A)

δ

4

which gives A ≤ δ. This proves the upper inequality in (172). To prove the lower inequality, write∥∥∥∥ 1√
n
X∆

∥∥∥∥ ≥ ∥∥∥∥ 1√
n
X∆j

∥∥∥∥− ∥∥∥∥ 1√
n
X (∆−∆j)

∥∥∥∥
Using (171) and (173) with A = δ (note that we can choose ∆j so that ‖∆−∆j‖0 ≤ k), we get∥∥∥∥ 1√

n
X∆

∥∥∥∥ ≥ 1− δ

2
− (1 + δ) ‖∆−∆j‖ ≥ 1− δ

2
− (1 + δ)

δ

4
= 1− 3δ

4
− δ2

4
≥ 1− δ.

This proves the lower bound in (172) and completes the proof of the theorem.

19 Lecture 19

The next topic of the class is convergence of stochastic processes. Our main motivation for studying this is
to prove limiting distribution results for M -estimators. We shall start with two classical examples.

19.1 Limiting Distribution of Sample Median

Suppose X1, . . . , Xn are i.i.d observations from the normal density f with mean θ0 and variance 1. Actually,
it will be clear that results below hardly require normality and hold more generally but let us assume that f
is N(θ0, 1) for simplicity. Let θ̂n denote a sample median based on X1, . . . , Xn defined as any minimizer of

Mn(θ) :=
1

n

n∑
i=1

|Xi − θ|

over θ ∈ R. Also let M(θ) := E|X1 − θ| and note that θ0 uniquely minimizes M(θ) over θ ∈ R.
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We have seen in one of the homeworks that θ̂n converges to θ0 in probability i.e., θ̂n is a consistent estimator
of θ0. Our general rate theorem can also be applied directly here to deduce that θ̂n − θ0 = OP (n−1/2) i.e.,

the rate of convergence of θ̂n to θ0 is n−1/2. We shall now address the question of finding the limiting or

asymptotic distribution of
√
n
(
θ̂n − θ0

)
. There are many approaches for finding this limiting distribution

but we shall follow the standard empirical processes approach which easily generalizes to other M -estimators.
This approach also highlights the need to study convergence of stochastic processes.

Our approach for finding the limiting distribution of
√
n
(
θ̂n − θ0

)
is based on the following localized,

centered and rescaled stochastic process:

M̃n(h) := n
(
Mn(θ0 + n−1/2h)−Mn(θ0)

)
for h ∈ R.

This is a stochastic process that is indexed by h ∈ R. Its important property (easy to see) is that ĥn :=√
n(θ̂n − θ0) minimizes M̃n(h), h ∈ R i.e.,

√
n
(
θ̂n − θ0

)
= argmin

h∈R
M̃n(h).

This suggests the following approach to find the limiting distribution of
√
n(θ̂n − θ0). We study the process

M̃n(h), h ∈ R and argue that it converges as n → ∞ to some limit process M̃(h), h ∈ R in an appropriate
sense. If this process convergence is strong enough, then we can hopefully argue that

√
n
(
θ̂n − θ0

)
= argmin

h∈R
M̃n(h)

L→ argmin
h∈R

M̃(h).

It is actually not too hard to understand the behavior of M̃n(h) as n→∞ for each fixed h ∈ R. For this, we
can write

M̃n(h) = n
(
Mn(θ0 + n−1/2h)−Mn(θ0)

)
= n

(
Mn(θ0 + n−1/2h)−M(θ0 + n−1/2h)−Mn(θ0) +M(θ0)

)
+ n

(
M(θ0 + n−1/2h)−M(θ0)

)
=: An +Bn. (174)

Let us now analyze An and Bn separately. Clearly, Bn is a deterministic sequence. To understand this, we
shall use a second order Taylor explansion for M(θ0 + n−1/2h) around θ0. Note that M(θ) := E|X1 − θ| is a
smooth function. Also note that M ′(θ0) = 0 because θ0 maximizes M(θ), θ ∈ R. We thus get

Bn = n
(
M(θ0 + n−1/2h)−M(θ0)

)
=

1

2
M ′′(θ̃n)h2

where θ̃n is some number between θ0 and θ0 + n−1/2h. Clearly θ̃n → θ0 as n→∞ so that

Bn →
1

2
M ′′(θ0)h2 as n→∞.

Let us now come to the mean zero random variable An. To understand it, let us first compute its variance:

var(An) = n2var

(
1

n

n∑
i=1

{
|Xi − θ0 − n−1/2h| − |Xi − θ0|

})
= n var

(
|X1 − θ0 − n−1/2h| − |X1 − θ0|

)
≈ n var

(
I{X1 < θ0}n−1/2h− I{X1 > θ0}n−1/2h

)
where I have ignored the contribution from X1 lying between θ0 and θ0 +n−1/2h (should not matter for large
n; verify this). This gives

varAn ≈ h2var (I{X1 < θ0} − I{X1 > θ0}) .
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Now because P{X1 < θ0} = P{X1 > θ0} (θ0 is a population median), it is easy to check that the variance of
I{X1 < θ0} − I{X1 > θ0} appearing above equals 1. We have therefore obtained

var(An)→ h2 as n→∞.

It is actually possible to prove that

An
L→N(0, h2) = hN(0, 1) as n→∞.

For this, we can use the Lindeberg-Feller Central Limit Theorem (stated next).

19.2 Lindeberg-Feller Central Limit Theorem

Theorem 19.1. For each n, let Yn1, . . . , Ynkn be kn independent random vectors with E ‖Yni‖2 <∞ for each
i = 1, . . . , kn. Suppose the following two conditions hold:

kn∑
i=1

Cov(Yni)→ Σ as n→∞ (175)

where Cov(Yni) denotes the covariance matrix of the random vector Yni and

kn∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
→ 0 as n→∞ for every ε > 0. (176)

Then
kn∑
i=1

(Yni − EYni)
L→N(0,Σ) as n→∞. (177)

For a proof of this result, see, for example, Pollard [20, Page 181]. It is easy to see that this result
generalizes the usual CLT. Indeed, the usual CLT states that for i.i.d random variables X1, X2, . . . with
EXi = µ, E ‖Xi‖2 <∞ and Cov(Xi) = Σ, we have

n∑
i=1

(
Xi√
n
− µ√

n

)
L→N(0,Σ) as n→∞.

Indeed this can be proved by applying Theorem 19.1 to

Yni =
Xi√
n
.

The condition (175) is obvious while for (176) note that

n∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
=

1

n

n∑
i=1

E
(
‖Xi‖2 I{‖Xi‖ >

√
nε} = E

(
‖X1‖2 I{‖X1‖ >

√
nε}
))

which clearly converges to zero by the Dominated Convergence Theorem (under the assumption E ‖X1‖2 <
∞).

19.3 Back to the Limiting Distribution of Sample Median

Recall the random variablesAn from (174). The Lindeberg-Feller CLT can be used to prove thatAn
L→N(0, h2).

Note first that

An =

n∑
i=1

(Yni − EYni)
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where
Yni :=

∣∣∣Xi − θ0 − n−1/2h
∣∣∣− |Xi − θ0| .

We have already checked that

n∑
i=1

var(Yni) = var(An)→ h2 as n→∞.

To check (176), note that

kn∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
=

n∑
i=1

E
(∣∣∣|Xi − θ0 − n−1/2h| − |Xi − θ0|

∣∣∣2 I{∣∣∣|Xi − θ0 − n−1/2h| − |Xi − θ0|
∣∣∣ > ε}

)
= nE

(∣∣∣|X1 − θ0 − n−1/2h| − |X1 − θ0|
∣∣∣2 I{∣∣∣|X1 − θ0 − n−1/2h| − |X1 − θ0|

∣∣∣ > ε}
)

Using the trivial inequality ∣∣∣|X1 − θ0 − n−1/2h| − |X1 − θ0|
∣∣∣ ≤ n−1/2|h|,

we obtain

kn∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
≤ h2I{n−1/2|h| > ε} → 0 as n→∞.

The conditions of Theorem 19.1 therefore hold and we obtain

An
L→N(0, h2) as n→∞.

Thus if we define

M̃(h) := hZ +
1

2
h2M ′′(θ0) for h ∈ R

where Z ∼ N(0, 1), then we have shown that

M̃n(h)
L→M̃(h) as n→∞ for every h ∈ R.

It turns out that the process M̃n converges to M̃ in a stronger sense than convergence in distirbution for
each fixed h ∈ R. We shall see this later. This stronger convergence allows us to deduce that

√
n
(
θ̂n − θ0

)
L→ argmin

h∈R

(
hZ +

1

2
h2M ′′(θ0)

)
.

The argmax above can be written in closed form (note that we have a quadratic in h) so that we get

√
n
(
θ̂n − θ0

)
L→ argmin

h∈R

(
hZ +

1

2
h2M ′′(θ0)

)
=

−Z
M ′′(θ0)

∼ N
(

0,
1

(M ′′(θ0))2

)
.

We can simplify this slightly by writing M ′′(θ0) in terms of f(θ0). Indeed, first write

M(θ) = E|X1 − θ| =
∫ θ

−∞
(θ − x)f(x)dx+

∫ ∞
θ

(x− θ)f(x)dx = θ (2F (θ)− 1) +

∫ ∞
θ

xf(x)dx−
∫ θ

−∞
xf(x)dx

where F is the cdf corresponding to f . This gives

M ′(θ) = 2θf(θ) + 2(F (θ)− 1)− 2θf(θ) = 2(F (θ)− 1)

and M ′′(θ) = 2f(θ). We thus have

√
n
(
θ̂n − θ0

)
L→N

(
0,

1

4f2(θ0)

)
To make this argument rigorous, we have to prove that the stochastic process M̃n converges to M̃ in a strong
enough sense so that their argmins also converge.
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19.4 Limiting Distribution of Sample Mode

The general method given in the preceding section to derive the limiting distribution of sample median is
quite broad and can be used for other M -estimators as well. To illustrate this, let us apply this to determine
the limiting distribution of sample model. Let X1, . . . , Xn de i.i.d observations from the normal density f
with mean θ0 and variance 1. Again the results do not require normality (and also hold if, for example, f is
the Cauchy density centered at θ0) but let us assume f is N(θ0, 1) for simplicity.

Let θ̂n denote any sample mode which is defined as any maximizer of

Mn(θ) :=
1

n

n∑
i=1

I {Xi ∈ [θ − 1, θ + 1]}

over θ ∈ R. Also let

M(θ) := P {X1 ∈ [θ − 1, θ + 1} =

∫ θ+1

θ−1

f(x)dx. (178)

We have previously seen that θ̂n is a consistent estimator of θ0 and that

θ̂n − θ0 = OP (n−1/3).

We shall now heuristically determine the limiting distribution of n1/3(θ̂n − θ0). The necessary process

convergence results needed to rigorize the argument will be given later. To study ĥn := n1/3(θ̂n − θ0),
it is natural to define the process

M̃n(h) := n2/3
(
Mn(θ0 + n−1/3h)−Mn(θ0)

)
for h ∈ R

and note that ĥn maximizes M̃n(h) over h ∈ R. Let us try to understand the behavior of M̃n(h) as n→∞
for each fixed h ∈ R. First write

M̃n(h) = n2/3
(
Mn(θ0 + n−1/3h)−Mn(θ0)

)
= n2/3

(
Mn(θ0 + n−1/3h)−M(θ0 + n−1/3h)−Mn(θ0) +M(θ0)

)
+ n2/3

(
M(θ0 + n−1/3h)−M(θ0)

)
=: An +Bn.

The expectation term Bn is handled exactly as in the median case by a second order Taylor expansion of the
smooth function M(θ0 + n−1/3h) at θ0 (note that M ′(θ0) = 0) to obtain

Bn = n2/3
(
M(θ0 + n−1/3h)−M(θ0)

)
→ 1

2
M ′′(θ0)h2 as n→∞. (179)

For the stochastic term An, let us, as before, start by computing its variance:

var(An) = n1/3var
(
I{θ0 + n−1/3h− 1 ≤ X1 ≤ θ0 + n−1/3 + 1} − I{θ0 − 1 ≤ X1 ≤ θ0 + 1}

)
.

If h > 0 and n is large, it is easy to see that

var(An) ≈ n1/3var(I1 − I2)

where

I1 := I{θ0 + 1 ≤ X1 ≤ θ0 + 1 + n−1/3h} and I2 := I{θ0 − 1 ≤ X1 < θ0 + n−1/3h− 1}.
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As a result

var(An) ≈ n1/3var(I1 − I2) = n1/3
[
E(I1 − I2)2 − (EI1 − EI2)2

]
= n1/3

[
E (I1 + I2)− (EI1 − EI2)2

]
= n1/3

[∫ θ0+1+n−1/3h

θ0+1

f(x)dx+

∫ θ0−1+n−1/3h

θ0−1

f(x)dx+ o(n−1/3)

]
→ h (f(θ0 + 1) + f(θ0 − 1)) .

For h < 0, one would have to replace h by −h above. Therefore, for every h ∈ R, we have

var(An)→ |h| (f(θ0 + 1) + f(θ0 − 1)) as n→∞.

In fact, by the Lindeberg-Feller CLT (as in the case of the median), it can be shown that (this is left as
homework)

An
L→N (0, |h| {f(θ0 + 1) + f(θ0 − 1)}) as n→∞.

Combining this with (179), we obtain

M̃n(h)
L→
√
f(θ0 + 1) + f(θ0 − 1)N(0, |h|) +

h2

2
M ′′(θ0).

as n → ∞ for every h ∈ R. Suppose now that {Bh, h ∈ R} is a two-sided Brownian motion starting at zero
i.e. B0 = 0 and {Bh, h ≥ 0} is a standard Brownian motion and {B−h, h ≥ 0{ is another standard Brownian
motion that is independent of {Bh, h ≥ 0}. Note that Bh ∼ N(0, |h|) for every h ∈ R. If we now define

M̃(h) :=
√
f(θ0 + 1) + f(θ0 − 1)Bh +

h2

2
M ′′(θ0),

we have

M̃n(h)
L→M̃(h) as n→∞.

Our arguments above can be strengthened to argue that (M̃n(h1), . . . , M̃n(hk)) converge in distribution to
(M̃(h1), . . . , M̃(hk)) for every fixed points h1, . . . , hk ∈ R. This is a consequence of the Lindeberg-Feller CLT
and left as an exercise. We shall see later that M̃n converges to M̃ in a much stronger sense than just for
every fixed k ≥ 1 and points h1, . . . , hk ∈ R. This stronger convergence allows us to conclude that

n1/3
(
θ̂n − θ0

)
= argmax

h∈R
M̃n(h)

L→ argmax
h∈R

M̃(h).

Because of (178), it is easy to see that M ′′(θ0) = f ′(θ0 + 1) − f ′(θ0 − 1). We have therefore deduced

(non-rigorously) that the limiting distribution of n1/3
(
θ̂n − θ0

)
is given by

argmax
h∈R

{√
f(θ0 + 1) + f(θ0 − 1)Bh −

h2

2
(f ′(θ0 − 1)− f ′(θ0 + 1))

}
.

Note that f ′(θ0−1)−f ′(θ0 +1) > 0. The distribution of the random variable above is related to the Chernoff
distribution (see https://en.wikipedia.org/wiki/Chernoff%27s_distribution).

In the next lecture, we shall see more examples of process convergence and move toward understanding
and formalizing this notion more rigorously.

20 Lecture 20

We shall start our formal study of the theory of convergence of stochastic processes in this lecture. To
understand the general ideas, it is helpful to look at the special case of the uniform empirical process.
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20.1 The Uniform Empirical Process

Suppose X1, . . . , Xn are i.i.d random variables that are uniformly distributed on [0, 1]. For each t ∈ [0, 1], let

Un(t) :=
√
n (Fn(t)− t) =

√
n

(
1

n
I{Xi ≤ t} − t

)
. (180)

The collection of random variables {Un(t) : 0 ≤ t ≤ 1} represents a stochastic process indexed by [0, 1].
Every realization of this process (which corresponds to every realization of X1, . . . , Xn) is a function on [0, 1]
that is bounded (and also right continuous having left limits at every point in (0, 1]). Note that realizations
of {Un(t) : t ∈ [0, 1]} are not continuous functions.

By the usual Multivariate Central Limit Theorem, for every k ≥ 1 and t1, . . . , tk ∈ [0, 1],

(Un(t1), . . . , Un(tk))
L→Nk(0,Σ) as n→∞

where Σ is given by Σ(i, j) := min(ti, tj)− titj .

The Brownian Bridge is a stochastic process {U(t) : 0 ≤ t ≤ 1} is a stochastic process indexed by [0, 1]
that is defined by the following two properties:

1. Every realization of U(t), t ∈ [0, 1] is continuous function on [0, 1] with U(0) = U(1) = 0.

2. For every fixed t1, . . . , tk ∈ [0, 1], the random vector (U(t1), . . . , U(tk)) has the multivariate normal
distribution with mean vector 0 and covariance matrix Σ given by Σ(i, j) := min(ti, tj)− titj .

Based on the above, it is clear that for every k ≥ 1 and t1, . . . , tk ∈ [0, 1], we have

(Un(t1), . . . , Un(tk))
L→(U(t1), . . . , U(tk)) as n→∞ (181)

and this is a consequence of the usual CLT. By definition of convergence in distribution, the statement (181)
means that

Eg(Un(t1), . . . , Un(tk))→ Eg(U(t1), . . . , U(tk)) as n→∞ (182)

for every bounded, continuous function g : Rk → R. It is also true that (182) holds for all bounded continuous
functions g : Rk → R if and only if (182) holds for all bounded Lipschitz functions g : Rk → R. For a proof
of this equivalence, see, for example, Pollard [20].

The result (181) can therefore be rephrased in the following manner: the expectation of any bounded
continuous function of the stochastic process Un that depends on Un only through its values at a finite set
of points in [0, 1] converges to the corresponding expectation of the Brownian Bridge U . For example, this
implies that

Eh( max
1≤i≤k

|Un(ti)|)→ Eh( max
1≤i≤k

|U(ti)|) as n→∞. (183)

for every bounded continuous function h : R→ R which is equivalent to

max
1≤i≤k

|Un(ti)|
L→ max

1≤i≤k
|U(ti)| as n→∞.

While this is useful, one often needs to deal with functions of Un that depend on the entire process Un and
not just at its values at a finite set of points. For example, it is of interest (for example, for the statistical
application of testing goodness of fit via the Kolmogorov-Smirnov test) to ask if

sup
0≤t≤1

|Un(t)| L→ sup
0≤t≤1

|U(t)| as n→∞

which is equivalent to
Eh( sup

0≤t≤1
|Un(t)|)→ Eh( sup

0≤t≤1
|U(t)|) (184)
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for all bounded continuous functions h : R → R. Obviously these functions depend on Un through all its
values on [0, 1] and not just at finitely many values. Here is a reasonable strategy to prove (184). Take a
large finite grid of points 0 = t0 < t1 < · · · < tk−1 < tk = 1 in [0, 1]. By right-continuity of Un(t), it would
seem possible to choose a large enough grid so that

h

(
sup

0≤t≤1
|Un(t)|

)
≈ h

(
max
t∈F
|Un(t)|

)
where F := {t0, t1, . . . , tk}. (185)

Also because Brownian Bridge {U(t), 0 ≤ t ≤ 1} has continuous sample paths, it seems reasonable that

h

(
sup

0≤t≤1
|U(t)|

)
≈ h

(
max
t∈F
|U(t)|

)
.

Now by (183),

Eh
(

max
t∈F
|Un(t)|

)
→ Eh

(
max
t∈F
|U(t)|

)
as n→∞.

Putting the above three displayed equations together, it would seem to be possible to deduce (184). For
this strategy to work, it is important that the approximation (185) holds “uniformly” in n for all large n.
Indeed, if the grid F has to change considerably as n changes to maintain approximation, then this strategy
cannot work. It seems clear from this discussion that move from finite-dimensional convergence of stochastic
processes to infinite-dimensional convergence should be possible under an assumption which guarantees a
grid approximation to the process uniformly at all large values of n. This is the so-called assumption of
asymptotic equicontinuity (also known as stochastic equicontinuity) which is formulated in the abstract
result stated next.

20.2 An Abstract Result

For the next result, we use the following notation. `∞[0, 1] denotes the class of all bounded functions on
[0, 1] (i.e., all functions f for which sup0≤t≤1 |f(t)| <∞). We shall view `∞[0, 1] as a metric space under the
following metric:

(f, g) 7→ ‖f − g‖∞ := sup
0≤t≤1

|f(t)− g(t)|. (186)

When we refer to a continuous function h : `∞[0, 1]→ R, we mean that h is continuous in the metric defined
above.

Also, C[0, 1] denotes the class of all continuous functions on [0, 1].

Theorem 20.1. Suppose for each n ≥ 1, {Xn(t), t ∈ [0, 1]} is a stochastic process whose realizations are
functions in `∞[0, 1]. Suppose {Xt, t ∈ [0, 1]} is another stochastic process whose realizations are functions
in C[0, 1]. Assume that the following two conditions hold:

1. For every k ≥ 1 and t1, . . . , tk ∈ [0, 1],

(Xn(t1), . . . , Xn(tk))
L→(X(t1), . . . , X(tk)) as n→∞. (187)

This assumption will be referred to as Finite Dimensional Convergence.

2. For every ε > 0 and δ > 0, there exists an integer Nε,δ and a finite grid 0 = t0 < t1 < · · · < tk−1 <
tk = 1 such that

P

{
max

0≤i≤k−1
sup

t∈[ti,ti+1)

|Xn(t)−Xn(ti)| > δ

}
< ε for all n ≥ Nε,δ. (188)

This assumption will be referred to as Stochastic Equicontinuity or Asymptotic Equicontinuity.
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Then for every bounded continuous function h : `∞[0, 1]→ R, we have

Eh(Xn)→ Eh(X) as n→∞. (189)

Remark 20.1. We can simplify assumption (188) slightly by taking ε = δ i.e., we change it to: for every
η > 0, there exists an integer Nη and a finite grid 0 = t0 < t1 < · · · < tk−1 < tk = 1 such that

P

{
max

0≤i≤k−1
sup

t∈[ti,ti+1)

|Xn(t)−Xn(ti)| > η

}
< η for all n ≥ Nη. (190)

It is easy to see that (188) and (190) are equivalent. Indeed, (188) obviously implies (190). Also, (190) for
η = min(ε, δ) implies (188).

The Stochastic Equicontinuity assumption(188) essentially says that Xn(t), 0 ≤ t ≤ 1 can be aprproxi-
mated by Xn(t), t ∈ {t0, t1, . . . , tk} for all large n i.e., the approximation holds uniformly in n as long as n is
large.

Proof of Theorem 20.1. We shall prove (189) for all functions h : `∞[0, 1] → R that are bounded and Lips-
chitz. It turns out that if (189) holds for all bounded Lipschitz h, then it also holds for all bounded continuous
h but we shall skip the proof of this.

Let us therefore assume that h is bounded in absolute value by B and is L-Lipschitz i.e.,

sup
u∈`∞[0,1]

|h(u)| ≤ B and |h(u)− h(v)| ≤ L ‖u− v‖∞ = L sup
0≤t≤1

|u(t)− v(t)|. (191)

Fix ε > 0 and invoke the stochastic equicontinuity assumption with ε > 0 and δ = ε to get an integer N = Nε
and a grid 0 = t0 < t1 < · · · < tk−1 < tk = 1 such that (188) holds. Let F := {t0, t1, . . . , tk} and let
AF : `∞[0, 1]→ `∞[0, 1] defined by

(AFx)(t) :=

k−1∑
i=0

x(ti)I{ti ≤ t < ti+1} for x ∈ `∞[0, 1] and t ∈ [0, 1)

and (AFx)(1) = x(1). It is easy to check that for every x ∈ `∞[0, 1],

max
i

sup
t∈[ti,ti+1)

|x(t)− x(ti)| = ‖x−AFx‖∞ = sup
0≤t≤1

|x(t)− (AFx)(t)|

Therefore
P {‖Xn −AFXn‖ > ε} < ε for all n ≥ Nε.

We now change the grid F so that the above inequality also holds for the process X(t), 0 ≤ t ≤ 1 as well
(note that X has continuous sample paths). For this, let S = {s0, s1, s2, . . . } be a countable dense subset of
[0, 1] with s0 = 0 and s1 = 1. Then, for every x ∈ C[0, 1],

lim
m→∞

∥∥A{s0,s1,...,sm}x− x∥∥∞ = 0.

Because X has continuous sample paths, we have∥∥A{s0,s1,...,sm}X −X∥∥∞ → 0 almost surely as m→∞.

Thus for all large m, we have
P
{∥∥A{s0,s1,...,sm}X −X∥∥∞ > ε

}
< ε.

Take such a large m “merge” the two grids {s0, s1, . . . , sm} and {t0, t1, . . . , tk}. For the resulting merged
grid, say T , we have

P {‖Xn −ATXn‖∞ > 2ε} < ε and P {‖X −ATX‖∞ > 2ε} < ε.
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Note that ε changed to 2ε inside the probability (this is because when ti ≤ sj ≤ t < ti+ ε, we used the bound
|Xn(t)−Xn(sj)| ≤ |Xn(t)−Xn(ti)|+ |Xn(ti)−Xn(sj)| and similarly for X).

Now for the function h satisfying (191), we can write

|Eh(Xn)− Eh(X)| ≤ E |h(Xn)− h(ATXn)|+ E |h(X)− h(ATX)|+ |Eh(ATXn)− Eh(ATX)| . (192)

For the first term on the right hand side above, we argue as

E |h(Xn)− h(ATXn)| ≤ E |h(Xn)− h(ATXn)| I{‖Xn −ATXn‖∞ ≤ 2ε}+ E |h(Xn)− h(ATXn)| I{‖Xn −ATXn‖∞ > 2ε}
≤ L(2ε) + 2B (P {I{‖Xn −ATXn‖∞ > 2ε}) ≤ 2Lε+ 2Bε.

The same upper bound also holds for the second term in (192). For the third term in (192), use the finite-
dimensional convergence assumption (note that the grid T does not depend on n) to claim that

|Eh(ATXn)− Eh(ATX)| → 0 as n→∞.

We have thus proved that

lim sup
n→∞

|Eh(Xn)− Eh(X)| ≤ 4Lε+ 4Bε.

Since ε > 0 is arbitrary, we have proved (189).

20.3 Back to the Uniform Empirical Process

Recall the uniform empirical process Un in (180) and the Brownian Bridge U . Then, as we have seen, the
multivariate CLT implies finite dimensional convergence. We shall argue here that the Un satisfies stochastic
equicontinuity as well. For this, let us first note that stochastic equicontinuity follows from

E sup
s,t∈[0,1]:|s−t|≤η

|Un(s)− Un(t)| → 0 as n→∞ and η → 0. (193)

Indeed, if (193) holds, then given ε > 0 and δ > 0, there exists η > 0 and an integer Nεδ such that for every
n ≥ Nε,δ, we have

E sup
s,t∈[0,1]:|s−t|≤η

|Un(s)− Un(t)| < εδ for all n ≥ Nεδ.

Let 0 = t0 < t1 < · · · < tk = 1 be a uniform grid in [0, 1] with spacing η. Then clearly

max
i

sup
t∈[ti,ti+1)

|Un(t)− Un(ti)| ≤ sup
s,t∈[0,1]:|s−t|≤η

|Un(t)− Un(s)|

and thus, by Markov’s inequality, we have

P

{
max
i

sup
t∈[ti,ti+1)

|Un(t)− Un(ti)| > δ

}
≤ 1

δ
E sup
s,t∈[0,1]:|s−t|<η

|Un(t)− Un(s)| ≤ ε for all n ≥ Nεδ

which gives stochastic equicontinuity.

We shall now verify (193). This will be done via a bound for the expected suprema of empirical processes
that we studied way back in Lecture 9. Let Pn denote the empirical measure of X1, . . . , Xn and let P denote
the uniform measure on [0, 1]. Then

E sup
s,t∈[0,1]:|s−t|≤η

|Un(s)− Un(t)| = E sup
s,t∈[0,1]:|s−t|≤η

∣∣√n(Pn − P )(I[0,s] − I[0,t])
∣∣ = E sup

f∈F

∣∣√n(Pn − P )f
∣∣
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where

F :=
{
I[0,s] − I[0,t] : s, t ∈ [0, 1], |s− t| ≤ η

}
.

We then use the following inequality (proved in Lecture 9)

E sup
f∈F

∣∣√n(Pn − P )f
∣∣ ≤ CE[∫ supf∈F

√
Pnf2

0

√
1 + logM(ε,F , L2(Pn))dε

]

≤ CE

[
sup
f∈F

√
Pnf2

∫ 1

0

√
1 + logM(ε sup

f∈F

√
Pnf2,F , L2(Pn))dε

]
.

The class F has the trivial envelope F ≡ 1 so we get (There is a mistake here. We cannot deduce

from supf∈F
√
Pnf2 ≤ 1 that M(ε supf∈F

√
Pnf2,F , L2(Pn)) ≤ M(ε,F , L2(Pn)); the inequality will

actually go the other way because ε-packing numbers increase as ε decreases ; see next lecture
for the correct argument. I am leaving this incorrect argument here so we know that it does
not work.)

E sup
f∈F

∣∣√n(Pn − P )f
∣∣ ≤ CE[sup

f∈F

√
Pnf2

∫ 1

0

√
1 + logM(ε

√
PnF 2,F , L2(Pn))dε

]

≤ C

(∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q))

)
E sup
f∈F

√
Pnf2.

Bound the VC subgraph dimension of F and use the relation between packing numbers and the VC subgraph
dimension to show that ∫ 1

0

√
1 + log sup

Q
M(ε

√
QF 2,F , L2(Q)) ≤ C

which gives

E sup
f∈F

∣∣√n(Pn − P )f
∣∣ ≤ CE sup

f∈F

√
Pnf2

= CE sup
f∈F

√
Pf2 + (Pn − P )f2

≤ C

(
E sup
f∈F

√
Pf2 + E sup

f∈F

√
|(Pn − P )f2|

)
where we used the trivial inequality

√
a+ b ≤

√
a+
√
b. For every f = I[0,s] − I[0,t] ∈ F , we have

Pf2 = P
(
I[0,s] − I[0,t]

)2
= s+ t− 2 min(s, t) = |s− t| ≤ η

so we get

E sup
f∈F

∣∣√n(Pn − P )f
∣∣ ≤ C (√η + E sup

f∈F

√
|(Pn − P )f2|

)
≤ C

(
√
η +

√
E sup
f∈F
|(Pn − P )f2|

)
.

Argue now that {f2 : f ∈ F} is a Boolean class of VC dimension at most 2 so that

E sup
f∈F

∣∣√n(Pn − P )f
∣∣ ≤ C√η + Cn−1/4

which goes to zero as η → 0 and n→∞ thereby proving (193).

The finite dimensional convergence of Un to U along with stochastic equicontinuity implies that (by
Theorem 20.1)

Eh(Un)→ Eh(U) as n→∞ (194)

for every bounded continuous function h : `∞[0, 1]→ R.
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20.4 An Issue with Measurability

There are some measurability issues with the assertion (194). It turns out that it cannot happen that h(Un)
is measurable for every bounded continuous function h : `∞[0, 1] → R. Let us illustrate this below for the
case when n = 1 (the argument can be extended for higher values of n as well; see, for example, Pollard [18,
Problem 1, Page 86]).

Note first that the stochastic process U1 depends on X1 alone. In fact, the function U1 in `∞[0, 1] precisely
equals

U1 = I[X1,1] − Id

where Id is the function Id(t) = t. We shall assume, if possible, that

h(U1) = h(I[X1,1] − Id) is measurable for every h : `∞[0, 1]→ R that is bounded and continuous.

and arrive at a contradiction. It is easy to see that the above assertion is equivalent to

h(I[X1,1]) is measurable for every h : `∞[0, 1]→ R that is bounded and continuous. (195)

By a standard connection between continuous functions and closed sets (see for example, Billingsley [2,
Chapter 1]), it can be shown that (195) implies that

I
{
I[X1,1] ∈ O

}
is measurable for every open set O ⊆ `∞[0, 1].

Here open sets in `∞[0, 1] are defined with respect to the metric (186). It can now be verified that for every
subset A ⊆ [0, 1], the following is true:

I{X1 ∈ A} = I
{
I[X1,1] ∈ O

}
where O := ∪s∈AB(I[s,1], 1/2)

where B(I[s,1], 1/2) refers to the open ball in `∞[0, 1] (with respect to the metric (186)) centered at I[s,1] and
of radius 1/2. Because an arbitrary union of open sets is open, the set O defined above is open. We have
therefore obtained, as a consequence of (195), that I{X1 ∈ A} is measurable for every subset A of [0, 1].
Because X1 is distributed according to the uniform distributoin on [0, 1], this means that it would be possible
to define a probability measure on the set of all subsets of [0, 1] such that the probability of every interval
equals the length of the interval. This cannot happen under the axiom of choice.

Due to the contradiction above, it follows that h(U1) cannot be measurable for all bounded continuous
functions h : `∞[0, 1]→ R. One can also show that the same holds for h(Un) for every n ≥ 1. This therefore
means that we cannot really talk about Eh(Un). As a fix, one considers outer Expectations here (denoted
by E∗h(Un)). Fortunately, the theory goes through with this fix. More details will be provided in the next
lecture.

21 Lecture 21

We proved the following process convergence theorem in the last class.

Theorem 21.1. Suppose for each n ≥ 1, {Xn(t), t ∈ [0, 1]} is a stochastic process whose realizations are
functions in `∞[0, 1]. Suppose {Xt, t ∈ [0, 1]} is another stochastic process whose realizations are functions
in C[0, 1]. Assume that the following two conditions hold:

1. For every k ≥ 1 and t1, . . . , tk ∈ [0, 1],

(Xn(t1), . . . , Xn(tk))
L→(X(t1), . . . , X(tk)) as n→∞. (196)

This assumption will be referred to as Finite Dimensional Convergence.
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2. For every ε > 0 and δ > 0, there exists an integer Nε,δ and a finite grid 0 = t0 < t1 < · · · < tk−1 <
tk = 1 such that

P

{
max

0≤i≤k−1
sup

t∈[ti,ti+1)

|Xn(t)−Xn(ti)| > δ

}
< ε for all n ≥ Nε,δ. (197)

This assumption will be referred to as Stochastic Equicontinuity or Asymptotic Equicontinuity.

Then for every bounded continuous function h : `∞[0, 1]→ R (here we are viewing `∞[0, 1] as a metric space
under the uniform metric), we have

Eh(Xn)→ Eh(X) as n→∞. (198)

Here are some remarks on this theorem.

1. If the sample paths of Xn have jumps (such as when Xn(t) =
√
n(Fn(t)− t)), then (as mentioned in the

previous class) h(Xn) need not be measurable for every bounded continuous funciton h : `∞[0, 1]→ R.
In this case, Eh(Xn) may not be properly defined. This can be fixed by replacing Eh(Xn) by its outer
expectation E∗h(Xn) defined as

E∗h(Xn) := inf {EB : B is measurable , B ≥ h(Xn),EB exists} .

The result of the theorem will be true if Eh(Xn) is replaced by E∗h(Xn). We shall ignore these
measurability issues in our treatment. For a careful analysis, see Kato [12].

2. We take (198) to be the definition of the convergence of the sequence of stochastic processes {Xn} to

X in `∞[0, 1]. We shall write this as Xn
L→X as n→∞. Like in the case of convergence in distribution

on Euclidean spaces, the following are equivalent definitions of Xn
L→X:

(a) E∗h(Xn)→ Eh(X) for every bounded Lipschitz function h : `∞[0, 1]→ R.

(b) For every open set G in `∞[0, 1], we have lim infn→∞ P∗{Xn ∈ G} ≥ P{X ∈ G}.
(c) For every closed set F in `∞[0, 1], we have lim supn→∞ P∗{Xn ∈ F} ≤ P{X ∈ F}.

An important consequence of process convergence is the continuous mapping theorem: Suppose Xn
L→X

and g : `∞[0, 1]→ Rk is continuous, then g(Xn)
L→g(X). This is a trivial consequence of the definition

of process convergence.

3. Finite dimensional convergence is usually a consequence of the Lindeberg-Feller Central Limit Theorem.

4. Stochastic equicontinuity is implied by

lim
η↓0

lim sup
n→∞

P

{
sup

0≤s,t≤1:|s−t|≤η
|Xn(s)−Xn(t)| > δ

}
= 0 for every δ > 0

which is further implied by

lim
η↓0

lim sup
n→∞

E sup
0≤s,t≤1:|s−t|≤η

|Xn(s)−Xn(t)| = 0. (199)

For example, to see that (199) implies (197), note that for every ε > 0 and δ > 0, there exists η > 0
such that

lim sup
n→∞

E sup
0≤s,t≤1:|s−t|≤η

|Xn(s)−Xn(t)| < εδ

This further implies the existence of an integer Nε,δ such that for all n ≥ Nε,δ,

E sup
0≤s,t≤1:|s−t|≤η

|Xn(s)−Xn(t)| < εδ.
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Let 0 = t0 < t1 < · · · < tk = 1 be a uniform grid in [0, 1] with spacing η so that

max
i

sup
t∈[ti,ti+1)

|Xn(t)−Xn(ti)| ≤ sup
0≤s,t,≤1:|s−t|≤η

|Xn(s)−Xn(t)|

so that by Markov inequality, we have

P

{
max
i

sup
t∈[ti,ti+1)

|Xn(t)−Xn(ti)| > δ

}
≤ 1

δ
E sup

0≤s,t≤1:|s−t|≤η
|Xn(s)−Xn(t)| < ε for all n ≥ Nε,δ

which proves (197).

In Theorem 21.1, the interval [0, 1] can be replaced by any other compact subinterval [a, b] of R. In fact,
it can be replaced by any abstract set T . In this case, one gets the following theorem whose proof we will
skip (the proof can be found, for example, in Kato [12, Theorem 11]).

Let `∞(T ) denote the space of all bounded functions on T viewed as a metric space with the metric
(f1, f2) 7→ supt∈T |f1(t)− f2(t)|.

Theorem 21.2. For each n ≥ 1, let Xn(t), t ∈ T be a stochastic process with realizations in `∞(T ). Suppose

1. For every k ≥ 1 and t1, . . . , tk ∈ T , the random vector sequence (Xn(t1), . . . , Xn(tk)) converges in
distribution to some limit.

2. There exists a semi-metric d on T for which (T, d) is totally bounded and such that

lim
η↓0

lim sup
n→∞

E sup
0≤s,t≤1:d(s,t)≤η

|Xn(s)−Xn(t)| = 0.

Then there exists a stochastic process X(t), t ∈ T whose realizations are continuous functions on T (with

respect to the metric d) such that Xn
L→X in `∞(T ) or, equivalently, E∗h(Xn)→ Eh(X) as n→∞ for every

bounded continuous function h : `∞(T )→ R.

Note that Theorem 21.2 does not start with a limit object X but it rather asserts the existence of
a process X(t), t ∈ T with continuous sample paths (with respect to the metric d with respect to which
Xn satisfies stochastic equicontinuity). Note that the limit object necessarily satisfies the property that
(Xn(t1), . . . , Xn(tk)) converges in distribution to (X(t1), . . . , X(tk)) for every k ≥ 1 and t1, . . . , tk ∈ T .

21.1 Maximal Inequalities and Stochastic Equicontinuity

As we have seen, the key condition for process convergence is stochastic equicontinuity. To prove it, we
obviously need bounds on

E sup
0≤s,t≤1:d(s,t)≤η

|Xn(s)−Xn(t)|.

In most of the applications Xn will be related to an empirical process and hence we are led to bounds on the
expected suprema of empirical process.

Let us illustrate the general ideas with an example first. Suppose that the index set T = [0, 1] and Xn is
the uniform empirical process i.e.,

Xn(t) =
√
n

(
1

n

n∑
i=1

I{Xi ≤ t} − t

)
=
√
n
(
PnI[0,t] − PI[0,t]

)
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where Pn is the empirical measure corresponding to the observations X1, . . . , Xn which are i.i.d uniform
on [0, 1] (also P is the distribution of [0, 1]). We shall attempt to prove here that Xn satisfies stochastic
equicontinuity. For this, first note that

E sup
0≤s,t≤1:|s−t|≤η

|Xn(s)−Xn(t)| = E sup
0≤s,t≤1:|s−t|≤η

∣∣√n(Pn − P )I[0,t] −
√
n(Pn − P )I[0,s]

∣∣ = E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣

where we use the following notation:

F :=
{
I[0,t] : 0 ≤ t ≤ 1

}
and Gη :=

{
I[0,t] − I[0,s] : 0 ≤ s, t ≤ 1, |s− t| ≤ η

}
for η ∈ [0, 1].

We can use our earlier bounds on the expected suprema of empirical processes to control

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ .

One of our main bounds on the expected suprema of empirical processes (from Lecture 9) is

E sup
h∈H

∣∣√n(Pnh− Ph)
∣∣ ≤ C ‖H‖L2(P ) J(H,H) (200)

where

J(H,H) :=

∫ 1

0

√
1 + log sup

Q
M(ε ‖H‖L2(Q) ,H, L2(Q))dε.

where H is the envelope of H defined as H(x) := suph∈H |h(x)|. Applying this to H = Gη, we obtain

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ‖G‖L2(P )

∫ 1

0

√
1 + log sup

Q
M(ε ‖G‖L2(Q) ,Gη, L2(Q))dε

where G is the envelope of Gη. It is now easy to see that G is the constant function that is equal to one.
Note that PG2 = 1 while Pg2 ≤ η for every g ∈ Gη (in other words, PG2 is much larger than supg∈Gη Pg

2).
Because G ≡ 1, the bound above becomes

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ∫ 1

0

√
1 + log sup

Q
M(ε,Gη, L2(Q))dε

We shall now show that the integral above is bounded from above by a constant. There are at least two
ways of showing this. For the first way, argue that the class {I[0,s] − I[0,t] : 0 ≤ s, t ≤ 1} has finite VC
subgraph dimension (at most 3??) and use our earlier relations between packing numbers and VC subgraph
dimensions. For the second way, the trivial inequality∫ (

I[0,s] − I[0,t] − (f1 − f2)
)2
dQ ≤ 2

∫ (
I[0,s] − f1

)2
dQ+ 2

∫ (
I[0,t] − f2

)2
dQ

which holds for every s, t and every pair of functions f1 and f2 implies that

N(2δ,Gη, L2(Q)) ≤
(
N(δ,F , L2(Q))

)2
.

This is because we can cover functions I[0,s]− I[0,t] to within 2δ in L2(Q) distance by covering the individual
functions I[0,t] to within δ and then taking all pairs of functions in the cover. This gives∫ 1

0

√
1 + log sup

Q
M(ε,Gη, L2(Q))dε ≤

∫ 1

0

√
1 + log sup

Q
M(cε,F , L2(Q))dε ≤ C (201)

where c and C are positive constants (the latter inequality follows from the fact that F is a Boolean function
class with VC dimension 1).

113



We have therefore proved that

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ∫ 1

0

√
1 + log sup

Q
M(ε,Gη, L2(Q))dε ≤ C.

Note that the second inequality above cannot be significantly improved because the integral is at least 1.
Unfortunately, the bound above is not strong enough to yield

lim
η↓0

lim sup
n→∞

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ = 0. (202)

To improve our bounds in order to deduce the above, we need to use bounds that are better than (200).
Recall (from Lecture 9) that although (200) was stated as a main bound, it actually follows from the following
inequality:

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ CE∫ supg∈Gη

√
Png2

0

√
1 + logM(ε,Gη, L2(Pn))dε. (203)

From this bound, we can argue as follows. For every δ ∈ [0, 1], we can write

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ CE∫ δ

0

√
1 + logM(ε,Gη, L2(Pn))dε+ CE{ sup

g∈Gη

√
Png2 > δ}

∫ 1

0

√
1 + logM(ε,Gη, L2(Pn))dε

≤ C
∫ δ

0

√
1 + log sup

Q
M(ε,Gη, L2(Q))dε+ CP{ sup

g∈Gη

√
Png2 > δ}

∫ 1

0

√
1 + log sup

Q
M(ε,Gη, L2(Q))dε

By (201), we can replace the second integral by a constant and the first integral by the integral of the covering
numbers of F to get

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ∫ δ

0

√
1 + log sup

Q
M(cε,F , L2(Q))dε+ CP{ sup

g∈Gη

√
Png2 > δ}

≤ C
∫ δ

0

√
1 + log sup

Q
M(cε,F , L2(Q))dε+

C

δ
E sup
g∈Gη

√
Png2. (204)

The last expected supremum can be controlled (as in the last lecture) via

E sup
g∈Gη

√
Png2 = E sup

g∈Gη

√
Pg2 + (Pn − P )g2

≤

(
E sup
g∈Gη

√
Pg2 + E sup

g∈Gη

√
|(Pn − P )g2|

)

where we used the trivial inequality
√
a+ b ≤

√
a+
√
b. As we mentioned earlier, supg∈Gη Pg

2 ≤ η so that

E sup
g∈Gη

√
Png2 ≤ √η + E sup

g∈Gη

√
|(Pn − P )g2| ≤ √η +

√
E sup
g∈Gη

|(Pn − P )g2|.

Note now that {g2 : g ∈ Gη} is a Boolean class of VC dimension at most 2 so that

E sup
g∈Gη

√
Png2 ≤ √η + Cn−1/4.

Combining this with (204), we obtain

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ∫ δ

0

√
1 + log sup

Q
M(cε,F , L2(Q))dε+

C

δ

(√
η + Cn−1/4

)
.
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As a consequence,

lim sup
n→∞

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ∫ δ

0

√
1 + log sup

Q
M(cε,F , L2(Q))dε+

C
√
η

δ

and further

lim
η↓0

lim sup
n→∞

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ ≤ C ∫ δ

0

√
1 + log sup

Q
M(cε,F , L2(Q))dε.

Since this is true for every δ > 0, the inequality will also hold if we take limit of the right hand side as
δ → 0. It is now easy to show that this limit would be zero (this is because the integral from 0 to 1 is
finite so the integral from 0 to δ should go to zero as δ → 0 by the dominated convergence theorem). We
have thus proved (202) which is same as stochastic equicontinuity of Xn(t), t ∈ [0, 1]. Combined with finite
dimensional convergence, we have proved that the uniform empirical process converges in distribution to
Brownian Bridge. This is Donsker’s theorem for the uniform empirical process.

We had to do a bit of work above to go from (203) to (202). There exist other maximal inequalities which
allow one to deduce of (202) more easily. The following theorem (taken from Kato [12, Theorem 8]) is one
such result.

Theorem 21.3. Let H be an envelope for the class H with PH2 <∞. Then

E sup
h∈H
|
√
n(Pnh− Ph)| ≤ C

(
‖H‖L2(P ) J(δ) +

Γ√
n

J2(δ)

δ2

)
. (205)

for every δ satisfying
suph∈H Ph

2

PH2
≤ δ2 ≤ 1.

Here

J(δ) :=

∫ δ

0

√
1 + log sup

Q
M(ε ‖H‖L2(Q) ,H, L2(Q))dε and Γ :=

√
E max

1≤i≤n
H2(Xi).

Let us now demonstrate that Theorem 21.3 yields (202) quite easily. Indeed, applying inequality (205)
to H = Gη (with envelope H ≡ 1) and δ =

√
η (note that supg∈Gη Pg

2 ≤ η and PG2 = 1), we get

E sup
g∈Gη

|
√
n(Png − Pg)| ≤ C

(
J(
√
η) +

1√
n

J2(
√
η)

η

)
which implies

lim sup
n→∞

E sup
g∈Gη

|
√
n(Png − Pg)| ≤ CJ(

√
η)

= C

∫ √η
0

√
1 + log sup

Q
M(ε,Gη, L2(Q))dε ≤ C

∫ √η
0

√
1 + log sup

Q
M(cε,F , L2(Q))dε

which, as before, goes to 0 as η ↓ 0. This gives a shorter proof of (202) (albeit reliant on the nontrivial result
from Theorem 21.3).

22 Lecture 22

In the last lecture, we proved that the uniform empirical process converges in distribution to Brownian Bridge
in `∞[0, 1]. The main ingredient for this is proving the stochastic equicontinuity condition for the uniform
empirical process. This condition states that

lim
η↓0

lim sup
n→∞

E sup
s,t∈[0,1]:|s−t|≤η

|Xn(t)−Xn(s)| = 0
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where Xn(t) is the uniform empirical process. We observed last time that this statement is equivalent to

lim
η↓0

lim sup
n→∞

E sup
g∈Gη

∣∣√n (Png − Pg)
∣∣ = 0 (206)

where
Gη :=

{
I[0,s] − I[0,t] : s, t ∈ [0, 1], |s− t| ≤ η

}
.

In this lecture, we shall first generalize this argument to more general processes {
√
n(Pnf − Pf) : f ∈ F}.

Specifically, let F be a class of functions and let

Gη :=
{
f1 − f2 : f1, f2 ∈ F and P (f1 − f2)2 ≤ η

}
.

We shall provide a sufficient condition on F for which (206) holds. To control the expected supremum in
(206), we shall use the following maximal inequality (which was also stated in the previous lecture):

Theorem 22.1. Let H be an envelope for the class H with PH2 <∞. Then

E sup
h∈H
|
√
n(Pnh− Ph)| ≤ C

(
‖H‖L2(P ) J(δ) +

Γ√
n

J2(δ)

δ2

)
. (207)

for every δ satisfying
suph∈H Ph

2

PH2
≤ δ2 ≤ 1.

Here

J(δ) :=

∫ δ

0

√
1 + log sup

Q
M(ε ‖H‖L2(Q) ,H, L2(Q))dε and Γ :=

√
E max

1≤i≤n
H2(Xi).

We shall apply Theorem 22.1 to H = Gη. Suppose F is an envelope for F , then it is clear that 2F is an
envelope for Gη. We shall therefore take H = 2F while applying Theorem 22.1. We get

E sup
g∈Gη

|
√
n(Png − Pg)| ≤ C

(
2 ‖F‖L2(P ) J(δ, 2F,Gη) +

√
Emax1≤i≤n(4F 2(Xi))

n

J2(δ, 2F,Gη)

δ2

)
(208)

where

J(δ, 2F,Gη) :=

∫ δ

0

√
1 + log sup

Q
M(ε ‖2F‖L2(Q) ,Gη, L2(Q))dε.

Here, as in Theorem 22.1, δ is any real number satisfying

sup
g∈Gη

Pg2

P (2F )2
≤ δ2 ≤ 1.

Now because supg∈Gη Pg
2 ≤ η, we can take

δ2 = min
( η

4PF 2
, 1
)

so that δ ↓ 0 as η ↓ 0. Because Gη is a subset of F−F (which is the class of all functions {f1−f2 : f1, f2 ∈ F}),
we can trivially bound the packing numbers of Gη by the square of the packing numbers of F . More precisely,

M(ε ‖2F‖L2(Q) ,Gη, L
2(Q)) ≤

(
M(cε ‖F‖L2(Q) ,F , L

2(Q))
)2

for a positive constant c. This gives

J(δ, 2F,Gη) :=

∫ δ

0

√
1 + log sup

Q
M(ε ‖2F‖L2(Q) ,Gη, L2(Q))dε ≤ CJ(cδ, F,F)
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for two positive constants c and C. Plugging this in (208), we obtain

E sup
g∈Gη

|
√
n(Png − Pg)| ≤ C

(
‖F‖L2(P ) J(δ, F,F) +

√
Emax1≤i≤n F 2(Xi)

n

J2(cδ, F,F)

δ2

)
.

As a result, we obtain

lim sup
n→∞

E sup
g∈Gη

|
√
n(Png − Pg)| ≤ C

(
‖F‖L2(P ) J(δ, F,F) +

J2(cδ, F,F)

δ2
lim sup
n→∞

√
Emax1≤i≤n F 2(Xi)

n

)
.

Lemma 22.2 below then implies that the lim sup term on the right hand side above equals zero (as long as
J(cδ, F,F) <∞) so that

lim sup
n→∞

E sup
g∈Gη

|
√
n(Png − Pg)| ≤ C ‖F‖L2(P ) J(δ, F,F)

If we now assume that limδ↓0 J(δ, F,F) = 0, then we establish (206). Note that limδ↓0 J(δ, F,F) = 0 is a
consequence of

J(1, F,F) =

∫ 1

0

√
1 + log sup

Q
M(ε ‖F‖L2(Q) ,F , L2(Q))dε <∞. (209)

It remains to state and prove Lemma 22.2.

Lemma 22.2. Suppose Y1, . . . , Yn are identically distributed random variables (no assumption of indepen-
dence here) with E|Y1| <∞. Then

lim
n→∞

1

n
E max

1≤i≤n
|Yi| = 0. (210)

Proof of Lemma 22.2. This is a consequence of the Dominated Convergence theorem. We write

1

n
E max

1≤i≤n
|Yi| =

∫ ∞
0

1

n
P
{

max
1≤i≤n

|Yi| > x

}
dx.

For each fixed x, it is clear that the integrand above converges to zero as n → ∞. Further the integrand is
bounded by (by the union bound and the identical distribution assumption) P{|Y1| > x} which integrates to
E|Y1| <∞. The statement (210) therefore follows by the Dominated Convergence theorem.

22.1 Donsker’s Theorem under the Uniform Entropy Condition

We have proved therefore that under the condition (209) (known as the uniform entropy condition), the
stochastic process Xn(f) :=

√
n(Pnf − Pf) satisfies the stochastic equicontinuity condition with respect to

the metric (f, g) 7→ ‖f − g‖L2(P ) on F . On the other hand, we also have finite dimensional convergence here
via the usual multivariate central limit theorem i.e.,

(Xn(f1), . . . , Xn(fk))
L→N(0,Σ)

where Σ(i, j) = Cov(fi(X1), fj(X1)) for every k ≥ 1 and f1, . . . , fk ∈ F . We can thus apply our process
convergence result from last class which gives that Xn(f), f ∈ F converges in distribution on `∞(F). The
theorem also guarantees that the limit process X(f), f ∈ F is a Gaussian process (i.e., (X(f1), . . . , X(fk))
has a multivariate Gaussian distirbution for every k ≥ 1 and f1, . . . , fk ∈ F) has continuous sample paths
with respect to the metric (f, g) 7→ ‖f − g‖L2(P ). These conclusions are restated in the following theorem.

Theorem 22.3. Assume the uniform entropy condition (209). Then there exists a Gaussian process X(f), f ∈
F with continuous sample paths (with respect to the metric ‖f − g‖L2(P )) such that the sequence of stochastic

processes {Xn} defined by Xn(f) :=
√
n(Pnf − Pf), f ∈ F converges in distribution to X in `∞(F).
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Definition 22.4 (Donsker Class of Functions). Say that a class of functions F is Donsker with respect to a
probability measure P (also written as P -Donsker) if the stochastic process Xn(f) :=

√
n(Pnf − Pf), f ∈ F

converges in distribution to a Gaussian process X(f), f ∈ F which has continuous sample paths with respect
to the metric (f, g) 7→ ‖f − g‖L2(P ).

Theorem (22.3) states therefore that if F satisfies the uniform entropy condition (209), then F is P -
Donsker for every probability measure P .

22.2 Bracketing Condition for Donsker Classes

Another sufficient condition for being P -Donsker is obtained by replacing the uniform entropies in (209) by
bracketing entropy numbers. Specifically, assume that

J[](1, F,F) =

∫ 1

0

√
1 + logN[](ε ‖F‖L2(P ) ,F , L2(P ))dε <∞. (211)

Note that this condition depends on the probability measure P (unlike (209)). The following theorem proves
that, under the above condition, F is P -Donsker.

Theorem 22.5. If F satisfies the bracketing condition (211) for the probability measure P , then F is P -
Donsker.

To prove this theorem, it is enough to show that the process Xn(f) =
√
n(Pnf−Pf) satisfies the stochastic

equicontinuity condition under (211). For this, we shall use the following maximal inequality from Van der
Vaart [24, Lemma 19.34].

Theorem 22.6. Suppose H is an envelope for a class of functions H and assume that ‖H‖L2(P ) <∞. Then
for every δ > 0 satisfying

sup
h∈H

Ph2

PH2
≤ δ2 ≤ 1,

the following inequality holds:

E sup
h∈H

(√
n(Pnh− Ph)

)
≤ C

(
‖H‖L2(P ) J[](δ,H,H) +

√
nE
[
H(X1)I{H(X1) >

√
na(δ)}

])
where

J[](δ,H,H) =

∫ δ

0

√
1 + logN[](ε ‖H‖L2(P ) ,H, L2(P ))dε

and

a(δ) =
δ ‖H‖L2(P )√

logN[](δ ‖H‖L2(P ) ,H, L2(P ))
.

Theorem 22.6 is an analogue of Theorem 21.3 for entropy with bracketing. Also, Theorem 22.6 can be
seen an improvement of our earlier bracketing based maximal inequality:

E sup
h∈H

(√
n(Pnh− Ph)

)
≤ C ‖H‖L2(P ) J[](1, H,H).

When δ is small, the bound given by Theorem 22.6 is much better than the above bound.

We shall now prove Theorem 22.5 using Theorem 22.6 (for proof of Theorem 22.6, refer to Van der Vaart
[24, Lemma 19.34]).
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Proof of Theorem 22.5. To prove F is P -Donsker, the key is to verify stochastic equicontinuity (finite dimen-
sional convergence follows from the usual Central Limit Theorem). For stochastic equicontinuity, we need to
prove that

lim
η↓0

lim sup
n→∞

E sup
g∈Gη

∣∣√n(Png − Pg)
∣∣ = 0

where
Gη :=

{
f1 − f2 : f1, f2 ∈ F , P (f1 − f2)2 ≤ η

}
.

For this, we use Theorem 22.6 with H := Gη and H = 2F (where F is the envelope of F) to obtain

E sup
g∈Gη

(√
n(Png − Pg)

)
≤ C

(
‖2F‖L2(P ) J[](δ, 2F,Gη) +

√
nE
[
(2F (X1))I{2F (X1) >

√
na(δ)}

])
with

J[](δ, 2F,Gη) =

∫ δ

0

√
1 + logN[](ε ‖2F‖L2(P ) ,Gη, L2(P ))dε.

Because the bracketing numbers of {f − g : f, g ∈ F} can be bounded by the squares of the bracketing
numbers of F , we get

J[](δ, 2F,Gη) ≤ C
∫ cδ

0

√
1 + logN[](ε ‖F‖L2(P ) ,F , L2(P )) = CJ[](cδ,F , L2(P ))dε

for two positive constants c and C. We obtain thus

E sup
g∈Gη

(√
n(Png − Pg)

)
≤ C

(
‖F‖L2(P ) J[](cδ, F,F) +

√
nE
[
(2F (X1))I{2F (X1) >

√
na(δ)}

])
Also

a(δ) =
δ ‖2F‖L2(P )√

logN[](δ ‖2F‖L2(P ) ,Gη, L2(P ))
≥

δ ‖2F‖L2(P )√
2 logN[](cδ ‖2F‖L2(P ) ,F , L2(P ))

=: a′(δ).

We thus have

E sup
g∈Gη

(√
n(Png − Pg)

)
≤ C

(
‖F‖L2(P ) J[](cδ, F,F) +

√
nE
[
(2F (X1))I{2F (X1) >

√
na′(δ)}

])
.

Note that a′(δ) does not depend on n. The second term above can be bounded as

√
nE
[
(2F (X1))I{2F (X1) >

√
na′(δ)}

]
≤
√
nE
[
(2F (X1))

2F (X1)√
na′(δ)

I{2F >
√
na′(δ)}

]
=

4

a′(δ)
EF 2(X1)I{2F (X1) >

√
na′(δ)}.

By the dominated convergence theorem, the above expectation converges to zero as n → ∞ (note that we
have assumed that EF 2(X1) <∞). We have thus proved

E sup
g∈Gη

(√
n(Png − Pg)

)
≤ C ‖F‖L2(P ) J[](cδ,F , L2(P ))

for every δ > 0. Under the assumption (211), the right hand side above converges to zero as δ → 0. This
proves stochastic equicontinuity and consequently the fact that F is P -Donsker.

22.3 Application to convergence rate of the sample median

We gave the example of finding the convergence rate of the sample median as one of the motivations for
studying process convergence. Now that we understand what process convergence is, let us revisit this
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example and rigorize the argument. The setting is as follows. We have i.i.d data X1, . . . , Xn generated from,
say, the N(θ0, 1) distribution. Let

Mn(θ) :=
1

n

n∑
i=1

|Xi − θ| and M(θ) := E|X1 − θ|

for θ ∈ R. The estimator θ̂n is defined as any minimizer of Mn(θ) over θ ∈ R. Also note that θ0 uniquely

maximizes M(θ), θ ∈ R. We have proved earlier that θ̂n is consistent for θ0 and that its rate of convergence

is n−1/2. To obtain the limiting distribution of θ̂n, we considered the process:

M̃n(h) := n
(
Mn(θ0 + n−1/2h)−Mn(θ0)

)
= An(h) +Bn(h)

where

An(h) = n
(
Mn(θ0 + n−1/2h)−Mn(θ0)−M(θ0 + n−1/2h) +M(θ0)

)
and

Bn(h) = n
(
M(θ0 + n−1/2h)−M(θ0)

)
.

We have earlier seen that An(h)
L→A(h) := hZ where Z ∼ N(0, 1) and Bn(h) → B(h) := M ′′(θ0)h2/2 for

every fixed h ∈ R. The first convergence was an application of the Lindeberg-Feller CLT and the second
convergence followed from Taylor expansion to second order. These convergence statements actually can be
much strengthened. In fact, it holds that

An
L→A in `∞[−Γ,Γ] for every fixed Γ > 0 (212)

and

Bn → B uniformly over [−Γ,Γ] for every Γ > 0. (213)

The uniform convergence above means that sup|h|≤Γ |Bn(h) − B(h)| → 0 as n → ∞. The statement (213)
is straightforward to prove via the usual Taylor expansion argument (left as exercise). We shall sketch
the argument for (212) below. The process convergence statement (212) requires two ingredients: finite
dimensional convergence and stochastic equicontinuity. For finite dimensional convergence, we need to prove
that

(An(h1), . . . , An(hk))
L→(A(h1), . . . , A(hk))

for every k ≥ 1 and h1, . . . , hk ∈ [−Γ,Γ]. This can be proved via the multivariate Lindeberg-Feller Central
Limit Theorme (left as exercise). For stochastic equicontinuity, we need to show that

lim
η↓0

lim sup
n→∞

E sup
h1,h2∈[Γ,Γ]:|h1−h2|≤η

|An(h1)−An(h2)| = 0. (214)

For this, note that

E sup
h1,h2∈[Γ,Γ]:|h1−h2|≤η

|An(h1)−An(h2)| = E sup
g∈Gη

(n |Png − Pg|)

where

Gη :=
{
x 7→ |x− θ0 − n−1/2h1| − |x− θ0 − n−1/2h2| : h1, h2 ∈ [−Γ,Γ], |h1 − h2| ≤ η

}
.

The statement (214) can then be proved by using one of our bounds on the expected suprema of empirical
process (say the bounds based on bracketing numbers). This is again left as exercise.

The two statements (212) and (213) can be added to yield (verify this):

M̃n = An +Bn
L→A+B =: M̃ in `∞[−Γ,Γ] for every fixed Γ > 0.

The limit process of M̃n is therefore M̃(h) := hZ + M ′′(θ0)h2/2 for h ∈ R. The limiting distribution of√
n(θ̂n−θ0) now follows if we can prove that argminh∈R M̃n(h) converges in distribution to argminh∈R M̃(h).

This can be deduced from a general argmax Continuous Mapping Theorem which is proved next.
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22.4 The Argmax Continuous Mapping Theorem

Theorem 22.7. Let H be a metric space. Let {Mn(h), h ∈ H} and {M(h), h ∈ H} be stochastic processes
indexed by H. Suppose the following conditions holds:

1. M
L→M in `∞(K) for every compact subset K of H.

2. Every realization of M is continuous on H.

3. Let ĥn maximize Mn(h) over h ∈ H.

4. Let ĥ be the unique maximizer of M(h) over h ∈ H.

5. Tightness: For each ε > 0, there exists a compact subset Kε ⊆ H such that

P
{
ĥ /∈ Kε

}
< ε and lim sup

n→∞
P
{
ĥn /∈ Kε

}
< ε.

Then ĥn
L→ĥ in H i.e., for every bounded continuous function f : H → R, we have Ef(ĥn) → Ef(ĥ) as

n→∞.

Remark 22.1. Usually Theorem 22.7 will applied to the process M̃n(h) := r2
n

(
Mn(θ0 + hr−1

n )−Mn(θ0)
)

and M̃ as the limit process of M̃n. In this case, note that ĥn = rn

(
θ̂n − θ0

)
and hence the tightness condition

is equivalent to θ̂n−θ0 = OP (r−1
n ). Thus a preliminary rate result needs to be proved before applying Theorem

22.7 for obtaining the asymptotic distribution of rn(θ̂n − θ0).

Remark 22.2. One can apply Theorem 22.7 to Mn(θ), θ ∈ Θ and M(θ), θ ∈ Θ as well (instead of M̃n and

M̃). This will usually lead to a consistency result for θ̂n.

Proof of Theorem 22.7. It is enough to show that

lim sup
n→∞

P{ĥn ∈ F} ≤ P{ĥ ∈ F}

for every closed subset F of H. Fix a closed subset F ⊆ H and also fix an arbitrary compact set K in H.
Write

P
{
ĥn ∈ F

}
≤ P

{
ĥn ∈ F ∩K

}
+ P

{
ĥn /∈ K

}
≤ P

{
sup

h∈F∩K
Mn(h)− sup

h∈K
Mn(h) ≥ 0

}
+ P

{
ĥn /∈ K

}
which gives

lim sup
n→∞

P
{
ĥn ∈ F

}
≤ lim sup

n→∞
P
{

sup
h∈F∩K

Mn(h)− sup
h∈K

Mn(h) ≥ 0

}
+ lim sup

n→∞
P
{
ĥn /∈ K

}
Note now that {

m ∈ `∞(K) : sup
h∈F∩K

m(h)− sup
h∈K

m(h) ≥ 0

}
is a closed subset of `∞(K). This follows because if suph∈F∩K mk(h) − suph∈K mk(h) ≥ 0 for each k and
mk → m uniformly in K, then suph∈F∩K m(h)− suph∈K m(h) ≥ 0. Thus from the convergence of Mn to M
in `∞(K), we get

lim sup
n→∞

P
{

sup
h∈F∩K

Mn(h)− sup
h∈K

Mn(h) ≥ 0

}
≤ P

{
sup

h∈F∩K
M(h)− sup

h∈K
M(h) ≥ 0

}
.
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We thus get

lim sup
n→∞

P
{
ĥn ∈ F

}
≤ P

{
sup

h∈F∩K
M(h)− sup

h∈K
M(h) ≥ 0

}
+ lim sup

n→∞
P
{
ĥn /∈ K

}
≤ P

{
sup

h∈F∩K
M(h)− sup

h∈K
M(h) ≥ 0, ĥ ∈ K

}
+ P{ĥ /∈ K}+ lim sup

n→∞
P
{
ĥn /∈ K

}
.

We now claim that {
sup

h∈F∩K
M(h)− sup

h∈K
M(h) ≥ 0, ĥ ∈ K

}
⊆
{
ĥ ∈ F

}
.

The reason for this is that when the right hand side holds, we have suph∈F∩KM(h) ≥ suph∈KM(h) ≥
suph∈HM(h). The continuity of the sample paths of M and the closedness of F (which implies that F ∩K is
compact) implies that suph∈F∩KM(h) is achieved at some point in F ∩K. The unique maximum assumption

on M will imply that the point in F ∩K achieving the maximum of M will have to equal ĥ which implies
that ĥ ∈ F . This therefore gives

lim sup
n→∞

P
{
ĥn ∈ F

}
≤ P

{
ĥ ∈ F

}
+ P{ĥ /∈ K}+ lim sup

n→∞
P
{
ĥn /∈ K

}
.

Note that this is true for every closed subset F of H and every compact subset K of H. Now fix ε > 0 and
choose Kε as in the tightness condition. This will give

lim sup
n→∞

P
{
ĥn ∈ F

}
≤ P

{
ĥ ∈ F

}
+ 2ε.

Let ε tend to zero to complete the proof.

Use this result along with the process convergence results of the previous section to complete the proof
of the result for the limiting distribution of the sample median.

23 Lecture 23

The main goal of this lecture is to prove the following theorem (from Van der Vaart [24, Theorem 5.23])
which proves asymptotic normality of M -estimators under some general conditions. To simplify the proof
slightly, I have made some simplifications to the theorem (such as assuming that the criterion functions are
indexed by R; the full theorem in Van der Vaart [24, Theorem 5.23] applies to the case where the criterion
functions are indexed by an open set in Rk for a fixed k).

23.1 An abstract M-estimation result

Theorem 23.1. Suppose {mθ, θ ∈ R} be a class of functions indexed by R. Given i.i.d observations

X1, . . . , Xn having distribution P , we consider the estimator θ̂n defined as any maximizer of Pnmθ over
θ ∈ R. Let θ0 be the population analogue of θ̂n defined as any maximizer of Pmθ over θ ∈ R. Suppose that
the following assumptions hold:

1. Assume that θ 7→ mθ(x) is differentiable at θ0 with derivative ṁθ0(x) for almost sure x (w.r.t P ).

2. Assume that there exists a function Γ(x) with PΓ2 <∞ (i.e., Γ ∈ L2(P )) such that

|mθ1(x)−mθ2(x)| ≤ Γ(x)|θ1 − θ2| (215)

for all θ1, θ2 and x.
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3. Suppose that θ 7→M(θ) := Pmθ is twice continuously differentiable at θ0 with M ′′(θ0) < 0.

4. θ̂n is consistent for θ0 i.e., θ̂n
P→θ0 as n→∞.

Then the following two conclusions holds:

1. The rate of convergence of θ̂n to θ0 is n−1/2 i.e., |θ̂n − θ0| = OP (n−1/2).

2. The following holds:

√
n
(
θ̂n − θ0

)
L→N

(
0,

var(ṁθ0(X1))

(M ′′(θ0))2

)
as n→∞. (216)

Before proceeding to the proof of this Theorem, let us first look at the following remarks.

1. The conditions of the theorem hold when mθ(x) = −|x− θ| and thus this theorem can be viewed as a
generalization of our limiting distribution result for the sample median from last class.

2. Note that the criterion function θ 7→ mθ(x) is only assumed to be once differentiable with respect to
θ at θ0 (almost surely with respect to x). But the limit function M(θ) = Pmθ is assumed to be twice
differentiable. If we insist on the criterion function to be twice differentiable, then the theorem will no
longer be applicable to functions such as mθ(x) = −|x − θ|. However, classical proofs for asymptotic
normality of M -estimators will do Taylor expansions to second order and these arguments require
existence of second derivatives (and some additional regularity).

3. θ0 is not assumed to be a unique maximum of M(θ), θ ∈ R. Instead of this, it is assumed that θ̂n is

consistent for θ0 i.e., it converges in probability to θ0. This means that θ̂n will be close to θ0 and to get
detailed the asymptotic picture for θ̂n, we can focus on local regions of θ0. This theorem is therefore a
local result where all attention is focussed on local regions of θ0.

We shall now prove Theorem 23.1. It will use several ideas and results that we have seen so far in this
course.

Proof of Theorem 23.1. The first task is to prove that the rate of convergence is n−1/2. For this, we can
directly use the rate theorem. Letting Mn(θ) := Pnmθ and d(θ, θ0) = |θ − θ0|, it is easy to check that the
conditions of the rate theorem hold (the key assumption is that M(θ0) −M(θ) & d2(θ, θ0)) which follows
from the assumption that M ′′(θ0) < 0. To determine the rate, we have to bound

E sup
θ:|θ−θ0|≤δ

(Mn −M)(θ − θ0)

and then equate the bound to δ2. The above quantity equals

E sup
θ:|θ−θ0|≤δ

(Pn − P )(mθ −mθ0) ≤ E sup
θ:|θ−θ0|≤δ

|(Pn − P )(mθ −mθ0)| .

To control the above expected supremum, we use the bracketing bound (from Lecture 12):

E sup
h∈H

√
n|Pnh− Ph| ≤ C ‖H‖L2(P )

∫ 1

0

√
1 + logN[](ε ‖H‖L2(P ) ,H, L2(P ))dε. (217)

The relevant class H here is {mθ −mθ0 : |θ − θ0| ≤ δ} and its envelope (by the Lipschitz condition (215))
can be taken to be H(x) := Γ(x)δ. We thus have

E sup
θ:|θ−θ0|≤δ

|(Pn − P )(mθ −mθ0)| ≤ C δ√
n
‖Γ‖L2(P )

∫ 1

0

√
1 + logN[](εδ ‖Γ‖L2(P ) , {mθ −mθ0 : |θ − θ0| ≤ δ}, L2(P )).
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To control the bracketing numbers above, we use this result from Lecture 12: If Θ ⊆ Rd is contained in a
ball of radius R and if {gθ : θ ∈ Θ} is a function class which satisfies |gθ1(x) − gθ2(x)| ≤ Υ(x) ‖θ1 − θ2‖ for
all x and θ1, θ2 ∈ Θ. If Υ ∈ L2(P ), then

N[](ε ‖Υ‖L2(P ) , {gθ, θ ∈ Θ}, L2(P )) ≤
(

1 +
4R

ε

)d
for every ε > 0. (218)

Using this result with the class {gθ : |θ − θ0| ≤ δ} with gθ := mθ −mθ0 and Υ = Γ, we obtain

logN[](εδ ‖Γ‖L2(P ) , {mθ −mθ0 : |θ − θ0| ≤ δ}, L2(P )) ≤ log

(
1 +

4δ

εδ

)
= log

(
1 +

4

ε

)
.

We thus obtain

E sup
θ:|θ−θ0|≤δ

|(Pn − P )(mθ −mθ0)| ≤ C δ√
n
‖Γ‖L2(P )

∫ 1

0

√
1 + log

(
1 +

4

ε

)
dε ≤ C δ√

n
‖Γ‖L2(P ) ≤

Cδ√
n

because ‖Γ‖L2(P ) is finite. Therefore to get a rate upper bound for |θ̂n− θ0|, we can solve δn−1/2 = δ2 which

gives δ = n−1/2. We have thus proved that |θ̂n − θ0| = OP (n−1/2).

Now we shall attempt to prove (216). For this, we consider the process

M̃n(h) := n
(
Mn(θ0 + hn−1/2)−Mn(θ0)

)
indexed by h ∈ R which can be decomposed as M̃n(h) = An(h) +Bn(h) where

An(h) := n
(
Mn(θ0 + hn−1/2)−Mn(θ0)−M(θ0 + hn−1/2) +M(θ0)

)
and Bn(h) = n

(
M(θ0 + hn−1/2)−M(θ0)

)
. By a second order Taylor expansion of M around θ0 (note that

we have assumed that M(θ) is twice continuously differentiable at its point of maximum θ0 with M ′′(θ0) < 0;
this also implies that M ′(θ0) = 0), it can be proved that Bn(h) converges to

B(h) :=
1

2
M ′′(θ0)

for each fixed h ∈ R. We will now show that An converges to a stochastic process A(h) in `∞[−K,K] for each
fixed K. To prove this, the first step is to establish finite dimensional converges i.e., that (An(h1), . . . , An(hk))
converges in distribution for a fixed k and h1, . . . , hk. For this, we shall use the Lindeberg-Feller CLT. Observe
that

(An(h1), . . . , An(hk)) =

n∑
i=1

(Yni − EYni)

where

Yni =
(
mθ0+h1n−1/2(Xi)−mθ0(Xi),mθ0+h2n−1/2(Xi)−mθ0(Xi), . . . ,mθ0+hkn−1/2(Xi)−mθ0(Xi).

)
.

Because X1, . . . , Xn are i.i.d, we have Cov(
∑n
i=1 Yni) = nCov(Yn1). Now for each fixed h ∈ R,

nvar
(
mθ0+hn−1/2(X1)−mθ0(X1)

)
= E

[√
n
(
mθ0+hn−1/2(X1)−mθ0(X1)

)]2−[E√n (mθ0+hn−1/2(X1)−mθ0(X1)
)]2

Now by the almost sure first order derivative assumption on the criterion function mθ(x) at θ0, we have

√
n
(
mθ0+hn−1/2(X1)−mθ0(X1)

)
→ hṁθ0(X1) almost surely.

Also by the Lipschitz assumption (215), we have

√
n
(
mθ0+hn−1/2(X1)−mθ0(X1)

)
≤ |h|Γ(X1).
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Thus by the dominated convergence theorem, we obtain

nvar
(
mθ0+hn−1/2(X1)−mθ0(X1)

)
→ h2var(ṁθ0(X1)) as n→∞.

Similarly, for every fixed h1 and h2, we have

nCov
(
mθ0+h1n−1/2(X1)−mθ0(X1),mθ0+h2n−1/2(X1)−mθ0(X1)

)
→ Eh1h2 (ṁθ0(X1))

2 − h1h2 (Eṁθ0(X1))
2

= h1h2var(ṁθ0(X1)).

Therefore
n∑
i=1

Cov(Yni)→ Cov(A(h1), . . . , A(hk)) as n→∞

where
A(h) := Zh

√
var(ṁθ0(X1)) where Z ∼ N(0, 1).

Further, note that

‖Yni‖2 ≤
k∑
j=1

∣∣∣mθ0+hjn−1/2(Xi)−mθ0(Xi)
∣∣∣2 ≤ Γ2(Xi)

n

k∑
j=1

h2
j .

Therefore

n∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
= nE

(
‖Yn1‖2 I{‖Yn1‖2 > ε2}

)
≤

 k∑
j=1

h2
j

E

Γ2(X1)I

Γ2(X1)

k∑
j=1

h2
j > nε2




which converges to zero as n→∞ by the Dominated Convergence theorem (note that we have assumed that
EΓ2(X1) <∞). The assumptions of the Lindeberg-Feller CLT are all satisfied and we can thus conclude that

(An(h1), . . . , An(hk))
L→(A(h1), . . . , A(hk)) as n→∞

for every fixed k ≥ 1 and h1, . . . , hk ∈ R.

To convert this finite-dimensional convergence to process level convergence in `∞[−K,K] for each fixed
K, we need to prove stochastic equicontinuity for which we need to bound

E sup
h1,h2∈[−K,K]:|h1−h2|≤η

|An(h1)−An(h2)| = E sup
g∈Gη

|n(Png − Pg)|

where
Gη :=

{
x 7→ mθ0+h1n−1/2 −mθ0+h2n−1/2(x) : h1, h2 ∈ [−K,K], |h1 − h2| ≤ η

}
.

By the Lipschitz assumption (215), it is clear that the function x 7→ ηn−1/2Γ(x) is an envelope for Gη. Thus
the bound (217) gives

E sup
g∈Gη

|n(Png − Pg)| ≤
√
n

(
‖Γ‖L2(P )

η√
n

)∫ 1

0

√√√√1 + logN[]

(
εη ‖Γ‖L2(P )√

n
,Gη, L2(P )

)
dε

= η ‖Γ‖L2(P )

∫ 1

0

√√√√1 + logN[]

(
εη ‖Γ‖L2(P )√

n
,Gη, L2(P )

)
dε.

It is easy to see that for a small enough positive constant c,

N[]

(
εη ‖Γ‖L2(P )√

n
,Gη, L2(P )

)
≤ N2

[]

(
cεη ‖Γ‖L2(P )√

n
, {mθ −mθ0 : |θ − θ0| ≤ Kn−1/2}, L2(P )

)
.
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Thus by using (218) to control the bracketing numbers on the right hand side above, we obtain

logN[]

(
εη ‖Γ‖L2(P )√

n
,Gη, L2(P )

)
≤ 2 log

(
1 +

4K

cεη

)
.

We thus obtain

E sup
g∈Gη

|n(Png − Pg)| ≤ η ‖Γ‖L2(P )

∫ 1

0

√
log

(
1 +

4K

cεη

)
dε

≤ η ‖Γ‖L2(P )

∫ 1

0

(√
log

(
1 +

4K

ε

)
+

√
log

1

η

)
dε ≤ CKη ‖Γ‖L2(P )

√
log

1

η

where CK is a constant that only depends on K. The right hand side above clearly goes to zero as η → 0. This
proves stochastic equicontinuity of {An(h),−K ≤ h ≤ K}. Together with the finite dimensional convergence

result established earlier, we can deduce that An
L→A in `∞[−K,K] for every K ≥ 0.

It can also be proved that the earlier convergence of Bn(h) to B(h) for each fixed h ∈ R can be improved
to uniform convergence on [−K,K]. This is a consequence of twice continuous differentiability of M at θ0.

Using An
L→A in `∞[−K,K] and Bn → B uniformly on [−K,K], we can deduce that M̃n = An+Bn

L→M̃ :=
A+B in `∞[−K,K]. We can therefore use the argmax continuous mapping theorem (all of whose conditions
are met) to conclude that

√
n
(
θ̂n − θ0

)
L→ argmax

h∈R
M̃n(h) =

−
√

var(ṁθ0(X1))

M ′′(θ0)
Z ∼ N

(
0,

var(ṁθ0(X1))

(M ′′(θ0))2

)
.

This completes the proof of Theorem 23.1.

23.2 Application to MLE

Theorem 23.1 applies to maximum likelihood estimators. Suppose P = {Pθ, θ ∈ Θ} denote a class of
probability measures where Θ is an open subset of R and assume that X1, . . . , Xn are i.i.d observations from
Pθ0 . Assume that each Pθ has a density pθ with respect to a common dominating measure µ. In this setting,
Theorem 23.1 applies to mθ(x) = log pθ(x) and P = Pθ0 . If the assumptions of Theorem 23.1 hold, then it

follows that every MLE θ̂n has
√
n rate of convergence and

√
n
(
θ̂n − θ0

)
L→N

(
0,

var(ṁθ0(X1))

(M ′′(θ0))2

)
.

The advantage of this result is that it only requires that log pθ is once differentiable at θ0 for almost sure
x (the function ṁθ0(x) is called the score function). In comparison, traditional results on the asymptotic
normality of the MLE require the existence of at least two derivatives of log pθ at θ0. The asymptotic variance
is given by

var(ṁθ0(X1))

(M ′′(θ0))2
.

The numerator here is the Fisher information I(θ0). Under additional smoothness assumptions on ṁθ0(x),
it can be shown that M ′′(θ0) = −I(θ0) so that the asymptotic variance is the familiar 1/I(θ0). The cleanest
assumption involving the extra smoothness is Le Cam’s differentiability in quadratic mean.

Definition 23.2 (Differentiability in Quadratic Mean (DQM)). We say that {Pθ, θ ∈ Θ} is differentiable in
quadratic mean at θ0 ∈ Θ if there exists a function ˙̀

θ0 ∈ L2(Pθ0) such that∥∥∥∥√pθ −√pθ0 − 1

2
(θ − θ0) ˙̀

θ0

√
pθ0

∥∥∥∥
L2(µ)

= o(|θ − θ0|) as θ → θ0.
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Under the DQM assumption, the function ˙̀
θ0 plays the role of the score function and Fisher information

will be defined by I(θ0) = varPθ0 ( ˙̀
θ0(X1)) (more details will be given in the next lecture). The next

result asserts the N(0, 1/I(θ0)) asymptotic distribution of the MLE under DQM and an additional Lipschitz
assumption on log pθ. This is Van der Vaart [24, Theorem 5.39].

Theorem 23.3. Suppose Θ is an open set with θ0 ∈ Θ. Assume that {Pθ, θ ∈ Θ} satisfies DQM at θ0.
Assume also that

|log pθ1(x)− log pθ2(x)| ≤ Γ(x)|θ1 − θ2| (219)

for all x and θ1, θ2 in a neighborhood of θ0 with Pθ0Γ2 <∞. If I(θ0) > 0 and if θ̂n is consistent for θ0, then

√
n
(
θ̂n − θ0

)
L→N

(
0,

1

I(θ0)

)
.

A crucial ingredient in the proof of Theorem 23.3 is the fact that the DQM property implies another
propery known as Local Asymptotic Normality (LAN). We say that {Pθ, θ ∈ Θ} satisfies LAN at θ0 if

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
= hSn −

1

2
h2I + oPθ0 (1) (220)

where Sn converges in distribution to N(0, I(θ0)) under Pθ0 . It will be shown in the next lecture that DQM
at θ0 implies the LAN with I = I(θ0). It should be clear that (220) along with the additional Lipschitz

assumption (219) as well as the consistency of θ̂n implies (23.3). Indeed note first that the left hand side of
(220) is M̃n(h). If we define M̃(h) = hZ

√
I−h2I/2 where Z ∼ N(0, 1) and I = I(θ0), then the (220) implies

that the finite dimensional distributions of M̃n converge in distribution to those of M̃ . Under the Lipschitz
assumption (219), this finite dimensional convergence can be supplemented with process convergence to yield
convergence in `∞[−K,K] for every fixed K ≥ 0. One can then use the argmax continuous mapping theorem
to yield (23.3). This will complete the proof of Theorem 23.3. Therefore establishing (220) under the DQM
assumption is key for the proof of Theorem 23.3. We shall prove this important fact (that DQM implies
LAN) in the next lecture.

24 Lecture 24

This lecture will be about differentiability in quadratic mean (DQM) and local asymptotic normality (LAN).
I am following the remarkably clean treatment in Pollard [19] and I recommend that you read this beautiful
paper.

24.1 Differentiability in Quadratic Mean

The basic setting is the following. We have a class of probability measures P := {Pθ, θ ∈ Θ} on some space
that are indexed by a subset Θ of R (the extension to the case of Θ ⊆ Rk for a fixed k ≥ 1 is possible but
we shall restrict to k = 1 for simplicity). Assume that there is a single sigma finite measure µ with respect
to which each Pθ has a density which will be denoted by pθ. The following is the definition of DQM.

Definition 24.1 (Differentiability in Quadratic Mean (DQM)). We say that P is differentiable in quadratic
mean at θ0 ∈ Θ if there exists a function ˙̀

θ0 ∈ L2(Pθ0) such that∥∥∥∥√pθ −√pθ0 − 1

2
(θ − θ0) ˙̀

θ0

√
pθ0

∥∥∥∥
L2(µ)

= o(|θ − θ0|) as θ → θ0.

In other words, if P satisfies DQM at θ0, then we have the expansion:

√
pθ =

√
pθ0 +

1

2
(θ − θ0) ˙̀

θ0

√
pθ0 + rθ
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where rθ satisfies

lim
θ→θ0

‖rθ‖L2(µ)

|θ − θ0|
= 0.

Le Cam showed that, under DQM, classical asymptotic results in statistics (such as the asymptotic normality
of maximum likelihood estimators) can be proved without requiring the densities θ 7→ pθ(x) to be twice or
thrice differentiable at θ0.

The following lemma shows that if P satisfies DQM at θ0 and if θ 7→ pθ(x) is differentiable at θ0 in the
usual sense, then the function ˙̀

θ0 given by the DQM coincides with the usual derivative of log pθ(x).

Lemma 24.2. Suppose P satisfies DQM at θ0 ∈ Θ with the function ˙̀
θ0 . Assume also that θ 7→ pθ(x) is

differentiable at θ0 with derivative ṗθ0(x) for almost sure x with respect to the measureµ. Then

˙̀
θ0(x)pθ0(x) = ṗθ0(x) for a.s x (w.r.t µ).

Proof. Suppose {θn} is a sequence converging to θ0. The DQM assumption allows us to write√
pθn(x) =

√
pθ0(x) +

1

2
(θn − θ0) ˙̀

θ0(x)
√
pθ0(x) + rθn(x) (221)

for all x and n with

lim
n→∞

‖rθn‖L2(µ)

|θn − θ0|
= 0. (222)

By going to a subsequence if necessary, we shall assume that

∑
n≥0

‖rθn‖L2(µ)

|θn − θ0|
<∞. (223)

This can be done, for example, by replacing {θn} by the subsequence {θnk} where {nk} are chosen so that∥∥∥rθnk∥∥∥L2(µ)

|θnk − θ0|
≤ 2−k.

We now use the fact that
∑∞
i=1 ‖fi‖L1(µ) < ∞ implies that

∑∞
i=1 |fi| < ∞ almost surely (by monotone

convergence) which further implies that fi → 0 almost surely as i→∞. This gives that, under the assumption
(223)

rθn(x)

|θn − θ0|
→ 0 a.s (w.r.t µ) as n→∞.

We can thus rewrite (221) as√
pθn(x) =

√
pθ0(x) +

1

2
(θn − θ0) ˙̀

θ0(x)
√
pθ0(x) + o(|θn − θ0|) a.s (w.r.t µ) as n→∞. (224)

Now let us use the fact that θ 7→ pθ(x) is differentiable at θ0 with derivative ṗθ0(x) almost surely with respect
to µ and write

pθn(x) = pθ0(x) + (θn − θ0)ṗθ0(x) + o(|θn − θ0|) a.s (w.r.t µ) as n→∞. (225)

Observe that (224) and (225) both hold for almost sure x (with respect to µ).

We shall now work with two separate cases. The first case is when pθ0(x) > 0. In this case, we can rewrite
(225) as (note that pθ0(x) does not depend on n so that o(|θ − θ0|/pθ0(x)) = o(|θ − θ0|)):

pθn(x) = pθ0(x)

(
1 + (θn − θ0)

ṗθ0(x)

pθ0(x)
+ o(|θn − θ0|)

)
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Taking square roots on both sides, we obtain

√
pθn(x) =

√
pθ0(x)

(
1 + (θn − θ0)

ṗθ0(x)

pθ0(x)
+ o(|θn − θ0|)

)1/2

.

By a Taylor expansion of x 7→
√
x at x = 0 up to first order, we deduce from above that

√
pθn(x) =

√
pθ0(x)

(
1 +

1

2
(θn − θ0)

ṗθ0(x)

pθ0(x)
+ o(|θn − θ0|)

)
=
√
pθ0(x)1 +

1

2
(θn− θ0)

ṗθ0(x)√
pθ0(x)

+ o(|θn− θ0|).

Comparing the above with (224), we deduce that

˙̀
θ0(x) =

ṗθ0(x)

pθ0(x)
.

Let us now consider the case when pθ0(x) = 0. In this case, (224) and (225) become respectively√
pθn(x) = o(|θn − θ0|) =⇒ pθn(x) = o(|θn − θ0|2)

and
pθn(x) = (θn − θ0)ṗθ0(x) + o(|θn − θ0|).

Equating the above two equations, we obtain

o(|θn − θ0|2) = (θn − θ0)ṗθ0(x) + o(|θn − θ0|).

Dividing through by |θn−θ0| and letting n→∞, we obtain ṗθ0(x) = 0 i.e., the equation ˙̀
θ0(x)pθ0(x) = ṗθ0(x)

is satisfied in this case as well. This completes the proof.

The above lemma implies that

˙̀
θ0(x) =

ṗθ0(x)

pθ0(x)
whenever pθ0(x) > 0.

The right hand side above is the classical score function. Thus when the DQM holds, we shall refer to the
function ˙̀

θ0 as the score function.

A standard fact about the classical score function is that its expectation with respect to the probability
measure Pθ0 equals zero. The classical proof for this involves interchanging the order of differentiation w.r.t
θ and the integral: ∫

˙̀
θ0(x)pθ0(x)dµ(x) =

∫
ṗθ0(x)dµ(x) =

˙(∫
pθ(x)dµ(x)

)
= 0.

The following lemma shows that the DQM assumption implies this fact directly.

Lemma 24.3. Suppose P satisfies DQM at θ0 with score function ˙̀
θ0 . Then∫

˙̀
θ0(x)pθ0(x)dµ(x) = 0. (226)

Proof. Let θn be a sequence converging to θ0. By the DQM representation, we can write (221) with the
remainder term rθn satisfying (222). Note then that

1 =

∫
pθndµ =

∫ (
√
pθ0(x) +

1

2
(θn − θ0) ˙̀

θ0

√
pθ0 + rθn

)2

dµ.
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We now expand the square in the right hand side above which will lead to six terms. One of the terms equals∫
pθ0 = 1 which cancels with the left hand side. We thus obtain

0 = (θn− θ0)

∫
˙̀
θ0pθ0dµ+ 2

∫
√
pθ0rθndµ+

1

4
(θn− θ0)2

∫
( ˙̀
θ0)2pθ0dµ+ (θn− θ0)

∫
˙̀
θ0

√
pθ0rθndµ+

∫
r2
θndµ

(227)
The first term in the right hand side above is clearly O(|θn − θ0|) in absolute value. The third term is
O((θn − θ0)2). The final term (by (222)) equals o((θn − θ0)2). The remaining two terms (second and fourth)
can be controlled via the Cauchy-Schwarz inequality as

2

∫
√
pθ0 |rn|dµ ≤ 2

√∫
pθ0dµ

√∫
r2
θn
dµ = 2

√∫
r2
θn
dµ = 2o(|θn − θ0|)

by (222) and ∣∣∣∣(θn − θ0)

∫
˙̀
θ0

√
pθ0rθndµ

∣∣∣∣ ≤ |θn − θ0|

√∫
( ˙̀
θ0)2pθ0dµ

√∫
r2
θn
dµ = o(|θn − θ0|2)

again by (222). It is clear therefore that the leading term on the right hand side in (227) is the first term.
By dividing the equation (227) through by |θn − θ0| and letting n→∞, we deduce (226).

We shall now define Fisher Information. Assume that P satisfies DQM with score function ˙̀
θ0 . Then the

Fisher Information at θ0 is given by

I(θ0) = varPθ0 ( ˙̀
θ0(X)) = EPθ0

(
˙̀
θ0(X)

)2

=

∫ (
˙̀
θ0(x)

)2

pθ0(x)dµ(x).

The argument used in the proof of Lemma 24.3 above leads to an interesting and important fact involving
˙̀
θ0 and the Fisher Information. Because

∫
˙̀
θ0pθ0dµ = 0, we can plug this into (227) to obtain (also using

the fact that the last two terms in (227) are o(|θn − θ0|2)):

2

∫
√
pθ0rθndµ+

1

4
(θn − θ0)2

∫
( ˙̀
θ0)2pθ0dµ = o(|θn − θ0|2).

Plugging in the fact that
∫

( ˙̀
θ0)2pθ0dµ = I(θ0), we obtain

2

∫
√
pθ0rθndµ = −1

4
(θn − θ0)2I(θ0) + o(|θn − θ0|2). (228)

This fact is crucial for establishing that DQM implies LAN. The interesting aspect about (228) is the following.
The statement (222) implies that ‖rθn‖L2(µ) = o(|θn−θ0|). Therefore, if we use the Cauchy-Schwarz inequality

on the left hand side above, we obtain that the left hand side is o(|θn − θ0|). But the equality above implies
that the right hand side is O((θn − θ0)2) which is a much stronger conclusion that what can be derived from
Cauchy-Schwarz. Therefore

∫
rθn
√
pθ0dµ is much smaller in comparison to the L2(µ) norm of rθn . Pollard

[19] attributes this phenomenon to the fact that the functions
√
pθn in L2(µ) all have norm one (this is clear

from the above proof of (228)) and argues that this is the main reason behind the magic of the DQM.

24.2 Local Asymptotic Normality

The DQM is a statement about the first differentiability of the densities pθ at θ0. There is of course no
mention of second order differentiability in DQM. Yet, remarkably, the DQM assumption implies that the
log-likelihood function has a second-order Taylor expansion around θ0 at a scale of n−1/2. Such a local Taylor
expansion is known as Local Asymptotic Normality (LAN) and is proved in the following result.
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Theorem 24.4. Suppose P satisfies DQM at θ0 with score function ˙̀
θ0 and Fisher information I(θ0). Then

for every fixed h ∈ R, we have∣∣∣∣∣
n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
− h√

n

n∑
i=1

˙̀
θ0(Xi) +

1

2
h2I(θ0)

∣∣∣∣∣ Pθ0−→ 0 as n→∞.

Equivalently, the conclusion of the above theorem can be written

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
=

h√
n

n∑
i=1

˙̀
θ0(Xi)−

1

2
h2I(θ0) + oPθ0 (1) as n→∞. (229)

We say that P satisfies the LAN property at θ0 if the above holds for every h ∈ R. Why is this called local
asymptotic normality? To see this, note first that, by the CLT, we have

1√
n

n∑
i=1

˙̀
θ0(Xi)

L→N(0, I(θ0)).

Therefore, as a consequence of (229), we obtain that for every h ∈ R,

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)

L→hN(0, I(θ0))− 1

2
h2I(θ0) under X1, . . . , Xn ∼i.i.d Pθ0 .

Now consider a second estimation problem where we have one observation Y whose density belongs to the
family {Qh, h ∈ R} were Qh has the density qsh which is the density of the normal distribution with mean
h and variance 1/I(θ0). It is easy to see then that

log
qh(Y )

q0(Y )
∼ hN(0, I(θ0))− 1

2
h2I(θ0) under Y ∼ N(0, 1/I(θ0)).

Therefore (229) effectively says that the likelihood ratios of {Pθ, θ ∈ Θ} (which can be arbitrary as long as P
satisfies DQM) behave like the likelihood ratios of a Normal Experiment {Qh, h ∈ R} where Qh = N(h, 1).
Hence asymptotically around θ0 at the scale n−1/2, the original statistical problem P becomes a Normal
mean estimation problem. This is why (229) is referred to as Local Asymptotic Normality.

We shall now prove Theorem 24.4.

Proof of Theorem 24.4. All expectations and probabilities in this proof are with respect to the probability
measure Pθ0 . Write

Ln :=

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
= 2

n∑
i=1

log

√
pθ0+hn−1/2(Xi)

pθ0(Xi)
= 2

n∑
i=1

log (1 +Wni)

where

Wni :=

√
pθ0+hn−1/2(Xi)

pθ0(Xi)
− 1.

We will use the fact that

log(1 + y) = y − y2

2
+

1

2
β(y) where lim

y→0

β(y)

y2
= 0

or equivalently, β(y) = o(y2) as y → 0. This gives

Ln = 2

n∑
i−1

Wni −
n∑
i=1

W 2
ni +

n∑
i=1

β(Wni).
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Using the DQM representation, we can write

Wni =

√
pθ0+hn−1/2(Xi)−

√
pθ0(Xi)√

pθ0(Xi)
=

h

2
√
n

˙̀
θ0(Xi) +

rθ0+hn−1/2(Xi)√
pθ0(Xi)

=
h

2
√
n

˙̀
θ0(Xi) +Rni

where

Rni =
rθ0+hn−1/2(Xi)√

pθ0(Xi)
.

We thus get

Ln =
h√
n

n∑
i=1

˙̀
θ0(Xi) + 2

n∑
i=1

Rni −
n∑
i=1

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)2

+

n∑
i=1

β

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)

=
h√
n

n∑
i=1

˙̀
θ0(Xi) + 2

n∑
i=1

Rni −
h2

4n

n∑
i=1

( ˙̀
θ0(Xi))

2 − h√
n

n∑
i=1

˙̀
θ0(Xi)Rni −

n∑
i=1

R2
ni +

n∑
i=1

β

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)
.

Observe now that by the DQM, we know the following about the random variables Rni:

Eθ0R2
ni = Eθ0

r2
θ0+hn−1/2(Xi)

pθ0(Xi)
=
∥∥rθ0+hn−1/2(x)

∥∥
L2(µ)

= o

(
h2

n

)
= o(n−1).

This gives that
∑n
i=1 Eθ0R2

ni = o(1) and hence
∑n
i=1R

2
ni → 0 in L1(Pθ0) which further implies that∑n

i=1R
2
ni
P→0. Also, by the Cauchy-Schwarz inequality, we have∣∣∣∣∣ h√n

n∑
i=1

˙̀
θ0(Xi)Rni

∣∣∣∣∣ ≤ h
√√√√ 1

n

n∑
i=1

( ˙̀
θ0(Xi))2

√√√√ n∑
i=1

R2
ni
P→h
√
I(θ0)

√
0 = 0.

We thus have

Ln =
h√
n

n∑
i=1

˙̀
θ0(Xi) + 2

n∑
i=1

Rni −
h2

4n

n∑
i=1

( ˙̀
θ0(Xi))

2 +

n∑
i=1

β

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)
+ oPθ0 (1).

We shall prove later that

n∑
i=1

β

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)
= oPθ0 (1) (230)

so that we have

Ln =
h√
n

n∑
i=1

˙̀
θ0(Xi) + 2

n∑
i=1

Rni −
h2

4n

n∑
i=1

( ˙̀
θ0(Xi))

2 + oPθ0 (1).

The third term in the right hand side above clearly converges to −h2I(θ0)/4 in probability (by the Strong
Law of Large Numbers) so to complete the proof of Theorem 24.4, we only need to show that

2

n∑
i=1

Rni
P→− h2

4
I(θ0). (231)

For this, write

2

n∑
i=1

Rni = 2

n∑
i=1

Eθ0Rni + 2

n∑
i=1

(Rni − ERni).
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Because

E

(
2

n∑
i=1

(Rni − ERni)

)2

= 4

n∑
i=1

var(Rni) ≤ 4

n∑
i−1

ER2
ni = o(1),

we get

2

n∑
i=1

Rni = 2

n∑
i=1

ERni + oPθ0 (1) as n→∞. (232)

Note that

2

n∑
i=1

ERni = 2nERn1 = 2nE
rθ0+hn−1/2(X1)√

pθ0(X1)
= 2n

∫
rθ0+hn−1/2

√
pθ0dµ.

We shall now use the fact (228) which gives

2

∫
rθ0+hn−1/2

√
pθ0dµ = −h

2

4n
I(θ0) + o(n−1)

so that

2

n∑
i=1

ERni = −h
2

4
I(θ0) + o(1).

Combining with (232), we obtain (231). To finish the proof of Theorem 24.4, we only need to verify (230).
This is mainly a consequence of β(y) = o(y2) as y → 0. It turns out that in order to prove (230), it is enough
to show that

max
1≤i≤n

∣∣∣∣∣ ˙̀
θ0(Xi)√
n

∣∣∣∣∣ = oPθ0 (1) and max
1≤i≤n

|Rni| = oPθ0 (1). (233)

Indeed, if these statements hold, then (as β(y) = o(y2)), we can write (rigorize this):∣∣∣∣∣
n∑
i=1

β

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)∣∣∣∣∣ ≤ oPθ0 (1)

n∑
i=1

(
h

2
√
n

˙̀
θ0(Xi) +Rni

)2

≤ 2oPθ0 (1)

(
h2

n

n∑
i=1

˙̀
θ0(Xi) +

n∑
i=1

R2
ni

)
= oPθ0 (1).

We shall complete the proof now by proving the assertions in (233). For the first assertion in (233), write
(for a fixed ε > 0),

Pθ0

{
max

1≤i≤n

∣∣∣∣∣ ˙̀
θ0(Xi)√
n

∣∣∣∣∣ > ε

}
≤

n∑
i=1

P

{∣∣∣∣∣ ˙̀
θ0(Xi)√
n

∣∣∣∣∣ > ε

}
= nP

{∣∣∣∣∣ ˙̀
θ0(X1)√

n

∣∣∣∣∣ > ε

}
≤ 1

ε2
E( ˙̀

θ0(X1))2I

{∣∣∣∣∣ ˙̀
θ0(X1)√

n

∣∣∣∣∣ > ε

}

which converges to zero as n→∞ by the Dominated Convergence Theorem.

For the second assertion in (233), write

P
{

max
1≤i≤n

|Rni| > ε

}
≤ nP {|Rn1| > ε} ≤ n

ε2
ER2

n1 → 0.

This completes the proof of Theorem 24.4.
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25 Lecture 25

The next (and last) topic in this class is about minimax lower bounds. In this lecture, we shall mainly
motivate the study of minimax lower bounds. We start with the basic decision-theoretic setting under which
these are studied.

25.1 Decision Theoretic Framework

Minimaxity can be studied in the general and abstract decision theoretic framework. This framework is
described here. A classical reference for this is the book Ferguson [8, Chapter 1 and 2].

We have an unknown parameter θ. θ can be a real-number or a vector or a function or a matrix etc. We
assume that θ takes values in a known set Θ which we refer to as the Parameter Space.

The data will be generically be denoted by X. Again X can be a real-number, vector or function or
matrix etc. We assume that X takes values in a set X which is referred to as the sample space.

The connection between X and θ is that the distribution of X depends on θ through a known probability
measure Pθ. The class of all probability measures {Pθ, θ ∈ Θ} will be denoted by P. We assume that each
Pθ has a density pθ with respect to a single sigma finite measure µ.

Next, we have an action space A which corresponds to the actions that the statistician needs to take in
the problem (for example, in estimation problems, A will be equal to or larger than Θ, in testing problems
with a null and an alternative hypothesis, A will correspond to the two hypotheses etc. specific examples are
given below).

The loss function L is a nonnegative function defined on Θ×A i.e., for every parameter θ ∈ Θ and action
a ∈ A, there is associated a nonnegative loss L(θ, a).

A nonrandomized decision rule d is a function from X to A. In other words, d associates an action to
every x ∈ X . The risk of a decision rule d at a particular parameter value θ is defined by

R(θ, d) := EθL(θ, d(X))

where the expectation above is taken with respect to X ∼ Pθ.

The goal of a statistician in a decision problem is to choose a decision rule d whose risk R(θ, d) is small.
This statement of “small risk” needs to be qualified further however because the risk R(θ, d) depends on the
unknown θ. In other words, the risk of a decision rule d depends on what the unknown parameter value (or
state of nature) is. So when we say small risk, we need to specify if we mean uniformly small risk over θ
or small average risk or small worst case risk. We shall come back to this issue shortly after seeing some
examples of decision-theoretic problems.

Example 25.1. Consider the problem of estimating a vector θ ∈ Rn from an observation Y ∼ Nn(θ, In)
under squared error loss. Suppose it is known that θ is k-sparse i.e., the number of non-zero entries in θ is
at most k. This can be be put in the decision theoretic framework outlined above by taking Θ to be the set of
all k-sparse vectors in Rn, X = Rn, A = Θ or A = Rn (depending on whether we want our estimators to

be k-sparse or not) and L(θ, a) = ‖θ − a‖2. Also Pθ is the Nn(θ, In) distribution. Decision rules are simply

estimators for θ and the risk of an estimator θ̂ is given by

R(θ, θ̂) := Eθ
∥∥∥θ − θ̂∥∥∥2

.

Example 25.2. Consider the same setting as the last problem but suppose now that we want to estimate the
L1-norm of θ (and not the entire vector θ): ‖θ‖1 := |θ1|+ · · ·+ |θn|. Then Θ,X and Pθ remain the same as

in the previous example but A = R and the loss function is L(θ, a) = (‖θ‖1 − a)
2
.
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Example 25.3. Consider the problem of estimating a Lipschitz function f : [0, 1] → R from independent
observations Y1, . . . , Yn with Yi ∼ N(f(i/n), 1) for i = 1, . . . , n. In this problem, we can take Θ to be the class
of all Lipschitz functions from [0, 1] to R. For f ∈ Θ, the probability measure Pf is the multivariate normal
distribution with mean (f(1/n), . . . , f(n/n)) and covariance matrix In. The action space can be taken to be
the space of all real-valued functions on [0, 1] and the loss function can be either:

L(f, g) :=

∫ 1

0

(f(x)− g(x))
2
dx or

1

n

n∑
i=1

(f(i/n)− g(i/n))
2
.

Example 25.4. Consider the problem of testing H0 : θ = 0 against H1 : θ = 1 from n independent
observations X1, . . . , Xn drawn from N(θ, 1). Because we are testing θ = 0 against θ = 1, we believe that
only these two values are possible so we take Θ = {0, 1}. The action space is then also A = {0, 1}. A natural
loss function is L(θ, a) = I{θ 6= a}. Given a decision rule d (test), its risk is given by

R(θ, d) = Pθ{θ 6= d(X)}.

Note that if θ = 0, then the risk is given by R(0, d) = P0{d(X) = 1} which is the usual Type I error. When
θ = 1, the risk is given by R(1, d) = P1{d(X) = 0} which is the Type II error.

Example 25.5. Consider the problem of testing the hypothesis H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 on the basis
of n i.i.d observations X1, . . . , Xn from the N(θ, 1) distribution. In this case, Θ = Θ0 ∪Θ1, A = {0, 1} and

L(θ, a) = I{θ ∈ Θ0, a = 1}+ I{θ ∈ Θ1, a = 0}.

The risk of a decision rule (test) d is given by R(θ, d) = Pθ{d(X) = 1} if θ ∈ Θ0 and R(θ, d) = Pθ{d(X) = 0}
if θ ∈ Θ1. These can again be treated as type I and type II errors respectively. Note that these depend on θ
(i.e., there is a family of type I errors for each θ ∈ Θ0 and a family of type II errors for each θ ∈ Θ1).

25.2 How to evaluate decision rules

As mentioned earlier, the risk R(θ, d) of a decision rule d depends on θ. It turns out that usually it is
impossible to find a single decision rule d∗ such that

R(θ, d∗) ≤ R(θ, d) for every θ ∈ Θ and decision rule d. (234)

For example, in an estimation problem with Θ = A ⊆ Rk and L(θ, a) = ‖θ − a‖2. Consider the estimator
d0(X) = θ0 for a fixed θ0 ∈ Θ. This estimator clearly has risk equal to 0 at θ = θ0 (i.e., R(θ0, d0) = 0).
Thus if there existed a decision rule d∗ which satisfies (234), then R(θ0, d

∗) ≤ R(θ0, d0) = 0. Since θ0 ∈ Θ is
arbitrary here, this must mean that

R(θ, d∗) = Eθ ‖θ − d∗(X)‖2 = 0

for every θ ∈ Θ. This implies that d∗(X) = θ almost surely under Pθ for every θ ∈ Θ. This obviously cannot
happen for general classes {Pθ, θ ∈ θ}.

Therefore we cannot hope for an optimal decision rule d∗ in the strong sense (234). There are three
common ways of getting a relaxed notion of optimality:

1. The first way involves restricting to a subclass of all decision rules. For example, in parametric estima-
tion problems, it is common to restrict attention to unbiased or equivariant estimators. In parametric
testing problems, it is natural to restrict attention to level α tests or unbiased level α tests. This
approach was taken in STAT 210A and we will not pursue it here.

2. Bayes approach

3. Minimax approach

We will study the Bayes and Minimax approaches in detail here.
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25.3 Bayes Approach

Here we fix a probability measure w on Θ and evaluate decision rules by their average risk (where the
averaging is done with respect to w). In other words, we evaluate decision rules d by their average risk:∫

R(θ, d)dw(θ) (235)

with respect to the probability measure w. The probability measure w is also referred to as a proper prior or
simply prior. The smallest achievable average risk is called the Bayes risk with respect to w and is denoted
by

RBayes(w) := inf
d

∫
Θ

R(θ, d)w(dθ).

and the estimator d which minimizes (235) is known as the Bayes estimator with respect to w.

The obvious problem with this approach of evaluating decision rules is its dependence on the prior w and,
in many situations, it is not clear what a reasonable choice of the prior is. For example, in the Lipschitz
regression problem of Example 25.3, one would need to choose a prior on the class of all Lipschitz functions
on [0, 1] and it is not clear how one can do this.

The above issue notwithstanding, the Bayes approach has the important advantage in that finding the
Bayes rule (the rule which minimizes (235)) is, in principle, tractable. Indeed, we can write (235) as∫
R(θ, d)dw(θ) =

∫
EθL(θ, d(X))dw(θ) =

∫
Θ

∫
X
L(θ, d(x))dPθ(x)dw(θ) =

∫
Θ

∫
X
L(θ, d(x))pθ(x)dµ(x)dw(θ).

We now interchange the order of integration above (this is allowed because the loss function is nonnegative)
to get ∫

R(θ, d)dw(θ) =

∫
X

{∫
Θ

L(θ, d(x))pθ(x)dw(θ)

}
dµ(x).

From the simple inequality ∫
Θ

L(θ, d(x))pθ(x)dw(θ) ≥ inf
a∈A

∫
Θ

L(θ, a)pθ(x)dw(θ)

which holds for every x ∈ X , it should be clear that the rule which minimizes (235) is given by

d∗(x) := argmin
a∈A

∫
Θ

L(θ, a)pθ(x)dw(θ) = argmin
a∈A

∫
Θ

L(θ, a)
pθ(x)dw(θ)∫
Θ
pθ(x)dw(θ)

.

The density

x 7→ pθ(x)dw(θ)∫
Θ
pθ(x)dw(θ)

is simply the posterior density of θ given X = x in the model X|θ ∼ pθ and θ ∼ w. We thus obtain the
well-known fact that Bayes rule minimizes the posterior expectation of the Loss function. For example, in
the case of the squared error loss L(θ, a) = ‖θ − a‖2, the Bayes rule is simply the expectation of the posterior
distribution.

The above calculation also gives an exact expression for the Bayes risk with respect to w:

RBayes(w) =

∫
X

inf
a∈A

{∫
Θ

L(θ, a)pθ(x)dw(θ)

}
dµ(x). (236)
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25.4 Minimax Approach

In the minimax approach, we evaluate decision rules by their worst case (supremum) risk over θ ∈ Θ. In
other words, we aim to select a decision rule d for which supθ∈ΘR(θ, d) is small. The advantage with this
approach is that one does not need to select a specific prior distribution. The disadvantage is that it focuses
on worst case behavior and might be regarded as too pessimistic. Nevertheless, this is most widely used
optimality criterion currently.

The minimax risk is defined as

RMinimax := inf
d

sup
θ∈Θ

EθL(θ, d(X))

where the infimum is taken over all decision rules d. A decision rule d∗ is said to be minimax if

supθ∈ΘR(θ, d∗)

RMinimax
= 1.

Finding minimax estimators is quite difficult in many problems so one is often with approximate minimaxity.
There are two commonly used notions of approximate minimaxity. These are defined in terms of a “sample
size” or “dimension” parameter n that is present in most decision problems. Specifically, we assume that
possibly all the ingredients of the decision problem (i.e., Θ, A, L(θ, a) and Pθ) depend on a sample size or
dimension parameter n and we are interested in the problem only for large values of n. In this context, we
have the following two definitions:

1. Sharp Asymptotically Minimaxity: We say that a decision rule d∗ is sharp asymptotically minimax
if

supθ∈ΘR(θ, d∗)

RMinimax
→ 1

as n→∞. This is equivalent to

sup
θ∈Θ

R(θ, d∗) = RMinimax (1 + o(1)) as n→∞.

2. Rate Minimaxity: We say that a decision rule d∗ is rate minimax if

supθ∈ΘR(θ, d∗)

RMinimax
≤ C

for a constant C that does not depend on n. This is equivalent to saying that

sup
θ∈Θ

R(θ, d∗) = O(RMinimax) as n→∞.

Consider now the following situation. Suppose we have a decision rule d∗ which we have constructed (say
by some M -estimation method) and we have a good understanding of its performance in the sense that we
have an upper bound un on its supremum risk over Θ i.e., we know that

sup
θ∈Θ

R(θ, d∗) ≤ un.

How then would we show that d∗ is minimax (in one of the above senses: minimax, sharp asympotically
minimax or rate minimax)? It is obvious that in order to do this we need to bound RMinimax from below.
Indeed, if we prove the minimax lower bound:

RMinimax ≥ `n (237)

then we can assert
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1. minimaxity if `n = un for every n.

2. sharp asymptotic minimaxity if un/`n → 1 as n→∞.

3. rate minimaxity if un/`n = O(1) as n→∞.

Of course the key to doing this is to be able to prove minimax lower bounds (i.e., bounds of the form (237))
which we shall study now.

25.5 Minimax Lower Bounds

There is basically only one technique for proving lower bounds on the minimax risk. This involves bounding
the minimax risk from below by a Bayes risk. Indeed

RMinimax ≥ RBayes(w) for every probability measure w on Θ. (238)

As we indicated earlier, the Bayes risk RBayes(w) is a much more tractable object (compared to RMinimax)
and it has the exact expression (236).

Inequality (238) can be rewritten as

RMinimax ≥ sup
w
RBayes(w) = sup

w
inf
d

∫
EθL(θ, d(X))dw(θ)

where the supremum is taken over all probability measures w on Θ. On the other hand, it is easy to see that
the minimax risk satisfies:

RMinimax = inf
d

sup
θ∈Θ

EθL(θ, d(X)) = inf
d

sup
w

∫
EθL(θ, d(X))dw(θ).

We thus have

inf
d

sup
w

∫
EθL(θ, d(X))dw(θ) = RMinimax ≥ sup

w
RBayes(w) = sup

w
inf
d

∫
EθL(θ, d(X))dw(θ).

Suppose now that

inf
d

sup
w

∫
EθL(θ, d(X))dw(θ) = sup

w
inf
d

∫
EθL(θ, d(X))dw(θ),

then we would have RMinimax = supw RBayes(w) which would imply that the only way to bound the minimax
risk from below is via a Bayes risk for an appropriate prior w. An infimum and a supremum obviously cannot
always be interchanged; for example,

RMinimax = inf
d

sup
θ∈Θ

EθL(θ, d(X)) 6= sup
θ∈Θ

inf
d
EθL(θ, d(X)) = 0.

However, under some conditions, they can be interchanged. Theorems which guarantee the interchange are
known as minimax theorems. There exist a variety of such minimax theorems in the literature one example
of which is the following (known sometime as Kneser’s minimax theorem):

Theorem 25.6. Let K be a convex subset of a vector space X and let L be a compact convex subset of a
Hausdorff Topological Vector Space Y. Suppose f : K × L→ R is a function such that

1. x 7→ f(x, y) is convex for each fixed y ∈ L.

2. y 7→ f(x, y) is concave and continuous for each fixed x ∈ K.

Then
inf
x∈K

sup
y∈L

f(x, y) = sup
y∈L

inf
x∈K

f(x, y).
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Potentially this theorem can be applied to verify (25.5). For this, we can take K to be the class of all
decision rules d and L to be the set of all probability measures w on Θ. We would then need

(d,w) 7→
∫

EθL(θ, d(X))dw(θ)

to be convex in d for each fixed w and concave in w for each fixed d. The concavity in w is alright but in
order to ensure convexity in d, we need to switch to randomized decision rules and extend the notion of risk
to randomized decision rules. In order to verify the compactness assumptions, one needs to put a topology
on the space of all probability measures on Θ. These can be done in quite some generality but the details
are quite involved. You can see Le Cam and Yang [15] or Le Cam [14] for full details.

To summarize this section, the inequality (238) is always true. Also usually, RMinimax = supw RBayes(w)
so (238) is really the only way of obtaining minimax lower bounds. Because of the exact expression (236) for
the Bayes risk, we have

RMinimax ≥ RBayes(w) =

∫
X

inf
a∈A

{∫
Θ

L(θ, a)pθ(x)dw(θ)

}
dµ(x). (239)

We shall see many examples of (239) in the sequel. A simple example is the following where we can use (239)
to prove exact minimaxity.

Example 25.7 (Multivariate Normal Model). Consider the problem of estimating θ ∈ Rn from X ∼
Nn(θ, In) under loss

L(θ, a) =
1

n
‖θ − a‖2 .

In this case, the parameter space is Θ = Rn. The estimator d(X) = X has risk equal to 1. It turns out that
this is the minimax risk over Θ. To see this, let w to be the normal distribution on Rn with mean vector µ
and covariance matrix τ2In. The Bayes risk RBayes(w) can then be explicitly calculated. To see this, note
that the posterior distribution is given by

θ|X ∼ Nn
(
µ/τ2 +X

1/τ2 + 1
,

In
1/τ2 + 1

)
so that

RBayes(w) =
1

n
E
∥∥∥∥θ − µ/τ2 +X

1/τ2 + 1

∥∥∥∥2

=
τ2

τ2 + 1
.

This gives

RMinimax ≥
τ2

τ2 + 1
for every τ > 0.

Letting τ →∞, we obtain RMinimax ≥ 1. Because the supremum risk of X over Rn is at most 1, this proves
that X is minimax.

26 Lecture 26

In the last lecture, we saw the important minimax lower bound:

RMinimax ≥ RBayes(w) for every probability measure w on Θ.

In this lecture, we shall look at two non-trivial examples where the above bound can be used to establish sharp
asymptotic minimaxity of natural estimators. The first example involves sparse normal mean estimation. The
second example involves estimation of a normal mean under a power (L2 norm) constraint (this result is known
as a finite-dimensional Pinsker’s theorem).
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26.1 Sparse Normal Mean Estimation

Consider the problem of estimating a k-sparse vector θ ∈ Rn from the observation Y ∼ Nn(θ, In) under
squared error loss. This estimation problem can be put in the decision-theoretic framework with Θ being
the set of all k-sparse vectors in Rn, A = Rn and L(θ, a) = ‖θ − a‖2. Also Pθ is the probability measure
Nn(θ, In). We shall assume throughout this section that the sparsity level k satisfie k = o(n) (i.e., k/n→ 0
as n→∞).

From our earlier results, we have seen that the LASSO (which is same as soft-thresholding) estimator
with tuning parameter λ =

√
2 log(n/k) satisfies

sup
θ∈Θ

EθL(θ, θ̂λ) ≤ (2k log(n/k)) (1 + o(1)) as n→∞.

We shall now show that this estimator is sharp asymptotically minimax by proving that

RMinimax ≥ (2k log(n/k)) (1 + o(1)) as n→∞. (240)

The argument below is taken from Johnstone [11, Section 8.6].

We first work with k = 1 (and then later argue for general k = o(n)). For k = 1, the parameter Θ
is particularly simple and consists of 1-sparse vectors in Rn. Here a natural prior is the uniform prior on
the finite parameter set {τe1, . . . , τen} where ei is the usual standard unit vector and τ ≥ 0 will be chosen
(depending on n) appropriately. Let us denote this prior by w.

Let the posterior distribution be denoted by (p1n(Y ), p2n(Y ), . . . , pnn(Y )) (i.e., pin(Y ) is the posterior
probability associated with τei). It is easy to see that

pin(Y ) ∝ exp

(
−‖Y − τei‖2

2

)
∝ exp (〈Y, τei〉) = exp(τYi)

and thus

pin(Y ) =
exp(τYi)∑
j exp(τYj)

for i = 1, . . . , n.

The posterior mean (which is the Bayes estimator) is therefore given by (τp1n(Y ), . . . , τpnn(Y )). The Bayes
risk with respect to this prior is thus

RBayes(w) :=
1

n

n∑
I=1

n∑
i=1

EτeI (τpin(Y )− τeIn(i))
2
.

By replacing the inner sum above by only the term corresponding to i = I, we obtain the lower bound

RBayes(w) ≥ τ2

n

n∑
I=1

EτeI (pIn(Y )− 1)
2

By symmetry each term above will take the same value and we therefore get

RBayes(w) ≥ τ2Eτe1 (p1n(Y )− 1)
2

= τ2Eτe1
(

eτY1∑n
i=1 e

τYi
− 1

)2

.

To compute the above expectation (note that τ is not a constant but it changes with n), we switch to standard
gaussian random variables z1, . . . , zn by taking Y1 = τ + z1 and Yi = zi for i ≥ 2. Then we need to compute:

S := E

(
eτ

2

eτz1∑n
i=2 e

τzi + eτ2eτz1
− 1

)2

.
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We shall show that for
τn =

√
2 log n− log

(√
2 log n

)
,

the quantity S converges to 1. This would then imply that

RMinimax ≥ RBayes(w) ≥
(√

2 log n− log(
√

2 log n)
)2

(1 + o(1)) = (2 log n)(1 + o(1))

which will prove the required lower bound (240) for k = 1.

For ease of notation, let us denote λn =
√

2 log n so that exp(−λ2
n/2) = n−1. To prove that S = 1 + o(1)

for τn := λn − log λn, we only need to show that the sequence of random variables

An :=
eτ

2
neτnz1

eτ
2
neτnz1 +

∑n
i=2 e

τnzi

converges to 0 in probability. Note that An is precisely the posterior probability of τe1 (and we are working
in the case when the truth is τe1). Thus An converging to zero in probability means that the posterior
probability of τe1 (when the truth is τe1) goes to zero which intuitively means that the spike will be missed.

To prove that An
P→0, rewrite

An =
1

1 + e−τ
2
ne−τnz1

∑n
i=2 e

τnzi
=

1

1 + VnWn−1

where

Vn = (n− 1)e−τ
2/2e−τz1 and Wn−1 :=

1

n− 1
e−τ

2/2
n∑
i=2

eτzi .

It is easy to see that Vn converges to +∞ in probability. To see this, write

Vn =
n− 1

n
exp

(
log n− τ2

2
− τz1

)
Because λ =

√
2 log n,

Vn ==
n− 1

n
exp

(
λ2

2
− τ2

2
− τz1

)
Now

λ2 − τ2 − 2τz1 ≥ λ2 − τ2 − (λ+ τ)z+
1 ≥ (λ− τ − z+

1 )(λ+ τ)→∞

as n→∞ (almost surely) because λn − τn →∞.

Therefore in order to prove that An goes to 0 in probability, we only need to show that Wn−1 goes to 1
in probability. Reindex and call n− 1 to be n for simplicity.

Wn :=
1

n
e−τ

2
n/2

n∑
k=1

eτnzk .

This is just an average of i.i.d mean one random variables. But τn depends on n so we cannot apply the
usual weak law of large numbers. We can use however the following version of the weak law.

Theorem 26.1. For each n, let Xnk, 1 ≤ k ≤ n be independent random variables. Let bn > 0 with bn →∞
and let X̃nk := Xnk{|Xnk| ≤ bn}. Suppose that as n→∞

1.
∑n
k=1 P{|Xnk| > bn} → 0, and

2. b−2
n

∑n
k=1 EX̃2

nk → 0.
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Let Sn := Xn1 + · · ·+Xnn and put an :=
∑n
k=1 EX̃nk. Then

Sn − an
bn

→ 0 in probability as n→∞.

We shall apply the above theorem with Xnk := eτnzk and bn = eτnλn (recall λn :=
√

2 log n). The first
condition in Theorem 26.1 can be checked as follows. Note that {|Xnk| ≤ bn} = {zk ≤ λn} so that

n∑
k=1

P {|Xnk| > bn} =

n∑
k=1

P {zk > λn} = n (1− Φ(λn)) ≤ nφ(λn)

λn
=

1√
2πλn

→ 0.

To verify the second condition in Theorem 26.1, we need to compute EX̃r
nk for r = 2:

EX̃r
nk = Eerτnzk {zk ≤ λn} =

1√
2π

∫ λn

−∞
erτnx exp(−x2/2)dx =

1√
2π

exp

(
r2τ2

n

2

)∫ λn

−∞
exp

(
−1

2
(x− rτn)

2

)
dx.

Therefore
EX̃r

nk = er
2τ2
n/2Φ(λn − rτn). (241)

As a result

b−2
n

n∑
k=1

EX̃2
nk =

ne2τ2
nΦ(λn − 2τn)

e2τnλn
.

Observe that λn will be smaller than 2τn eventually so that λn − 2τn will be negative. Therefore

Φ(λn − 2τn) = 1− Φ(2τn − λn) ≤ φ(2τn − λn)

2τn − λn
.

Thus

b−2
n

n∑
k=1

EX̃2
nk =

ne2τ2
n

e2τnλn

φ(2τn − λn)

2τn − λn
≤ 1√

2π(2τn − λn)
→ 0

as n→∞.

The two conditions of Theorem 26.1 have been verified so we can apply it now. We need to calculate an
for which we can simply use (241) with r = 1. This will give

an = neτ
2
n/2Φ(λn − τn) (242)

Theorem 26.1 therefore gives ∑n
k=1 e

τnzk − an
eλnτn

= oP (1)

which is the same as
n∑
k=1

eτnzk = an + eλnτnoP (1).

Therefore

Wn =
1

n
e−τ

2
n/2

n∑
k=1

eτnzk =
1

n
e−τ

2
n/2an +

1

n
e−τ

2
n/2eλnτnoP (1).

From (242), we have

Wn = Φ(λn − τn) + exp

(
−1

2
(λn + τn)2

)
oP (1).

Because λn − τn →∞ and λn + τn →∞, we have

Wn = 1 + oP (1)
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which is what we wanted to prove. This proves (240) for k = 1.

To prove (240) for general k = o(n), the idea is to use an independent blocks prior. Divide the indices
{1, . . . , n} into kn blocks each of size m = mn = bn/knc. On each block, use a single spike prior as in the
case of k = 1. The overall prior would then make these kn blocks independent. Because of independence,
the Bayes risk adds up and we obtain the overall lower bound of 2k log(n/k)(1 + o(1)). We would need the
assumption that k/n → 0 because in each block we need the number of observations mn to go to infinity.
This completes the proof of (240).

26.2 Normal Mean Estimation under Power Constraint (Finite-dimensional Pinsker’s
Theorem)

Consider the problem of estimating a vector θ ∈ Rn from Y ∼ Nn(θ, In) in the loss function

L(θ, a) =
1

n
‖θ − a‖2

under the following constraint:

1

n

n∑
i=1

θ2
i ≤ c2 for a fixed c > 0. (243)

Let Θ denote the class of all θ ∈ Rn satisfying the above constraint (the constraint is often referred to as the
Power Constraint in signal processing and information theory). Let A = Rn and as usual Pθ is the Nn(θ, In)

distribution. The risk of an estimator θ̂ is given by

R(θ, θ̂) = EθL(θ, θ̂) = Eθ
1

n

∥∥∥θ̂ − θ∥∥∥2

.

What are good candidate estimators for θ under the power constraint (243)? The most natural estimator
is the projection of Y onto Θ. This is an M -estimator which can be analyzed by our earlier techniques. In
fact, in this case, the projection has the explicit form

θ̂ =

{
Y c
√
n

‖Y ‖ if ‖Y ‖ > c
√
n

Y if ‖Y ‖ ≤ c
√
n.

Note that this is a non-linear estimator. It turns out that in this problem, simple linear estimators of the
form αY for appropriate α > 0 perform very well. This will be demonstrated below. First of all, note that
the risk of αY is given by

R(θ, αY ) = (1− α)2 ‖θ‖
2

n
+ α2.

Under the power constraint (243), we have

sup
θ∈Θ

R(θ, αY ) = (1− α)2c2 + α2.

The value of α that minimizes the right hand side is

α∗ =
c2

1 + c2

and its risk is given by

sup
θ∈Θ

R(θ, α∗Y ) = c2
(

1

1 + c2

)2

+

(
c2

1 + c2

)2

=
c2

1 + c2
.
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It turns out that the linear estimator α∗Y is sharp asymptotically minimax in this problem. To prove this,
we shall show below that

lim inf
n→∞

RMinimax ≥
c2

1 + c2
. (244)

The first step in proving (244) is to choose an appropriate prior w on Θ. The most natural choice for w
might seem to be the uniform prior on Θ. However, it is slightly simpler to work with the following prior.
Let π denote the Nn(0, δ2c2In) distribution on Rn where δ ∈ (0, 1). We shall take w to be the conditional
probability measure under π conditioned to be in Θ i.e.,

w(A) :=
π(A ∩Θ)

π(Θ)

for Borel subsets A of Rn. Let θ̂B(w) denote the Bayes estimator with respect to the prior w. Note that

because w is supported on the convex set Θ, the estimator θ̂B(w) will belong to Θ with probability one. We
then have

RBayes(w) =

∫
R(θ, θ̂B(w))dw(θ)

=
1

π(Θ)

∫
Θ

R(θ, θ̂B(w))dπ(θ)

=
1

π(Θ)

(∫
R(θ, θ̂B(w))dπ(θ)−

∫
Θc
R(θ, θ̂B(w))dπ(θ)

)
≥ 1

π(Θ)

(
RBayes(π)−

∫
Θc
R(θ, θ̂B(w))dπ(θ)

)
.

Because π is the Nn(0, δ2c2In) prior, its Bayes risk can be easily computed in closed form as

RBayes(π) =
δ2c2

1 + δ2c2

so that we obtain

RBayes(w) ≥ 1

π(Θ)

(
δ2c2

1 + δ2c2
−
∫

Θc
R(θ, θ̂B(w))dπ(θ)

)
.

Note now that by the elementary inequality ‖a− b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2, we have

R(θ, θ̂B(w)) =
1

n
Eθ
∥∥∥θ̂B(w)− θ

∥∥∥2

≤ 2

n

(
Eθ
∥∥∥θ̂B(w)

∥∥∥2

+ ‖θ‖2
)
≤ 2

n

(
nc2 + ‖θ‖2

)
= 2c2 +

2 ‖θ‖2

n
.

This gives∫
Θc
R(θ, θ̂B(w))dπ(θ) ≤ 2c2π(Θc) +

2

n

∫
Θc
‖θ‖2 dπ(θ) ≤ 2c2π(Θc) +

2
√
π(Θc)

n

(∫
‖θ‖4 dπ(θ)

)1/2

by the Cauchy-Schwarz inequality. Now under π,

‖θ‖2

δ2c2
∼ χ2

n

so that ∫
‖θ‖4 dπ(θ) = δ4c4

((
Eχ2

n

)2
+ var(χ2

n)
)

= δ4c4
(
n2 + 2n

)
.

Putting things together, we obtain

RBayes(w) ≥ 1

π(Θ)

(
δ2c2

1 + δ2c2
− 2c2π(Θc)−

2
√
π(Θc)

n
δ2c2

√
n2 + 2n

)

≥ δ2c2

1 + δ2c2
− 2c2π(Θc)− 2

√
π(Θc)δ2c2

√
1 +

2

n
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because π(Θ) ≤ 1. We complete the argument, we just need lower bounds on π(Θc). For this, note that

π(Θc) = π{‖θ‖2 > nc2} = P
{
χ2
n

n
>

1

δ2

}
≤ P

{∣∣∣∣χ2
n

n
− 1

∣∣∣∣ > 1

δ2
− 1

}
.

Using the chi-squared concentration inequality

P
{∣∣∣∣χ2

n

n
− 1

∣∣∣∣ ≥ t} ≤ 2 exp

(
−nt2

8

)
for 0 ≤ t ≤ 1,

we obtain

π(Θc) ≤ 2 exp

(
−n
8

(
1

δ2
− 1

)2
)

when
1

2
≤ δ2 ≤ 1.

Thus for 0.5 ≤ δ2 ≤ 1, we obtain

RBayes(w) ≥ δ2c2

1 + δ2c2
− 4c2 exp

(
−n
8

(
1

δ2
− 1

)2
)
− 2
√

2δ2c2

(√
1 +

2

n

)
exp

(
−n
16

(
1

δ2
− 1

)2
)
.

As a result, we have

lim inf
n→∞

RBayes(w) ≥ δ2c2

1 + δ2c2

which implies that

lim inf
n→∞

RMinimax ≥
δ2c2

1 + δ2c2
.

Since δ2 ∈ [0.5, 1] here is arbitrary, we can let δ2 → 1 to obtain (244). This completes the proof of the sharp
asymptotic minimaxity of the linear estimator α∗Y .

From the above two examples of sharp asymptotic minimaxity, it should be clear that the key to these
arguments is the choice of an appropriate prior w. Also once the prior w is chosen, the argument is usually
intricate because we do not even want to lose constant factors in n.

We shall next study arguments for rate minimaxity where it will be okay to lose constant factors while
bounding the minimax risk from below. These arguments are much simpler and one uses discrete priors (most
often uniform priors on a finite subset of the parameter space). We shall study these (which are related to
bounds in multi-hypothesis testing problems) next week.

27 Lecture 27

We shall spend today’s lecture on uniform Bayes risk lower bounds in multi-hypotheses testing problems. It
turns out (as will be seen in the next lecture) that the minimax risk in general decision theoretic problems can
always be bounded from below by this testing risk and this is quite useful for establishing rate minimaxity.

27.1 The Multi-Hypothesis Testing Problem

Suppose we observe data X taking values in a space X (as usual, X can be a vector, matrix, function etc.).
We have the following N hypotheses for the distribution of X:

H1 : X ∼ P1, H2 : X ∼ P2, . . . HN : X ∼ PN .

Here P1, . . . , PN are probability measures on X . We need to choose one of these hypotheses based on the
observation X. A test T is any function from X to {1, . . . , N}. Given a test T , its type i error is defined
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by Pi{T 6= i} for i = 1, . . . , n. We shall evaluate tests by the average of their type i errors for i = 1, . . . , N .
Specifically, let

R(T ) :=
1

N

N∑
i=1

Pi{T 6= i}.

One can treat this problem in the general decision-theoretic framework by taking Θ = A = {1, . . . , N} and
L(θ, a) = I{θ 6= a}. In this case, R(T ) will simply be the average risk of the test T averaged with respect to
the discrete uniform prior on Θ.

It is easy to see (shown below) that the test T ∗ which minimizes R(T ) is given by the maximum likelihood
test. To see this, let pi denote the density of Pi with respect to a common dominating measure µ. We can
then write

R(T ) =
1

N

N∑
i=1

Pi{T 6= i} = 1− 1

N

N∑
i=1

Pi{T = i} = 1− 1

N

∫ N∑
i=1

I{T (x) = i}pi(x)dµ(x).

It is easy to see then that for every test T and x ∈ X , we have

n∑
i=1

I{T (x) = i}pi(x) ≤ max
1≤i≤N

pi(x)

with equality being achieved for the maximum likelihood test defined by T ∗(x) := argmax1≤i≤N pi(x). This
proves that T ∗ minimizes R(T ) and also that

B(P1, . . . , PN ) := inf
T
R(T ) = 1− 1

N

∫
max

1≤i≤N
pi(x)dµ(x). (245)

It is usually difficult to compute B(P1, . . . , PN ) exactly. We shall focus on obtaining lower bounds for
B(P1, . . . , PN ). As will be seen later, these lower bounds will yield lower bounds on the minimax risk in
general decision theoretic problems.

In order to motivate lower bounds for B := B(P1, . . . , PN ), let us first provide an intuitive meaning for B.
Because B is the smallest possible average error (Bayes risk) in the testing problem, it should be clear that
it measures, in some sense, the degree of separation between the probability measures P1, . . . , PN . Indeed, if
P1, . . . , PN are far from each other, the testing problem should be easier and B will be small. On the other
hand, if P1, . . . , PN are close to each other, the testing problem will be harder and B will be large. Note also
that we always have

1 ≤
∫

max
i
pi(x)dµ(x) ≤ N

so that

0 ≤ B(P1, . . . , PN ) ≤ 1− 1

N
.

Also, it is easy to see that the B(P1, . . . , PN ) takes the maximum possible value 1−(1/N) when P1 = · · · = PN .
This makes sense because when P1 = · · · = PN , identifying i based on X ∼ Pi is impossible and hence the
testing Bayes risk B(P1, . . . , PN ) takes its maximum possible value.

On the other hand, B(P1, . . . , PN ) takes its minimum value of 0 when P1, . . . , PN are mutually singular
(so that maxi pi = p1 + . . . pN almost surely w.r.t µ). In this case, one can perfectly identify i based on
X ∼ Pi so that the testing Bayes risk is at its lowest possible value.

The intuition that B(P1, . . . , PN ) measures the degree of separation between P1, . . . , PN suggests that we
can bound it via other natural quantities for measuring the degree of separation or spread of P1, . . . , PN . For
real numbers a1. . . . , aN , the most natural way of measuring their spread is their variance:

1

N

N∑
i=1

(ai − ā)2.
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We can try to extend this idea to probability measures by defining

I(P1, . . . , PN ) :=
1

N

N∑
i=1

D(Pi‖P̄ ) with P̄ :=
1

N

N∑
i=1

Pi. (246)

D here refers to a notion of discrepancy/divergence between probability measures (analogous to the squared
Euclidean distance between real numbers). Various choices for D are possible but the most common one is the
Kullback-Leibler divergence. Given two probability measures P and Q having densities p and q respectively
with respect to a common dominating measure µ, the Kullback-Leibler divergence between them is defined
as

D(P‖Q) :=

∫
p log

(
p

q

)
dµ.

Based on the above discussion, it should be clear that there should be some connection between B(P1, . . . , PN )
and I(P1, . . . , PN ) (because both are measuring the spread or degree of separation between P1, . . . , PN ). The
following lemma describes a simple relation between the two. This is often used in the statistics literature to
prove Minimax Lower Bounds where it is referred to as Fano’s Inequality or Fano’s lemma. In fact, this is a
weaker form of Fano’s inequality; there is a stronger version which we shall describe later today.

Lemma 27.1. The following inequality holds for every N ≥ 1 and probability measures P1, . . . , PN :

B(P1, . . . , PN ) ≥ 1− log 2 + I(P1, . . . , PN )

logN
. (247)

Proof of Lemma 27.1. This elegant proof is due to Kemperman [13, Page 135].

Using the formula (245) for B(P1, . . . , PN ) and the definition of I(P1, . . . , PN ), it is clear that (247) is
equivalent to

1

N

∫
max
i
pidµ ≤

log 2

logN
+

1

logN

1

N

N∑
i=1

∫
pi log

(
pi
p̄

)
dµ

It is easy to see that this is further equivalent to (multiplying both sides above by N logN and using∫
(
∑
i pi)dµ = N), ∫

(logN) max
i
pidµ ≤

∫
(log 2)

(
N∑
i=1

pi

)
dµ+

∫ N∑
i=1

pi log

(
pi
p̄

)
dµ

which is identical to ∫
(logN) max

i
pidµ ≤

∫ N∑
i=1

pi log

(
2pi
p̄

)
dµ.

To prove this, it is obviously enough to prove the following fact involving nonnegative real numbers. For
every set of nonnegative real numbers a1, . . . , aN , the following inequality holds:

(logN) max
1≤i≤N

ai ≤
N∑
i=1

ai log

(
2ai
ā

)
. (248)

To prove this inequality, note first that we can assume, without loss of generality,
∑N
i=1 ai = 1 (so that

a1, . . . , aN becomes a probability vector) and that a1 = maxi ai. Inequality (248) is then equivalent to

(logN)a1 ≤
N∑
i=1

ai log

(
2ai

(1/N)

)
= a1 log(2Na1) +

N∑
i=2

ai log(2Nai)

and this be rearranged as

a1 log(2a1) +

N∑
i=2

ai log(2Nai) ≥ 0.
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The above inequality is true because (note that 2N ≥ 2(N − 1))

a1 log(2a1) +

N∑
i=2

ai log

(
ai

1/(2N)

)
≥ a1 log(2a1) +

N∑
i=2

ai log

(
ai

1/(2(N − 1))

)
= D ((a1, . . . , aN )‖(1/2, 1/(2(N − 1)), . . . , 1/(2(N − 1)))) ≥ 0.

This completes the proof of (248) which gives (247).

27.2 Mutual Information

The quantity I(P1, . . . , PN ) (defined in (246)) is known as Mutual Information. Mutual Information is a term
coming from information theory. It is usually defined for a pair of random variables Y and Z. Formally, the
mutual information I(Y,Z) between Y and Z is defined as the Kullback-Leibler divergence between the joint
distribution of Y and Z and the product of the marginal distributions of Y and Z. Specifically,

I(Y,Z) := D(P(Y,Z)‖PY × PZ).

Consider now two random variables Θ and X such that Θ is uniformly distributed on {1, . . . , N} and the
conditional distribution of X given Θ = i is Pi. Then it is easy to see that

D(P(Θ,X)‖PΘ × PX) =
1

N

N∑
i=1

D(Pi‖P̄ ). (249)

Thus I(P1, . . . , PN ) defined as in (246) is just the mutual information between Θ and X. For this reason,
I(P1, . . . , PN ) is referred to as the mutual information term. Fano’s inequality therefore gives a bound for
the Bayes risk in terms of Mutual Information.

The following fact about I(P1, . . . , PN ) will be useful in the sequel.

Lemma 27.2. For every N ≥ 1 and probability measures P1, . . . , PN , we have

I(P1, . . . , PN ) =
1

N

N∑
i=1

D(Pi‖P̄ ) = inf
Q

N∑
i=1

D(Pi‖Q) (250)

where the infimum is taken over all probability measures Q.

Proof. The proof is simple and based on the following identity:

1

N

N∑
i=1

D(Pi‖Q) =
1

N

N∑
i=1

D(Pi‖P̄ ) +D(P̄‖Q)

which is a consequence of:

log

(
pi
q

)
= log

(
pi
p̄

)
+ log

(
p̄

q

)
.

Here p̄ = (p1 + · · · + pN )/N is the density of P̄ with respect to µ and q is the density of Q with respect to
µ.

27.3 Application to Sparse Normal Mean Estimation

Fix n ≥ 1 and let Pi be the Nn(τei, In) distribution for i = 1, . . . , n. Here τ is a positive real number
that depends on n and ei is the vector with 1 in the ith position and 0 elsewhere. We are interested in
B := B(P1, . . . , Pn) and how it depends on n and τ . Fano’s inequality (specifically inequality (247)) gives

B ≥ 1− log 2 + I

log n
where I := I(P1, . . . , Pn).
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To get an explicit bound from here, we need upper bounds for I. Here Lemma 27.2 is very useful because it
states that

I ≤ 1

N

N∑
i=1

D(Pi‖Q)

for every probability measure Q. A natural choice for Q which enables explicit computation is Q = Nn(0, In).
We then obtain (using the fact that D(Nn(µ1,Σ)‖Nn(µ2,Σ)) = (µ1 − µ2)TΣ−1(µ1 − µ2)/2)

I ≤ 1

N

N∑
i=1

D(Nn(τei, In)‖Nn(0, In)) =
τ2

2
.

This allows us to deduce that

B ≥ 1− log 2 + τ2/2

log n
= 1− log 2

log n
− τ2

2 log n
. (251)

This gives interesting corollaries such as:

lim inf
n→∞

B ≥ 1

2
for τ =

√
log n.

However, inequality (251) is not strong enough to yield anything nontrivial when τ is close to λn :=
√

2 log n.
For example, when τn := λn − log(λn), then (251) does not give anything useful. However, by a direct
calculation (as shown below), it can be shown that

lim
n→∞

B = 1 when τn = λn − log(λn). (252)

This shows an important weakness of using Fano’s inequality to obtain lower bounds for B. To prove (252),
first note that

B = 1− 1

n

∫
max

1≤i≤N
pi(x)dx where pi(x) = (2π)−n/2 exp

(
−1

2
‖x− τei‖2

)
.

From this, we can obtain

B = 1− 1

n

∫
e−τ

2/2

(
max

1≤i≤n
eτxi

)
φd(x)dx where φd(x) := (2π)−d/2 exp

(
−‖x‖2 /2

)
.

Thus if z1, . . . , zn are independent standard normal random variables, then

B = 1− e−τ
2/2

n
E max

1≤i≤n
eτzi .

To further bound this from below, we need to bound Emaxi e
τzi from above which we do in the following

way (recall λn =
√

2 log n):

E max
1≤i≤n

eτzi = Eeτ max1≤i≤n zi

≤ eτλ + Eeτ maxi zi
{

max
i
zi > λ

}
≤ eτλ + E

n∑
i=1

eτziI{zi > λ}

= eτλ + nEeτz1I{z1 > λ}

= eτλ + n

∫ ∞
λ

eτx
1√
2π
e−x

2/2dx

= eτλ + neτ
2/2

∫ ∞
λ

1√
2π
e−(x−τ)2/2dx = eτλ + neτ

2/2 (1− Φ(λ− τ)) ≤ eτλ + neτ
2/2φ(λ− τ)

λ− τ
.

Note that the last inequality above (the Mill’s ratio bound) requires that τ < λ. We thus get

B ≥ 1− e−τ
2/2

n
eτλ +

(2π)−1/2

λ− τ
exp

(
−1

2
(λ− τ)2

)
= 1− exp

(
−1

2
(λ− τ)2

)
+

(2π)−1/2

λ− τ
exp

(
−1

2
(λ− τ)2

)
.

For τ = λ− log(λ), we have λ− τ →∞ as n→∞ and then, from the above, we immediately obtain (252).
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27.4 Fano’s Lemma via the Data Processing Inequality

The Data Processing Inequality is a standard fact about the Kullback-Leibler divergence. It states the
following. Suppose P and Q are two probability measures on a space X . Let Γ : X → Y be any function.
Let PΓ−1 denote the image of the probability measure P under the map Γ i.e.,

PΓ−1(A) := P {Γ ∈ A} .

Similarly define QΓ−1. The Data Processing Inequality then states that

D(P‖Q) ≥ D
(
PΓ−1‖QΓ−1

)
.

This is true for every pair of probability measures P and Q and every function Γ. We will not give a proof of
this fact here (this is standard and can be found in many places). We shall outline a simple proof of Fano’s
inequality in Lemma 27.1 (actually we shall derive a stronger version of Fano’s inequality than in (247)) via
the Data Processing Inequality.

Consider the setting of Fano’s inequality where we have N probability measures P1, . . . , PN on a space
X having densities p1, . . . , pN respectively with respect to µ. Consider two random variables Θ and X such
that Θ is uniformly distributed on {1, . . . , N} and the conditional distribution of X given Θ = i is Pi. Let P
be the joint distribution of Θ and X. Also let Q be the joint distribution that is the product of the marginal
distributions of Θ and X. We have seen (in (249)) that

I(P1, . . . , PN ) = D(P‖Q).

Now fix a test T i.e., T is a function from X to {1, . . . , N}. We will then apply the Data Processing Inequality
to the map Γ : {1, . . . , N} × X → {0, 1} defined by

Γ(j, x) := I{T (x) 6= j} for j ∈ {1, . . . , N} and x ∈ X .

The Data Processing Inequality will then give

I(P1, . . . , PN ) = D(P‖Q) ≥ D(PΓ−1‖QΓ−1) = PΓ−1{1} log
PΓ−1{1}
QΓ−1{1}

+
(
1− PΓ−1{1}

)
log

1− PΓ−1{1}
1−QΓ−1{1}

.

It is now easy to see that

PΓ−1{1} =
1

N

N∑
j=1

Pj{T (x) 6= j} = R(T )

and

QΓ−1{1} =
1

N

N∑
j=1

P̄{T (x) 6= j} = P̄

 1

N

N∑
j=1

{T (x) 6= j}

 = P̄

(
N − 1

N

)
= 1− 1

N
.

We have therefore proved that for every test T ,

I(P1, . . . , PN ) ≥ R(T ) log

(
R(T )

1− (1/N)

)
+ (1−R(T )) log

(
1−R(T )

(1/N)

)
.

Because this is true for every test T , we can take T = T ∗ (the maximum likelihood test which minimizes
R(T ) over all T ) so that R(T ∗) = B = B(P1, . . . , PN ). This will then give

I(P1, . . . , PN ) ≥ B log

(
NB

N − 1

)
+ (1−B) log (N(1−B)) . (253)
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This inequality can be treated as a stronger version of Fano’s inequality. It is easy to prove that (253) implies
(247). To see this, just note that the right hand side of (253) equals:

B logB + (1−B) log(1−B) +B log

(
N

N − 1

)
+ (1−B)(logN) ≥ − log 2 + (1−B)(logN)

because infx∈(0,1) (x log x+ (1− x) log(1− x)) = − log 2 and log(N/(N − 1)) ≥ 0.

An important advantage of this proof of Fano’s inequality (via the Data Processing Inequality) is that it
generalizes to f -divergences. f -divergences are a general class of divergences between probability measures
that include the Kullback-Leibler divergence as a special case. They are defined in the following way. Let
f : (0,∞) → R be a convex function with f(1) = 0. It is then easy to show that the following limits exist
(even though they may be +∞. Suppose P and Q are two probability measures on a space X having densities
p and q with respect to a common dominating measure µ. The f -divergence between P and Q is denoted by
Df (P‖Q) and is defined in the following way:

Df (P‖Q) :=

∫
f

(
p

q

)
qdµ+ f ′(∞)P{q = 0}.

Different choices of f lead to different specific divergences. For example, KL divergence corresponds to
f(x) = x log x, total variation distance corresponds to f(x) = |x−1|/2, squared Hellinger distance corresponds
to f(x) = 1−

√
x or f(x) = (

√
x− 1)2/2, chi-squared divergence corresponds to f(x) = x2 − 1 and so on.

It turns out that the data processing inequality is satisfied for every f -divergence. Using this, it is possible
to prove the following generalization of Fano’s inequality for every f -divergence:

inf
Q

1

N

N∑
i=1

Df (Pi‖Q) ≥ Df ((B, 1−B)‖(1− (1/N), 1/N)) .

With specific choices for f , this leads to more explicit lower bounds for B. For example, for f(x) = x2 − 1,
one obtains

B(P1, . . . , Pn) ≥ 1− 1

N
−

√√√√ 1

N2
inf
Q

N∑
i=1

χ2(Pi‖Q)

where χ2(P‖Q) = Df (P‖Q) for f(x) = x2 − 1. See Gushchin [10] or Guntuboyina [9] and Chen et al. [4] for
more details.

28 Lecture 28

We shall study the method of proving rate minimaxity results via Fano’s inequality. The first step is to
bound from below the minimax risk in a general decision-theoretic problem via the Bayes risk in a testing
problem.

28.1 Minimax Lower Bound via Testing

Consider the general decision-theoretic setting with a parameter space Θ, action space A and nonnegative
loss function L(θ, a). We observe data X whose distribution belongs to the family {Pθ, θ ∈ Θ}.

Let F be a finite subset of Θ. We say that F is η-separated for a positive real number η if

inf
a∈A

(L(θ1, a) + L(θ2, a)) ≥ η for every θ1, θ2 ∈ F with θ1 6= θ2.
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Let w denote the uniform prior on F . The lemma below shows that, when F is η-separated, the Bayes risk
RBayes(w) is bounded from below by (η/2) times the Bayes risk in the testing problem corresponding to the
probability measures Pθ, θ ∈ F .

Lemma 28.1. Suppose F is η-separated. Then

RBayes(w) ≥ η

2
B ({Pθ, θ ∈ F}) . (254)

Note here that

RBayes(w) = inf
d

1

|F |
∑
θ∈F

EθL(θ, d(X)) and B ({Pθ, θ ∈ F}) = inf
T

1

|F |
∑
θ∈F

Pθ{T 6= θ}

where the infimum is over all decision rules d in RBayes(w) and over all tests T (i.e., functions from X to F )
in B({Pθ, θ ∈ F}).

Proof of Lemma 28.1. Using L(θ, a) ≥ (η/2)I{L(θ, a) ≥ η/2}, we obtain

RBayes(w) ≥ η

2
inf
d

1

|F |
∑
θ∈F

Pθ

{
L(θ, d(X)) ≥ η

2

}
.

For each decision rule d, we now associate a test T in the following way. Define T (X) as equal to θ provided
there exists a θ ∈ F such that L(θ, d(X)) < η/2 (note that because F is η-separated, there exists at most
one θ ∈ F such that L(θ, d(X)) < η/2). If there is no such θ ∈ F , then we take T (X) to be an arbitrary
point in F . With this construction, it is easy to see that

I
{
L(θ, d(X)) ≥ η

2

}
≥ I {θ 6= T (X)} for every θ ∈ F .

From here, inequality (254) immediately follows.

In the last class, we proved the following inequality (known as Fano’s inequality)

B({Pθ, θ ∈ F}) ≥ 1− log 2 + I({Pθ, θ ∈ F})
log |F |

.

Combining this with Lemma 28.1 and the fact that RMinimax ≥ RBayes(w) for every prior w, we obtain the
following minimax lower bound:

RMinimax ≥
η

2

(
1− log 2 + I({Pθ, θ ∈ F})

log |F |

)
for every finite F ⊆ Θ. (255)

We shall see two examples of this bound below: to sparse normal mean estimation and Lipschitz regression.
The main challenge in using (255) is to make an appropriate choice of F .

In many applications, Θ ⊆ A and L(θ, a) = d2(θ, a) for some pseudometric d on A. In this case, note that

min
θ1,θ2∈F :θ1 6=θ2

d(θ1, θ2) ≥ τ =⇒ F is (τ2/2)-separated. (256)

This is because for every θ1, θ2 ∈ F with θ1 6= θ2 and a ∈ A, we have

L(θ1, a) + L(θ2, a) = d2(θ1, a) + d2(θ2, a) ≥ 1

2
(d(θ1, a) + d(θ2, a))

2 ≥ 1

2
d2(θ1, θ2) ≥ τ2

2
.
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28.2 Sparse Normal Mean Estimation

Consider the problem of estimating a 1-sparse vector θ ∈ Rn in squared Euclidean loss from Y ∼ Nn(θ, In).
Here Θ is the class of all 1-sparse vectors in Rn, A = Rn and L(θ, a) is the squared Euclidean distance
between θ and a. Also Pθ is the Nn(θ, In) distribution.

It is natural here to apply (255) with F = {τe1, . . . , τen} for some τ > 0 (chosen later). Because
‖τei − τej‖ = τ

√
2 for every i 6= j, it follows that F is η separated with η = τ2 (using (256)). Inequality

(255) then gives

RMinimax ≥
τ2

2

(
1− log 2 + I({Pθ,θ∈F })

log n

)
where I = I(Pθ, θ ∈ F ).

In the last class, we saw that

I ≤ 1

n

∑
θ∈F

D(Pθ‖P0) ≤ τ2

and this gives

RMinimax ≥
τ2

2

(
1− log 2 + (τ2/2)

log n

)
.

Taking τ2 = log n will give that RMinimax ≥ c log n for a positive constant c (for n large). This result is good
enough to yield rate minimaxity of soft thresholding with λ =

√
2 log n. However it is not strong enough to

yield sharp asymptotic minimaxity.

28.3 Lipschitz Regression

Let F denote the class of all functions f : [0, .1]→ R that are bounded in absolute value by 1 and 1-Lipschitz.
Consider the problem of estimating f ∈ F from i.i.d observations (X1, Y1), . . . , (Xn, Yn) where

Xi ∼ Unif[0, 1] and Yi|Xi ∼ N(f(Xi), 1).

We take Θ = F , A to be the class of all real-valued functions on [0, 1] and use the loss function

L(f, g) :=

∫ 1

0

(f(x)− g(x))
2
dx.

We shall denote by Pf the joint distribution of (X1, Y1), . . . , (Xn, Yn). Note that Pf has the following density
on [0, 1]n × Rn:

pf ((x1, y1), . . . , (xn, yn)) =

n∏
i=1

1√
2π

exp

(
−(yi − f(xi))

2

2

)
.

We are interested in the minimax risk:

RMinimax := inf
f̂

sup
f∈F

Ef
∫ 1

0

(
f − f̂

)2

.

It can be shown that RMinimax ≤ Cn−2/3 for a universal positive constant C. This can be done by studying
the least sqaures estimator over F (using methods that we looked at previously in the class). One can also
consider simpler kernel regression estimators (see, for example, Tsybakov [23, Chapter 1]). Here we shall
prove (using (255)) that RMinimax ≥ cn−2/3 for a positive constant c. This will prove, in particular, that the
least squares estimator is minimax rate optimal for estimating functions in F .

The main challenge is to construct a suitable finite subset F of F . The standard construction is as follows.
Fix a small δ > 0. For a closed subinterval I of [0, 1] of length δ, let TI : I → [0, δ] denote the piecewise linear
tent function which equals its maximum value δ at the midpoint of the interval I (specifically TI linearly
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increases from 0 at the left end point of I to δ at the midpoint of I and then linearly decreases to 0 at the
right end point of I). Now consider the m intervals:

Ij := [(j − 1)δ, jδ] for j = 1, . . . ,m with m := b1/δc & 1/δ.

We now construct 2m functions in F . These functions will be indexed by τ ∈ {0, 1}m and will be denoted
by {fτ , τ ∈ {0, 1}m}. Specifically, for each τ ∈ {0, 1}m, we define fτ to equal the tent function TIj on the
interval Ij if τj = 1 and to equal zero on Ij if τj = 0. Also each fτ will equal zero outside ∪jIj .

We shall apply (255) with this collection {Pfτ : τ ∈ {0, 1}m}. The first step is find a suitable value η for
which F := {fτ , τ ∈ {0, 1}m} is η-separated. For this, fix τ, τ ′ ∈ {0, 1}m with τ 6= τ ′. Then τj 6= τ ′j for some
j ∈ {1, . . . ,m} and then it is easy to see that∫

(fτ − fτ ′)2 ≥
∫
Ij

T 2
Ij (x)dx & δ2 × δ = δ3.

It follows (from (256)) that F is η-separated with η & δ3. Inequality (255) then says that

RMinimax ≥ η
(

1− log 2 + I

log(2m)

)
& δ3

(
1− log 2 + I

m log 2

)
with I := I(Pfτ , τ ∈ {0, 1}m).

We next need to bound I from above. For this, we shall use

I ≤ 1

2m

∑
τ∈{0,1}m

D(Pfτ ‖Q)

with Q = P0 (i.e., Pf corresponding to f ≡ 0). Note that for two functions f, g,

D(Pf‖Pg) = nD
(
P(X1,Y1)‖P(X̃1,Ỹ1)

)
where

X1 ∼ Unif[0, 1]; Y1|X1 ∼ N(f(X1), 1) and X̃1 ∼ Unif[0, 1]; Ỹ1|X̃1 ∼ N(g(X̃1), 1).

One can then also compute that

D
(
P(X1,Y1)‖P(X̃1,Ỹ1)

)
=

∫ 1

0

(f − g)
2
.

We thus have

D(Pfτ , P0) = n

∫ 1

0

f2
τ (x)dx ≤ nδ2

and consequently I ≤ nδ2. We thus have

RMinimax & δ3

(
1− log 2 + nδ2

m log 2

)
.

Because m ≥ c1/δ for a positive constant c1, we have

RMinimax & δ3

(
1− log 2 + nδ2

(c1 log 2)/δ

)
= δ3

(
1− δ

c1
− nδ3

c1 log 2

)
.

Taking δ3 = (c1 log 2)/(2n), we obtain RMinimax & n−1 for all large n. Note however that we set out to prove
RMinimax & n−2/3 so the above argument yields a suboptimal lower bound for RMinimax. The reason where
this argument becomes weak is in the separation calculation. Indeed, we used the fact that∫ 1

0

(fτ − fτ ′)2 & δ3 for every τ, τ ′ ∈ {0, 1}m with τ 6= τ ′.
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It is also easy to see that the above bound is tight up to a constant multiplicative factor when τ and τ ′

differ in only one coordinate (i.e., H(τ, τ ′) :=
∑
j I{τj 6= τ ′j} equals exactly 1). However, in general, the L2

distance between fτ and fτ ′ depends on H(τ, τ ′). Precisely, it is easily seen that∫ 1

0

(fτ − fτ ′)2 & δ3H(τ, τ ′) for all τ, τ ′ ∈ {0, 1}m. (257)

The Gilbert-Varshamov Lemma (stated and proved next) proves the existence of a subset W of {0, 1}m with
cardinality |W | ≥ exp(m/8) and such that H(τ, τ ′) > m/4 for every τ, τ ′ ∈W with τ 6= τ ′. The idea then is
to apply (255) to F = {fτ : τ ∈W} as opposed to F = {fτ : τ ∈ {0, 1}m}. The inequality (257) above along
with H(τ, τ ′) & m & (1/δ) for τ, τ ′ ∈W with τ 6= τ ′ implies then that F = {fτ : τ ∈W} is η-separated with
η & δ2. The mutual information bound remains the same as before. We would then obtain

RMinimax & δ2

(
1− δ

c1
− nδ3

c1 log 2

)
.

The choice δ3 = (c1 log 2)/(2n) would then give RMinimax & n−2/3 for all large n.

28.4 Gilbert-Varshamov Lemma

Lemma 28.2. For every m ≥ 1, there exists a subset W of {0, 1}m with cardinality |W | ≥ exp(m/8) such
that H(τ, τ ′) > m/4 for every τ, τ ′ ∈W with τ 6= τ ′.

Proof. The following elementary probability bound will be used here:

P {Bin(m, 1/2) ≤ m/4} = P {Bin(m, 1/2) ≥ 3m/4} ≤ exp

(
−m

8

)
. (258)

To prove (258), note that (the first equality follows by symmetry)

P {Bin(m, 1/2) ≥ 3m/4} ≤ inf
λ>0

e−3mλ/4EeλBin(m,1/2) = inf
λ>0

e−3mλ/4

(
1

2
+

1

2
eλ
)m

.

Taking λ = log 3, we get

P {Bin(m, 1/2) ≥ 3m/4} ≤ 3−3m/42m = exp

(
m log 2− 3 log 3

4
m

)
= exp(−0.130812m) ≤ exp(−m/8).

Now let W be a maximal subset of {0, 1}m for which H(τ, τ ′) > m/4 for every τ, τ ′ ∈ W with τ 6= τ ′.
Maximal here means that the separation condition will be violated if any other element of {0, 1}m is added
to W . This implies then that⋃

τ∈W
BH(τ,m/4) = {0, 1}m where BH(τ,m/4) := {ω ∈ {0, 1}m : H(τ, ω) ≤ m/4}

so that
2m =

∑
τ∈W

|BH(τ,m/4)| ≤ |W |max
τ∈W

|BH(τ,m/4)|. (259)

Now for every A ⊆ {0, 1}m, we have

|A| = 2mP{(T1, . . . , Tm) ∈ A} where T1, . . . , Tm are i.i.d Ber(1/2).

Thus

2−m|BH(τ,m/4)| = P {(T1, . . . , Tm) ∈ BH(τ,m/4)}

= P

{
m∑
i=1

I{Ti 6= τi} ≤ m/4

}
= P{Bin(m, 1/2) ≤ m/4} ≤ exp(−m/8).

Inequality (259) then immediately gives |W | ≥ exp(m/8) which completes the proof of Lemma 28.2.
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28.5 Yang-Barron Method for Avoiding Explicit Construction of F

As we mentioned earlier, the main difficulty in applying (255) is the construction of a finite subset F of Θ.
Yang and Barron [26] had a nice idea of avoiding the explicit construction of F provided results on packing
and covering numbers of Θ are available. Here are the details behind this idea.

For η > 0, suppose N(η,Θ) is any positive real number such that there exists an η-separated finite subset
F of Θ with cardinality |F | ≥ N(η,Θ). Applying inequality (255) to such an F , we get

RMinimax ≥
η

2

(
1− log 2 + I({Pθ, θ ∈ F})

logN(η,Θ)

)
. (260)

We now bound I = I({Pθ, θ ∈ F}) from above in the following way. We know that

I ≤ 1

|F |
∑
θ∈F

D(Pθ‖Q) (261)

for every probability measure Q on X . Suppose now that Q1, . . . , QM are arbitrary probability measures on
X and apply (261) with Q = Q̄ = (Q1 + · · ·+QM )/M . This gives the bound

I ≤ 1

|F |
∑
θ∈F

D(Pθ‖Q̄).

Now for each θ ∈ F , if q1, . . . , qM denote the densities of Q1, . . . , QM w.r.t µ respectively (and pθ denote the
density of Pθ w.r.t µ), then

D(Pθ‖Q̄) =

∫
pθ log

pθ
(q1 + · · ·+ qM )/M

dµ =

∫
pθ log

pθ
q1 + . . . qM

dµ+ logM.

Now for every 1 ≤ j ≤M , we have q1 + · · ·+ qM ≥ qj so that

D(Pθ‖Q̄) ≤
∫
pθ log

pθ
qj
dµ+ logM = D(Pθ‖Qj) + logM.

Since this is true for every 1 ≤ j ≤M , we deduce

D(Pθ‖Q̄) ≤ min
1≤j≤M

D(Pθ‖Qj) + logM.

Since this is true for every θ ∈ F , we obtain

I ≤ 1

|F |
∑
θ∈F

D(Pθ‖Q̄) ≤ 1

|F |
∑
θ∈F

min
1≤j≤M

D(Pθ‖Qj) + logM ≤ sup
θ∈F

min
1≤j≤M

D(Pθ‖Qj) + logM.

Now for ε > 0 and a subset S of Θ, let M(ε, S) denote the minimal number M of probability measures
Q1, . . . , QM on X such that

sup
θ∈S

min
1≤j≤M

D(Pθ‖Qj) ≤ ε2.

The above argument then gives

I = I({Pθ, θ ∈ F}) ≤ ε2 + logM(ε, F ) for every ε > 0.

Using this bound in (260), we obtain that for every η > 0 and ε > 0,

RMinimax ≥
η

2

(
1− log 2 + logM(ε, F ) + ε2

logN(η,Θ)

)
.

The inequality M(ε, F ) ≤M(ε,Θ) (this is only useful if M(ε,Θ) <∞) then gives

RMinimax ≥
η

2

(
1− log 2 + logM(ε,Θ) + ε2

logN(η,Θ)

)
. (262)
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The advantage with this bound is that it only depends on properties of Θ. For example, in the Lipschitz
regression example, it is known (Lecture 6) that the packing numbers of F (here F is the class of all real-valued
functions on [0, 1] that are 1-Lipschitz and bounded by 1) under the L2 metric satisfy:

exp
(
C2ε
−1
)
≤M(ε,F , L2[0, 1]) ≤ exp

(
C1ε
−1
)
.

Using this, it is easy to show that we can take

logN(η,Θ) =
c2√
η

and logM(ε,Θ) ≤ c1
√
n

ε

in (262). This gives

RMinimax ≥
η

2

(
1− log 2 + c1

√
n/ε+ ε2

c2/
√
η

)
.

From here taking ε ∼ n1/6 and η ∼ n−2/3 (and adjusting the underlying constants appropriately), we can
immediately derive RMinimax & n−2/3. Note that no explicit construction of a finite subset F has been used
in this argument (that work is implicitly done in the proof of the packing number bounds).

More generally, recall the smoothness class Sd,α from Lecture 6. Consider the estimation of a function
f ∈ Sd,α from n i.i.d observations (X1, Y1), . . . , (Xn, Yn) with

Xi ∼ Unif[0, 1] and Yi|Xi ∼ N(f(Xi), 1).

Consider the integral L2 loss function on [0, 1]d:

L(f, g) =

∫
[0,1]d

(f(x)− g(x))
2
dx.

In this case, using the fact that the packing numbers of Sd,α satisfy (stated in Lecture 6):

exp
(
C2ε
−d/α

)
≤M(ε,Sd,α, L2[0, 1]d) ≤ exp

(
C1ε
−d/α

)
,

we can take (the constants here all depend on d)

logN(η,Θ) = c2

(
1
√
η

)d/α
and logM(ε,Θ) ≤ c1

(√
n

ε

)d/α
in (262). This gives

RMinimax ≥
η

2

(
1− log 2 + c1(

√
n/ε)d/α + ε2

c2(1/
√
η)d/α

)
.

Taking ε ∼ nd/(2(2α+d)) and η = n−2α/(2α+d), we obtain that

RMinimax ≥ n−2α/(2α+d).
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