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Chapter 1

Review of Undergraduate

Probability

We will start the course by a review of undergraduate probability material. The review will be fairly

quick and should be complete in about four weeks.

1.1 Sample spaces, Events, Probability

Probability theory is invoked in situations that are (or can be treated as) chance or random experi-

ments. In such a random experiment, the sample space is the set of all possible outcomes and we shall

denote it by Ω.

For example, suppose we are tossing a coin 2 times. Then a reasonable sample space is

{hh, ht, th, tt}.

Subsets of the sample space are called Events. For example, in the above example, {hh, ht} is an

Event and it represents the event that the first of the two tosses results in a heads. Similary, the event

that at least one of the two tosses results in a heads is represented by {hh, ht, th}.

Given a collection of events A1, A2, . . . ,

1. Ac1 denotes the event that A1 does not happen. We say that Ac1 is the complement of the event

A1.

2. ∪i≥1Ai denotes the event that at least one of A1, A2, . . . happens.

3. ∩i≥1Ai denotes the event that all of A1, A2, . . . happen.

9



10 CHAPTER 1. REVIEW OF UNDERGRADUATE PROBABILITY

Probability is defined as a function that maps (or associates) events to real numbers between 0 and

1 and which satisfies certain natural consistency properties. Specifically P is a probability provided:

1. 0 ≤ P(A) ≤ 1 for every event A.

2. For the empty subset Φ (= the “impossible event”), P(Φ) = 0

3. For the whole sample space (= the “certain event”), P(Ω) = 1.

4. If an event A is a disjoint union of a sequence of events A1, A2, . . . (this means that every point

in A belongs to exactly one of the sets A1, A2, . . . ), then P(A) =
∑
i≥1 P(Ai).

Example 1.1.1 (Nontransitive Dice). Consider the following set of dice:

1. Die A has sides 2, 2, 4, 4, 9, 9.

2. Die B has sides 1, 1, 6, 6, 8, 8.

3. Die C has sides 3, 3, 5, 5, 7, 7.

What is the probability that A rolls a higher number than B? What is the probability that B rolls higher

than C? What is the probability that C rolls higher than A? Assume that, in any roll of dice, all

outcomes are equally likely.

1.2 Conditional Probability and Independence of Events

Consider a probability P and an event B for which P(B) > 0. We can then define P(A|B) for every

event A as

P(A|B) :=
P(A ∩B)

P(B)
. (1.1)

P(A|B) is called the conditional probability of A given B. A straightforward consequence of the

definition (1.1) is the formula

P(A ∩B) = P(A|B)P(B). (1.2)

We say that two events A and B are independent (under the probability P) if

P(A|B) = P(A).

Equivalently, independence is given by P(A ∩B) = P(A)P(B) or P(B|A) = P(B).

Here are two very interesting problems from Mosteller’s delightful book (titled Fifty Challenging

Problems in Probability) illustrating the use of conditional probabilities.
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Example 1.2.1 (From Mosteller’s book (Problem 13; The Prisoner’s Dilemma)). Three prisoners, A,

B, and C, with apparently equally good records have applied for parole. The parole board has decided to

release two of the three, and the prisoners know this but not which two. A warder friend of prisoner

A knows who are to be released. Prisoner A realizes that it would be unethical to ask the warder if he,

A, is to be released, but thinks of asking for the name of one prisoner other than himself who is to be

released. He thinks that before he asks, his chances of release are 2/3. He thinks that if the warder says

”B will be released,” his own chances have now gone down to 1/2, because either A and B or B and C

are to be released. And so A decides not to reduce his chances by asking. However, A is mistaken in

his calculations. Explain.

Example 1.2.2 (The Monty Hall Problem). Suppose you’re on a game show, and you’re given the

choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1,

and the host, who knows what’s behind the doors, opens another door, say No. 3, which has a goat. He

then says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch your choice?

Example 1.2.3 (From Mosteller’s book (Problem 20: The Three-Cornered Duel)). A, B, and C are

to fight a three-cornered pistol duel. All know that A’s chance of hitting his target is 0.3, C’s is 0.5,

and B never misses. They are to fire at their choice of target in succession in the order A, B, C,

cyclically (but a hit man loses further turns and is no longer shot at) until only one man is left unhit.

What should A’s strategy be?

1.3 Bayes Rule

A very important formula involving conditional probabilities is the Bayes rule. This is arguably the

most important formula in all of probability and statistics. At a high level, the Bayes rule tells us how

to compute P(B|A) in terms of P(A|B) and other terms. Note that these two conditional probabilities

can be quite different. For example. consider this: “What is the probability of obtaining a dead person

(D) given that the person was hanged (H); that is, in symbol form, what is p(D|H)? Obviously, it will

be very high, perhaps .97 or higher. Now, let us reverse the question: What is the probability that a

person has been hanged (H) given that the person is dead (D); that is, what is p(H|D)? This time the

probability will undoubtedly be very low, perhaps .01 or lower.” (this comes from one of the quotes

here: http://www.indiana.edu/~stigtsts/quotsagn.html).

Formally Bayes rule says that

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)
. (1.3)

Note that Bc in the right hand side above represents the complement of the event B defined as the

event where B does not happen. The Bayes rule (1.3) is easily derived from the definition of conditional

http://www.indiana.edu/~stigtsts/quotsagn.html
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probability in the following way:

P(B|A) =
P(B ∩A)

P(A)

=
P(A ∩B)

P(A)
=

P(A|B)P(B)

P(A)
=

P(A|B)P(B)

P(A ∩B) + P(A ∩Bc)
=

P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)
.

The Bayes rule may be simple to derive but it has quite nontrivial consequences. For example,

consider this simple problem.

Example 1.3.1. Consider a clinical test for cancer that can yield either a positive (+) or negative (-)

result. Suppose that a patient who truly has cancer has a 1% chance of slipping past the test undetected.

On the other hand, suppose that a cancer-free patient has a 5% probabiliity of getting a positive test

result. Suppose also that 2% of the population has cancer. Assuming that a patient who has been given

the test got a positive test result, what is the probability that they have cancer?

Suppose C and Cc are the events that the patient has cancer and does not have cancer respectively.

Also suppose that + and − are the events that the test yields a positive and negative result respectively.

By the information given, we have

P(−|C) = 0.01 P(+|Cc) = 0.05 P(C) = 0.02.

We need to compute P(C|+). By Bayes rule, we have

P(C|+) =
P(+|C)P(C)

P(+|C)P(C) + P(+|Cc)P (Cc)
=

0.99 ∗ 0.02

0.99 ∗ 0.02 + 0.05 ∗ 0.98
= 0.2878.

Therefore the probability that this patient has cancer (given that the test gave a positive result) is about

29%. This means, in particular, that it is still unlikely that they have cancer even though the test gave

a positive result (note though that the probability of cancer increased from 2% to 29%).

Another interesting aspect of the above calculation is that

P(+) = P(+|C)P(C) + P(+|Cc)P (Cc) = 0.99 ∗ 0.02 + 0.05 ∗ 0.98 = 0.0688.

This means that test will yield a positive result about 7% of the time (note that only 2% of the population

has cancer).

Suppose now that P(C) = 0.001 (as opposed to P(C) = 0.02) and assume that P(−|C) and P(+|Cc)
stay at 0.01 and 0.05 as before. Then

P(+) = P(+|C)P(C) + P(+|Cc)P (Cc) = 0.99 ∗ 0.001 + 0.05 ∗ 0.999 = 0.0509.

Here the true cancer rate of 0.001 has yielded in an apparent rate of 0.05 (which is an increase by a

factor of 50). Think about this in the setting where the National Rifle Association is taking a survey

by asking a sample of citizens whether they used a gun in self-defense during the past year. Take C to

be true usage and + to be reported usage. If only one person in a thousand had truly used a gun in

self-defense, it will appear that one in twenty did. These examples are taken from the amazing book

titled “Understanding Uncertainty” by Dennis Lindley.
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Example 1.3.2. This example is taken from the book “A tutorial introduction to Bayesian Analysis”

by James Stone. Suppose you are a doctor confronted with a patient who is covered in spots. The

patient’s symptoms are consistent with chickenpox but they are also consistent with another, more

dangerous, disease, smallpox. Suppose that you know that 80% of the people which chickenpox have

spots, but also that 90% of people with smallpox have spots. Suppose that you know that chickenpox

is a relatively common disease with an incidence rate of 10% while smallpox is much rarer with an

incidence rate of 0.1%. Based on all this information, how will you decide what disease the patient

probably has?

Example 1.3.3 (Monty Hall Problem via Bayes rule). Recall the Monty Hall problem: Suppose you’re

on a game show, and you’re given the choice of three doors: Behind one door is a car; behind the others,

goats. You pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another

door, say No. 3, which has a goat. He then says to you, “Do you want to pick door No. 2?” Is it to

your advantage to switch your choice?

We can use Bayes rule to solve this problem in the following way. Let us suppose that I always

pick Door 1 to start the game. I then need to calculate the conditional probability:

P {car in door 2|host opened door 3} .

By Bayes rule,

P {car door 2|host door 3} =
P {host door 3|car door 2}P {car door 2}

P {host door 3|car door 2}P {car door 2}+ P {host door 3|car door 1}P {car door 1}
.

Plugging in

P {host door 3|car door 2} = 1 and P {host door 3|car door 1} =
1

2

and also

P {car door 1} = P {car door 2} =
1

3
,

we get

P {car door 2|host door 3} =
1 ∗ (1/3)

1 ∗ (1/3) + (1/2) ∗ (1/3)
=

2

3

and since this probability is more than 0.5, it makes sense for me to switch to door 2 from my original

selction of door 1.

Example 1.3.4 (The Blinky Monty Hall problem). Here is a very interesting variant on the Monty

Hall problem that I found on the internet (here: http: // allendowney. blogspot. com/ 2011/ 10/

blinky-monty-problem. html ). The problem is as follows. Consider the same setting as the usual

Monty Hall problem. Suppose I pick door 1 to start with and the host reveals the goat behind door 3.

Suppose also that before the host opened door 3, the host blinked. Based on watching this game show

previously many times, I note that the host blinks with probability 0.6 when the contestant picks the

http://allendowney.blogspot.com/2011/10/blinky-monty-problem.html
http://allendowney.blogspot.com/2011/10/blinky-monty-problem.html
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correct door and with probability 0.25 when the contestant picks the wrong door. With this additional

information, will it still be to my advantage to switch my choice from door 1 to door 2?

We now need to calculate

P {car in door 2|host opened door 3 and blinked} .

Again by Bayes rule

P {car 2|host 3, blinked} =
P {host 3, blinked|car 2}P {car 2}

P {host 3, blinked|car 1}P {car 1}+ P {host 3, blinked|car 2}P {car 2}

With the given information, it makes sense to take

P {host opened 3, blinked|car 2} = 0.25 and P {host opened 3, blinked|car 1} = (0.5)(0.6) = 0.3.

This gives

P {car in door 2|host opened door 3 and blinked} =
0.25 ∗ (1/3)

(0.25) ∗ (1/3) + (0.3) ∗ (1/3)
≈ 0.45.

Since this probability is less than 0.5, it makes sense for me to stay with my original choice of door 1

and not switch.

1.4 Random Variables

A random variable is a function that attaches a number to each element of the sample space. In other

words, it is a function mapping the sample space to real numbers.

For example, in the chance experiment of tossing a coin 50 times, the number of heads is a random

variable. Another random variable is the number of heads before the first tail. Another random

variable is the number of times the pattern hththt is seen.

Many real-life quantities such as (a) The average temperature in Berkeley tomorrow, (b) The height

of a randomly chosen student in this room, (c) the number of phone calls that I will receive tomorrow,

(d) the number of accidents that will occur on Hearst avenue in September, etc. can be treated as

random variables.

For every event A (recall that events are subsets of the sample space), one can associate a random

variable which take the value 1 if A occurs and 0 if A does not occur. This is called the indicator

random variable corresponding to the event A and is denoted by I(A).

The distribution of a random variable is, informally, a description of the set of values that the

random variable takes and the probabilities with which it takes those values.

If a random variable X takes a finite or countably infinte set of possible values (in this case, we say

that X is a discrete random variable), its distribution is described by a listing of the values a1, a2, . . .
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that it takes together with a specification of the probabilities:

P{X = ai} for i = 1, 2, . . . .

The function which maps ai to P{X = ai} is called the probability mass function (pmf) of the discrete

random variable X.

If a random variable X takes a continuous set of values, its distribution is often described by a

function called the probability density function (pdf). The pdf is a function f on R that satisfies

f(x) ≥ 0 for every x ∈ R and ∫ ∞
−∞

f(x)dx = 1.

The pdf f of a random variable can be used to calculate P{X ∈ A} for every set A via

P{X ∈ A} =

∫
A

f(x)dx.

Note that if X has density f , then for every y ∈ R,

P{X = y} =

∫ y

y

f(x)dx = 0.

It is important to remember that a density function f(x) of a random variable does not represent

probability (in particular, it is quite common for f(x) to take values much larger than one). Instead,

the value f(x) can be thought of as a constant of proportionality. This is because usually (as long as

f is continuous at x):

lim
δ↓0

1

δ
P{x ≤ X ≤ x+ δ} = f(x).

The cumulative distribution function (cdf) of a random variable X is the function defined as

F (x) := P{X ≤ x} for −∞ < x <∞.

This is defined for all random variables discrete or continuous. If the random variable X has a density,

then its cdf is given by

F (x) =

∫ x

−∞
f(t)dt.

The cdf of every random variable has the following properties: (a) It is non-decreasing, (b) right-

continuous, (c) limx↓−∞ F (x) = 0 and limx↑+∞ F (x) = 1.

The cdf of a continuous random variable is continuous and differentiable and its derivative is the

pdf of the random variable.

1.5 Expectations of Random Variables

Let X be a discrete random variable and let g be a real-valued function on the range of X. The

expectation of g(X) is defined as

Eg(X) :=
∑
x

g(x)P{X = x} <∞ (1.4)
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where the summation is over all possible values x of X.

Analogously, if X is a continuous random variable with density (pdf) f , the expectation of g(X)

is defined as

Eg(X) =

∫ ∞
−∞

g(x)f(x)dx. (1.5)

It is important to keep in mind that it is possible for Eg(X) to be +∞ or −∞ or undefined. A

famous example for when the expectation is +∞ is the following.

Example 1.5.1 (Petersburg Paradox). A casino offers a game of chance for a single player in which

a fair coin is tossed at each stage. The initial stake starts at 2 dollars and is doubled every time heads

appears. The first time tails appears, the game ends and the player wins whatever is in the pot. Thus

the player wins 2 dollars if tails appears on the first toss, 4 dollars if heads appears on the first toss

and tails on the second, 8 dollars if heads appears on the first two tosses and tails on the third, and so

on. Mathematically, the player wins 2xk dollars, where k equals number of tosses (k must be a whole

number and greater than zero). Suppose that X denotes the money that the player wins. What is EX?

The pmf of the random variable X is clearly given by

P{X = 2k} = 2−k for k = 1, 2, . . . .

As a result,

EX =

∞∑
k=1

2k2−k =

∞∑
k=1

1 = +∞.

It is similarly easy to construct a random variable whose expectation is −∞.

Sometimes, the expectation is neither finite, nor +∞ or −∞, it is simply undefined. To see

this, consider a discrete random variable X which takes the values . . . ,−3,−2,−1, 1, 2, 3, . . . with

probabilities

P{X = i} =
3

π2

1

i2
for i ∈ Z, i 6= 0.

Then

EX =
3

π2

∑
i∈Z:i6=0

1

i

which can not be made any sense of.

If a random variable takes only nonnegative values, then its expectation is either finite or +∞.

If A is an event, then recall that I(A) denotes the corresponding indicator random variable that

equals 1 when A holds and 0 when A does not hold. It is convenient to note that the expectation of

I(A) precisely equals P(A).

An important thing to remember is that Expectation is a linear operator i.e.,

E(aX + bY ) = aE(X) + bE(Y )
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for any two random variables X and Y with finite expectations and real numbers a and b. An

implication of this is that if

X = U1 + · · ·+ Un

then EX = EU1 + . . .EUn. This trick is sometimes useful for calculating expectations.

Example 1.5.2. Suppose I have an urn with 10000 balls labeled 1, 2, . . . , 10000. Suppose I draw a

sample of 500 balls at random with replacement. What is the expected number of balls that will not

appear in the sample?

We need to calculate EX where X is the number of balls that do not appear in the sample. For

each i = 1, . . . , 10000, let Ui be the indicator random variable of the event that the ball labeled i does

not appear in the sample. Then clearly

X = U1 + · · ·+ U10000

and by linearity of expectation, we have

EX = EU1 + . . .EU10000.

To calculate EUi, note that as Ui takes only the values 0 and 1, we have

EUi = P{Ui = 1} = P{ball i is not picked in the 500 draws} =

(
1− 1

10000

)500

.

As a result

EX = 10000

(
1− 1

10000

)500

= 9512.27.

The Expectation of a random variable X has the following variational property: it is the value of

a that minimizes the quantity E(X − a)2 over all real numbers a. Do you know how to prove this?

1.6 Variance

A random variable X is said to have finite variance if X2 has finite expectation (do you know that

when X2 has finite expectation, X also will have finite expectation? how will you prove this?). In

that case, the variance of X2 is defined as

V ar(X) := E(X − µX)2 = E(X2)− µ2
X where µX := E(X).

It is clear from the definition that Variance of a random variable X measures the average squared

variability in the values taken by X around its mean E(X).

Suppose X is a discrete random variables taking finitely many values x1, . . . , xn with equal proba-

bilities. Then what is the variance of X?
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The square root of the variance of X is called the standard deviation of X and is often denoted by

SD(X).

If the variance of a random variable X is small, then X cannot deviate much from its mean

(= E(X) = µ). This can be made precise by Chebyshev’s inequality which states the following.

Chebyshev’s Inequality: Let X be a random variable with finite variance and mean µ. Then

for every ε > 0, the following inequality holds:

P {|X − µ| ≥ ε} ≤ V ar(X)

ε2
.

In other words, the probability that X deviates by more than ε from its mean is bounded from above

by V ar(X)/ε2.

Proof of Chebyshev’s inequality: Just argue that

I{|X − µ| ≥ ε} ≤ (X − µ)2

ε2

and take expectations on both sides (on the left hand side, we have the Indicator random variable that

takes the value 1 when |X − µ| ≥ ε and 0 otherwise).

1.7 Independence of Random Variables

We say that two random variables X and Y are independent if conditioning on any event involving Y

does not change the probability of any event involving X i.e.,

P {X ∈ A|Y ∈ B} = P{X ∈ A}

for every A and B.

Equivalently, independence of X and Y is same as

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}

for every A and B.

The following are consequences of independence. If X and Y are independent, then

1. g(X) and h(Y ) are independent for every pair of functions g and h.

2. E (g(X)h(Y )) = Eg(X)Eh(Y ) for every pair of functions g and h.

More generally, we say that random variables X1, . . . , Xk are (mutually) independent if, for every

1 ≤ i ≤ k, conditioning on any event involving Xj , j 6= i does not change the probability of any event

involving Xi. From here one can easily derive properties of independence such as

P{X1 ∈ A1, . . . , Xk ∈ Ak} = P{X1 ∈ A1}P{X2 ∈ A2} . . .P{Xk ∈ Ak}
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for all possible choices of events A1, . . . , Ak.

1.8 Common Distributions

1.8.1 Bernoulli Ber(p) Distribution

A random variable X is said to have the Ber(p) (Bernoulli with parameter p) distribution if it takes

the two values 0 and 1 with P{X = 1} = p.

Note then that EX = p and V ar(X) = p(1 − p). For what value of p is X most variable? least

variable?

1.8.2 Binomial Bin(n, p) Distribution

A random variable X is said to have the Binomial distribution with parameters n and p (n is a positive

integer and p ∈ [0, 1]) if it takes the values 0, 1, . . . , n with pmf given by

P{X = k} =

(
n

k

)
pk(1− p)n−k for every k = 0, 1, . . . , n.

Here
(
n
k

)
is the binomial coefficient: (

n

k

)
:=

n!

k!(n− k)!
.

The main example of a Bin(n, p) random variable is the number of heads obtained in n independent

tosses of a coin with probability of heads equalling p.

Here is an interesting problem about the Binomial distribution from Mosteller’s book (you can

easily calculate these probabilities in R for example).

Example 1.8.1 (From Mosteller’s book (Problem 19: Issac Newton helps Samuel Pepys)). Pepys

wrote Newton to ask which of three events is more likely: that a person get (a) at least 1 six when 6

dice are rolled, (b) at least 2 sixes when 12 dice are rolled, or (c) at least 3 sixes when 18 dice are

rolled. What is the answer?

Let X denote the number of heads in n independent tosses of a coin with probability of heads being

p. Then we know that X ∼ Bin(n, p). If, now, Xi denotes the binary random variable that takes 1 if

the ith toss is a heads and 0 if the ith toss is a tail, then it should be clear that

X = X1 + · · ·+Xn.

Note that each Xi is a Ber(p) random variable and that X1, . . . , Xn are independent. Therefore

Bin(n, p) random variables can be viewed as sums of n independent Ber(p) random variables. The
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Central Limit Theorem (which we will study in detail later in the class) implies that the sum of a large

number of i.i.d (what is i.i.d?) random variables is approximately normal. This means that when n is

large and p is held fixed, the Bin(n, p) distribution looks like a normal distribution. We shall make this

precise later. In particular, this means that Binomial probabilities can be approximately calculated

via normal probabilities for n large and p fixed. From this point of view, what is the probability of

getting k or more sixes from 6k rolls of a die when k is large?

What is the mean of the Bin(n, p) distribution? What is the variance of Bin(n, p)?

1.8.3 Poisson Distribution

A random variable X is said to have the Poisson distribution with parameter λ > 0 (denoted by

Poi(λ)) if X takes the values 0, 1, 2, . . . with pmf given by

P{X = k} = e−λ
λk

k!
for k = 0, 1, 2, . . . .

The main utility of the Poisson distribution comes from the following fact:

Fact: The binomial distribution Bin(n, p) is well-approximated by the Poisson distribution Poi(np)

provided that the quantity np2 small.

To intuitively see why this is true, just see that

P {Bin(n, p) = 0} = (1− p)n = exp (n log(1− p)) .

Note now that np2 being small implies that p is small (note that p can be written as
√
np2/n ≤

√
np2

so small np2 will necessarily mean that p is small). When p is small, we can approximate log(1− p) as

−p− p2/2 so we get

P {Bin(n, p) = 0} = exp (n log(1− p)) ≈ exp (−np) exp
(
−np2/2

)
.

Now because np2 is small, we can ignore the second term above to obtain that P{Bin(n, p) = 0} is

approximated by exp(−np) which is precisely equal to P{Poi(np) = 0}. One can similarly approximate

P{Bin(n, p) = k} by P{Poi(np) = k} for every fixed k = 0, 1, 2, . . . .

There is a formal theorem (known as Le Cam’s theorem) which rigorously proves that Bin(n, p) ≈
Poi(np) when np2 is small. This is stated without proof below (its proof is beyond the scope of this

class).

Theorem 1.8.2 (Le Cam’s Theorem). Suppose X1, . . . , Xn are independent random variables such

that Xi ∼ Ber(pi) for some pi ∈ [0, 1] for i = 1, . . . , n. Let X = X1 + · · · + Xn and λ = p1 + . . . pn.

Then
∞∑
k=0

|P{X = k} − P {Poi(λ) = k}| < 2

n∑
i=1

p2
i .
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In the special case when p1 = · · · = pn = p, the above theorem says that

∞∑
k=0

|P{Bin(n, p) = k} − P{Poi(np) = k}| < 2np2

and thus when np2 is small, the probability P{Bin(n, p) = k} is close to P{Poi(np) = k} for each

k = 0, 1, . . . .

An implication of this fact is that for every fixed λ > 0, we have

Poi(λ) ≈ Bin
(
n,
λ

n

)
when n is large.

This is because when p = λ/n, we have np2 = λ2/n which will be small when n is large.

This approximation property of the Poisson distribution is the reason why the Poisson distribution

is used to model counts of rare events. For example, the number of phone calls a telephone operator

receives in a day, the number of accidents in a particular street in a day, the number of typos found in

a book, the number of goals scored in a football game can all be modelled as Poi(λ) for some λ > 0.

Can you justify why these real-life random quantities can be modeled by the Poisson distribution?

The following example presents another situation where the Poisson distribution provides a good

approximation.

Example 1.8.3. Consider n letters numbered 1, . . . , n and n envelopes numbered 1, . . . , n. The right

envelope for letter i is the envelope i. Suppose that I take a random permutation σ1, . . . , σn of 1, . . . , n

and then place the letter σi in the envelope i. Let X denote the number of letters which are in their

right envelopes. What is the distribution of X?

Let Xi be the random variable which takes the value 1 when the ith letter is in the ith envelope and

0 otherwise. Then clearly X = X1 + · · ·+Xn. Note that

P{Xi = 1} =
1

n
for each i = 1, . . . , n.

This is because the ith letter is equally likely to be in any of the n envelopes. This means therefore that

Xi ∼ Ber(1/n) for i = 1, . . . , n.

If the Xi’s were also independent, then X = X1 + · · ·+Xn will be Bin(n, 1/n) which is very close to

Poi(1) for large n. But the Xi’s are not independent here because for i 6= j,

P {Xi = 1|Xj = 1} =
1

n− 1
6= 1

n
= P {Xi = 1} .

However, the dependence is relatively weak and it turns out that the distribution of X is quite close to

Poi(1). We shall demonstrate this by showing that P{X = 0} is approximately equal to P{Poi(1) =

0} = e−1. I will leave as an exercise to show that P{X = k} ≈ P{Poi(1) = k} for every fixed k. To
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compute P{X = 0}, we can write

P{X = 0} = P{
n∏
i=1

(1−Xi) = 1}

= E
n∏
i=1

(1−Xi)

= E

1−
n∑
i=1

Xi +
∑
i<j

XiXj −
∑
i<j<k

XiXjXk + · · ·+ (−1)nX1 . . . Xn


= 1−

∑
i

E(Xi) +
∑
i<j

E(XiXj)−
∑
i<j<k

E(XiXjXk) + · · ·+ (−1)nE(X1, . . . , Xn).

Note now that for every i1 < · · · < ik, we have

EXi1Xi2 . . . Xik = P{Xi1 = 1, Xi2 = 1, . . . , Xik = 1} =
(n− k)!

n!
.

This gives

P{X = 0} =

n∑
k=0

(−1)k
(
n

k

)
(n− k)!

n!
=

n∑
k=0

(−1)k
1

k!
≈ e−1 = P{Poi(1) = 0}.

It is an easy exercise to show that the expectation and variance of a Poi(λ) random variable are

both equal to λ. This also makes sense because of the connection:

Poi(λ) ≈ Bin(n, λ/n)

as

E(Bin(n, λ/n)) = λ and var(Bin(n, λ/n)) = n
λ

n

(
1− λ

n

)
→ λ as n→∞.

When modeling count data via the Poisson distribution, it is possible to empirically check the assump-

tion that the variance is equal to the mean. If the empirical variance seems much higher than the

mean, then it is said that there is overdispersion in which case Poisson may not be a good model for

the data.

1.8.4 Geometric Distribution

We say that X has the Geometric distribution with parameter p ∈ [0, 1] (written as X ∼ Geo(p)) if X

takes the values 1, 2, . . . with the probabilities:

P{X = k} = (1− p)k−1p for k = 1, 2, . . . .

It is easy to see that the number of independent tosses (of a coin with probability of heads p) required

to get the first head has the Geo(p) distribution.
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The Geo(p) distribution has the interesting property of memorylessness i.e., if X ∼ Geo(p), then

P {X > m+ n|X > n} = P {X > m} . (1.6)

This is easy to check as P {X > m} = (1− p)m. It is also interesting that the Geometric distribution

is the only distribution on {1, 2, . . . } which satisfies the memorylessness property (1.6). To see this,

suppose that X is a random variable satisfying (1.6) which takes values in {1, 2, . . . }. Let G(m) :=

P{X > m} for m = 1, 2, . . . . Then (1.6) is the same as

G(m+ n) = G(m)G(n).

This clearly gives G(m) = (G(1))m for each m = 1, 2, . . . . Now G(1) = P{X > 1} = 1− P{X = 1}. If

p = P{X = 1}, then

G(m) = (1− p)m

which means that P{X = k} = P{X > k− 1}−P{X > k} = p(1− p)k−1 for every k ≥ 1 meaning that

X is Geo(p).

1.8.5 Negative Binomial Distribution

Let X denote the number of tosses (of a coin with probability of heads p) required to get the kth head.

The distribution of X is then given by the following. X takes the values k, k + 1, . . . and

P{X = k + i} =

(
k + i− 1

i

)
pk(1− p)i

=
(k + i− 1)(k + i− 2) . . . (k + 1)k

i!
pk(1− p)i

= (−1)i
(−k)(−k − 1)(−k − 2) . . . (−k − i+ 1)

i!
pk(1− p)i

= (−1)i
(
−k
i

)
pk(1− p)i for i = 0, 1, 2, . . . .

This is called the Negative Binomial distribution with parameters k and p (denoted by NB(k, p)). If

G1, . . . , Gk are independent Geo(p) random variables, then G1 + · · ·+Gk ∼ NB(k, p) (can you prove

this?).

1.9 Continuous Distributions

Next we shall look at continuous distributions.
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1.9.1 Normal or Gaussian Distribution

A random variable X has the normal distribution with mean µ and variance σ2 > 0 if it has the

following pdf:

φ(x;µ, σ2) :=
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

We write X ∼ N(µ, σ2). When µ = 0 and σ2 = 1, we say that X has the standard normal distribution

and the standard normal pdf is simply denote by φ(·):

φ(x) =
1√
2π

exp

(
−x

2

2

)
.

Do you know why φ(·) is a valid density i.e., why
∫
e−x

2/2dx =
√

2π?

The standard normal cdf is denoted by Φ(x):

Φ(x) :=

∫ x

−∞
φ(t)dt.

If X ∼ N(µ, σ2), then E(X) = µ and V ar(X) = σ2. See the corresponding wikipedia page for a list of

numerous properties of the normal distribution. The Central Limit Theorem is the main reason why

the normal distribution is the most prominent distribution in statistics.

1.9.2 Uniform Distribution

A random variable U is said to have the uniform distribution on (0, 1) if it has the following pdf:

f(x) =

{
1 : 0 < x < 1

0 : for all other x

We write U ∼ U [0, 1]. What is the mean of U? What is the variance of U? Where do uniform distri-

butions arise in statistics? The p-values under the null distribution are usually distributed according

to the U [0, 1] distribution (more on this later).

More generally, given an interval (a, b), we say that a random variable U has the uniform distribution

on (a, b) if it has the following pdf:

f(x) =

{
1
b−a : a < x < b

0 : for all other x

We write this as U ∼ U(a, b).

1.9.3 The Exponential Distribution

The exponential distribution is given by the exponential density. The exponential density with rate

parameter λ > 0 (denoted by Exp(λ)) is given by

f(x) = λe−λxI{x > 0}.
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It is arguably the simplest density for modeling random quantities that are constrained to be nonneg-

ative. It is used to model things such as the time of the first phone call that a telephone operator

receives starting from now (this can be justified via a discretization argument).

The cdf of Exp(λ) is easily seen to be

F (x) =

∫ x

0

λe−λxdx = 1− e−λx for x > 0.

The exponential density has the memorylessness property (just like the Geometric distribution).

Indeed,

P {X > a+ b|X > b} =
P{X > a+ b}
P{X > b}

=
e−λ(a+b)

e−λb
= e−λa = P{X > a}.

In fact, the exponential density is the only density on (0,∞) that has the memorylessness property

(proof left as exercise). In this sense, the Exponential distributionx can be treated as the continuous

analogue of the Geometric distribution.

1.9.4 The Gamma Density

It is customary to talk about the Gamma density after the exponential density. The Gamma density

with shape parameter α > 0 and rate parameter λ > 0 is given by

f(x) ∝ xα−1e−λxI{x > 0}. (1.7)

To find the proportionality constant above, we need to evaluate∫ ∞
0

xα−1e−λxdx =
1

λα

∫ ∞
0

uα−1e−udu.

Now the function

Γ(α) :=

∫ ∞
0

uα−1e−udu for α > 0

is called the Gamma function in mathematics. So the constant of proportionality in (1.7) is given by

λα

Γ(α)

so that the Gamma density has the formula:

f(x) =
λα

Γ(α)
xα−1e−λxI{x > 0}.

We shall refer to this as the Gamma(α, λ) density.

Note that the Gamma(α, λ) density reduces to the Exp(λ) density when α = 1. Therefore, Gamma

densities can be treated as a generalization of the Exponential density. In fact, the Gamma density

can be seen as the continuous analogue of the negative binomial distribution because if X1, . . . , Xk

are independent Exp(λ) random variables, then X1 + · · · + Xn ∼ Gamma(k, λ) (thus the Gamma
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distribution arises as the sum of i.i.d exponentials just as the Negative Binomial distribution arises as

the sum of i.i.d Geometric random variables).

Here are some elementary properties of the Gamma function that will be useful to us later. The

Gamma function does not have a closed form expression for arbitrary α > 0. However when α is a

positive integer, it can be shown that

Γ(n) = (n− 1)! for n ≥ 1. (1.8)

The above inequality is a consequence of the property

Γ(α+ 1) = αΓ(α) for α > 0 (1.9)

and the trivial fact that Γ(1) = 1. You can easily verify (1.9) by integration by parts.

Another easy fact about the Gamma function is that Γ(1/2) =
√
π (this is a consequence of the

fact that
∫
e−x

2/2dx =
√

2π).

1.10 Variable Transformations

It is often common to take functions or transformations of random variables. Consider a random

variable X and apply a function u(·) to X to transform X into another random variable Y = u(X).

How does one find the distribution of Y = u(X) from the distribution of X?

If X is a discrete random variable, then Y = u(X) will also be discrete and then the pmf of Y can

be written directly in terms of the pmf of X:

P{Y = y} = P{u(X) = y} =
∑

x:u(x)=y

P{X = x}.

If X is a continuous random variable with density f and u(·) is a smooth function, then it is fairly

straightforward to write down the density of Y = u(X) in terms of f . There are some general formulae

for doing this but it is better to learn how to do it from first principles. I will illustrate the general

idea using the following two examples.

Example 1.10.1. Suppose X ∼ U(−π/2, π/2). What is the density of Y = tan(X)? Here is the

method for doing this from first principles. Note that the range of tan(x) as x ranges over (−π/2, π/2)

is R so fix y ∈ R and we shall find below the density g of Y at y.

The formula for g(y) is

g(y) = lim
δ↓0

1

δ
P{y < Y < y + δ}

so that

P{y < Y < y + δ} ≈ g(y)δ when δ is small. (1.10)
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Now for small δ,

P{y < Y < y + δ} = P{y < tan(X) < y + δ}

= P{arctan(y) < X < arctan(y + δ)}

≈ P{arctan(y) < X < arctan(y) + δ arctan′(y)}

= P{arctan(y) < X < arctan(y) +
δ

1 + y2
}

≈ f(arctan(y))
δ

1 + y2
.

where f is the density of X. Comparing the above with (1.10), we can conclude that

g(y) = f(arctan(y))
1

1 + y2

Using now the density of X ∼ U(−π/2, π/2), we deduce that

g(y) =
1

π(1 + y2)
for y ∈ R.

This is the Cauchy density.

The answer derived in the above example is a special case of the following formula:

fT (X)(y) = fX(T−1y)

∣∣∣∣dT−1(y)

dy

∣∣∣∣ .
which makes sense as long as T is invertible and T−1 is differentiable. The method used in the example

is more general however and also applies when T is non-invertible. We shall see such an example in

the next class.

Example 1.10.2. Suppose X ∼ N(0, 1) so that X has the standard normal density φ(·). What is

the density of Y = X2? The following method does this from first principles. The range of X2 as X

ranges over (−∞,∞) is [0,∞) so let us fix y > 0. We shall find the density g of Y at y. Write

P{y < Y < y + δ} = P{√y < X <
√
y + δ}+ P{−

√
y + δ < X < −√y}

≈ P{√y < X <
√
y + δ

d
√
y

dy
}+ P{−√y − δ

d
√
y

dy
< X < −√y}

= P{√y < X <
√
y +

δ

2
√
y
}+ P{−√y − δ

2
√
y
< X < −√y}

≈ φ(
√
y)

δ

2
√
y

+ φ(−√y)
δ

2
√
y

=
φ(
√
y)

√
y

δ.

This gives

g(y) =
φ(
√
y)

√
y

= (2π)−1/2y−1/2e−y/2 for y > 0.

This is the density of the chi-squared random variable with 1 degree of freedom (or the Gamma random

variable with shape parameter α = 1/2 and scale parameter β = 1/2).
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1.11 Quantiles and The Quantile Transform

The Quantiles of a distribution frequently come up in statistics. Given a random variable X and a

number u ∈ (0, 1), the u-quantile of the distribution of X is given by a real number qX(u) satisfying

P {X ≤ qX(u)} = u (1.11)

provided such a number qX(u) exists uniquely. If FX is the cdf of X, the equation (1.11) simply

becomes

FX(qX(u)) = u

so we can write

qX(u) = F−1
X (u).

Here are some simple examples.

Example 1.11.1 (Uniform). Suppose X has the uniform distribution on (0, 1). Then FX(x) = x for

x ∈ (0, 1) and thus F−1
X (u) exists uniquely for every u ∈ (0, 1) and equals u. We thus have qX(u) = u

for every u ∈ (0, 1).

Example 1.11.2 (Normal). Suppose X has the standard normal distribution. Then FX(x) = Φ(x)

where

Φ(x) =

∫ x

−∞
φ(t)dt =

∫ x

−∞
(2π)−1/2 exp

(
−t2

2

)
dt.

There is no closed form expression for Φ but its values can be obtained in R (for example) using

the function pnorm. Φ is a strictly increasing function from (−∞,∞) to (0, 1) so its inverse exists

uniquely and we thus have

qX(u) = Φ−1(u) for every u ∈ (0, 1).

There is no closed form expression for qX = Φ−1 but its values can be obtained from R by the function

qnorm.

Example 1.11.3 (Cauchy). Suppose X has the standard Cauchy density:

fX(x) :=
1

π

1

1 + x2
for −∞ < x <∞.

Its cdf is given by

FX(x) =

∫ x

−∞

1

π

dt

1 + t2
=

1

π
arctan(t)

∣∣∣∣x
−∞

=
1

π
arctan(x) +

1

2
.

It is easy to see that this is a strictly increasing function from (∞,∞) to (0, 1) and its inverse is given

by

F−1
X (u) = tan (π (u− 0.5)) .

Thus the quantile function for the Cauchy distribution is given by

qX(u) = tan (π (u− 0.5)) for every u ∈ (0, 1).



1.11. QUANTILES AND THE QUANTILE TRANSFORM 29

How to define the u-quantile when there is no solution or multiple solutions to the equation FX(q) =

u? No solutions for FX(q) = u can happen for discrete distributions (for example, for X ∼ Ber(0.5)

and u = 0.25, there is no q satisfying P{X ≤ q} = u). Multiple solutions can also happen. For

example, if X is uniformly distributed on the set [0, 1]∪ [2, 3] and u = 0.5, then every q ∈ [1, 2] satisfies

FX(q) = 0.5. In such cases, it is customary to define the u-quantile via

qX(u) := inf{x ∈ R : FX(x) ≥ u}. (1.12)

This can be seen as a generalization of F−1
X (u). Indeed, if there is a unique q such that FX(q) = u, it

is easy to see then that qX(u) = q.

The function qX : (0, 1)→ (−∞,∞) defined by (1.12) is called the quantile function or the quantile

transform of the random variable X. It can be checked that the definition (1.12) ensures that

P{X ≤ qX(u)} ≥ u and P{X < qX(u)} ≤ u. (1.13)

The following result is a big reason why the quantile transform is important.

Proposition 1.11.4. The following two statements are true.

1. Suppose U is a random variable distributed according to the uniform distribution on (0, 1). Then

qX(U) has the same distribution as X. In other words, the function qX transforms the uniform

distribution to the distribution of X.

2. Suppose X is a random variable with a continuous cdf FX . Then FX(X) has the uniform

distribution on (0, 1). In other words, the function FX transforms the distribution of X into the

Unif(0, 1) distribution (provided the distribution of X is continuous).

If you want to see proofs of (1.13) and Proposition 1.11.4, you can refer to last year’s notes. The

proofs are not really necessary for this course.

Example 1.11.5 (Cauchy). We have just seen that for a standard Cauchy random variable, qX(u) =

tan(π(u− 0.5)). The above result then gives that if U ∼ Unif(0, 1), then

tan(π(U − 0.5)) ∼ Cauchy.

Example 1.11.6 (p-values corresponding to test statistics having continuous distributions have uni-

form distributions under the null hypothesis). Statistical hypothesis testing problems are usually formed

by calculating a relevant test statistic based on data. Suppose Tobs is the observed value of the statistic

calculated from the data. The p-value corresponding to the test is defined as the probability, under the

null hypothesis, of observing a value for the statistic that is more extreme compared to Tobs. Usually

this is calculated as

p = 1− F0(Tobs)

where F0 is the cdf of the test statistic under the null hypothesis. If F0 is a continuous cdf, then it

should be clear that p is distributed according to U(0, 1) when Tobs ∼ F0. In other words, under the

null distribution (i.e., Tobs ∼ F0), the p-value has the standard uniform distribution.
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1.12 Joint Densities

Joint densities are used to describe the distribution of a finite set of continuous random variables. We

focus on bivariate joint densities (i.e., when there are two continuous variables X and Y ). The ideas

are the same for the case of more than two variables.

The following are the main points to remember about joint densities:

1. f(·, ·) is called a joint density if

f(x, y) ≥ 0 for all x, y and

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = 1.

2. We say that two random variables X and Y have joint density f(·, ·) if

P {(X,Y ) ∈ B} =

∫ ∫
B

f(x, y)dxdy =

∫ ∫
I{(x, y) ∈ B}f(x, y)dxdy.

for every subset B of R2. We shall often denote the joint density of (X,Y ) by fX,Y .

3. If ∆ is a small region in R2 around a point (x0, yo), we have (under some regularity condition on

the behavior of fX,Y at (x0, y0))

P{(X,Y ) ∈ ∆} ≈ (area of ∆) fX,Y (x0, y0).

More formally,

lim
∆↓(x0,y0)

P{(X,Y ) ∈ ∆}
area of ∆

= fX,Y (x0, y0)

where the limit is taken as ∆ shrinks to (x0, y0).

4. If (X,Y ) have joint density fX,Y , then the density of X is given by fX and the density of Y is

fY where

fX(x) =

∫
fX,Y (x, y)dy and fY (y) =

∫
fX,Y (x, y)dx.

The densities fX and fY are referred to as the marginal densities of X and Y respectively.

5. Independence and Joint Densities: The following statements are equivalent:

(a) The random variables X and Y are independent.

(b) The joint density fX,Y (x) factorizes into the product of a function depending on x alone

and a function depending on y alone.

(c) fX,Y (x, y) = fX(x)fY (y) for all x, y.

Example 1.12.1. Consider the function

f(x, y) =

{
1 : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 : otherwise
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Check that this is indeed a density function. This density takes the value 1 on the unit square. If the

random variables X and Y have this density f , then we say that they are uniformly distributed on the

unit square. Using indicator functions, we can write this density also as:

f(x, y) = I{0 ≤ x ≤ 1, 0 ≤ y ≤ 1} = I{0 ≤ x ≤ 1}I{0 ≤ y ≤ 1}

The factorization above immediately says that if f = fX,Y , then X and Y are independent. The

marginal densities of X and Y are uniform densities on [0, 1].

Question: If X,Y have this density f , calculate P{X2 + Y 2 ≤ 1} (Ans: π/4).

Example 1.12.2. Suppose X,Y have the joint density

fXY (x, y) =
1

π
I{x2 + y2 ≤ 1}.

Show that the marginal density of X is given by

fX(x) =
2

π

√
1− x2I{−1 ≤ x ≤ 1}.

Are X and Y independent? (Ans: No. Why?)

1.13 Joint Densities under Transformations

We address the following general question. Suppose X and Y have the joint density fX,Y . Suppose

now that we consider two new random variables defined by

(U, V ) := T (X,Y )

where T : R2 → R2 is a differentiable and invertible function. What is the joint density fU,V of U, V

in terms of fX,Y ?

The following simple example will nicely motivate the general ideas.

Example 1.13.1. Suppose X,Y have joint density fX,Y . What is the joint density of U and V where

U = X and V = X + Y ?

We see that (U, V ) = T (X,Y ) where T (x, y) = (x, x+y). This transformation T is clearly invertible

and its inverse is given by S(u, v) = T−1(u, v) = (u, v − u). In order to determine the joint density of

(U, V ) at a point (u, v), let us consider

P{u ≤ U ≤ u+ δ, v ≤ V ≤ v + ε} ≈ δεfU,V (u, v). (1.14)

Let R denote the rectangle joining the points (u, v), (u + δ, v), (u, v + ε) and (u + δ, v + ε). Then the

above probability is the same as

P{(U, V ) ∈ R} = P{(X,Y ) ∈ S(R)}.
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What is the region S(R)? It is easy to see that this is the parallelogram joining the points (u, v −
u), (u+ δ, v− u− δ), (u, v− u+ ε) and (u+ δ, v− u+ ε− δ). When δ and ε are small, S(R) is clearly

a small region around (u, v − u) which allows us to write

P{(U, V ) ∈ R} = P{(X,Y ) ∈ S(R)} ≈ fX,Y (u, v − u) (area of S(R)) .

The area of the parallelogram S(R) can be computed to be δε (using the formula that the area of a

parallelogram equals base times height) so that

P{(U, V ) ∈ R} ≈ fX,Y (u, v − u)δε.

Comparing with (1.14), we obtain

fU,V (u, v) = fX,Y (u, v − u).

This gives the formula for the joint density of (U, V ) in terms of the joint density of (X,Y ).

1.13.1 Detour to Convolutions

We shall come back to the general problem of finding densities of transformations after taking a short

detour to convolutions.

We proved in the above example the joint density of U = X and V = X + Y is given by

fU,V (u, v) = fX,Y (u, v − u)

where fX,Y is the joint density of (X,Y ). As a consequence, we see that the density of V = X + Y is

given by

fX+Y (v) =

∫ ∞
−∞

fU,V (u, v)du =

∫ ∞
−∞

fX,Y (u, v − u)du.

Suppose now that X and Y are independent. Then fX,Y (x, y) = fX(x)fY (y) and consequently

fX+Y (v) =

∫ ∞
−∞

fX(u)fY (v − u)du =

∫ ∞
−∞

fX(v − w)fY (w)dw (1.15)

where the last equality is a consequence of a simple change of variable v − u = w.

Definition 1.13.2 (Convolution). Given two densities f1 and f2, we define their convolution, f1 ? f2

to be the density:

(f1 ? f2) (v) :=

∫
f1(u)f2(v − u)du =

∫
f1(v − u)f2(u)du.

The equation (1.15) therefore says, in words, that the density of X+Y , where X ∼ fX and Y ∼ fY
are independent, equals the convolution of fX and fY .
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Example 1.13.3. Suppose X and Y are independent random variables which are exponentially dis-

tributed with rate parameter λ. What is the distribution of X + Y ?

By the convolution formula,

fX+Y (v) =

∫ ∞
−∞

fX(u)fY (v − u)du

=

∫ ∞
−∞

λe−λuI{u > 0}λe−λ(v−u)I{v − u > 0}du

=

∫ ∞
−∞

λ2e−λvI{0 < u < v}du = λ2ve−λvI{v > 0}.

This shows that X + Y has the Gamma distribution with shape parameter 2 and rate parameter λ.

Example 1.13.4. Suppose X and Y are independent random variables that are uniformly distributed

on [0, 1]. What is the density of X + Y ?

By the convolution formula,

fX+Y (v) =

∫ ∞
−∞

fX(u)fY (v − u)du

=

∫
I{0 ≤ u ≤ 1}I{0 ≤ v − u ≤ 1}du

=

∫ ∞
−∞

I{0 ≤ u ≤ 1, 0 ≤ v − u ≤ 1}du

=

∫ ∞
−∞

I{max(v − 1, 0) ≤ u ≤ min(v, 1)}du.

This integral is non-zero only when max(v − 1, 0) ≤ min(v, 1) which is easily seen to be equivalent to

0 ≤ v ≤ 2. When 0 ≤ v ≤ 2, we have

fX+Y (v) = min(v, 1)−max(v − 1, 0)

which can be simplified as

fX+Y (v) =


v : 0 ≤ v ≤ 1

2− v : 1 ≤ v ≤ 2

0 : otherwise

This is called the triangular density.

1.14 Joint Densities under transformations

In the last class, we calculated the joint density of (X + Y, Y ) in terms of the joint density of (X,Y ).

In this lecture, we generalize the idea behind that calculation by first calculating the joint density of

a linear and invertible transformation of a pair of random variables. We also deal with the case of a

non-linear and invertible transformation.

In the next subsection, we shall recall some standard properties of linear transformations.
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1.14.1 Linear Transformations

By a linear transformation L : R2 → R2, we mean a function that is given by

L(x, y) := M

(
x

y

)
+ c (1.16)

where M is a 2× 2 matrix and c is a 2× 1 vector. The first term on the right hand side above involves

multiplication of the 2× 2 matrix M with the 2× 1 vector with components x and y.

We shall refer to the 2 × 2 matrix M as the matrix corresponding to the linear transformation L

and often write ML for the matrix M .

The linear transformation L in (1.16) is invertible if and only if the matrix M is invertible. We

shall only deal with invertible linear transformations in the sequel. The following are two standard

properties of linear transformations that you need to familiar with for the sequel.

1. If P is a parallelogram in R2, then L(P ) is also a parallelogram in R2. In other words, linear

transformations map parallelograms to parallelograms.

2. For every parallelogram P , the following identity holds:

area of L(P )

area of P
= |det(ML)|.

In other words, the ratio of the areas of L(P ) to that of P is given by the absolute value of the

determinant of the matrix ML.

1.14.2 Invertible Linear Transformations

Suppose X,Y have joint density fX,Y and let (U, V ) = T (X,Y ) for a linear and invertible transfor-

mation T : R2 → R2. Let the inverse transformation of T be denoted by S. In the example of the

previous lecture, we hacd T (x, y) = (x, x+ y) and S(u, v) = (u, v − u). The fact that T is assumed to

be linear and invertible means that S is also linear and invertible.

To compute fU,V at a point (u, v), we consider

P{u ≤ U ≤ u+ δ, v ≤ V ≤ v + ε} ≈ fU,V (u, v)δε

for small δ and ε. Let R denote the rectangle joining the points (u, v), (u+δ, v), (u, v+ε) and (u+δ, v+ε).

Then the above probability is the same as

P{(U, V ) ∈ R} = P{(X,Y ) ∈ S(R)}.

What is the region S(R)? Clearly now S(R) is a small region (as δ and ε are small) around the point

S(u, v) so that

P{(U, V ) ∈ R} = P{(X,Y ) ∈ S(R)} ≈ fX,Y (S(u, v)) (area of S(R)) .
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By the facts mentioned in the previous subsection, we now note that S(R) is a parallelogram whose

area equals |det(MS)| multiplied by the area of R (note that the area of R equals δε). We thus have

fU,V (u, v)δε ≈ P {(U, V ) ∈ R} = P {(X,Y ) ∈ S(R)} = fX,Y (S(u, v))|det(MS)|δε

which allows us to deduce that

fU,V (u, v) = fX,Y (S(u, v)) |detMS | . (1.17)

It is helpful to remember here that MS is the 2× 2 matrix corresponding to the linear transformation

S.

Example 1.14.1. Suppose X and Y are independent standard normal random variables. Find the

joint density of U = X + Y and V = X − Y .

We can use the formula (1.17) with T (x, y) = (x + y, x − y) whose inverse transformation is

S(u, v) = (u+v
2 , u−v2 ) and clearly the matrix corresponding to S is given by MS =

(
1/2 1/2

1/2 −1/2

)
. The

formula (1.17) then gives

fU,V (u, v) = fX,Y

(
u+ v

2
,
u− v

2

)
|detMS |

= fX,Y

(
u+ v

2
,
u− v

2

) ∣∣∣∣∣det

(
1/2 1/2

1/2 −1/2

)∣∣∣∣∣ =
1

2
fX,Y

(
u+ v

2
,
u− v

2

)
.

Because X and Y are independent standard normals, we have

fX,Y (x, y) =
1

2π
exp

(
−(x2 + y2)

2

)
so that

fU,V (u, v) =
1

4π
e−u

2/4e−v
2/4.

This implies that U and V are independent N(0, 2) random variables.

Example 1.14.2. Suppose X and Y are independent standard normal random variables. Then what

is the distribution of (U, V ) = T (X,Y ) where

T (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

Geometrically the transformation T corresponds to rotating the point (x, y) by an angle θ in the counter

clockwise direction. The inverse transformation S := T−1 of T is given by

S(u, v) = (u cos θ + v sin θ,−u sin θ + v cos θ)

and this corresponds to rotating the point (u, v) clockwise by an angle θ. The matrix corresponding to

S is

MS =

(
cos θ sin θ

− sin θ cos θ

)
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The formula (1.17) then gives

fU,V (u, v) = fX,Y (u cos θ + v sin θ,−u sin θ + v cos θ)

∣∣∣∣∣det

(
cos θ sin θ

− sin θ cos θ

)∣∣∣∣∣
=

1

2π
exp

(
−1

2
(u cos θ + v sin θ)2 − 1

2
(−u sin θ + v cos θ)2

)
=

1

2π
exp

(
−u

2

2
− v2

2

)
.

This means that U and V are independent random variables each having the standard normal distri-

bution.

We shall next study the problem of obtaining the joint densities under differentiable and invertible

transformations that are not necessarily linear.

1.14.3 General Invertible Transformations

Let (X,Y ) have joint density fX,Y . We transform (X,Y ) to two new random variables (U, V ) via

(U, V ) = T (X,Y ). What is the joint density fU,V ? Suppose that T is invertible (having an inverse

S = T−1) and differentiable. Note that S and T are not necessarily linear transformations.

In order to compute fU,V at a point (u, v), we consider

P{u ≤ U ≤ u+ δ, v ≤ V ≤ v + ε} ≈ fU,V (u, v)δε

for small δ and ε. Let R denote the rectangle joining the points (u, v), (u+δ, v), (u, v+ε) and (u+δ, v+ε).

Then the above probability is the same as

P{(U, V ) ∈ R} = P{(X,Y ) ∈ S(R)}.

What is the region S(R)? If S is linear then S(R) (as we have seen previously) will be a parallelogram.

For general S, the main idea is that, as long as δ and ε are small, the region S(R) can be approximated

by a parallelogram. This is because S itself can be approximated by a linear transformation on the

region R. To see this, let us write the function S(a, b) as (S1(a, b), S2(a, b)) where S1 and S2 map

points in R2 to R. Assuming that S1 and S2 are differentiable, we can approximate S1(a, b) for (a, b)

near (u, v) by

S1(a, b) ≈ S1(u, v)+

(
∂

∂u
S1(u, v),

∂

∂v
S1(u, v)

)(
a− u
b− v

)
= S1(u, v)+(a−u)

∂

∂u
S1(u, v)+(b−v)

∂

∂v
S1(u, v).

Similarly, we can approximate S2(a, b) for (a, b) near (u, v) by

S2(a, b) ≈ S2(u, v) +

(
∂

∂u
S2(u, v),

∂

∂v
S2(u, v)

)(
a− u
b− v

)
.

Putting the above two equations together, we obtain that, for (a, b) close to (u, v),

S(a, b) ≈ S(u, v) +

(
∂
∂uS1(u, v) ∂

∂vS1(u, v)
∂
∂uS2(u, v) ∂

∂vS2(u, v)

)(
a− u
b− v

)
.
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Therefore S can be appromixated by a linear transformation with matrix given by

JS(u, v) :=

(
∂
∂uS1(u, v) ∂

∂vS1(u, v)
∂
∂uS2(u, v) ∂

∂vS2(u, v)

)

for (a, b) near (u, v). Note that, in particular, when δ and ε are small, that this linear appximation

for S is valid over the region R. The matrix JS(u, v) is called the Jacobian matrix of S(u, v) =

(S1(u, v), S2(u, v)) at the point (u, v).

Because of the above linear approximation, we can write

P {(X,Y ) ∈ S(R)} ≈ fX,Y (S(u, v)) |det(JS(u, v))| (area of R)

This gives us the important formula

fU,V (u, v) = fX,Y (S(u, v)) |det JS(u, v)| . (1.18)

We will see some examples of calculations using the above formula in the next class.

1.15 Joint Densities under general invertible transformations

Let (X,Y ) have joint density fX,Y . We transform (X,Y ) to two new random variables (U, V ) via

(U, V ) = T (X,Y ). What is the joint density fU,V ? Suppose that T is invertible (having an inverse

S = T−1) and differentiable. Note that S and T are not necessarily linear transformations.

In order to compute fU,V at a point (u, v), we consider

P{u ≤ U ≤ u+ δ, v ≤ V ≤ v + ε} ≈ fU,V (u, v)δε

for small δ and ε. Let R denote the rectangle joining the points (u, v), (u+δ, v), (u, v+ε) and (u+δ, v+ε).

Then the above probability is the same as

P{(U, V ) ∈ R} = P{(X,Y ) ∈ S(R)}.

What is the region S(R)? If S is linear then S(R) (as we have seen previously) will be a parallelogram.

For general S, the main idea is that, as long as δ and ε are small, the region S(R) can be approximated

by a parallelogram. This is because S itself can be approximated by a linear transformation on the

region R. To see this, let us write the function S(a, b) as (S1(a, b), S2(a, b)) where S1 and S2 map

points in R2 to R. Assuming that S1 and S2 are differentiable, we can approximate S1(a, b) for (a, b)

near (u, v) by

S1(a, b) ≈ S1(u, v)+

(
∂

∂u
S1(u, v),

∂

∂v
S1(u, v)

)(
a− u
b− v

)
= S1(u, v)+(a−u)

∂

∂u
S1(u, v)+(b−v)

∂

∂v
S1(u, v).
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Similarly, we can approximate S2(a, b) for (a, b) near (u, v) by

S2(a, b) ≈ S2(u, v) +

(
∂

∂u
S2(u, v),

∂

∂v
S2(u, v)

)(
a− u
b− v

)
.

Putting the above two equations together, we obtain that, for (a, b) close to (u, v),

S(a, b) ≈ S(u, v) +

(
∂
∂uS1(u, v) ∂

∂vS1(u, v)
∂
∂uS2(u, v) ∂

∂vS2(u, v)

)(
a− u
b− v

)
.

Therefore S can be appromixated by a linear transformation with matrix given by

JS(u, v) :=

(
∂
∂uS1(u, v) ∂

∂vS1(u, v)
∂
∂uS2(u, v) ∂

∂vS2(u, v)

)

for (a, b) near (u, v). Note that, in particular, when δ and ε are small, that this linear appximation

for S is valid over the region R. The matrix JS(u, v) is called the Jacobian matrix of S(u, v) =

(S1(u, v), S2(u, v)) at the point (u, v).

Because of the above linear approximation, we can write

P {(X,Y ) ∈ S(R)} ≈ fX,Y (S(u, v)) |det(JS(u, v))| (area of R)

This gives us the important formula

fU,V (u, v) = fX,Y (S(u, v)) |det JS(u, v)| . (1.19)

Example 1.15.1. Suppose X and Y have joint density fX,Y . What is the joint density of U = X/Y

and V = Y ?

We need to compute the joint density of (U, V ) = T (X,Y ) where T (x, y) = (x/y, y). The inverse

of this transformation is S(u, v) = (uv, v). Then formula (1.19) gives

fU,V (u, v) = fX,Y (uv, v)

∣∣∣∣∣det

(
v u

0 1

)∣∣∣∣∣ = fX,Y (uv, v)|v|.

As a consequence, the marginal density of U = X/Y is given by

fU (u) =

∫
fU,V (u, v)dv =

∫
fX,Y (uv, v)|v|dv.

In the special case when X and Y are independent standard normal random variables, the density of

U = X/Y is given by

fU (u) =

∫ ∞
−∞

1

2π
exp

(
− (1 + u2)v2

2

)
|v|dv

= 2

∫ ∞
0

1

2π
exp

(
− (1 + u2)v2

2

)
vdv =

1

π(1 + u2)
.

This is the standard Cauchy density.
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Example 1.15.2. Suppose X and Y are independent standard normal random variables. Let R :=
√
X2 + Y 2 and let Θ denote the angle made by the vector (X,Y ) with the positive X-axis in the plane.

What is the joint density of (R,Θ)?

Clearly (R,Θ) = T (X,Y ) where the inverse of T is given by S(r, θ) = (r cos θ, r sin θ). The density

of f (R,Θ) at (r, θ) is zero unless r > 0 and 0 < θ < 2π. The formula (1.19) then gives

fR,Θ(r, θ) = fX,Y (r cos θ, r sin θ)

∣∣∣∣∣det

(
cos θ −r sin θ

sin θ r cos θ

)∣∣∣∣∣ =
1

2π
e−r

2/2rI{r > 0}I{0 < θ < 2π}.

It is easy to see from here that Θ is uniformly distributed on (0, 2π) and R has the density

fR(r) = re−r
2/2I{r > 0}.

Moreover R and Θ are independent. The density of R is called the Rayleigh density.

Example 1.15.3. Here is an important fact about Gamma distributions: Suppose X ∼ Gamma(α1, λ)

and Y ∼ Gamma(α2, λ) are independent, then X+Y ∼ Gamma(α1 +α2, λ). This can be proved using

the convolution formula for densities of sums of independent random variables. A different formula

uses the Jacobian formula to derive the joint density of U and V where V = X/(X+Y ). The relevant

inverse transformation here S(u, v) = (uv, u− uv) so that the Jacobian formula gives:

fU,V (u, v) = fX,Y (uv, u(1− v))u = fX(uv)fY (u(1− v))u.

Plugging in the relevant Gamma densities for fX and fY , we can deduce that

fU,V (u, v) =
λα1+α2

Γ(α1 + α2)
uα1+α2−1e−λuI{u > 0} Γ(α1 + α2)

Γ(α1)Γ(α2)
vα1−1(1− v)α2−1I{0 < v < 1}.

This implies that U ∼ Gamma(α1 + α2, λ). It also implies that V ∼ Beta(α1, α2), that U and V are

independent as well as

B(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)

where, on the right hand side above, we have the Beta function. Note that because Γ(n) = (n− 1)! for

when n is an integer, the above formiula gives us a way to calculate the Beta function B(α1, α2) when

α1 and α2 are positive integers.

1.16 Joint Densities under Non-Invertible Transformations

In the last class, we looked at the Jacobian formula for calculating the joint density of a transformed

set of continuous random variables in terms of the joint density of the original random variables. This

formula assumed that the transformation is invertible. In other words, the formula does not work if

the transformation is non-invertible. However, the general method based on first principles (that we

used to derive the Jacobian formula) works fine. This is illustrated in the following example.
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Example 1.16.1 (Order Statistics). Suppose X and Y have joint density fX,Y . What is the joint

density of U = min(X,Y ) and V = max(X,Y )?

Let us find the joint density of (U, V ) at (u, v). Since U < V , the density fU,V (u, v) will be zero

when u ≥ v. So let u < v. For δ and ε small, let us consider

P{u ≤ U ≤ u+ δ, v ≤ V ≤ v + ε}.

If δ and ε are much smaller compared to v − u, then the above probability equals

P{u ≤ X ≤ u+ δ, v ≤ Y ≤ v + ε}+ P{u ≤ Y ≤ u+ δ, v ≤ X ≤ v + ε}

which is further approximately equal to

fX,Y (u, v)δε+ fX,Y (v, u)δε.

We have thus proved that

fU,V (u, v) =

{
fX,Y (u, v) + fX,Y (v, u) : u < v

0 : otherwise

We can generalize this to the case of more than two random variables. Suppose X1, . . . , Xn are

random variables having a joint density fX1,...,Xn
(x1, . . . , xn). Let X(1) ≤ · · · ≤ X(n) denote the

order statistics of X1, . . . , Xn i.e., X(1) is the smallest value among X1, . . . , Xn, X(2) is the next

smallest value and so on with X(n) denoting the largest value. What then is the joint distribution

of X(1), . . . , X(n). The calculation above for the case of the two variables can be easily generalized to

obtain

fX(1),...,X(n)
(u1, . . . , un) =

{ ∑
π fX1,...,Xn

(uπ1
, . . . , uπn

) : u1 < u2 < · · · < un

0 : otherwise

where the sum is over all permutations π (i.e, one-one and onto functions mapping {1, . . . , n} to

{1, . . . , n}).

When the variables X1, . . . , Xn are i.i.d (independent and identically distributed), then it follows

from the above that

fX(1),...,X(n)
(u1, . . . , un) =

{
(n!)fX1(u1) . . . fXn(un) : u1 < u2 < · · · < un

0 : otherwise

1.17 Joint Density of Order Statistics

In the last class, we looked at the Jacobian formula for calculating the joint density of a transformed

set of continuous random variables in terms of the joint density of the original random variables. This

formula assumed that the transformation is invertible. In other words, the formula does not work if

the transformation is non-invertible. However, the general method based on first principles (that we

used to derive the Jacobian formula) works fine. This is illustrated in the following example.
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Example 1.17.1 (Order Statistics). Suppose X and Y have joint density fX,Y . What is the joint

density of U = min(X,Y ) and V = max(X,Y )?

Let us find the joint density of (U, V ) at (u, v). Since U < V , the density fU,V (u, v) will be zero

when u ≥ v. So let u < v. For δ and ε small, let us consider

P{u ≤ U ≤ u+ δ, v ≤ V ≤ v + ε}.

If δ and ε are much smaller compared to v − u, then the above probability equals

P{u ≤ X ≤ u+ δ, v ≤ Y ≤ v + ε}+ P{u ≤ Y ≤ u+ δ, v ≤ X ≤ v + ε}

which is further approximately equal to

fX,Y (u, v)δε+ fX,Y (v, u)δε.

We have thus proved that

fU,V (u, v) =

{
fX,Y (u, v) + fX,Y (v, u) : u < v

0 : otherwise

We can generalize this to the case of more than two random variables. Suppose X1, . . . , Xn are

random variables having a joint density fX1,...,Xn
(x1, . . . , xn). Let X(1) ≤ · · · ≤ X(n) denote the

order statistics of X1, . . . , Xn i.e., X(1) is the smallest value among X1, . . . , Xn, X(2) is the next

smallest value and so on with X(n) denoting the largest value. What then is the joint distribution

of X(1), . . . , X(n). The calculation above for the case of the two variables can be easily generalized to

obtain

fX(1),...,X(n)
(u1, . . . , un) =

{ ∑
π fX1,...,Xn

(uπ1
, . . . , uπn

) : u1 < u2 < · · · < un

0 : otherwise

where the sum is over all permutations π (i.e, one-one and onto functions mapping {1, . . . , n} to

{1, . . . , n}).

When the variables X1, . . . , Xn are i.i.d (independent and identically distributed), then it follows

from the above that

fX(1),...,X(n)
(u1, . . . , un) =

{
(n!)fX1(u1) . . . fXn(un) : u1 < u2 < · · · < un

0 : otherwise

1.18 More on Order Statistics: The density of X(i) for a fixed

i

Assume now that X1, . . . , Xn are i.i.d random variables with a common density f and cdf F . In the

previous section, we derived the joint density of the order statistics X(1), . . . , X(n). Here we focus on
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the problem of determining the density of X(i) for a fixed i. The answer is given by

fX(i)
(u) =

n!

(n− i)!(i− 1)!
(F (u))

i−1
(1− F (u))

n−i
f(u). (1.20)

and there are three standard methods for deriving this.

1.18.1 Method One

The first method integrates the joint density fX(1),...,X(n)
(u1, . . . , ui−1, u, ui+1, . . . un) over

u1, . . . , ui−1, ui+1, . . . , un to obtain fX(i)
(u). More precisely,

fX(i)
(u) =

∫
· · ·
∫
n!f(u1) . . . f(ui−1)f(u)f(ui+1) . . . f(un)I{u1 < · · · < un}du1 . . . dui−1dui+1 . . . dun

Integrate the above first with respect to u1 (in the range (−∞, u2)), then with respect to u2 (in the

range of (−∞, u3)) and all the way up to the integral with respect to ui−1. Then integrate with respect

to un, then with respect to un−1 and all the way to ui+1. This will lead to (1.22).

1.18.2 Method Two

This method uses multinomial probabilities. Suppose that we repeat an experiment n times and that

the outcomes of the n repetitions are independent. Suppose that each individual experiment has k

outcomes which we denote by O1, . . . , Ok and let the probabilities of these outcomes be given by

p1, . . . , pk (note that these are nonnegative numbers which sum to one).

Now let Ni denote the number of times (over the n repetitions) that the outcome Oi appeared (note

that N1, . . . , Nk are nonnegative integers which sum to n). The joint distribution of (N1, . . . , Nk) is

known as the multinomial distribution with parameters n and p1, . . . , pk. It is an exercise to show that

P {N1 = n1, N2 = n2, . . . , Nk = nk} =
n!

n1! . . . nk!
pn1

1 . . . pnk

k (1.21)

whenever n1, . . . , nk are nonnegative integers which sum to n.

Let us now get back to the problem of obtaining the density of X(i). Consider the probability

P
{
u ≤ X(i) ≤ u+ δ

}
for a fixed u and small δ. If δ is small, then this probability can be approximated by the probability of

the event E where E is defined as follows. E is the event where (i−1) observations among X1, . . . , Xn

are strictly smaller than u, one observation among X1, . . . , Xn lies in [u, u+ δ] and n− i observations

among X1, . . . , Xn are strictly larger than u + δ. This latter probability is a special case of the

multinomial probability formula (1.21) and when δ is small, we get that this probability equals

n!

(n− i)!(i− 1)!
(F (u))

i−1
(f(u)δ) (1− F (u))

n−i

where F is the cdf corresponding to f . The formula (1.22) then immediately follows.
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1.18.3 Method Three

Here we first compute the cdf of X(i) and then differentiate it to get the pdf. Note that

FX(i)
(x) = P

{
X(i) ≤ x

}
= P {at least i of X1, . . . , Xn are ≤ x}

=

n∑
r=i

P {exactly r of X1, . . . , Xn are ≤ x}

=

n∑
r=i

P {Bin(n, F (x)) = r} =

n∑
r=i

(
n

r

)
(F (x))r(1− F (x))n−r.

To compute the density, we have to differentiate FX(i)
with respect to x. This gives (note that the

derivative of F is f)

fX(i)
(x) =

n∑
r=i

(
n

r

){
r(F (x))r−1f(x)(1− F (x))n−r − (F (x))r(n− r)(1− F (x))n−r−1f(x)

}
=

n∑
r=i

n!

(n− r)!(r − 1)!
(F (x))r−1(1− F (x))n−rf(x)−

n−1∑
r=i

n!

(n− r − 1)!r!
(F (x))r(1− F (x))n−r−1f(x)

=

n∑
r=i

n!

(n− r)!(r − 1)!
(F (x))r−1(1− F (x))n−rf(x)−

n∑
s=i+1

n!

(n− s)!(s− 1)!
(F (x))s−1(1− F (x))n−sf(x)

=
n!

(n− i)!(i− 1)!
(F (u))

i−1
(1− F (u))

n−i
f(u)

and thus we again get the formula (1.22).

In the next class, we shall look at some special instances of the formula (1.22) for the density of

individual order statistics.

1.19 Order Statistics

In the last class, we calculated the density of X(i) where X(1), . . . , X(n) are the order statistics of n

i.i.d random variables X1, . . . , Xn. If f and F are the common density and cdf of each Xi, then

fX(i)
(u) =

n!

(n− i)!(i− 1)!
(F (u))

i−1
(1− F (u))

n−i
f(u). (1.22)

We now look at some special instances of the formula (1.22).
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1.19.1 Uniform Order Statistics

Suppose X1, . . . , Xn are i.i.d having the uniform density on (0, 1). Then the formula (1.22) (by plugging

in f(u) = 1 and F (u) = u for 0 < u < 1) gives the following density for X(i):

fX(i)
(u) =

n!

(n− i)!(i− 1)!
ui−1(1− u)n−i for 0 < u < 1. (1.23)

This is a Beta density with parameters i and n − i + 1. Generally, a Beta density with parameters

α > 0 and β > 0 is given by

f(u) =
uα−1(1− u)β−1∫ 1

0
xα−1(1− x)β−1dx

I{0 < u < 1}

The integral in the denominator above is called the Beta function:

B(α, β) :=

∫ 1

0

xα−1(1− x)β−1dx for α > 0, β > 0.

The Beta function does not usually have a closed form expression but we can write it in terms of the

Gamma function via the formula

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

that we saw in the last class. This formula allows us to write B(α, β) in closed form when α and β are

integers (note that Γ(n) = (n− 1)!). This gives, for example,

B(i, n− i+ 1) =
(i− 1)!(n− i)!

n!
.

1.19.2 Maximum of Independent Uniforms

Suppose X1, . . . , Xn are independent random variables having the uniform distribution on the interval

(0, θ) for some θ > 0. It turns out that the maximum order statistic, X(n), is the maximum likelihood

estimate of θ. The density of X(n) is easily seen to be (as a consequence of (1.22)):

fX(n)
(u) =

nun−1

θn
I{0 < u < θ}.

What then is E(X(n))? Using the formula for the density above,

EX(n) =

∫ θ

0

unun−1

θn
du =

nθ

n+ 1
.

This means therefore that X(n) has a slight negative bias of −θ/(n+ 1) as an estimator for θ and that

((n+ 1)/n)X(n) is an unbiased estimator of θ.



1.19. ORDER STATISTICS 45

1.19.3 Minimum of Independent Exponentials

Recall that the exponential density with rate parameter λ > 0 (denoted by Exp(λ)) is given by

f(x) = λe−λxI{x > 0}.

The cdf of Exp(λ) is easily seen to be

F (x) =

∫ x

0

λe−λxdx = 1− e−λx for x > 0.

Suppose now that X1, . . . , Xn are i.i.d observations from Exp(λ). What is the density of X(1)? From

the formula (1.22):

fX(1)
(u) = n(1− F (u))n−1f(u) = (nλ)e−(nλ)u for u > 0.

Thus X(1) has the Exponential density with rate parameter nλ.

1.19.4 Minimum of Independent Non-Identically Distributed Exponentials

Suppose X1, . . . , Xn are independent random variables with Xi having the Exp(λi) distribution for

some λi > 0. What then is the distribution of X(1) := min1≤i≤nXi. We cannot use the formula (1.22)

in this case as the Xi’s have different distributions. We can however calculate the cdf of X(1) easily in

the following way. For x > 0, we have

P
{
X(1) ≤ x

}
= 1− P

{
X(1) > x

}
= 1− P {X1 > x, . . . ,Xn > x}

= 1− P {X1 > x} . . .P {Xn > x} = 1− e−λ1x . . . e−λnx = 1− exp (−(λ1 + · · ·+ λn)x)

Differentiate this with respect to x to obtain

fX(1)
(x) = Λe−ΛxI{x > 0} where Λ := λ1 + · · ·+ λn.

Thus X(1) ∼ Exp(λ1 + · · ·+ λn).

1.19.5 Minimum of Independent Non-identically distributed Geometrics

Suppose X1, . . . , Xn are independent random variables with Xi ∼ Geo(pi) for i = 1, . . . , n. What is

the distribution of X(1) := min1≤i≤nXi. Since the random variables involved here are discrete, we

cannot use any formula that we have so far derived. We have to calculate the probability P{X(1) = m}
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for m = 1, 2, . . . from first principles. It is easy to first calculate the cdf:

P
{
X(1) ≤ m

}
= 1− P

{
X(1) > m

}
= 1− P {X1 > m, . . . ,Xn > m}

= 1− P {X1 > m} . . .P {Xn > m}

= 1− (1− p1)
m
. . . (1− pn)

m

= 1− [(1− p1) . . . (1− pn)]
m

= 1− (1− P )m

where P := 1− (1− p1) . . . (1− pn). This gives

P{X(1) = m} = P
{
X(1) ≤ m

}
− P

{
X(1) ≤ m− 1

}
= (1− P )

m−1
P.

Thus X(1) is a Geometric random variable with parameter P = 1− (1− p1)(1− p2) . . . (1− pn).

1.20 Covariance, Correlation and Regression

Given two random variables X and Y , the covariance between X and Y is denoted by Cov(X,Y ) and

is defined as

Cov(X,Y ) := E [(X − µX)(Y − µY )] (1.24)

where µX := E(X) and µY := E(Y ). In other words, Cov(X,Y ) is defined as the Expectation of the

random variable (X − µX)(Y − µY ).

It is important to note that Covariance is a bilinear operator i.e.,

Cov(
∑
i

aiXi,
∑
j

bjYj) =
∑
i

∑
j

aibjCov(Xi, Yj). (1.25)

Can you prove this as a consequence of the definition (1.24) of Covariance and the linearity of the

Expectation operator?

When X = Y , it is easy to see that Cov(X,X) is simply the Variance of X. Using this connection

between Covariance and Variance and (1.25), can you deduce the following standard properties of

Variance:

1. V ar(aX + b) = a2V ar(X).

2. V ar(
∑
i aiXi) =

∑
i a

2
iV ar(Xi) +

∑
i6=j aiajCov(Xi, Xj).

The correlation between two random variables X and Y

ρX,Y :=
Cov(X,Y )

SD(X)SD(Y )
=

Cov(X,Y )√
V ar(X)V ar(Y )

If ρX,Y = 0, we say that X and Y are uncorrelated.
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Proposition 1.20.1. Two facts about correlation:

1. The correlation ρX,Y always lies between −1 and 1.

2. ρaX+b,cX+d = a
|a|

c
|c|ρX,Y for every a, b, c, d ∈ (−∞,∞). In words, correlation is invariant (up to

sign flips) under linear transformations.

Proof. Write

ρX,Y =
Cov(X,Y )√
V ar(X)V ar(Y )

= E

(
X − µX√
V ar(X)

Y − µY√
V ar(Y )

)
.

Use the standard inequality:

ab ≤ a2 + b2

2
(1.26)

with a = (X − µX)/
√
V ar(X) and b = (Y − µY )/

√
V ar(Y ) to obtain

ρX,Y ≤ E
(

(X − µX)2

2V ar(X)
+

(Y − µY )2

2V ar(Y )

)
=

V ar(X)

2V ar(X)
+

V ar(Y )

2V ar(Y )
= 1.

This proves that ρX,Y ≤ 1. To prove that ρX,Y ≥ −1, argue similarly by using

ab ≥ −a
2 − b2

2
. (1.27)

The fact about correlations and linear functions is left as an exercise.

Cauchy-Schwartz Inequality: The fact that correlation ρX,Y lies between -1 and 1 is sometimes

proved via the Cauchy-Schwartz inequality which states the following: For every pair of random

variables Z1 and Z2, we have

|E(Z1Z2)| ≤
√
E(Z2

1 )
√
E(Z2

2 ) (1.28)

The fact that |ρX,Y | ≤ 1 is deduced from the above inequality by taking Z1 = X−µX and Z2 = Y −µY .

Can you prove the Cauchy-Schwarz inequality (1.28) using (1.26) and (1.27)?

Uncorrelatedness and Independence: The following summarizes the relation between uncor-

relatedness and independence:

1. Two independent random variables X and Y are uncorrelated.

2. There exist numerous examples of pairs of uncorrelated random variables X and Y that are

NOT independent. Can you think of a few?

3. Two random variables X and Y are independent if and only if g(X) and h(Y ) are uncorrelated

for every pair of functions g and h.
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An important property of ρX,Y is that it measures the strength of linear association between X

and Y . This is explained in this section. Consider the problem of approximating the random variable

Y by a linear function β0 + β1X of X. For given numbers β0 and β1, let us measure the accuracy of

approximation of Y by β0 + β1X by the mean-squared error :

L(β0, β1) := E (Y − β0 − β1X)
2
.

If β0 + β1X is a good approximation of Y , then L(β0, β1) should be low. Conversely, if β0 + β1X

is a poor approximation of Y , then L(β0, β1) should be high. What is the smallest possible value of

L(β0, β1) as β0 and β1 vary over all real numbers.

It can be shown that

min
β0,β1

L(β0, β1) = V ar(Y )
(
1− ρ2

X,Y

)
. (1.29)

Do you know how to prove the above?

The fact (1.29) precisely captures the interpretation that correlation measures the strength of linear

association between Y and X. This is because minβ0,β1 L(β0, β1) represents the smallest possible mean

squared error in approximating Y by a linear combination of X and (1.29) says that it is directly related

to the correlation between Y and X.

Can you explicitly write down the values of β0 and β1 which minimize L(β0, β1)?

Does any of the above remind you of linear regression? In what way?
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Conditioning

Our next main topic is conditioning which is very important for statistics classes.

2.0.1 Basics

Let us first start by looking at the definition of conditional probability. Given two events A and B

with P(A) > 0, we define the conditional probability of B given A as

P (B|A) =
P(A ∩B)

P(A)
. (2.1)

See Section 1.1 of Lecture 10 of Jim Pitman’s 2016 notes for 201A to get some intuitive justification

for this definition of conditional probability.

Using this definition of conditional probability, we can see that

P(B) = P(B ∩A) + P(B ∩Ac) = P(B|A)P(A) + P(B|Ac)P(Ac)

Note here that A and Ac are disjoint events whose union is the entire space of outcomes Ω. More

generally, if A1, A2, . . . are disjoint events whose union is Ω, we have

P(B) =
∑
i≥1

P(B|Ai)P(Ai). (2.2)

This is referred to as the Law of total probability.

Let us now come to Bayes rule which states that

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)
.

49
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2.0.2 Conditional Distributions, Law of Total Probability and Bayes Rule

for Discrete Random Variables

Consider two random variables X and Θ. Assume that both are discrete random variables. One

can then define the conditional distribution of X given Θ = θ simply by defining the conditional

probabilities:

P{X = x|Θ = θ} =
P{X = x,Θ = θ}

P{Θ = θ}
(2.3)

assuming that P{Θ = θ} > 0. If P{Θ = θ} = 0, we would not attempt to define P{X = x|Θ = θ}.

As x varies over all values that the random variable X takes, the probabilities (2.3) determine the

conditional distribution of X given Θ = θ. Note that the conditional probability P{X = x|Θ = θ}
always lies between 0 and 1 and we have

∑
x P{X = x|Θ = θ} = 1.

Example 2.0.1. Suppose X and Y are independent random variables having the Poi(λ1) and Poi(λ2)

distributions respectively. For n ≥ 0, what is the conditional distribution of X given X + Y = n?

We need to compute

P {X = i|X + Y = n}

for various values of i. It is clear that the above probability is non-zero only when i is an integer

between 0 and n. Let us therefore assume that i is an integer between 0 and n. By definition

P {X = i|X + Y = n} =
P {X = i,X + Y = n}

P{X + Y = n}

=
P {X = i, Y = n− i}
P{X + Y = n}

=
P {X = i}P {Y = n− i}

P{X + Y = n}

The numerator above can be evaluated directly as X and Y are independently distributed as Poi(λ1)

and Poi(λ2) respectively. For the denominator, we use the fact that X + Y is Poi(λ1 + λ2) (the proof

of this fact is left as exercise). We thus have

P {X = i|X + Y = n} =
P {X = i}P {Y = n− i}

P{X + Y = n}

=
e−λ1

(
λi1/i!

)
e−λ2

(
λn−i2 /(n− i)!

)
e−λ1+λ2((λ1 + λ2)n/n!)

=
n!

i!(n− i)!

(
λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)n−i
which means that the conditional distribution of X given X + Y = n is the Binomial distribution with

parameters n and p = λ1/(λ1 + λ2).
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Let us now look at the law of total probability and Bayes rule for discrete random variables X and

Θ. As a consequence of (2.2), we have

P{X = x} =
∑
θ

P{X = x|Θ = θ}P{Θ = θ} (2.4)

where the summation is over all values of θ that are taken by the random variable Θ. This formula

allows one to calculate P{X = x} using knowledge of P{X = x|Θ = θ} and P{Θ = θ}. We shall refer

to (2.4) as the Law of Total Probability for discrete random variables.

The Bayes rule is

P{Θ = θ|X = x} =
P{X = x|Θ = θ}P{Θ = θ}

P{X = x}
=

P{X = x|Θ = θ}P{Θ = θ}∑
θ P{X = x|Θ = θ}P{Θ = θ}

. (2.5)

The Bayes rule allows one to compute the conditional probabilities of Θ given X using knowledge of

the conditional probabilities of X given Θ as well as the marginal probabilities of Θ. We shall refer to

(2.5) as the Bayes Rule for discrete random variables.

Example 2.0.2. Suppose N is a random variable having the Poi(λ) distribution. Also suppose that,

conditional on N = n, the random variable X has the Bin(n, p) distribution. This setting is known

as the Poissonization of the Binomial. Find the marginal distribution of X. Also what is the

conditional distribution of N given X = i?

To find the marginal distribution of X, we need to find P{X = i} for every integer i ≥ 0. For this,

we use the law of total probability which states that

P {X = i} =

∞∑
n=0

P {X = i|N = n}P{N = n}.

Because X|N = n is Bin(n, p), the probability P{X = i|N = n} is non-zero only when 0 ≤ i ≤ n.

Therefore the terms in the sum above are non-zero only when n ≥ i and we obtain

P {X = i} =

∞∑
n=i

P {X = i|N = n}P{N = n}

=

∞∑
n=i

(
n

i

)
pi(1− p)n−ie−λλ

n

n!

=
e−λpi

i!

∞∑
n=i

(1− p)n−i

(n− i)!
λn

=
e−λ(λp)i

i!

∞∑
n=i

(1− p)n−i

(n− i)!
λn−i

=
e−λ(λp)i

i!

∞∑
n=i

(λ(1− p))n−i

(n− i)!
=
e−λ(λp)i

i!
eλ(1−p) =

e−λp(λp)i

i!

This means that X has the Poi(λp) distribution.

To find the conditional distribution of N given X = i, we need to use Bayes rule which states that

P {N = n|X = i} =
P{X = i|N = n}P{N = n}

P{X = i}
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This is only nonzero when n ≥ i (otherwise P{X = i|N = n} will be zero). And when n ≥ i, we have

P {N = n|X = i} =
P{X = i|N = n}P{N = n}

P{X = i}

=

(
n
i

)
pi(1− p)n−ie−λ(λn/n!)

e−λp((λp)i/i!)

= e−λ(1−p) [λ(1− p)]n−i

(n− i)!
for n ≥ i.

This means that conditional on X = i, the random variable N is distributed as i+ Poi(λ(1− p)).

What is the joint distribution of X and N −X in this example? To compute this, note that

P {X = i,N −X = j} = P {X = i,N = i+ j}

= P {X = i|N = i+ j}P{N = i+ j}

=

(
i+ j

i

)
pi(1− p)je−λ λi+j

(i+ j)!

= e−λ
(λp)i

i!

(λ(1− p))j

j!

Note that this factorizes into a term involving only i and a term involving only j. This means therefore

that X and N − X are independent. Also from the expression above, it is easy to deduce that the

marginal distribution of X is Poi(λp) (which we have already derived via the law of total probability)

and that N −X is Poi(λ(1− p)).

The setting of this example arises when one tosses a coin with probability of heads p independently

a Poi(λ) number of times. Then N denotes the total number of tosses, X denotes the number of heads

and N −X denotes the number of tails. We have thus shown that X and N −X are independent and

are distributed according to Poi(λp) and Poi(λ(1 − p)) respectively. Independence of X and N − X
here is especially interesting. When a coin is tossed a fixed number n of times, the number of heads

and tails are obviously not independent (as they have to sum to n). But when the number of tosses is

itself random and has the Poisson distribution, then the number of heads and tails become independent

random variables.

2.1 Conditional Densities for Continuous Random Variables

Consider now two continuous random variables X and Θ having a joint density fX,Θ(x, θ). Recall then

that fX,Θ(x, θ) ≥ 0 for all x, θ and
∫ ∫

f(x, θ)dxdθ = 1. Also recall that the marginal densities of X

and Θ are given by

fX(x) =

∫ ∞
−∞

fX,Θ(x, θ)dθ and fΘ(θ) =

∫ ∞
−∞

fX,Θ(x, θ)dx.

We shall now define the conditional density of X given Θ = θ for a fixed value of θ. In order to
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define this conditional density at a point x, we need to consider

P{x ≤ X ≤ x+ δ|Θ = θ} (2.6)

for a small δ > 0. Because P{Θ = θ} = 0 (note that Θ is a continuous random variable), we cannot

define this conditional probability using the definition P(B|A) := P(B ∩ A)/P(A). But, intuitively,

conditioning on Θ = θ should be equivalent to conditioning on θ ≤ Θ ≤ θ + ε for small ε. Therefore

we can write

P{x ≤ X ≤ x+ δ|Θ = θ} ≈ P{x ≤ X ≤ x+ δ|θ ≤ Θ ≤ θ + ε}

for small ε. For the probability on the right hand side above, we can use P(B|A) := P(B ∩A)/P(A) to

obtain

P{x ≤ X ≤ x+ δ|θ ≤ Θ ≤ θ + ε} =
P{x ≤ X ≤ x+ δ, θ ≤ Θ ≤ θ + ε}

P{θ ≤ Θ ≤ θ + ε}
≈ fX,Θ(x, θ)δε

fΘ(θ)ε
=
fX,Θ(x, θ)δ

fΘ(θ)

We have thus obtained that

P{x ≤ X ≤ x+ δ|Θ = θ} ≈ fX,Θ(x, θ)δ

fΘ(θ)

for small δ. This suggests the definition

fX|Θ=θ(x) :=
fX,Θ(x, θ)

fΘ(θ)
(2.7)

for the conditional density of X given Θ = θ. This definition makes sense as long as fΘ(θ) > 0. If

fΘ(θ) = 0, we do not attempt to define fX|Θ=θ.

Example 2.1.1. Suppose X and Θ are independent random variables having the Gamma(α, λ) and

Gamma(β, λ) distributions respectively. What then is the conditional density of X given X + Θ = 1.

The definition (2.9) gives

fX|X+Θ=1(x) =
fX,X+Θ(x, 1)

fX+Θ(1)
.

By the Jacobian formula for calculating densities of transformed random variables, it can be checked

that

fX,X+Θ(x, 1) = fX,Θ(x, 1− x) = fX(x)fΘ(1− x) =
λα+β

Γ(α)Γ(β)
xα−1(1− x)β−1e−λ

for 0 < x < 1. We have also seen previously that X + Θ is distributed as Γ(α+ β, λ). Thus

fX+Θ(1) =
λα+β

Γ(α+ β)
e−λ.

Therefore

fX|X+Θ=1(x) =
fX,X+Θ(x, 1)

fX+Θ(1)
=

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 for 0 < x < 1.

This means therefore that

X|(X + Θ = 1) ∼ Beta(α, β).



54 CHAPTER 2. CONDITIONING

Example 2.1.2. Suppose X and Y are independent Unif(0, 1) random variables. What is fU |V=v

where U = min(X,Y ) and V = max(X,Y ) and 0 < v < 1?

Note first that

fU |V=v(u) =
fU,V (u, v)

fV (v)
.

When 0 < u < v < 1, we know that

fU,V (u, v) = fX,Y (u, v) + fX,Y (v, u) = 2.

Also V = max(X,Y ) ∼ Beta(2, 1) so that

fV (v) = 2vI{0 < v < 1}.

We thus have

fU |V=v(u) =
2

2v
=

1

v
for 0 < u < v.

In other words, U |V = v is uniformly distributed on the interval (0, v).

2.2 Conditional Densities for Continuous Random Variables

Consider now two continuous random variables X and Θ having a joint density fX,Θ(x, θ). Recall then

that fX,Θ(x, θ) ≥ 0 for all x, θ and
∫ ∫

f(x, θ)dxdθ = 1. Also recall that the marginal densities of X

and Θ are given by

fX(x) =

∫ ∞
−∞

fX,Θ(x, θ)dθ and fΘ(θ) =

∫ ∞
−∞

fX,Θ(x, θ)dx.

We shall now define the conditional density of X given Θ = θ for a fixed value of θ. In order to

define this conditional density at a point x, we need to consider

P{x ≤ X ≤ x+ δ|Θ = θ} (2.8)

for a small δ > 0. Because P{Θ = θ} = 0 (note that Θ is a continuous random variable), we cannot

define this conditional probability using the definition P(B|A) := P(B ∩ A)/P(A). But, intuitively,

conditioning on Θ = θ should be equivalent to conditioning on θ ≤ Θ ≤ θ + ε for small ε. Therefore

we can write

P{x ≤ X ≤ x+ δ|Θ = θ} ≈ P{x ≤ X ≤ x+ δ|θ ≤ Θ ≤ θ + ε}

for small ε. For the probability on the right hand side above, we can use P(B|A) := P(B ∩A)/P(A) to

obtain

P{x ≤ X ≤ x+ δ|θ ≤ Θ ≤ θ + ε} =
P{x ≤ X ≤ x+ δ, θ ≤ Θ ≤ θ + ε}

P{θ ≤ Θ ≤ θ + ε}
≈ fX,Θ(x, θ)δε

fΘ(θ)ε
=
fX,Θ(x, θ)δ

fΘ(θ)

We have thus obtained that

P{x ≤ X ≤ x+ δ|Θ = θ} ≈ fX,Θ(x, θ)δ

fΘ(θ)
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for small δ. This suggests the definition

fX|Θ=θ(x) :=
fX,Θ(x, θ)

fΘ(θ)
(2.9)

for the conditional density of X given Θ = θ. This definition makes sense as long as fΘ(θ) > 0. If

fΘ(θ) = 0, we do not attempt to define fX|Θ=θ.

Example 2.2.1. Suppose X and Θ are independent random variables having the Gamma(α, λ) and

Gamma(β, λ) distributions respectively. What then is the conditional density of X given X + Θ = 1.

The definition (2.9) gives

fX|X+Θ=1(x) =
fX,X+Θ(x, 1)

fX+Θ(1)
.

By the Jacobian formula for calculating densities of transformed random variables, it can be checked

that

fX,X+Θ(x, 1) = fX,Θ(x, 1− x) = fX(x)fΘ(1− x) =
λα+β

Γ(α)Γ(β)
xα−1(1− x)β−1e−λ

for 0 < x < 1. We have also seen previously that X + Θ is distributed as Γ(α+ β, λ). Thus

fX+Θ(1) =
λα+β

Γ(α+ β)
e−λ.

Therefore

fX|X+Θ=1(x) =
fX,X+Θ(x, 1)

fX+Θ(1)
=

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 for 0 < x < 1.

This means therefore that

X|(X + Θ = 1) ∼ Beta(α, β).

Example 2.2.2. Suppose X and Y are independent Unif(0, 1) random variables. What is fU |V=v

where U = min(X,Y ) and V = max(X,Y ) and 0 < v < 1?

Note first that

fU |V=v(u) =
fU,V (u, v)

fV (v)
.

When 0 < u < v < 1, we know that

fU,V (u, v) = fX,Y (u, v) + fX,Y (v, u) = 2.

Also V = max(X,Y ) ∼ Beta(2, 1) so that

fV (v) = 2vI{0 < v < 1}.

We thus have

fU |V=v(u) =
2

2v
=

1

v
for 0 < u < v.

In other words, U |V = v is uniformly distributed on the interval (0, v).
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Example 2.2.3. Suppose X and Θ are independent random variables having densities fX and fΘ

respectively. (a) What is the conditional density of X + Θ given Θ = θ? (b) What is the conditional

density of X
Θ given Θ = θ?

For fX+Θ|Θ=θ, write

fX+Θ|Θ=θ(u) =
fX+Θ,Θ(u, θ)

fΘ(θ)
=
fX,Θ(u− θ, θ)

fΘ(θ)
=
fX(u− θ)fΘ(θ)

fΘ(θ)
= fX(u− θ).

For fX
Θ |Θ=θ(u), write

fX
Θ |Θ=θ(u) =

fX
Θ ,Θ

(u, θ)

fΘ(θ)
=
fX,Θ(uθ, θ)|θ|

fΘ(θ)
=
fX(uθ)fΘ(θ)|θ|

fΘ(θ)
= |θ|fX(uθ). (2.10)

2.3 Conditional Density is Proportional to Joint Density

The conditional density

fX|Θ=θ(x) :=
fX,Θ(x, θ)

fΘ(θ)
(2.11)

has the following important property. As a function of x (and keeping θ fixed), fX|Θ=θ(x) is a valid

density i.e.,

fX|Θ=θ(x) ≥ 0 for every x and

∫ ∞
−∞

fX|Θ=θ(x)dx = 1.

The integral above equals one because

∫ ∞
−∞

fX|Θ=θ(x)dx =

∫ ∞
−∞

fX,Θ(x, θ)

fΘ(θ)
dx =

∫∞
−∞ fX,Θ(x, θ)dx

fΘ(θ)
=
fΘ(θ)

fΘ(θ)
= 1.

Because fX|Θ=θ(x) integrates to one as a function of x and because the denominator fΘ(θ) in the

definition (2.11) does not depend on x, it is common to write

fX|Θ=θ(x) ∝ fX,Θ(x, θ). (2.12)

The symbol ∝ here stands for “proportional to” and the above statement means that fX|Θ=θ(x), as a

function of x, is proportional to fX,Θ(x, θ). The proportionality constant then has to be fΘ(θ) because

that is equal to the value of the integral of fX,Θ(x, θ) as x ranges over (−∞,∞).

The proportionality statement (2.12) often makes calculations involving conditional densities much

simpler. To illustrate this, let us revisit the calculations in Examples (2.2.1) and (2.2.2) respectively.

Example 2.3.1 (Example 2.2.1 revisited). Suppose X and Θ are independent random variables having

the Gamma(α, λ) and Gamma(β, λ) distributions respectively. What then is the conditional density
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of X given X + Θ = 1? By (2.12),

fX|X+Θ=1(x) ∝ fX,X+Θ(x, 1)

= fX,Θ(x, 1− x)

= fX(x)fΘ(1− x)

∝ e−λxxα−1I{x > 0}e−λ(1−x)(1− x)β−1I{1− x > 0}

∝ xα−1(1− x)β−1I{0 < x < 1}

which immediately implies that X|X + Θ = 1 has the Beta distribution with parameters α and β.

Example 2.3.2 (Example 2.2.2 revisited). Suppose X and Y are independent Unif(0, 1) random

variables. What is fU |V=v where U = min(X,Y ) and V = max(X,Y ) and 0 < v < 1?

Write

fU |V=v(u) ∝ fU,V (u, v)

= 2fU (u)fV (v)I{u < v}

∝ fU (u)I{u < v}

= I{0 < u < 1}I{u < v} = I{0 < u < min(v, 1)}

Thus for v < 1, the conditional density of U given V = v is the uniform density on [0, v]. For v > 1,

the conditional density of U given V = 1 is not defined as the density of V at v > 1 equals 0.

2.4 Conditional Densities and Independence

X and Θ are independent if and only if fX|Θ=θ = fX for every value of θ. This latter statement is

precisely equivalent to fX,Θ(x, θ) = fX(x)fΘ(θ). By switching roles of X and Θ, it also follows that

X and Θ are independent if and only if fΘ|X=x = fΘ for every x.

It is also not hard to see that X and Θ are independent if and only if the conditional density of X

given Θ = θ is the same for all values of θ for which fΘ(θ) > 0.

Example 2.4.1 (Back to the Gamma example). We have previously seen that when X ∼ Gamma(α, λ)

and Y ∼ Gamma(β, λ), then

X|(X + Θ = 1) ∼ Beta(α, β).

This can be also be directly seen (using the observation that X/(X + Θ) is distributed as Beta(α, β)

and that X/(X + Θ) is independent of X + Θ) as follows:

X|(X + Θ = 1)
d
=
X

1
|(X + Θ = 1)

d
=

X

X + Θ
|(X + Θ = 1)

d
=

X

X + Θ
∼ Beta(α, β)

where
d
= means “equality in distribution”. Note that we removed the conditioning on X + Θ = 1 in the

last step above because X/(X + Θ) is independent of X + Θ.
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Example 2.4.2 (Example 2.2.3 revisited). In Example 2.2.3, we considered two independent random

variables X and Θ having the densities fX and fΘ. We then showed that

fX+Θ|Θ=θ(u) = fX(u− θ) (2.13)

This can also be seen in the following way:

X + Θ|Θ = θ
d
=X + θ|Θ = θ

d
=X + θ.

Because the density of X + θ is fX+θ(u) = fX(u− θ), this proves (2.13). A similar argument can also

be given for the fact fX
Θ |Θ=θ(u) = |θ|fX(uθ) (left as an exercise).

2.5 Law of Total Probability for Continuous Random Vari-

ables

Note first that from the definition of fX|Θ=θ(x), it directly follows that

fX,Θ(x, θ) = fX|Θ=θ(x)fΘ(θ).

This tells us how to compute the joint density of X and Θ using knowledge of the marginal of Θ and

the conditional density of X given Θ.

From here (and the fact that integrating the joint density with respect to one of the variables gives

the marginal density of the other random variable), it is easy to derive the formula

fX(x) =

∫
fX|Θ=θ(x)fΘ(θ)dθ. (2.14)

This formula, known as the Law of Total Probability allows us to deduce the marginal density of

X using knowledge of the conditional density of X given Θ and the marginal density of Θ.

The formula (2.17) has interesting consequences. For example, it can be used to rederive the

convolution formula that we have seen previously for the density of the sum of two independent

random variables. Indeed, the convolution formula states that if X ∼ fX and Θ ∼ fΘ are independent

random variables, then

fX+Θ(u) =

∫
fX(u− θ)fΘ(θ)dθ.

This can be derived as a consequence of (2.17) (and (2.13)) via

fX+Θ(u) =

∫
fX+Θ|Θ=θ(u)fΘ(θ)dθ =

∫
fX(u− θ)fΘ(θ)dθ.

We also saw previously that

fX
Θ

(u) =

∫
fX(uθ)fΘ(θ)|θ|dθ.

This can also be easily derived from (2.17) (and (2.10)) and this is left as exercise.

Here are two other applications of the Law of Total Probability.
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Example 2.5.1. Suppose Θ ∼ Exp(1/2) (i.e., fΘ(θ) = 0.5e−θ/2I{θ > 0}) and X|Θ = θ ∼ N(0, θ).

Then the marginal density of X is the Double Exponential density (also known as the Laplace density):

fX(x) =
1

2
e−|x| for all x ∈ (−∞,∞). (2.15)

To show this, first use the Law of Total Probability which gives

fX(x) =

∫
fX|θ=θ(x)fΘ(θ)dθ.

Plugging in the formulae for fX|Θ=θ and fΘ, we get

fX(x) =

∫ ∞
0

1√
2πθ

exp

(
−x2

2θ

)
1

2
exp

(
−θ

2

)
dθ.

The following trick can be used to evaluate this integral. First do the change of variable θ = u2 to get

fX(x) =
1√
2π

∫ ∞
0

exp

(
− x2

2u2
− u2

2

)
du. (2.16)

Note first that when x = 0, we have fX(0) = (2π)−1/2
∫∞

0
e−u

2/2du = 1/2. So let us assume that

x 6= 0. The trick to evaluate fX(x) involves differentiating the formula (2.16) with respect to x. This

gives

f ′X(x) =
1√
2π

∫ ∞
0

exp

(
− x2

2u2
− u2

2

)(
−x
u2

)
du

Let us now do the change of variable v = |x|
u . It is easy to see that this gives

f ′X(x) =
−1√
2π

x

|x|

∫ ∞
0

exp

(
− x2

2u2
− u2

2

)
dv.

We thus have

f ′X(x) =
−x
|x|

fX(x)

or equivalently,

d

dx
log fX(x) =

−x
|x|

.

From here (and the fact fX(0) = 1/2), it is straightforward to derive (2.15).

Example 2.5.2. Suppose Θ ∼ N(µ, τ2) and X|Θ = θ ∼ N(θ, σ2). It then follows that X ∼ N(µ, τ2 +

σ2). We shall derive this in the next class.

In the last class, we discussed the law of total probability for continuous random variables:

fX(x) =

∫
fX|Θ=θ(x)fΘ(θ)dθ. (2.17)

This formula allows us to deduce the marginal density of X using knowledge of the conditional density

of X given Θ and the marginal density of Θ.

We started discussing the following example last class.
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Example 2.5.3. Suppose Θ ∼ N(µ, τ2) and X|Θ = θ ∼ N(θ, σ2). It then follows that X ∼ N(µ, τ2 +

σ2). We shall derive this now. We use the LTP which says

fX(x) =

∫
fX|Θ=θ(x)fΘ(θ)dθ

Now

fX|Θ=θ(x)fΘ(θ) =
1

2πτσ
exp

(
−1

2

{
(θ − µ)2

τ2
+

(x− θ)2

σ2

})
The term in the exponent above can be simplified as

(θ − µ)2

τ2
+

(x− θ)2

σ2
=

(θ − x+ x− µ)2

τ2
+

(x− θ)2

σ2

= (θ − x)2

(
1

τ2
+

1

σ2

)
+

2(θ − x)(x− µ)

τ2
+

(x− µ)2

τ2

=

(
1

τ2
+

1

σ2

)(
θ − x/σ2 + µ/τ2

1/σ2 + 1/τ2

)2

+
(x− µ)2

τ2 + σ2

where I skipped a few steps to get to the last equality (complete the square and simplify the resulting

expressions).

As a result

fX|Θ=θ(x)fΘ(θ) =
1

2πτσ
exp

(
−1

2

(
1

τ2
+

1

σ2

)(
θ − x/σ2 + µ/τ2

1/σ2 + 1/τ2

)2
)

exp

(
− (x− µ)2

2(τ2 + σ2)

)
Consequently,

fX(x) =

∫
1

2πτσ
exp

(
−1

2

(
1

τ2
+

1

σ2

)(
θ − x/σ2 + µ/τ2

1/σ2 + 1/τ2

)2
)

exp

(
− (x− µ)2

2(τ2 + σ2)

)
dθ

=
1

2πτσ
exp

(
− (x− µ)2

2(τ2 + σ2)

)∫
exp

(
−1

2

(
1

τ2
+

1

σ2

)(
θ − x/σ2 + µ/τ2

1/σ2 + 1/τ2

)2
)
dθ

=
1

2πτσ
exp

(
− (x− µ)2

2(τ2 + σ2)

)√
2π

(
1

τ2
+

1

σ2

)−1/2

=
1√

2π(τ2 + σ2)
exp

(
− (x− µ)2

2(τ2 + σ2)

)
which gives

X ∼ N(0, τ2 + σ2).

2.6 Bayes Rule for Continuous Random Variables

Next we shall discuss the Bayes rule which tells us how to derive the conditional density of Θ given

X = x using information on the conditional density of X given Θ = θ and the marginal density of Θ.

The Bayes rule says:

fΘ|X=x(θ) =
fX|Θ=θ(x)fΘ(θ)∫
fX|Θ=θ(x)fΘ(θ)dθ

.
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The denominator in the above formula does not depend on θ (as θ is integrated out) and thus

fΘ|X=x(θ) ∝ fX|Θ=θ(x)fΘ(θ).

Here are two applications of the Bayes rule for continous variables.

Example 2.6.1. Suppose Θ ∼ N(µ, τ2) and X|Θ = θ ∼ N(θ, σ2). What is the conditional density of

Θ|X = x?

To obtain fΘ|X=x(θ), we use the Bayes rule:

fΘ|X=x(θ) =
fX|Θ=θ(x)fΘ(θ)

fX(x)
=

√
τ2 + σ2

√
2πτ2σ2

exp

(
−1

2

(
1

τ2
+

1

σ2

)(
θ − x/σ2 + µ/τ2

1/σ2 + 1/τ2

)2
)

which means that

Θ|X = x ∼ N
(
x/σ2 + µ/τ2

1/σ2 + 1/τ2
,

1

1/σ2 + 1/τ2

)
.

For a normal density with mean m and variance v2, the inverse of the variance 1/v2 is called the

precision. The above calculation therefore reveals that the precision of the conditional distribution of Θ

given X equals the sum of the precisions of the distribution of Θ and the distribution of X respectively.

In statistical terminology, it is common to call:

1. the marginal distribution of Θ as the prior distribution of the unknown parameter θ.

2. the conditional distribution of X|Θ = θ as the distribution of the data conditioned on the value

of the true parameter.

3. the conditional distribution of Θ|X = x as the posterior distribution of Θ given the data.

In this particular example, the mean of the posterior distribution is a weighted linear combination of

the prior mean as well as the data where the weights are proportional to the precisions. Also, posterior

precision equals the sum of the prior precision and the data precision which informally means, in

particular, that the posterior is more precise than the prior.

Example 2.6.2. Suppose Θ ∼ Gamma(α, λ) and X|Θ = θ ∼ Exp(θ) . What is the conditional

density of Θ given X = x? We can argue via proportionality that

fΘ|X=x(θ) ∝ fX|Θ=θ(x)fΘ(θ)

= θe−θx
λα

Γ(α)
e−λθθα−1I{θ > 0}

= θαe−(λ+x)θI{θ > 0}

which means that

Θ|X = x ∼ Gamma(α+ 1, λ+ x).

Note that

E (Θ|X = x) =
α+ 1

λ+ x
=

λ

λ+ x

α

λ
+

x

λ+ x

1

x
.
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2.7 LTP and Bayes Rule for general random variables

The LTP describes how to compute the distribution of X based on knowledge of the conditional

distribution of X given Θ = θ as well as the conditional distribution of Θ. The Bayes rule describes

how to compute the conditional distribution of Θ given X = x based on the same knowledge of the

conditional distribution of X given Θ = θ as well as the conditional distribution of Θ. We have so far

looked at the LTP and Bayes rule when X and Θ are both discrete or when they are both continuous.

Now we shall also consider the cases when one of them is discrete and the other is continuous.

2.7.1 X and Θ are both discrete

In this case, we have seen that the LTP is

P{X = x} =
∑
θ

P{X = x|Θ = θ}P{Θ = θ}

and the Bayes rule is

P{Θ = θ|X = x} =
P{X = x|Θ = θ}P{Θ = θ}

P{X = x}
=

P{X = x|Θ = θ}P{Θ = θ}∑
θ P{X = x|Θ = θ}P{Θ = θ}

.

2.7.2 X and Θ are both continuous

Here LTP is

fX(x) =

∫
fX|Θ=θ(x)fΘ(θ)dθ

and Bayes rule is

fΘ|X=x(θ) =
fX|Θ=θ(x)fΘ(θ)

fX(x)
=

fX|Θ=θ(x)fΘ(θ)∫
fX|Θ=θ(x)fΘ(θ)dx

.

2.7.3 X is discrete while Θ is continuous

LTP is

P{X = x} =

∫
P{X = x|Θ = θ}fΘ(θ)dθ

and Bayes rule is

fΘ|X=x(θ) =
P{X = x|Θ = θ}fΘ(θ)

P{X = x}
=

P{X = x|Θ = θ}fΘ(θ)∫
P{X = x|Θ = θ}fΘ(θ)dθ

.

2.7.4 X is continuous while Θ is discrete

LTP is

fX(x) =
∑
θ

fX|Θ=θ(x)P{Θ = θ}
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and Bayes rule is

P{Θ = θ|X = x} =
fX|Θ=θ(x)P{Θ = θ}

fX(x)
=

fX|Θ=θ(x)P{Θ = θ}∑
θ fX|Θ=θ(x)P{Θ = θ}

These formulae are useful when the conditional distribution of X given Θ = θ as well as the

marginal distribution of Θ are easy to determine (or are given as part of the model specification) and

the goal is to determine the marginal distribution of X as well as the conditional distribution of Θ

given X = x.

We shall now look at two applications of the LTP and Bayes Rule to when one of X and Θ is

discrete and the other is continuous.

Example 2.7.1. Suppose that Θ is the uniformly distributed on (0, 1) and let X|Θ = θ has the binomial

distribution with parameters n and θ (i.e., conditioned on Θ = θ, the random variable X is distributed

as the number of successes in n independent tosses of a coin with probability of success θ). What then

is the marginal distribution of X as well as the conditional distribution of Θ given X = x?

Note that this is a situation where X is discrete (taking values in 0, 1, . . . , n) and Θ is continuous

(taking values in the interval (0, 1)). To compute the marginal distribution of X, we use the appropriate

LTP to write (for x = 0, 1, . . . , n)

P{X = x} =

∫
P{X = x|Θ = θ}fΘ(θ)dθ

=

∫ 1

0

(
n

x

)
θx(1− θ)n−xdθ

=

(
n

x

)
Beta(x+ 1, n− x+ 1)

=

(
n

x

)
Γ(x+ 1)Γ(n− x+ 1)

Γ(n+ 2)
=

n!

(n− x)!x!

x!(n− x)!

(n+ 1)!
=

1

n+ 1

which means that X is (discrete) uniformly distributed on the finite set {0, 1, . . . , n}.

Let us now calculate the posterior distribution of Θ given X = x. Using the Bayes rule, we obtain

fΘ|X=x(θ) =
P{X = x|Θ = θ}fΘ(θ)

P{X = x}

=

(
n
x

)
θx(1− θ)n−x

1/(n+ 1)
∝ θx(1− θ)n−x

for 0 < θ < 1. From here, it immediately follows that

Θ|X = x ∼ Beta(x+ 1, n− x+ 1).

The mean of the Beta(α, β) distribution is α/(α+β). Therefore the mean of the conditional distribution

of Θ given X = x (also known as the posterior mean) equals

E(Θ|X = x) =
x+ 1

n+ 2
.
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As the prior mean equals 1/2 and we can write

x+ 1

n+ 2
=

(
n

n+ 2

)
x

n
+

(
2

n+ 2

)
1

2
,

it follows that the posterior mean falls between the prior mean and x/n. As n becomes large, the

posterior mean approaches x/n.

We shall start with an example of the LTP and Bayes Rule when Θ is a discrete random variable

and X is continuous. Recall that in this case, the formulae are

fX(x) =
∑
θ

fX|Θ=θ(x)P{Θ = θ}

and

P{Θ = θ|X = x} =
fX|Θ=θ(x)P{Θ = θ}

fX(x)
=

fX|Θ=θ(x)P{Θ = θ}∑
θ fX|Θ=θ(x)P{Θ = θ}

Example 2.7.2 (Statistical Classification). In a statistical classification problem, the random variable

Θ is discrete and X is usually continuous. The simplest situation is when Θ is binary. Let us say that

P{Θ = 1} = p and P{Θ = 0} = 1− p.

Also assume that the conditional density of X given Θ = 0 is f0 and that the conditional density of X

given Θ = 1 is f1 i.e.,

X|Θ = 0 ∼ f0 and X|Θ = 1 ∼ f1.

Using the LTP, we see that the marginal density of X equals

fX = (1− p)f0 + pf1.

In other words, fX is a mixture of f0 and f1 with the mixing weights being equal to the marginal

probabilities of Θ.

According to the Bayes rule, the conditional distribution of Θ given X = x is given by

P{Θ = 0|X = x} =
fX|Θ=0(x)P{Θ = 0}

fX(x)
=

(1− p)f0(x)

(1− p)f0(x) + pf1(x)

and

P{Θ = 1|X = x} =
pf1(x)

(1− p)f0(x) + pf1(x)
.

These are also referred to as the posterior probabilities of Θ given X = x.

2.8 Conditional Joint Distributions

Given random variables X1, . . . , Xm, Y1, . . . , Yk, how do we describe the joint distribution of Y1, . . . , Yk

given X1 = x1, . . . , Xm = xm. If all these random variables are discrete, then one can simply specify

all the values (y1, . . . , yk) that Y1, . . . , Yk take together with the probabilities:

P {Y1 = y1, . . . , Yk = yk|X1 = x1, . . . , Xm = xm} .
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Here is an example of this.

Example 2.8.1. Suppose N1, . . . , Nk have the multinomial distribution with parameters n and

p1, . . . , pk (where p1, . . . , pk are nonnegative numbers summing to one). What is the conditional joint

distribution of N2, . . . , Nk given N1 = n1? Given N1 = n1, N1, . . . , Nk will take values n2, . . . , nk

which are nonnegative integers such that n2 + · · ·+ nk = n− n1. The probabilities are given by

P {N2 = n2, . . . , Nk = nk|N1 = n1} =
P{N1 = n1, . . . , Nk = nk}

P{N1 = n1}
=

(n− n1)!

n2! . . . nk!

(
p2

1− p1

)n2

. . .

(
pk

1− p1

)nk

.

This means that

(N2, . . . , Nk)|N1 = n1 ∼Mult(n;
p2

1− p1
, . . . ,

pk
1− p1

).

When the random variables are continuous, the conditional joint distribution will be given by a

density. Given continuous random variables X1, . . . , Xm, Y1, . . . , Yk, the conditional joint density of

Y1, . . . , Yk given X1 = x1, X2 = x2, . . . , Xm = xm is defined as

fY1,...,Yk|X1=x1,...,Xm=xm
(y1, . . . , yk) :=

fX1,...,Xm,Y1,...,Yk
(x1, . . . , xm, y1, . . . , yk)

fX1,...,Xm(x1, . . . , xm)

provided x1, . . . , xm are such that fX1,...,Xm
(x1, . . . , xm) > 0.

Example 2.8.2. Suppose U1, . . . , Un are independent observations having the uniform density on

(0, 1). What is the conditional joint density of U(1), . . . , U(n−1) given U(n) = u?

By definition,

fU(1),...,U(n−1)|U(n)=u(u1, . . . , un−1) =
fU(1),...,U(n)

(u1, . . . , un−1, u)

fU(n)
(u)

.

By the joint distribution of order statistics that we worked out previously, it follows first that the above

quantity is non-zero only when 0 < u1 < · · · < un−1 < u < 1 and it is then equal to

fU(1),...,U(n−1)|U(n)=u(u1, . . . , un−1) =
n!

nun−1
.

For the denominator above, we used the fact that U(n) ∼ Beta(n, 1). We have thus proved that

fU(1),...,U(n−1)|U(n)=u(u1, . . . , un−1) = (n− 1)!

(
1

u

)n−1

for 0 < u1 < · · · < un−1 < u < 1.

Note that the right hand side above is the joint density of the order statistics of (n−1) i.i.d observations

drawn from the uniform distribution on the interval (0, u). We have therefore proved that, conditioned

on U(n) = u, the joint density of U(1), . . . , U(n−1) is the same as the joint density of the order statistics

of (n− 1) i.i.d observations drawn from the uniform distribution on (0, u).

Here are some simple but important properties of conditional joint densities.
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1. For every x1, . . . , xm, y1, . . . , yk, we have

fX1,...,Xm,Y1,...,Yk
(x1, . . . , xm, y1, . . . , yk) = fY1,...,Yk|X1=x1,...,Xm=xm

(y1, . . . , yk)fX1,...,Xm
(x1, . . . , xm).

2. The joint density of every set of random variables Y1, . . . , Yn satisfies the following:

fY1,...,Yn
(y1, . . . , yn) = fYn|Y1=y1,...,Yn−1=yn−1

(yn)fYn−1|Y1=y1,...,Yn−1=yn−2
(yn−1) . . . fY2|Y1=y1

(y2)fY1
(y1).

3. This is a generalization of the previous fact. The conditional joint density

fY1,...,Yn|X1=x1,...,Xm=xm
(y1, . . . , yn)

of Y1, . . . , Yn given X1 = x1, . . . , Xm = xm equals the product

n∏
i=1

fYi|Y1=y1,...,Yi−1=yi−1,X1=x1,...,Xm=xm
(yi).

4. This can be viewed as a law of total conditional probability: For random variables

Y1, . . . , Yk, X1, . . . , Xm and Θ, we have

fY1,...,Yk|X1=x1,...,Xm=xm
(y1, . . . , yk) =

∫
fY1,...,Yk|Θ=θ,X1=x1,...,Xm=xm

(y1, . . . , yk)fΘ|X1=x1,...,Xm=xm
(θ)dθ.

Here is an application of the above facts.

Example 2.8.3 (Joint density of an autoregressive process). Suppose X1, Z2, . . . , Zn are indepen-

dent random variables with Z2, . . . , Zn being distributed as N(0, σ2). Define new random variables

X2, . . . , Xn via

Xi = φXi−1 + Zi for i = 2, . . . , n

where φ is some real number. The process X1, . . . , Xn is called an autoregressive process of order 1.

What is the conditional joint density of X2, . . . , Xn given X1 = x1? What is the joint density of

X1, . . . , Xn?

Let us first calculate the conditional joint density of X2, . . . , Xn given X1 = x1. For this, write

fX2,...,Xn|X1=x1
(x2, . . . , xn) =

n∏
i=2

fXi|X1=x1,...,Xi−1=xi−1
(xi) (2.18)

Now for each i = 2, . . . , n, observe that

Xi|X1 = x1, . . . , Xi−1 = xi−1
d
= (φXi−1 + Zi) |X1 = x1, . . . , Xi−1 = xi−1

d
= (φxi−1 + Zi) |X1 = x1, . . . , Xi−1 = xi−1

d
=φxi−1 + Zi ∼ N(φxi−1, σ

2).

We were able to remove conditioning on X1 = x1, . . . , Xi−1 = xi−1 above because X1, . . . , Xi−1 only

depend on X1, Z2, . . . , Zi−1 and hence are independent of Zi.
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From the above chain of assertions, we deduce that

fXi|X1=x1,...,Xi−1=xi−1
(xi) =

1√
2πσ

exp

(
− (xi − φxi−1)2

2σ2

)
for i = 2, . . . , n.

Combining with (2.18), we obtain

fX2,...,Xn|X1=x1
(x2, . . . , xn) =

n∏
i=2

1√
2πσ

exp

(
− (xi − φxi−1)2

2σ2

)

=

(
1√
2πσ

)n−1

exp

(
− 1

2σ2

n∑
i=2

(xi − φxi−1)2

)
.

To obtain the joint density of X1, . . . , Xn, write

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2,...,Xn|X1=x1
(x2, . . . , xn)

= fX1
(x1)

(
1√
2πσ

)n−1

exp

(
− 1

2σ2

n∑
i=2

(xi − φxi−1)2

)
.

In a statistical setting, this joint density is used to estimate the parameters φ and σ2 via maximum

likelihood estimation. For this model however, it is easier to work with the conditional density of

X2, . . . , Xn given X1 = x1 instead of the full joint density of X1, . . . , Xn.

2.9 Conditional Joint Densities

In the last class, we discussed conditional joint densities which are defined in the following way. Given

continuous random variables X1, . . . , Xm, Y1, . . . , Yk, the conditional joint density of Y1, . . . , Yk given

X1 = x1, X2 = x2, . . . , Xm = xm is defined as

fY1,...,Yk|X1=x1,...,Xm=xm
(y1, . . . , yk) :=

fX1,...,Xm,Y1,...,Yk
(x1, . . . , xm, y1, . . . , yk)

fX1,...,Xm(x1, . . . , xm)

provided x1, . . . , xm are such that fX1,...,Xm
(x1, . . . , xm) > 0.

We also looked at the following properties of conditional joint densities.

1. For every x1, . . . , xm, y1, . . . , yk, we have

fX1,...,Xm,Y1,...,Yk
(x1, . . . , xm, y1, . . . , yk) = fY1,...,Yk|X1=x1,...,Xm=xm

(y1, . . . , yk)fX1,...,Xm
(x1, . . . , xm).

2. The joint density of every set of random variables Y1, . . . , Yn satisfies the following:

fY1,...,Yn
(y1, . . . , yn) = fYn|Y1=y1,...,Yn−1=yn−1

(yn)fYn−1|Y1=y1,...,Yn−1=yn−2
(yn−1) . . . fY2|Y1=y1

(y2)fY1
(y1).

3. This is a generalization of the previous fact. The conditional joint density

fY1,...,Yn|X1=x1,...,Xm=xm
(y1, . . . , yn)
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of Y1, . . . , Yn given X1 = x1, . . . , Xm = xm equals the product

n∏
i=1

fYi|Y1=y1,...,Yi−1=yi−1,X1=x1,...,Xm=xm
(yi).

4. This can be viewed as a law of total conditional probability: For random variables

Y1, . . . , Yk, X1, . . . , Xm and Θ, we have

fY1,...,Yk|X1=x1,...,Xm=xm
(y1, . . . , yk) =

∫
fY1,...,Yk|Θ=θ,X1=x1,...,Xm=xm

(y1, . . . , yk)fΘ|X1=x1,...,Xm=xm
(θ)dθ.

2.9.1 Application to the Normal prior-Normal data model

Let us now look at the application of the conditional density formulae for the normal prior-normal

data model. Here we first have a random variable Θ that has the N(µ, τ2) distribution. We also have

random variables X1, . . . , Xn+1 such that

X1, . . . , Xn+1|Θ = θ ∼i.i.d N(θ, σ2).

In other words, conditional on Θ = θ, the random variables X1, . . . , Xn+1 are i.i.d N(θ, σ2).

Let us first find the conditional distribution of Θ given X1 = x1, . . . , Xn = xn. The answer to this

turns out to be

Θ|X1 = x1, . . . , Xn = xn ∼ N
(
nx̄n/σ

2 + µ/τ2

n/σ2 + 1/τ2
,

1

n/σ2 + 1/τ2

)
(2.19)

where x̄n := (x1 + · · · + xn)/n. Let us see why this is true below. Note first that we had solved this

problem for n = 1 in the last class where we proved the following:

Θ ∼ N(µ, τ2), X|Θ = θ ∼ N(θ, σ2) =⇒ Θ|X = x ∼ N
(
x/σ2 + µ/τ2

1/σ2 + 1/τ2
,

1

1/σ2 + 1/τ2

)
, X ∼ N(µ, σ2+τ2).

The result (2.19) for general n ≥ 1 can actually be deduced from the above result for n = 1. There

are two ways of seeing this.

Method One: We use mathematical induction on n ≥ 1. We already know that (2.19) is true for

n = 1. Assume that it is true for n and we shall try to prove it for n + 1. The key to this is to note

that

(Θ|X1 = x1, . . . , Xn+1 = xn+1)
d
= Θ̃|Y = xn+1 (2.20)

where

Y |Θ̃ = θ ∼ N(θ, σ2) and Θ̃ ∼ Θ|X1 = x1, . . . , Xn = xn.

In words, (2.20) states that the posterior of Θ after observing (n+1) observations X1 = x1, . . . , Xn+1 =

xn+1 is the same as the posterior after observing one observation Y = xn+1 under the prior Θ|X1 =

x1, . . . , Xn = xn.
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To formally see why (2.20) is true, just note that

fΘ|X1=x1,...,Xn=xn,Xn+1=xn+1
(θ) ∝ fXn+1|Θ=θ,X1=x1,...,Xn=xn

(xn+1)fΘ|X1=x1,...,Xn=xn
(θ)

= fXn+1|Θ=θ(xn+1)fΘ|X1=x1,...,Xn=xn
(θ).

The first equality is a consequence of the properties of conditional densities. The second equality above

is a consequence of the fact that Xn+1 is independent of X1, . . . , Xn conditional on Θ.

The statement (2.20) allows us to use the result for n = 1 and the induction hypothesis that (2.19)

holds for n. Indeed, using the n = 1 result for

µ =
nx̄/σ2 + µ/τ2

n/σ2 + 1/τ2
and τ2 =

1

n/σ2 + 1/τ2

and x = xn+1, we deduce that Θ|X1 = x1, . . . , Xn+1 = xn+1 is a normal distribution with mean

xn+1/σ
2 + nx̄/σ2+µ/τ2

n/σ2+1/τ2

(
n
σ2 + 1

τ2

)
1
σ2 + n

σ2 + 1
τ2

=
x1+···+xn+1

σ2 + µ
τ2

n+1
σ2 + 1

τ2

=
(n+1)x̄n+1

σ2 + µ
τ2

n+1
σ2 + 1

τ2

and variance
1

1
σ2 + n

σ2 + 1
τ2

=
1

n+1
σ2 + 1

τ2

.

This proves (2.19) for n+ 1. The proof of (2.19) is complete by induction.

Method Two. The second method for proving (2.19) proceeds more directly by writing:

fΘ|X1=x1,...,Xn=xn
(θ) ∝ fX1,...,Xn|Θ=θ(x1, . . . , xn)fΘ(θ)

= fX1|Θ=θ(x1) . . . fXn|Θ=θ(xn)fΘ(θ)

∝ exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2

)
exp

(
− 1

2τ2
(θ − µ)2

)

= exp

(
− 1

2σ2

[
n∑
i=1

(xi − x̄n)2 + n(x̄n − θ)2

])
exp

(
− 1

2τ2
(θ − µ)2

)
∝ exp

(
− n

2σ2
(x̄n − θ)2

)
exp

(
− 1

2τ2
(θ − µ)2

)
= exp

(
− 1

2(σ2/n)
(x̄n − θ)2

)
exp

(
− 1

2τ2
(θ − µ)2

)
.

This now resembles the calculation we did previously for n = 1. The only difference being that x is

now replaced by x̄n and σ2 is replaced by σ2/n. Therefore the n = 1 result applied to x → x̄n and

σ2 → σ2/n should yield (2.19). This proves (2.19).

Let us now compute the conditional density of Xn+1 given X1 = x1, . . . , Xn = xn. For this, we

can use the law of total conditional probability to write

fXn+1|X1=x1,...,Xn=xn
(x) =

∫
fXn+1|Θ=θ,X1=x1,...,Xn=xn

(x)fΘ|X1=x1,...,Xn=xn
(θ)dθ

=

∫
fXn+1|Θ=θ(x)fΘ|X1=x1,...,Xn=xn

(θ)dθ



70 CHAPTER 2. CONDITIONING

This again resembles the calculation of the marginal density of X in the n = 1 problem (where the

answer is X ∼ N(µ, τ2 + σ2)). The only difference is that the prior N(µ, τ2) is now replaced by the

posterior density which is given by (2.19). We therefore obtain that

(Xn+1|X1 = x1, . . . , Xn = xn) ∼ N
(
nx̄n/σ

2 + µ/τ2

n/σ2 + 1/τ2
, σ2 +

1

n/σ2 + 1/τ2

)

2.10 Conditional Expectation

Given two random variables X and Y , the conditional expectation (or conditional mean) of Y given

X = X is denoted by

E (Y |X = x)

and is defined as the expectation of the conditional distribution of Y given X = x.

We can write

E (Y |X = x) =

{ ∫
yfY |X=x(y)dy : if Y is continuous∑
y yP{Y = y|X = x} : if Y is discrete

More generally

E (g(Y )|X = x) =

{ ∫
g(y)fY |X=x(y)dy : if Y is continuous∑
y g(y)P{Y = y|X = x} : if Y is discrete

and also

E (g(X,Y )|X = x) = E (g(x, Y )|X = x) =

{ ∫
g(x, y)fY |X=x(y)dy : if Y is continuous∑
y g(x, y)P{Y = y|X = x} : if Y is discrete

The most important fact about conditional expectation is the Law of Iterated Expectation (also

known as the Law of Total Expectation). We shall see this next.

2.10.1 Law of Iterated/Total Expectation

The law of total expectation states that

E(Y ) =

{ ∫
E (Y |X = x) fX(x)dx : if X is continuous∑
x E (Y |X = x)P{X = x} : if X is discrete

Basically the law of total expectation tells us how to compute the expectation of E(Y ) using knowledge

of the conditional expectation of Y given X = x. Note the similarity to law of total probability which

specifies how to compute the marginal distribution of Y using knowledge of the conditional distribution

of Y given X = x.
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The law of total expectation can be proved as a consequence of the law of total probability. The

proof when Y and X are continuous is given below. The proof in other cases (when one or both of Y

and X are discrete) is similar and left as an exercise.

Proof of the law of total expectation: Assume that Y and X are both continuous. Then

E(Y ) =

∫
yfY (y)dy.

By the law of total probability, we have

E(Y ) =

∫
yfY (y)dy

=

∫
y

(∫
fY |X=x(y)fX(x)dx

)
dy

=

∫ (∫
yfY |X=x(y)dy

)
fX(x)dx =

∫
E(Y |X = x)fX(x)dx.

which proves the law of total expectation.

There is an alternate more succinct form of stating the law of total expectation which justifies

calling the law of iterated expectation. We shall see this next. Note that E(Y |X = x) depends on x.

In other words, E(Y |X = x) is a function of x. Let us denote this function by h(·):

h(x) := E(Y |X = x).

If we now apply this function to the random variable X, we obtain a new random variable h(X). This

random variable is denoted by simply E(Y |X) i.e.,

E(Y |X) := h(X).

Note that when X is discrete, the expectation of this random variable E(Y |X) becomes

E(E(Y |X)) = E(h(X)) =
∑
x

h(x)P{X = x} =
∑
x

E(Y |X = x)P{X = x}.

And when X is continuous, the expectation of E(Y |X) is

E(E(Y |X)) = E(h(X)) =

∫
h(x)fX(x)dx =

∫
E(Y |X = x)fX(x)dx.

Observe that the right hand sides in these expectations are precisely the terms on the right hand side

of the law of total expectation. Therefore the law of total expectation can be rephrased as

E(Y ) = E(E(Y |X)).

Because there are two expectations on the right hand side, the law of total expectation is also known

as the Law of Iterated Expectation. The law of iterated expection has many applications which we

shall explore in the next class.
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2.11 Law of Iterated/Total Expectation

In the last class, we defined conditional expectation and looked at the law of total expectation:

E(Y ) =

{ ∫
E (Y |X = x) fX(x)dx : if X is continuous∑
x E (Y |X = x)P{X = x} : if X is discrete

Basically the law of total expectation tells us how to compute the expectation of E(Y ) using knowledge

of the conditional expectation of Y given X = x. Note the similarity to law of total probability which

specifies how to compute the marginal distribution of Y using knowledge of the conditional distribution

of Y given X = x.

We also saw that there is an alternate more succinct form of stating the law of total expectation

which justifies calling it the law of iterated expectation. We shall see this next. Note that E(Y |X = x)

depends on x. In other words, E(Y |X = x) is a function of x. Let us denote this function by h(·):

h(x) := E(Y |X = x).

If we now apply this function to the random variable X, we obtain a new random variable h(X). This

random variable is denoted by simply E(Y |X) i.e.,

E(Y |X) := h(X).

Note that when X is discrete, the expectation of this random variable E(Y |X) becomes

E(E(Y |X)) = E(h(X)) =
∑
x

h(x)P{X = x} =
∑
x

E(Y |X = x)P{X = x}.

And when X is continuous, the expectation of E(Y |X) is

E(E(Y |X)) = E(h(X)) =

∫
h(x)fX(x)dx =

∫
E(Y |X = x)fX(x)dx.

Observe that the right hand sides in these expectations are precisely the terms on the right hand side

of the law of total expectation. Therefore the law of total expectation can be rephrased as

E(Y ) = E(E(Y |X)).

Because there are two expectations on the right hand side, the law of total expectation is also known

as the Law of Iterated Expectation.

The law of iterated expection has many applications. A couple of simple examples are given below

following which we shall explore applications to risk minimization.

Example 2.11.1. Consider a stick of length `. Break it at a random point X that is chosen uniformly

across the length of the stick. Then break the stick again at a random point Y that is also chosen

uniformly across the length of the stick. What is the expected length of the final piece?
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According to the description of the problem,

Y |X = x ∼ Unif(0, x) and X ∼ Unif(0, `)

and we are required to calculate E(Y ). Note first that E(Y |X = x) = x/2 for every x which means

that E(Y |X) = X/2. Hence by the Law of Iterated Expectation,

E(Y ) = E(E(Y |X)) = E(X/2) = `/4.

Example 2.11.2. Suppose X,Y, Z are i.i.d Unif(0, 1) random variables. Find the value of P{X ≤
Y Z}?

By the Law of Iterated Expectation,

P{X ≤ Y Z} = E (I{X ≤ Y Z}) = E [E (I{X ≤ Y Z}|Y Z)] = E(Y Z) = E(Y )E(Z) = 1/4.

Example 2.11.3 (Sum of a random number of i.i.d random variables). Suppose X1, X2, . . . are i.i.d

random variables with E(Xi) = µ. Suppose also that N is a discrete random variable that takes values

in {1, 2, . . . , } and that is independent of X1, X2, . . . . Define

S := X1 +X2 + · · ·+XN .

In other words, S is the sum of a random number (N) of the random variables Xi. The law of iterated

expectation can be used to compute the expectation of S as follows:

E(S) = E(E(S|N)) = E(Nµ) = (µ)(EN) = (EN)(EX1).

This fact is actually a special case of a general result called Wald’s identity.

2.11.1 Application of the Law of Total Expectation to Statistical Risk Min-

imization

The law of the iterated expectation has important applications to statistical risk minimization prob-

lems. The simplest of these problems is the following.

Problem 1: Given two random variables X and Y , what is the function g∗(X) of X that minimizes

R(g) := E (g(X)− Y )
2

over all functions g? The resulting random variable g∗(X) can be called the Best Predictor of Y as a

function of X in terms of expected squared error.

To find g∗, we use the law of iterated expectation to write

R(g) = E (g(X)− Y )
2

= E
{
E
[
(g(X)− Y )

2 |X
]}
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The value g∗(x) which minimizes the inner expectation:

E
[
(Y − g(x))

2 |X = x
]

is simply

g∗(x) = E(Y |X = x).

This is because E(Z − c)2 is minimized as c varies over R at c∗ = E(Z). We have thus proved that the

function g∗(X) which minimizes R(g) over all functions g is given by

g∗(X) = E(Y |X).

Thus the function of X which is closest to Y in terms of expected squared error is given by the

conditional mean E(Y |X).

Let us now consider a different risk minimization problem.

Problem 2: Given two random variables X and Y , what is the function g∗(X) of X that minimizes

R(g) := E |g(X)− Y |

over all functions g? The resulting random variable g∗(X) can be called the Best Predictor of Y as a

function of X in terms of expected absolute error.

To find g∗ we use the law of iterated expectation to write

R(g) = E |g(X)− Y | = E {E [|g(X)− Y | |X]}

The value g∗(x) which minimizes the inner expectation:

E [|Y − g(x)| |X = x]

is simply given by any conditional median of Y given X = x. This is because E|Z − c| is minimized as

c varies over R at any median of Z. To see this, assume that Z has a density f and write

E|Z − c| =
∫
|z − c|f(z)dz

=

∫ c

−∞
(c− z)f(z)dz +

∫ ∞
c

(z − c)f(z)dz

= c

∫ c

−∞
f(z)dz −

∫ c

−∞
zf(z)dz +

∫ ∞
c

zf(z)dz − c
∫ ∞
c

f(z)dz.

Differentiating with respect to c, we get

d

dc
E|Z − c| =

∫ c

−∞
f(z)dz −

∫ ∞
c

f(z)dz

Therefore when c is a median, the derivative of E|Z − c| will equal zero. This shows that c 7→ E|Z − c|
is minimized when c is a median of Z.
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We have thus shown that the function g∗(x) which minimizes R(g) over all functions g is given by

any conditional mean of Y given X = x. Thus the conditional mean of Y given X = x is the function

of X that is closest to Y in terms of expected absolute error.

Problem 3: Suppose Y is a binary random variable taking the values 0 and 1 and let X be an

arbitrary random variable. What is the function g∗(X) of X that minimizes

R(g) := P{Y 6= g(X)}

over all functions g? To solve this, again use the law of iterated expectation to write

R(g) = P{Y 6= g(X)} = E (P {Y 6= g(X)|X}) .

In the inner expectation above, we can treat X as a constant so that the problem is similar to

minimizing P{Z 6= c} over c ∈ R for a binary random variable Z. It is easy to see that P{Z 6= c} is

minimized at c∗ where

c∗ =

{
1 : if P{Z = 1} > P{Z = 0}
0 : if P{Z = 1} < P{Z = 0}

In case P{Z = 1} = P{Z = 0}, we can take c∗ to be either 0 or 1. From here it can be deduced (via

the law of iterated expectation) that the function g∗(X) which minimizes P{Y 6= g(X)} is given by

g∗(x) =

{
1 : if P{Y = 1|X = x} > P{Y = 0|X = x}
0 : if P{Y = 1|X = x} < P{Y = 0|X = x}

Problem 4: Suppose again that Y is binary taking the values 0 and 1 and let X be an arbitrary

random variable. What is the function g∗(X) of X that minimizes

R(g) := W0P{Y 6= g(X), Y = 0}+W1P{Y 6= g(X), Y = 1}.

Using an argument similar to the previous problems, deduce that the following function minimizes

R(g):

g∗(x) =

{
1 : if W1P{Y = 1|X = x} > W0P{Y = 0|X = x}
0 : if W1P{Y = 1|X = x} < W0P{Y = 0|X = x}

The argument (via the law of iterated expectation) used in the above four problems can be sum-

marized as follows. The function g∗ which minimizes

R(g) := EL(Y, g(X))

over all functions g is given by

g∗(x) = minimizer of E(L(Y, c)|X = x) over c ∈ R.
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2.12 Conditional Variance

Given two random variables Y and X, the conditional variance of Y given X = x is defined as the

variance of the conditional distribution of Y given X = x. More formally,

V ar(Y |X = x) := E
[
(Y − E(Y |X = x))

2 |X = x
]

= E
(
Y 2|X = x

)
− (E(Y |X = x))

2
.

Like conditional expectation, the conditional variance V ar(Y |X = x) is also a function of x. We can

apply this function to the random variable X to obtain a new random variable which we denote by

V ar(Y |X). Note that

V ar(Y |X) = E(Y 2|X)− (E(Y |X))
2
. (2.21)

Analogous to the Law of Total Expectation, there is a Law of Total Variance as well. This formula

says that

V ar(Y ) = E(V ar(Y |X)) + V ar(E(Y |X)).

To prove this formula, expand the right hand side as

E(V ar(Y |X)) + V ar(E(Y |X)) = E
{
E(Y 2|X)− (E(Y |X))

2
}

+ E (E(Y |X))
2 − (E(E(Y |X))

2

= E(E(Y 2|X))− E(E(Y |X))2 + E(E(Y |X))2 − (E(Y ))2

= E(Y 2)− (EY )2 = V ar(Y ).

Example 2.12.1. We have seen before that

X|Θ = θ ∼ N(θ, σ2) and Θ ∼ N(µ, τ2) =⇒ X ∼ N(µ, σ2 + τ2).

This, of course, means that

E(X) = µ and V ar(X) = σ2 + τ2.

Using the laws of total expectation and total variance, it is possible to prove these directly as follows.

E(X) = E(E(X|Θ)) = E(Θ) = µ

and

V ar(X) = E(V ar(X|Θ)) + V ar(E(X|Θ)) = E(σ2) + V ar(Θ) = σ2 + τ2.

Example 2.12.2 (Sum of a random number of i.i.d random variables). Suppose X1, X2, . . . are i.i.d

random variables with E(Xi) = µ and V ar(Xi) = σ2 <∞. Suppose also that N is a discrete random

variable that takes values in {1, 2, . . . , } and that is independent of X1, X2, . . . . Define

S := X1 +X2 + · · ·+XN .

We have seen previously that

E(S) = E(E(S|N)) = E(Nµ) = (µ)(EN) = (EN)(EX1).

Using the law of total variance, we can calculate V ar(X) as follows.

V ar(S) = E(V ar(S|N)) + V ar(E(S|N)) = E(Nσ2) + V ar(Nµ) = σ2(EN) + µ2V ar(N).
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Chapter 3

The Central Limit Theorem

I am using the second chapter of the book Elements of Large Sample Theory by Erich Lehmann as

the reference for our treatment of the CLT.

The Central Limit Theorem (CLT) is not a single theorem but encompasses a variety of results

concerned with the sum of a large number of random variables which, suitably normalized, has a

normal limit distribution. The following is the simplest version of the CLT and this is the version that

we shall mostly deal with in this class.

Theorem 3.0.1 (Central Limit Theorem). Suppose Xi, i = 1, 2, . . . are i.i.d with E(Xi) = µ and

var(Xi) = σ2 <∞. Then √
n
(
X̄n − µ

)
σ

converges in distribution to N(0, 1) where X̄n = (X1 + · · ·+Xn)/n.

We will discuss the following points about the CLT:

1. What does “convergence in distribution” mean?

2. How is the CLT proved?

3. Consequences and applications.

Informally, the CLT says that for i.i.d observations X1, . . . , Xn with finite mean µ and variance σ2,

the quantity
√
n(X̄n − µ)/σ is approximately (or asymptotically) N(0, 1). Informally, the CLT also

implies that

1.
√
n(X̄n − µ) is approximately N(0, σ2).

2. X̄n is approximately N(µ, σ2/n).

79
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3. Sn = X1 + · · ·+Xn is approximately N(nµ, nσ2).

4. Sn − nµ is approximately N(0, nσ2).

5. (Sn − nµ)/(
√
nσ) is approximately N(0, 1).

It may be helpful here to note that

E(X̄n) = µ and var(X̄n) = σ2/n

and also

E(Sn) = nµ and var(Sn) = nσ2.

The most remarkable feature of the CLT is that it holds regardless of the distribution of Xi (as long

as they are i.i.d from a distribution F that has a finite mean and variance). Therefore the CLT is,

in this sense, distribution-free. This makes it possible to derive, using the CLT, statistical procedures

which are asymptotically valid without specific distributional assumptions. To illustrate the fact that

the distribution of Xi can be arbitrary, let us consider the following examples.

1. Bernoulli: Suppose Xi are i.i.d Bernoulli random variables with probability of success given by

p. Then EXi = p and var(Xi) = p(1− p) so that the CLT implies that
√
n(X̄n − p)/

√
p(1− p)

is approximately N(0, 1). This is actually called De Moivre’s theorem which was proved in 1733

before the general CLT. The general CLT stated above was proved by Laplace in 1810.

The CLT also implies here that Sn is approximately N(np, np(1 − p)). We know that Sn is

exactly distributed according to the Bin(n, p) distribution. We therefore have the following

result: When p is fixed and n is large, the Binomial distribution Bin(n, p) is approximately same

as the normal distribution with mean np and variance np(1− p).

2. Poisson: Suppose Xi are i.i.d Poi(λ) random variables. Then EXi = λ = var(Xi) so that the

CLT says that Sn = X1 + · · · + Xn is approximately Normal with mean nλ and variance nλ.

It is not hard to show here that Sn is exactly distributed as a Poi(nλ) random variable (prove

this!). We deduce therefore that when n is large and λ is held fixed, Poi(nλ) is approximately

same as the Normal distribution with mean nλ and variance nλ.

3. Gamma: Suppose Xi are i.i.d random variables having the Gamma(α, λ) distribution. Check

then that EXi = α/λ and var(Xi) = α/λ2. We deduce then, from the CLT, that Sn = X1 + · · ·+
Xn is approximately normally distributed with mean nα/λ and variance nα/λ2. We derived in

the last class that Sn is exactly distributed as Gamma(nα, λ). Thus when n is large and α and λ

are held fixed, the Gamma(nα, λ) is approximately closely by the N(nα/λ, nα/λ2) distribution

according to the CLT.

4. Chi-squared. Suppose Xi are i.i.d chi-squared random variables with 1 degree of freedom i.e.,

Xi = Z2
i for i.i.d standard normal random variables Z1, Z2, . . . . It is easy to check then that Xi is

a Gamma(1/2, 1/2) random variable. This gives that X1 + · · ·+Xn is exactly Gamma(n/2, 1/2).
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This exact distribution of X1 + · · ·+Xn is also called the chi-squared distribution with n degrees

of freedom (denoted by χ2
n). The CLT therefore implies that the χ2

n distribution is closely

approximated by N(n, 2n).

5. Cauchy. Suppose Xi are i.i.d standard Cauchy random variables. Then Xi’s do not have finite

mean and variance. Thus the CLT does not apply here. In fact, it can be proved here that

(X1 + · · ·+Xn)/n has the Cauchy distribution for every n.

3.1 Convergence in Distribution

In order to understand the precise meaning of the CLT, we need to understand the notion of convergence

in distribution.

Definition 3.1.1 (Convergence in Distribution). Suppose Y1, Y2, . . . are random variables and F is a

cdf. We say that Yn converges in distribution to F (or that Yn converges in Law to F ) as n→∞ if

P {Yn ≤ y} → F (y) as n→∞

for every y at which the cdf F is continuous. We denote this by Yn
L→F .

Put another way, if Fn denotes the cdf of Yn, then Yn
L→F if and only if

Fn(y)→ F (y) as n→∞

for every y that is a continuity point of F .

We shall use the following conventions when talking about convergence in distribution.

1. If F is the cdf of a standard distribution such as N(0, 1), then we shall take

Yn
L→N(0, 1)

to mean that Yn converges in distribution to the cdf of N(0, 1).

2. For a random variable Y , we shall take

Yn
L→Y

to mean that Yn converges in distribution to the cdf of Y .

Note that convergence in distribution is defined in terms of cdfs which makes it possible to talk about

a sequence of discrete random variables converging to a continuous distribution. For example, if Yn

has the discrete uniform distribution on the finite set {1/n, 2/n, . . . , 1}, then according to the above

definition Yn
L→Unif(0, 1). Note however that Yn is discrete but U(0, 1) is a continuous distribution.

Here are some things to remember about convergence in distribution:
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1. Note that the definition of Yn
L→Y only requires that Fn(y) converges to F (y) at every y which

is a continuity point of F (here Fn and F are the cdfs of Yn and Y respectively). If F is a

continuous cdf (such as a normal or a uniform cdf), then every point is a continuity point and

then Yn
L→F is the same as saying that

P {Yn ≤ y} → F (y) for every y.

But when F is a discrete cdf, then, for Yn
L→F , we do not insist on P{Yn ≤ y} converging to F (y)

at points y where F is discontinuous. This is advantageous in a situation such as the following.

Suppose that Yn = 1/n for every n ≥ 1 and Y = 0. Then it is easy to see that

P{Yn ≤ y} → P{Y ≤ y} for every y 6= 0.

However, the convergence above does not hold for y = 0 as P{Yn ≤ 0} = 0 for every n while

P{Y ≤ 0} = 1. Thus if insisted on P{Yn ≤ y} to converge to P{Y ≤ y} at all points y (as opposed

to only continuity points), then Yn = 1/n will not converge in distribution to Y = 0 (which will

be quite unnatural). This is one justification for including the restriction of continuity points of

F in the definition of convergence of distribution.

2. The statement Yn
L→Y might suggest that Yn is close to Y for large n. This is actually not true.

Yn
L→Y only says that the distribution of Yn is close to that of Y . It is actually more appropriate

to write Yn
L→F where F is the cdf of Y . For example, suppose that Y ∼ Unif(0, 1) and let Yn

be equal to Y for odd values of n and equal to (1− Y ) for even values of n. Then, clearly each

Yn ∼ Unif(0, 1) so that both Yn
L→Y as well as Yn

L→1−Y are true. But obviously Yn is not close

to Y for even n and Yn is not close to 1− Y for odd n.

3. When F is a continuous cdf (which is the case when F is, for example, the cdf of N(0, 1)), the

statement Yn
L→F is equivalent to

P {Yn ≤ y} → F (y) for every y.

In this case (i.e., when F is continuous), it also follows that

P {Y < y} → F (y) for every y

and also that

P {a ≤ Yn ≤ b} → P {a ≤ Y ≤ b} for every a and b.

Let us now get back to the Central Limit Theorem.

Theorem 3.1.2 (Central Limit Theorem). Suppose Xi, i = 1, 2, . . . are i.i.d with E(Xi) = µ and

var(Xi) = σ2 <∞. Then √
n
(
X̄n − µ

)
σ

L→N(0, 1)

where X̄n = (X1 + · · ·+Xn)/n.
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The precise implication of the CLT is that

P

{√
n
(
X̄n − µ

)
σ

≤ y

}
→ Φ(y) as n→∞

for every y ∈ R. Here Φ(·) is the cdf of N(0, 1). Equivalently, the CLT also implies that

P

{
a ≤
√
n
(
X̄n − µ

)
σ

≤ b

}
→ Φ(b)− Φ(a) as n→∞

for every a ≤ b. This is same as

P
{
X̄n −

bσ√
n
≤ µ ≤ X̄n −

aσ√
n

}
→ Φ(b)− Φ(a) as n→∞.

Suppose now that zα/2 > 0 is the point on the real line such that Φ(zα/2) = 1 − α/2 for 0 < α < 1.

Then taking a = −zα/2 and b = zα/2, we deduce that

P
{
X̄n −

zα/2σ√
n
≤ µ ≤ X̄n +

zα/2σ√
n

}
→ Φ(zα/2)− Φ(−zα/2) = 1− α as n→∞.

This means that [
X̄n −

zα/2σ√
n
, X̄n +

zα/2σ√
n

]
is an asymptotic 100(1−α) % confidence interval for µ (assuming that σ is known). The application of

the CLT ensures that no specific distributional assumptions on X1, X2, . . . are required for this result.

3.2 Moment Generating Functions

Our next goal is to prove the CLT. Our main tool for the proof is the Moment Generating Function

which is introduced now.

The Moment Generating Function (MGF) of a random variable X is defined as the function:

MX(t) := E
(
etX
)

for all t ∈ R for which E(etX) < ∞. Note that MX(0) = 1. There exist random variables (such as

those that are distributed according to the standard Caucy distribution) for which MX(t) is infinite

for every t 6= 0.

Example 3.2.1 (MGF of Standard Gaussian). If X ∼ N(0, 1), then its MGF can be easily computed

as follows:

E(etX) =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx =

1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2

)
exp(t2/2)dx = et

2/2.

Thus MX(t) = et
2/2 for all t ∈ R.
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The basic properties of MGFs are summarized below.

1) Factorization for Sums of Independent Random Variables: Suppose X1, . . . , Xn are in-

dependent, then

MX1+···+Xn
(t) = MX1

(t)MX2
(t) . . .MXn

(t).

This is a consequence of the fact that

Eet(X1+···+Xn) = E

(
n∏
i=1

etXi

)
=

n∏
i=1

EetXi ,

the last equality being a consequence of independence.

2) Scaling: Ma+bX(t) = eatMX(bt) for all t (a and b are constants here). This is easy to prove.

3) MGFs determine distributions: If two random variables have MGFs that are finite and

equal in an open interval containing 0, then they have the same distribution (i.e., same cdf everywhere).

An implication of this is that N(0, 1) is the same distribution which has MGF equal to et
2/2 for all t.

4) MGFs provide information on moments: For k ≥ 1, the number E(Xk) is called the kth

moment of the random variable X. Knowledge of the MGF allows one to easily read off the moments

of X. Indeed, the power series expansion of the MGF is:

MX(t) = EetX =

∞∑
k=0

tk

k!
E(Xk).

Therefore the kth moment of X is simply the coefficient of tk in the power series of expansion of MX(t)

multiplied by k!.

Alternatively, one can derive the moments E(Xk) as derivatives of the MGF at 0. Indeed, it is easy

to see that

M
(k)
X (t) =

dk

dtk
E(etX) = E

(
XketX

)
so that

M
(k)
X (0) = E(Xk).

In words, E(Xk) equals the kth derivative of MX at 0. Therefore

M ′X(0) = E(X) and M ′′X(0) = E(X2)

and so on.

As an example, we can deduce the moments of the standard normal distribution from the fact that

its MGF equals et
2/2. Indeed, because

et
2/2 =

∞∑
i=0

t2i

2ii!
,
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it immediately follows that the kth moment of N(0, 1) equals 0 when k is odd and equals

(2j)!

2jj!
when k = 2j.

The final important property of the MGF is the following.

5) Connection between MGFs and Convergence in Distribution: Suppose Y, Y1, Y2, . . .

are random variables that have finite MGFs in an open interval containing zero. Suppose that MYn
(t)

converges to MY (t) as n→∞ for every t in that open interval. Then Yn
L→Y .

We shall use the above property in the next class to prove the CLT.

3.3 Proof of the CLT using MGFs

Let us recall the basic setting. We have i.i.d random variables X1, X2, . . . which have mean µ and

finite variance σ2.

Let Yn :=
√
n(X̄n − µ)/σ. We need to show that Yn

L→N(0, 1). From the discussion on MGFs in

the previous section, it is clear that it is enough to show that

MYn
(t)→ et

2/2 for every t ∈ (−∞,∞).

Note that

Yn =
√
n
X̄n − µ
σ

=
1√
n

n∑
i=1

Xi − µ
σ

.

As a result,

MYn
(t) = M∑

i(Xi−µ)/(
√
nσ)(t) = M∑

i(Xi−µ)/σ(tn−1/2) =

n∏
i=1

M(Xi−µ)/σ(tn−1/2) =
(
M(tn−1/2)

)n
where M(·) is the MGF of (X1 − µ)/σ. We now use Taylor’s theorem to expand M(tn−1/2) up to a

quadratic polynomial around 0.

Let us first quickly recap Taylor’s theorem. This says that for a function f and two points x and

p in the domain of f , we can write

f(x) = f(p) + f ′(p)(x− p) +
f ′′(p)

2!
(x− p)2 + · · ·+ f (r)(p)

r!
(x− p)r +

f (r+1)(ξ)

(r + 1)!
(x− p)r+1

where ξ is some point that lies between x and p. This formula requires that f has (r + 1) derivatives

in an open interval containing p and x.

Using Taylor’s theorem with r = 1, x = tn−1/2 and p = 0, we obtain

M(tn−1/2) = M(0) +
t√
n
M ′(0) +

t2

2n
M ′′(sn)
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for some sn that lies between 0 and tn−1/2. This implies therefore that sn → 0 as n→∞. Note now

that M(0) = 0 and M ′(0) = E((X1 − µ)/σ) = 0. We therefore deduce that

MYn
(t) =

(
1 +

t2

2n
M ′′(sn)

)n
.

Note now that

M ′′(sn)→M ′′(0) = E
(
X1 − µ
σ

)2

= 1 as n→∞.

We therefore invoke the following fact:

lim
n→∞

(
1 +

an
n

)n
= ea provided lim

n→∞
an = a (3.1)

to deduce that

MYn
(t) =

(
1 +

t2

2n
M ′′(sn)

)n
→ et

2/2 = MN(0,1)(t).

This completes the proof of the CLT assuming the fact (3.1). It remains to prove (3.1). There exist

many proofs for this. Here is one. Write(
1 +

an
n

)n
= exp

(
n log

(
1 +

an
n

))
.

Let `(x) := log(1 + x). Taylor’s theorem for ` for r = 2 and p = 0 gives

`(x) = `(0) + `′(0)x+ `′′(ξ)
x2

2
= x− x2

2(1 + ξ)2

for some ξ that lies between 0 and x. Taking x = an/n, we get

`(an/n) = log(1 + (an/n)) =
an
n
− a2

n

2n2(1 + ξn)2

for some ξn that lies between 0 and an/n (and hence ξn → 0 as n→∞). As a result,(
1 +

an
n

)n
= exp

(
n log

(
1 +

an
n

))
= exp

(
an −

a2
n

2n(1 + ξn)2

)
→ ea

as n→∞. This proves (3.1).

This completes the proof of the CLT. Note that we have tacitly assumed that the moment generating

function of X1, . . . , Xn exists for all t. This is much stronger than the existence of the variance of Xi.

This proof does not work if the MGF is not finite. There exist more advanced proofs (for example,

which work with Characteristic functions as opposed to MGFs) which work only under the assumption

of finite variance. These are beyond the scope of this class.

3.4 Two Remarks on the CLT

A natural question with respect to the CLT is: why is N(0, 1) (or N(0, σ2)) arising as the limit for

sums of independent random variables (and not some other distribution)?

This can be explained in many ways. I will mention two common explanations below.
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1. The CLT computes the limiting distribution of

Yn =

∑n
i=1(Xi − µ)√

nσ
.

Consider now the following:

Y2n =

∑2n
i=1(Xi − µ)√

2nσ
=

∑n
i=1(Xi − µ)√

2
√
nσ

+

∑2n
i=n+1(Xi − µ)
√

2
√
nσ

=
Yn + Y ′n√

2

where Y ′n is an independent copy of Yn (independent copy means that Y ′n and Yn are independent

and have the same distribution). Thus if Yn
L→Y for a random variable Y , then it must hold that

Y
d
=
Y + Y ′√

2

where
d
= means “equality in distribution” meaning that Y and (Y + Y ′)/

√
2 have the same

distribution.

It is easy to see that if Y ∼ N(0, τ2), then Y and (Y + Y ′)/
√

2 have the same distribution.

Conversely and remarkably, the N(0, τ2) distribution is the only distribution which has this

property (harder to prove). This, and the fact that var(Yn) = 1 for all n, implies that N(0, 1) is

the only possible limiting distribution of Yn.

2. Another interesting interpretation and explanation for the CLT comes from information theoretic

considerations. Note that the random variables Yn have variance equal to 1 for each n. However,

as n increases, more variables Xi are involved in the formula for Yn. One can say therefore that

the “entropy” of Yn is increasing with n while the variance stays the same at 1. Now there is

a way of formalizing this notion of entropy and it is possible to show that the N(0, 1) is the

distribution that maximizes entropy subject to variance being equal to 1. This therefore says

that the entropy of Yn increases with n (as more variables Xi are involved in computing Yn) and

eventually as n→∞, one gets the maximally entropic distribution, N(0, 1), as the limit. There

is a way of making these precise.

3.5 Convergence in Distribution and Convergence in Proba-

bility

Let us recall the definition of convergence in distribution which states that Yn
L→Y if

Fn(y)→ F (y) as n→∞

for every y that is a continuity point of F . Here Fn is the cdf of Yn and F is the cdf of Y . Note that

only the cdf of the random variable Y is relevant for Yn
L→Y and so one often writes Yn

L→F .

The statement Yn
L→Y might suggest that Yn is close to Y for large n. This is actually not true.

Yn
L→Y only says that the distribution of Yn is close to that of Y . It is actually more appropriate to
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write Yn
L→F where F is the cdf of Y . For example, suppose that Y ∼ Unif(0, 1) and let Yn be equal

to Y for odd values of n and equal to (1−Y ) for even values of n. Then, clearly each Yn ∼ Unif(0, 1)

so that both Yn
L→Y as well as Yn

L→1− Y are true. But obviously Yn is not close to Y for even n and

Yn is not close to 1− Y for odd n.

Let us introduce another notion of convergence between random variables known as convergence

in probability.

Definition 3.5.1. We say that a sequence of random variables {Yn} converges to a random variable

Y (written Yn
P→Y ) if P{|Yn − Y | ≥ ε} converges to zero as n→∞ for every ε > 0.

In this class, we shall use convergence in probability only when the limiting random variable Y is

equal to a constant. In this case, it is interesting to note that the notions of convergence in probability

and convergence in distribution coincide. More specifically, for a constant c,

Yn
P→c ⇐⇒ Yn

L→c. (3.2)

To see this, note first that the cdf F (y) of the constant random variable c is equal to 0 for y < c and

1 for y > c. The definition of
L→ then implies that Yn

L→c if and only if P{Yn ≤ y} converges to 0 for

y < c and converges to 1 for y > c. This then is easily seen to be equivalent to :

P{Yn ≤ c− ε} → 0 and P{Yn > c+ ε} as n→∞ (3.3)

for every ε > 0. One can then check that this is equivalent to Yn
P→c which proves (3.2).

The following result presents an intuitively obvious simple fact about convergence in probability.

However, this result is slightly tricky to prove (you are welcome to try proving this; the result itself is

useful for us but not the proof).

Lemma 3.5.2. If X1, X2, . . . and Y1, Y2, . . . are two sequences of random variables satisfying Xn
P→c

and Yn
P→c for two constants c and d. Then

1. Xn + Yn
P→c+ d

2. Xn − Yn
P→c− d

3. XnYn
P→cd

4. Xn/Yn
P→c/d provided d 6= 0.
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3.6 Examples of Convergence in Probability

3.6.1 The Weak Law of Large Numbers

Theorem 3.6.1 (Weak Law of Large Numbers). Suppose X1, X2, . . . are independent and identically

distributed random variables. Suppose that E|Xi| <∞ so that EXi is well-defined. Let EXi = µ. Then

X̄n :=
X1 + · · ·+Xn

n

P→µ as n→∞.

Note that (3.6.1) holds with any distributional assumptions on the random variables X1, X2, . . .

(only the assumptions of independence and having identical distributions and the existence of the

expectations are sufficient). The weak law is easy to prove under the additional assumption that the

random variables have finite variances. This proof is based on the Chebyshev inequality which says

that

P
{∣∣X̄n − µ

∣∣ > ε
}
≤ var(X̄n)

ε2
. (3.4)

Because

var(X̄n) = var

(
X1 + · · ·+Xn

n

)
=

1

n2
var(X1 + · · ·+Xn) =

1

n2
n× var(X1) =

σ2

n
→ 0

as n→∞. As a result, from (3.4), we have that the left hand side of (3.4) converges to 0 which means

that X̄n
P→µ.

3.6.2 A sufficient condition for convergence in probability in terms of mean

and variance

It follows more generally that if Y1, Y2, . . . is a sequence of random variables for which EYn converges to

some parameter θ and for which var(Yn) converges to zero, then Yn
P→θ. This is given in the following

result.

Lemma 3.6.2. Suppose Y1, Y2, . . . is a sequence of random variables such that

1. EYn → θ as n→∞

2. var(Yn)→ 0 as n→∞.

Then Yn
P→θ as n→∞.

Proof. Write Yn = EYn + (Yn − EYn). Chebyshev’s inequality (and the fact that var(Yn)→∞) gives

P {|Yn − EYn| > ε} ≤ var(Yn)

ε2
→ 0

for every ε > 0 so that Yn − EYn
P→0. This and EYn → θ implies (via the first assertion of Lemma

3.5.2) that Yn = EYn + (Yn − EYn)
P→θ.
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3.6.3 Consistency and examples

In mathematical statistics, when Yn
P→θ, we say that Yn is a consistent estimator for θ or simply that

Yn is consistent for θ. The Weak Law of Large Numbers simply says that X̄n is consistent for E(X1).

More generally, Lemma 3.6.2 states that Yn is consistent for θ if E(Yn) → 0 and var(Yn) → 0. The

following examples present two more situations where consistency holds.

Example 3.6.3. Suppose X1, X2, . . . are i.i.d having the uniform distribution on (0, θ) for a fixed

θ > 0. Then the maximum order statistic X(n) := max(X1, . . . , Xn) is a consistent estimator for θ

i.e., X(n)
P→θ. We can see this in two ways. The first way is to use the Result (Lemma 3.6.2) above and

compute the mean and variance of X(n). X(n)/θ is the largest order statistic from an i.i.d sample of

size n from Unif(0, 1) and, as we have seen in the last class, X(n)/θ has the Beta(n, 1) distribution.

Therefore, using the mean and variance formulae for the Beta distribution (see wikipedia for these

formulae), we have

E
(
X(n)

θ

)
=

n

n+ 1

and

var

(
X(n)

θ

)
=

n

(n+ 1)2(n+ 2)
.

which gives

EX(n) =
nθ

n+ 1

and

var(X(n)) =
nθ2

(n+ 1)2(n+ 2)
.

It is clear from these that EX(n) converges to θ and var(X(n)) converges to 0 respectively as n → ∞
which implies (via Lemma 3.6.2) that X(n) converges in probability to θ.

There is a second (more direct) way to see that X(n)
P→θ. This involves writing

P{|X(n) − θ| ≥ ε} = P{X(n) ≤ θ − ε} = P{Xi ≤ θ − ε for all i} =
(

1− ε

θ

)n
which clearly goes to zero as n→∞ (note that ε and θ are fixed). This, by the definition of convergence

in probability, shows that X(n)
P→θ.

Example 3.6.4. Suppose X1, X2, . . . are i.i.d observations with mean µ and finite variance σ2. Then

σ̂2
n :=

1

n

n∑
i=1

(
Xi − X̄n

)2
is a consistent estimator for σ2. To see this first note that

σ̃2
n :=

1

n

n∑
i=1

(Xi − µ)
2

converges in probability to σ2 as n→∞ by the Weak Law of Large Numbers. This is because σ̃2
n is the

average of i.i.d random variables Yi = (Xi − µ)2 for i = 1, . . . , n. The Weak Law therefore says that

σ̃2
n converges in probability to EY1 = E(X1 − µ)2 = σ2.
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Now to argue that σ̂2
n
P→σ2, the idea is simply to relate σ̂2

n to σ̃2
n. This can be done as follows:

σ̂2
n =

1

n

n∑
i=1

(
Xi − µ− X̄n + µ

)2
=

1

n

n∑
i=1

(Xi − µ)2 + (X̄n − µ)2 − 2

(
1

n

n∑
i=1

Xi − µ

)
(X̄n − µ)

=
1

n

n∑
i=1

(Xi − µ)2 −
(
X̄n − µ

)2
The first term on the right hand side above converges to σ2 by the Weak Law of Large Numbers (note

that σ2 = E(X1 − µ)2). The second term converges to zero because X̄n
P→µ (and Lemma 3.5.2). We

use Lemma 3.5.2 again to conclude that σ̂2
n
P→σ2. Note that we have not assumed any distributional

assumptions on X1, X2, . . . , Xn (the only requirement is they have mean zero and variance σ2).

By the way, we could have also defined σ̂n by

σ̂2
n :=

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
with the factor of 1/(n − 1) as opposed to 1/n. This will also converge in probability to σ2 simply

because
1

n− 1

n∑
i=1

(
Xi − X̄n

)2
=

(
1

n

n∑
i=1

(
Xi − X̄n

)2)( n

n− 1

)
.

Since the first term above converges in probability to σ2 and the second term converges to one, the

product converges in probability to σ2 (by Lemma 3.5.2).

3.7 Slutsky’s Theorem, Continuous Mapping Theorem and

Applications

As we have seen before, an important consequence of the CLT from the statistical point of view is

that it gives asymptotically valid confidence intervals for a mean parameter µ. Indeed, given i.i.d

observations X1, X2, . . . with mean µ and finite variance σ2, we have, as a consequence of the CLT,

P

{
a ≤
√
n
(
X̄n − µ

)
σ

≤ b

}
→ Φ(b)− Φ(a) as n→∞

for every a ≤ b. This is same as

P
{
X̄ − bσ√

n
≤ µ ≤ X̄ − aσ√

n

}
→ Φ(b)− Φ(a) as n→∞.

Suppose now that zα/2 > 0 is the point on the real line such that Φ(zα/2) = 1 − α/2 for 0 < α < 1.

Then taking a = −zα/2 and b = zα/2, we deduce that

P
{
X̄ −

zα/2σ√
n
≤ µ ≤ X̄ +

zα/2σ√
n

}
→ Φ(zα/2)− Φ(−zα/2) = 1− α as n→∞.
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This means that [
X̄ −

zα/2σ√
n
, X̄ +

zα/2σ√
n

]
(3.5)

is an asymptotic 100(1− α) % confidence interval for µ (assuming that σ is known). The application

of the CLT ensures that no distributional assumptions on X1, X2, . . . are required for this result.

The problem with the interval (3.5) is that it depends on σ which will be unknown in a statistical

setting (the only available data will be X1, . . . , Xn). A natural idea is to replace σ by a natural estimate

such as

σ̂2
n :=

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
(3.6)

This will result in the interval: [
X̄ −

zα/2σ̂n√
n

, X̄ +
zα/2σ̂n√

n

]
(3.7)

Slutsky’s theorem stated next will imply that

√
n(X̄n − µ)

σ̂n

L→N(0, 1) (3.8)

which will mean that (3.7) is also an asymptotic 100(1− α)% confidence interval for µ.

Theorem 3.7.1 (Slutsky’s theorem). If Yn
L→Y , An

P→a and Bn
P→b, then

An +BnYn
L→a+ bY

.

Another useful result that we shall often use is the continuous mapping theorem:

Theorem 3.7.2 (Continuous Mapping Theorem). 1. Suppose Yn
L→Y and f is a function that is

continuous in the range of values of Y , then f(Yn)
L→f(Y ).

2. Suppose Yn
P→c and f is continuous at c, then f(Yn)

P→f(c).

One immediate application of these two results is (3.8) as shown below.

Example 3.7.3. Let X1, . . . , Xn be i.i.d observations with mean µ and variance σ2. We need to look

at the limiting distribution of:

Tn :=

√
n(X̄n − µ)

σ̂n
. (3.9)

where σ̂n is as defined in (3.6). Note that

√
n(X̄n − µ)

σ̂n
=

√
n(X̄n − µ)

σ

σ

σ̂n
=

√
n(X̄n − µ)

σ

√
σ2

σ̂2
n

.

The first term on the right hand side above converges in probability to N(0, 1) by the usual CLT. For the

second term, note that σ2
n
P→σ2 (as proved in Example 3.6.4) and so applying the continuous mapping
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theorem with f(x) =
√
σ2/x implies that f(σ̂2

n)
P→1. This gives that the second term above converges in

probabilty to 1. We can thus use Slutsky’s theorem to observe that, since the first term above converges

to N(0, 1) in distribution and the second term converges in probability to 1, the random variable Tn

converges in distribution to N(0, 1). As a result,[
X̄ −

zα/2σ̂n√
n

, X̄ +
zα/2σ̂n√

n

]
is still a 100(1−α) % asymptotically valid C.I for µ. Note that we have not assumed any distributional

assumptions on X1, . . . , Xn. In particular, the data can be non-Gaussian.

The random variable Tn in (3.9) is called the sample t-statistic. The name comes from the t-

distrbution or t-density. For a given integer k ≥ 1, the t-density with k degrees of freedom is the

density of the random variable
Z√
A/k

where Z ∼ N(0, 1) , A has the chi-squared density with k degrees (i.e., A ∼ χ2
k) and Z and A are

independent random variables.

Now when X1, . . . , Xn are i.i.d N(µ, σ2), it can be shown (we will see how to do this later) that

√
n
(
X̄ − µ

)
σ

∼ N(0, 1) and

∑n
i=1(Xi − X̄n)2

σ2
∼ χ2

n−1

and moreover the above two random variables are independent. As a result, the t-statistic Tn has the

t-distribution with n− 1 degrees of freedom when X1, . . . , Xn are i.i.d N(µ, σ2).

Therefore

1. When X1, . . . , Xn are i.i.d N(µ, σ2), the sample t-statistic Tn has the t-distribution with n − 1

degrees of freedom.

2. When X1, . . . , Xn are i.i.d with mean µ and finite variance σ2 (no distributional assumption),

the t-statistic, Tn converges in distribution to N(0, 1).

It may be helpful to note in connection with the above that the t-distribution with k degrees of freedom

itself converges in distribution to N(0, 1) as k →∞.

Example 3.7.4 (Bernoulli Parameter Estimation). Suppose X1, X2, . . . , Xn are i.i.d having the Ber(p)

distribution. The CLT then gives ∑
iXi − np√
np(1− p)

L→N(0, 1)

which gives

P

{
−zα/2 ≤

∑
iXi − np√
np(1− p)

≤ zα/2

}
→ 1− α as n→∞.
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This will not directly lead to a C.I for p. To do this, it is natural to replace p in the denominator by

X̄. This can be done because ∑
iXi − np√

nX̄n(1− X̄n)
=

∑
iXi − np√
np(1− p)

√
p(1− p)

X̄n(1− X̄n)

and by Slutsky’s theorem, the above random variables converge in distribution to N(0, 1). To give more

details, we are using the fact that the first random variable above converges in distribution to N(0, 1)

by the CLT and the second random variable converges in probabiliity to 1 (basically X̄n
P→µ and then

use the continuous mapping theorem). This allows us to deduce that

P

{
−zα/2 ≤

∑
iXi − np√

nX̄n(1− X̄n)
≤ zα/2

}
→ 1− α as n→∞.

so that [
X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
is an asymptotically valid 100(1− α) % C.I for p.

Example 3.7.5 (Poisson Mean Estimation). Suppose X1, X2, . . . , Xn are i.i.d having the Poi(λ) dis-

tribution. The CLT then gives ∑
iXi − nλ√

nλ

L→N(0, 1)

which gives

P
{
−zα/2 ≤

∑
iXi − nλ√

nλ
≤ zα/2

}
→ 1− α as n→∞.

It is not easy to convert this into a C.I for λ. This will become much simpler if we can replace the λ

in the denominator by X̄. This can be done because∑
iXi − nλ√
nX̄n

=

∑
iXi − nλ√

nλ

√
λ

X̄n

and by Slutsky’s theorem, the above random variables converge in distribution to N(0, 1) (we are using

here that X̄n
P→λ which is a consequence of the Weak Law of Large Numbers). This allows us to deduce

that

P

{
−zα/2 ≤

∑
iXi − nλ√
nX̄n

≤ zα/2

}
→ 1− α as n→∞.

so that [
X̄n − zα/2

√
X̄n

n
, X̄n + zα/2

√
X̄n

n

]
is an asymptotically valid 100(1− α) % C.I for λ.

Example 3.7.6 (Asymptotic Distribution of sample variance). Let X1, X2, . . . be i.i.d with mean µ

and finite variance σ2. Let

σ̂2
n :=

1

n

n∑
i=1

(Xi − X̄)2.
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We know that σ̂2
n
P→σ2. Can we also find the limiting distribution of

√
n
(
σ̂2
n − σ2

)
?

To do this, write

√
n
(
σ̂2 − σ2

)
=
√
n

(
1

n

n∑
i=1

(Xi − X̄)2 − σ2

)

=
√
n

(
1

n

n∑
i=1

(Xi − µ− X̄ + µ)2 − σ2

)

=
√
n

(
1

n

n∑
i=1

(Xi − µ)2 − σ2

)
−
√
n
(
X̄n − µ

)2
.

Now by the CLT,

√
n

(
1

n

n∑
i=1

(Xi − µ)2 − σ2

)
L→N(0, τ2)

where τ2 = var((X1 − µ)2) (we are assuming, of course, that τ2 <∞) and, by Slutsky’s theorem,

√
n(X̄n − µ)2 =

{√
n
(
X̄n − µ

)} (
X̄n − µ

) P→(N(0, 1)) · (0) = 0

Thus by Slutsky’s theorem again, we obtain

√
n
(
σ̂2 − σ2

) L→N(0, τ2).

Another easy consequence of Slutsky’s theorem is the following.

Fact: If rn(Tn − θ)
L→Y for some rate rn →∞ (typically rn =

√
n). Then Tn

P→θ.

This immediately follows from Slutsky’s theorem because

Tn − θ =

(
1

rn

)
rn(Tn − θ)

P→0.Y = 0

as 1/rn → 0 and rn(Tn − θ)
L→Y .

Here is a simple consequence of the CLT and the continuous mapping theorem. Suppose X1, X2, . . .

are i.i.d random variables with mean µ and finite variance σ2. Then the CLT says that
√
n(X̄ − µ)

σ

L→N(0, 1).

The continuous mapping theorem then gives

n(X̄ − µ)2

σ2

L→χ2
1.

3.8 Delta Method

Delta Method is another general statement about convergence in distribution that has interesting

applications when used in conjunction with the CLT.
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Theorem 3.8.1 (Delta Method). If
√
n(Tn − θ)

L→N(0, τ2), then

√
n(g(Tn)− g(θ))

L→N(0, τ2(g′(θ))2)

provided g′(θ) exists and is non-zero.

Informally, the Delta method states that if Tn has a limiting Normal distribution, then g(Tn) also

has a limiting normal distribution and also gives an explicit formula for the asymptotic variance of

g(Tn). This is surprising because g can be linear or non-linear. In general, non-linear functions of

normal random variables do not have a normal distribution. But the Delta method works because

under the assumption that
√
n(Tn − θ)

L→N(0, τ2), it follows that Tn
P→θ so that Tn will be close to θ

at least for large n. In a neighborhood of θ, the non-linear function g can be approximated by a linear

function which means that g effectively behaves like a linear function. Indeed, the Delta method is a

consequence of the approximation:

g(Tn)− g(θ) ≈ g′(θ) (Tn − θ) .

Here is an application of the Delta method.

Example 3.8.2. Suppose 0 ≤ p ≤ 1 is a fixed parameter and suppose that we want to estimate p2.

Let us assume that we have two choices for estimating p2:

1. We can estimate p2 by X/n where X is the number of successes in n binomial trials with proba-

bility p2 of success.

2. We can estimate p2 by (Y/n)2 where Y is the number of successes in n binomial trials with

probability p of success.

Which of the above is a better estimator of p2 and why? The Delta method provides a simple answer

to this question. Note that, by the CLT, we have

√
n

(
X

n
− p2

)
L→N(0, p2(1− p2))

and that
√
n

(
Y

n
− p
)

L→N(0, p(1− p)).

The Delta method can now be used to convert the above limiting statement into an accuracy statement

for (Y/n)2 as:

√
n

((
Y

n

)2

− p2

)
L→N(0, 4p(1− p)p2).

We deduce therefore that (X/n) is a better estimator of p2 compared to (Y/n)2 provided

p2(1− p2) < 4p(1− p)p2

which is equivalent to p > 1/3. Thus when p > 1/3, X/n is a better estimator of p2 compared to

(Y/n)2 and when p < 1/3, (Y/n)2 is the better estimator.
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3.9 Application of the Delta Method to Variance Stabilizing

Transformations

3.9.1 Motivating Variance Stabilizing Transformations

The Delta method can be applied to variance stabilizing transformations. For example, consider the

example where we observe data X1, X2, . . . , Xn that are i.i.d having the Ber(p) distribution. The CLT

then states that
√
n
(
X̄n − p

) L→N(0, p(1− p)). (3.10)

It is inconvenient that p also appears in the variance term. This presents an annoyance while finding

confidence intervals for p. One way around this problem is to observe that, by Slutsky’s theorem,
√
n
(
X̄n − p

)√
X̄n(1− X̄n)

L→N(0, 1).

This was done in the last class. While this method is okay, one might still wonder if it is possible to

obtain a function f having the property that

√
n
(
f(X̄n)− f(p)

) L→N(0, c2)

where the variance c2 does not depend on p. Such a function f would be called a variance stabilizing

transformation.

For another example, consider the case where we observe data X1, . . . , Xn that are i.i.d having the

Poi(λ) distribution. The CLT then states that

√
n
(
X̄n − λ

) L→N(0, λ). (3.11)

The fact that λ appears in the variance term above presents an annoyance while finding confidence

intervals for λ. As done in last class, we can get around this by observing (via Slutsky’s theorem) that
√
n(X̄n − λ)√

X̄n

L→N(0, 1).

While this method is okay, one might still wonder if it is possible to obtain a function f having the

property that
√
n
(
f(X̄n)− f(λ)

) L→N(0, c2)

where the variance c2 does not depend on λ. If one could indeed find such an f , it will be referred to

as a variance stabilizing transformation.

3.9.2 Construction of the Variance Stabilizing Transformation

More generally, given the result:
√
n (Tn − θ)

L→N(0, τ2(θ)) (3.12)
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where the variance τ2(θ) depends on θ, is it possible to find a transformation f for which

√
n (f(Tn)− f(θ))

L→N(0, c2) (3.13)

where the variance c2 does not depend on θ. We would then say that the function f is a variance

stabilizing transformation.

This is possible to do via the Delta method. Indeed, Delta method states that

√
n (f(Tn)− f(θ))

L→N(0, (f ′(θ))2τ2(θ))

and so, in order to guarantee (3.13), we only have to choose f so that

f ′(θ) =
c

τ(θ)
(3.14)

which means that f(θ) =
∫

c
τ(θ)dθ (indefinite integral).

3.9.3 Back to the Bernoulli Example

Here we have X1, . . . , Xn which are i.i.d having the Ber(p) distribution so that by CLT

√
n(X̄n − p)

L→N(0, p(1− p)).

Therefore (3.12) holds with Tn = X̄n, θ = p and τ2(θ) = θ(1 − θ). The formula (3.13) says therefore

that we choose f as

f ′(θ) =
c√

θ(1− θ)

which means that f(θ) = 2c arcsin(
√
θ). The Delta method then guarantees that

2
√
n
(

arcsin(
√
X̄n)− arcsin(

√
p)
)
L→N(0, 1).

This implies that

P
{∣∣∣arcsin(

√
X̄n)− arcsin(

√
p)
∣∣∣ ≤ zα/2

2
√
n

}
→ 1− α as n→∞

so that [
sin

(
arcsin(

√
X̄n)−

zα/2

2
√
n

)
, sin

(
arcsin(

√
X̄n) +

zα/2

2
√
n

)]
is an approximate 100(1− α)% C.I for

√
p. The lower end point of the above interval can be negative

(note that arcsin(
√
X̄n) takes values between 0 and π/2 but arcsin(

√
X̄n)− zα/2/(2

√
n) can be neg-

ative) while
√
p is always positive. So we can replace the lower end point by 0 if it turns out to be

negative. Using the notation x+ = max(x, 0), we see that[(
sin

(
arcsin(

√
X̄n)−

zα/2

2
√
n

))
+

, sin

(
arcsin(

√
X̄n) +

zα/2

2
√
n

)]
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is an approximate 100(1 − α)% C.I for
√
p. To get a confidence interval for p, we can simply square

the two end points of the above interval. This allows us to deduce that[
sin2

(
arcsin(

√
X̄n)−

zα/2

2
√
n

)
+

, sin2

(
arcsin(

√
X̄n) +

zα/2

2
√
n

)]

is an approximate 100(1− α)% C.I for p.

3.9.4 Back to the Poisson Example

Let us now get back to the Poisson distribution where we have X1, . . . , Xn are i.i.d Poi(λ) and CLT

gives (3.11). Therefore Tn = X̄n, θ = λ and τ2(θ) = θ. The equation (3.14) suggests that we choose f

as

f ′(θ) =
c√
θ

where means that f(θ) = 2c
√
θ. The Delta method then guarantees that

2
√
n
(√

X̄n −
√
λ
)
L→N(0, 1). (3.15)

Therefore the square-root transformation applied to X̄n ensures that the resulting variance (of
√
X̄n)

does not depend on λ (in a limiting sense).

The fact (3.15) will lead to approximate confidence intervals for λ. Indeed, (3.15) immediately

implies that

P
{∣∣∣√X̄n −

√
λ
∣∣∣ ≤ zα/2

2
√
n

}
→ 1− α as n→∞

so that [√
X̄n −

zα/2

2
√
n
,
√
X̄n +

zα/2

2
√
n

]
is an approximate 100(1 − α) % C.I for

√
λ. Note that the lower end point of the above interval can

be negative while λ is always positive. So we can replace the lower end point by 0 if it turns out to be

negative. Again using the notation x+ := max(x, 0), we see that[(√
X̄n −

zα/2

2
√
n

)
+

,
√
X̄n +

zα/2

2
√
n

]

is an approximate 100(1− α) % C.I for
√
λ. To get a confidence interval for λ, we can simply square

the two end points of the above interval. This allows us to deduce that[(√
X̄n −

zα/2

2
√
n

)2

+

,

(√
X̄n +

zα/2

2
√
n

)2
]

(3.16)

is an approximate 100(1− α) % C.I for λ.
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This interval can be compared with the interval that was obtained in the previous lecture using

Slutsky’s theorem. That interval was[
X̄n − zα/2

√
X̄n

n
, X̄n + zα/2

√
X̄n

n

]
. (3.17)

The intervals (3.16) and (3.17) may look different but they are actually quite close to each other for

large n. To see this, note that the difference between the upper bounds of these two intervals is at

most z2
α/2/(4n) which is very small when n is large (the same is true of the lower bounds).

3.9.5 Chi-squared Example

Let us now look at another example where the variance stabilizing transformation is the log function.

Suppose X1, X2, . . . are i.i.d such that Xi/σ
2 has the chi-squared distribution with one degree of

freedom. In other words,

Xi ∼ σ2χ2
1.

Because E(X1) = σ2 and var(X1) = 2σ4, the CLT says that

√
n
(
X̄n − σ2

) L→N(0, 2σ4). (3.18)

Can we now find a function f such that f(X̄n) has a limiting variance that is independent of σ2?

Because (3.18) has the form (3.12) with Tn = X̄n, θ = σ2 and τ2(θ) = 2θ2, we can use (3.14) which

suggests taking f so that f ′(θ) = c/τ(θ) = c/(
√

2θ). This gives

f(θ) =
c√
2

(log θ)

allowing us to conclude that

√
n

(
1√
2

log
(
X̄n

)
− 1√

2
log(σ2)

)
L→N(0, 1).

Square-roots and logarithms are common transformations that are applied to data when there

is varying variance (see, for example, https://en.wikipedia.org/wiki/Variance-stabilizing_

transformation).

3.9.6 Geometric Example

Suppose X1, X2, . . . are i.i.d having the Geometric distribution with parameter p. Recall that X has

the Geo(p) distribution if X takes the values 1, 2, . . . with the probabilities

P{X = k} = (1− p)k−1p for k = 1, 2, . . . .

https://en.wikipedia.org/wiki/Variance-stabilizing_transformation
https://en.wikipedia.org/wiki/Variance-stabilizing_transformation
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The number of independent tosses (of a coin with probability of heads p) required to get the first head

has the Geo(p) distribution.

I leave as an easy exercise to verify that for X ∼ Geo(p)

EX =
1

p
and var(X) =

1− p
p2

.

The CLT therefore states that for i.i.d observations X1, X2, . . . having the Geo(p) distribution, we

have
√
n
(
X̄n − (1/p)

) L→N(0,
1− p
p2

).

What is the variance stabilizing transformation for X̄n i.e., what is the transformation f for which

f(X̄n) has constant asymptotic variance? To answer this, note that the above displayed equation is of

the same form as (3.12) with Tn = X̄n, θ = 1/p and τ2(θ) = (1− p)/p2. We then write τ(θ) in terms

of θ as (note that p = 1/θ)

τ(θ) =

√
1− p
p2

=

√
1− (1/θ)

1/θ2
=
√
θ(θ − 1).

The variance stabilizing transformation is therefore given by

f(θ) =

∫
c

τ(θ)
dθ =

∫
c√

θ(θ − 1)
dθ = 2c log

(√
θ +
√
θ − 1

)
Therfore f(θ) = 2c log(

√
θ +
√
θ − 1) is the variance stabilizing transformation here and

√
n
(
f(X̄n)− f(1/p)

) L→N(0, c2).

3.10 Delta Method when g′(θ) = 0

Suppose that
√
n(Tn − θ)

L→N(0, τ2). We are now interested in the asymptotic distribution of g(Tn).

The Delta method stated that when g′(θ) 6= 0, we have

√
n (g(Tn)− g(θ))

L→N(0, τ2(g′(θ))2). (3.19)

This is essentially a consequence of the Taylor approximation: g(Tn)g(θ) ≈ g′(θ)(Tn−θ). What would

happen if g′(θ) = 0? In this case, the statement (3.19) will still be correct if the right hand side is

interpreted as the constant 0 i.e., when g′(θ) = 0, the following holds:

√
n (g(Tn)− g(θ))

P→0.

However this only states that g(Tn) − g(θ) is of a smaller order compared to n−1/2 but does not

precisely say what the exact order is and what the limiting distribution is when scaled by the correct

order. To figure out these, we need to consider the higher order terms in the Taylor expansion for

g(Tn) around θ. Assume, in the sequel, that g′(θ) = 0 and that g′′(θ) 6= 0.
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In this case, we do a two term Taylor approximation:

g(Tn)− g(θ) ≈ g′(θ)(Tn − θ) +
1

2
g′′(θ)(Tn − θ)2 =

1

2
g′′(θ)(Tn − θ)2

As a result, we have

n(g(Tn)− g(θ)) ≈ 1

2
g′′(θ)n(Tn − θ)2.

Now by the continuous mapping theorem:

n(Tn − θ)2 L→τ2χ2
1

and hence we have

n(g(Tn)− g(θ))
L→1

2
g′′(θ)τ2χ2

1. (3.20)

Therefore when g′(θ) = 0 and g′′(θ) 6= 0, the right scaling factor is n and the limiting distribution is a

scaled multiple of χ2
1 (note that the limit is not a normal distribution).

Example 3.10.1. Suppose X1, X2, . . . , Xn are i.i.d Ber(p) random variables. Suppose we want to

estimate p(1−p). The natural estimator is X̄n(1−X̄n). What is the limiting behavior of this estimator?

This can be answered by the Delta method by taking g(θ) = θ(1 − θ). Note first that by the usual

CLT,
√
n
(
X̄n − p

) L→N(0, p(1− p)).

For g(θ) = θ(1− θ), note that

g′(θ) = 1− 2θ

so that g′(p) 6= 0 when p 6= 1/2. Thus when p 6= 1/2, the Delta method gives

√
n
(
g(X̄n)− g(p)

) L→N(0, τ2(g′(θ))2) = N(0, p(1− p)(1− 2p)2).

But when p = 1/2, we have to use (3.20) instead of (3.19) and this gives (note that g′′(p) = −2)

n
(
g(X̄n)− g(1/2)

) L→1

2
(−2)p(1− p)χ2

1 = −1

4
χ2

1.



Chapter 4

Second Order Theory of Random

Vectors

Here we shall study random vectors and some of their properties which only involved their means and

covariances. These include the notions of the best linear predictor and partial correlation and are

known as second order properties.

4.1 Random Vectors

In this section, we view a finite number of random variables as a random vector and go over some

basic formulae for the mean and covariance of random vectors.

A random vector is a vector whose entries are random variables. Let Y = (Y1, . . . , Yn)T be a

random vector. Its expectation EY is defined as a vector whose ith entry is the expectation of Yi i.e.,

EY = (EY1,EY2, . . . ,EYn)T . The covariance matrix of Y , denoted by Cov(Y ), is an n × n matrix

whose (i, j)th entry is the covariance between Yi and Yj . Two important but easy facts about Cov(Y )

are:

1. The diagonal entries of Cov(Y ) are the variances of Y1, . . . , Yn. More specifically the (i, i)th

entry of the matrix Cov(Y ) equals var(Yi).

2. Cov(Y ) is a symmetric matrix i.e., the (i, j)th entry of Cov(Y ) equals the (j, i) entry. This

follows because Cov(Yi, Yj) = Cov(Yj , Yi).

One can also check:

103
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1. E(AY + c) = AE(Y ) + c for every deterministic matrix A and every deterministic vector c.

2. Cov(AY + c) = ACov(Y )AT for every deterministic matrix A and every deterministic vector c.

Example 4.1.1 (White Noise). Random variables Z1, . . . , Zp are said to form white noise if they have

mean zero, variance one and if they are uncorrelated. Let Z be the random vector with components

Z1, . . . , Zp. Then it is clear that the components of Z are white noise if and only if EZ = 0 and

Cov(Z) = Ip (here Ip is the p× p identity matrix).

As a consequence of the second formula above, we saw that

var(aTY ) = aTCov(Y )a for every p× 1 vector a.

Because variance is always nonnegative, this means that Cov(Y ) satisfies the following property:

aTCov(Y )a = var(aTY ) ≥ 0 for every p× 1 vector a. (4.1)

Now recall the following definition from linear algebra:

Definition 4.1.2. Let Σ denote a p× p symmetric matrix.

1. Σ is said to be positive semi-definite if aTΣa ≥ 0 for every a ∈ Rp.

2. Σ is said to be positive definite if aTΣa > 0 for every a ∈ Rp with a 6= 0.

From this definition and the fact (4.1), it follows that the covariance matrix Cov(Y ) of every

random vector Y is symmetric and positive semi-definite.

However Cov(Y ) is not necessarily positive definite. To see this, just take p = 2 and Y = (Y1,−Y1)T

for a random variable Y1. Then with a = (1, 1), it is easy to see that aTCov(Y )a = V ar(aTY ) =

V ar(Y1 + Y2) = 0.

But if Cov(Y ) is not positive definite, then there exists a 6= 0 such that V ar(aTY ) = aTCov(Y )a =

0. This must necessarily mean that aT (Y − µ) = 0 where µ = E(Y ). In other words, the random

variables Y1, . . . , Yn have to satisfy a linear equation. We can therefore say that: Cov(Y ) is positive

definite if and only if the random variables Y1, . . . , Yn do not satisfy a linear equation.

4.2 Detour – Spectral Theorem for Symmetric Matrices

Since Cov(Y ) is a symmetric and positive semi-definite matrix, some standard facts about such matrices

are useful while working with covariance matrices. In particular, we shall make some use of the spectral

theorem for symmetric matrices. Before looking at the spectral theorem, we need to recall the notion

of an orthonormal basis.
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4.2.1 Orthonormal Basis

Definition 4.2.1 (Orthonormal Basis). An orthonormal basis in Rp is a set of p vectors u1, . . . , up

in Rp having the following properties:

1. u1, . . . , up are orthogonal i.e., 〈ui, uj〉 := uTi uj = 0 for i 6= j.

2. Each ui has unit length i.e., ‖ui‖ = 1 for each i.

The simplest example of an orthonormal basis is e1, . . . , en where ei is the vector that 1 in the ith

position and 0 at all other positions.

Every orthonormal basis u1, . . . , up satisfies the following properties:

1. u1, . . . , up are linearly independent and therefore form a basis of Rp (this explains the presence

of the word “basis” in the definition of orthonormal basis).

To see why this is true, suppose that

α1u1 + · · ·+ αpup = 0 for some α1, . . . , αp. (4.2)

Taking the dot product of both sides of the above equality with uj (for a fixed j), we get

0 =

〈
uj ,

p∑
i=1

αiui

〉
=

p∑
i=1

αi 〈uj , ui〉 = αj

because 〈uj , ui〉 is non-zero only when i = j and 〈uj , uj〉 = 1. Thus (4.2) implies that αj = 0 for

every j = 1, . . . , p and thus u1, . . . , up are linearly independent and consequently form a basis of

Rp.

2. The following formula holds for every vector x ∈ Rp:

x =

p∑
i=1

〈x, ui〉ui. (4.3)

To see why this is true, note first that the previous property implies that u1, . . . , up form a basis

of Rp so that every x ∈ Rp can be written as a linear combination

x = β1u1 + · · ·+ βpup

of u1, . . . , up. Now take dot product with uj on both sides to prove that βj = 〈x, uj〉.

3. The formula

u1u
T
1 + · · ·+ upu

T
p = Ip (4.4)

holds where Ip is the p × p identity matrix. To see why this is true, note that (4.3) can be

rewritten as

x =

p∑
i=1

ui 〈x, ui〉 =

p∑
i=1

uiu
T
i x =

(
p∑
i=1

uiu
T
i

)
x.

Since both sides of the above identity are equal for every x, we must have (4.4).
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4. Suppose U is the p× p matrix whose columns are the vectors u1, . . . , up. Then

UTU = UUT = Ip.

To see why this is true, note that the (i, j)th entry of UTU equals uTi uj which (by definition

of orthonormal basis) is zero when i 6= j and 1 otherwise. On the other hand, the statement

UUT = Ip is the same as (4.4).

5. For every vector x ∈ Rp, the formula

‖x‖2 =

p∑
i=1

〈x, ui〉2

holds. To see why this is true, just write

‖x‖2 = xTx = xTUUTx = ‖UTx‖2 =

p∑
i=1

(uTi x)2 =

p∑
i=1

〈x, ui〉2 .

4.2.2 Spectral Theorem

Theorem 4.2.2 (Spectral Theorem). Suppose Σ is a p × p symmetric matrix. Then there exists an

orthonormal basis u1, . . . , up and real numbers λ1, . . . , λp such that

Σ = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λpupu

T
p . (4.5)

The spectral theorem is also usually written in the following alternative form. Suppose U is the

p × p matrix whose columns are the vectors u1, . . . , up. Also suppose that Λ is the p × p diagonal

matrix (a diagonal matrix is a matrix whose off-diagonal entries are all zero) whose diagonal entries

are λ1, . . . , λp. Then (4.5) is equivalent to

Σ = UΛUT and UTΣU = Λ.

Here are some straightforward consequences of the spectral theorem:

1. For every 1 ≤ j ≤ p, we have the identities

Σuj = λjuj and uTj Σuj = λj .

These follow directly from (4.5). The first identity above implies that each λj is an eigenvalue

of Σ with eigenvector uj .

2. In the representation (4.5), the eigenvalues λ1, . . . , λp are unique while the eigenvectors u1, . . . , up

are not necessarily unique (for every uj can be replaced by −uj and if λ1 = λ2, then u1 and u2

can be replaced by any pair ũ1, ũ2 of orthogonal unit norm vectors in the span of u1 and u2).
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3. The rank of Σ precisely equals the number of λ′js that are non-zero.

4. If all of λ1, . . . , λp are non-zero, then Σ has full rank and is hence invertible. Moreover, we can

then write

Σ−1 = λ−1
1 u1u

T
1 + λ−1

2 u2u
T
2 + · · ·+ λ−1

p upu
T
p .

5. If Σ is positive semi-definite, then every λj in (4.5) is nonnegative (this is a consequence of

λj = uTj Σuj ≥ 0).

6. Square Root of a Positive Semi-definite Matrix: If Σ is positive semi-definite, then we

can define a new matrix

Σ1/2 :=
√
λ1u1u

T
1 + · · ·+

√
λpupu

T
p .

It is easy to see that Σ1/2 is symmetric, positive semi-definite and satisfies (Σ1/2)(Σ1/2) = Σ.

We shall refer to Σ1/2 as the square root of Σ.

7. If Σ is positive definite, then every λj in (4.5) is strictly positive (this is a consequence of

λj = uTj Σuj > 0).

4.2.3 Three Applications of the Spectral Theorem

Every symmetric positive semi-definite matrix is a Covariance Matrix

We have seen previously that the covariance matrix Cov(Y ) of every random vector Y is symmetric

and positive semi-definite. It turns out that the converse of this statement is also true i.e., it is also

true that every symmetric and positive semi-definite matrix equals Cov(Y ) for some random vector

Y . To see why this is true, suppose that Σ is an arbitrary p× p symmetric and positive semi-definite

matrix. Recall that, via the spectral theorem, we have defined Σ1/2 (square-root of Σ) which is a

symmetric and nonnegative definite matrix such that Σ1/2Σ1/2 = Σ.

Now suppose that Z1, . . . Zp are uncorrelated random variables all having unit variance and let

Z = (Z1, . . . , Zp)
T be the corresponding random vector. Because Z1, . . . , Zp are uncorrelated and have

unit variance, it is easy to see that Cov(Z) = Ip. Suppose now that Y = Σ1/2Z. Then

Cov(Y ) = Cov(Σ1/2Z) = Σ1/2Cov(Z)(Σ1/2)T = Σ1/2(In)Σ1/2 = Σ.

We have thus started with an arbitrary positive semi-definite matrix Σ and proved that it equals

Cov(Y ) for some random vector Y .

We can thus summarize the following properties of a covariance matrix.

1. The covariance matrix of every random vector is positive semi-definite definite.

2. Every positive semi-definite matrix equals the covariance matrix of some random vector.
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3. Unless the random variables Y1, . . . , Yn satisfy an exact linear equation, their covariance matrix

is positive definite.

Whitening

Given a p× 1 random vector Y , how can we transform it into a p× 1 white noise vector Z (recall that

Z is white noise means that EZ = 0 and Cov(Z) = Ip). This transformation is known as Whitening.

Whitening can be done if Cov(Y ) is positive definite. Indeed suppose that Σ := Cov(Y ) is positive

definite with spectral representation:

Σ = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λpupu

T
p .

The fact that Σ is positive definite implies that λi > 0 for every i = 1, . . . , p. In that case, it is easy

to see that Σ1/2 is invertible and

Σ−1/2 := (Σ1/2)−1 = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λpupu

T
p .

Moreover it is easy to check that Σ−1/2ΣΣ−1/2 = Ip. Using this, it is straightforward to check that

Z = Σ−1/2(Y − EY ) is white noise. Indeed EZ = 0 and

Cov(Z) = Cov
(

Σ−1/2(Y − EY )
)

= Σ−1/2Cov(Y )Σ−1/2 = Σ−1/2ΣΣ−1/2 = Ip.

Therefore the spectral theorem is used to define the matrix (Cov(Y ))−1/2 which can be used to whiten

the given random vector Y .

First Prinicipal Component of a Random Vector

Let Y be a p× 1 vector. We say that a unit vector a ∈ Rp (unit vectors are vectors with norm equal

to one) is a first principal component of Y if

var(aTY ) ≥ var(bTY ) for every unit vector b.

In other words, the unit vector a maximizes the variance of bTY over all unit vectors b.

Suppose that Σ := Cov(Y ) has the spectral representation (4.5). Assume, without loss of generality,

that the eigenvalues λ1, . . . , λp appearing in (4.5) are arranged in decreasing order i.e.,

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

It then turns out that the vector u1 is a first principal component of Y . To see this, simply note that

var(uT1 Y ) = uT1 Cov(Y )u1 = uT1
(
λ1u1u

T
1 + · · ·+ λpupu

T
p

)
u1 = λ1

and that for every unit vector b,

var(bTY ) = bTCov(Y )b = bT
(
λ1u1u

T
1 + · · ·+ λpupu

T
p

)
b =

p∑
i=1

λi 〈b, ui〉2 ≤ λ1

p∑
i=1

〈b, ui〉2 = λ1‖b‖2 = λ1.



4.3. BEST LINEAR PREDICTOR 109

Thus u1 is a first principal component of Y . Note that first principal components are not unique.

Indeed, −u1 is also a first principal component and if λ1 = λ2, then u2 and (u1 +u2)/
√

2 are also first

principal components.

4.3 Best Linear Predictor

Consider random variables Y,X1, . . . , Xp that have finite variance. We want to predict Y on the basis

of X1, . . . , Xp. Given a predictor g(X1, . . . , Xp) of Y based on X1, . . . , Xp, we measure the accuracy

of prediction by

R(g) := E (Y − g(X1, . . . , Xp))
2
.

We have seen in the last class that the best predictor (i.e., the function g∗ which minimizes R(g)) is

given by the conditional expectation:

g∗(x1, . . . , xp) := E (Y |X1 = x1, . . . , Xp = xp) .

This conditional expectation is often quite a complicated quantity. For example, in practice to estimate

it, one would need quite a lot of data on the variables X1, . . . , Xp, Y .

We now consider a related problem of predicting Y based only on linear functions of X1, . . . , Xp.

Specifically, we consider predictions of the form β0 + β1X1 + · · · + βpXp = β0 + βTX (where β :=

(β1, . . . , βp)
T and X = (X1, . . . , Xp)

T ). The Best Linear Predictor (BLP) of Y in terms of X1, . . . , Xp

is the linear function

β∗0 + β∗1X1 + · · ·+ β∗pXp = β∗0 + (β∗)TX with β∗ := (β∗1 , . . . , β
∗
p)T

where β∗0 , . . . , β
∗
p minimize

L(β0, . . . , βp) = E (Y − β0 − β1X1 − · · · − βpXp)
2

over β0, β1, . . . , βp.

One can get an explicit formula for β∗0 and β∗ by minimizing L directly via calculus. Taking partial

derivatives with respect to β0, β1, . . . , βp and setting them equal to zero, we obtain the following

equations:

E(Y − β∗0 − β∗1X1 − · · · − β∗pXp) = 0 (4.6)

and

E(Y − β∗0 − β∗1X1 − · · · − β∗pXp)Xi = 0 for i = 1, . . . , p. (4.7)

The first equation above implies that Y − β∗0 − β∗1X1 − · · · − β∗pXp is a mean zero random variable.

Using this, we can rewrite the second equation as

Cov(Y − β∗0 − β∗1X1 − · · · − β∗pXp, Xi) = 0 for i = 1, . . . , p
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which is same as

Cov(Y − β∗1X1 − · · · − β∗pXp, Xi) = 0 for i = 1, . . . , p. (4.8)

Rearranging the above, we obtain

p∑
j=1

β∗i Cov(Xi, Xj) = Cov(Y,Xi) for i = 1, . . . , p.

In matrix notation, we can rewrite this as

Cov(X)β∗ = Cov(X,Y ) with β∗ = (β∗1 , . . . , β
∗
p)T .

Here Cov(X,Y ) is the p×1 vector with entries Cov(X1, Y ), . . . , Cov(Xp, Y ). The above equation gives

β∗ = (Cov(X))
−1
Cov(X,Y )

assuming that Cov(X) is invertible. This equation determines β∗1 , . . . , β
∗
p . We can then use (4.6) to

write β∗0 as

β∗0 = E(Y )− Cov(Y,X)(Cov(X))−1E(X).

Note that the term Cov(Y,X) appearing above is the transpose of Cov(X,Y ). More generally, given

two random vectors W = (W1, . . . ,Wp) and Z = (Z1, . . . , Zq), we define Cov(W,Z) to be the p × q
matrix whose (i, j)th entry is the covariance between Wi and Zj .

The Best Linear Predictor (BLP) of Y in terms of X1, . . . , Xp then equals

β∗0 + β∗1X1 + . . . β∗pXp = β∗0 + (β∗)TX

= E(Y )− Cov(Y,X)(Cov(X))−1E(X) + Cov(Y,X)(Cov(X))−1X

= E(Y ) + Cov(Y,X)(Cov(X))−1(X − E(X)). (4.9)

Here are some important properties of the BLP:

1. The BLP solves equations (4.6) and (4.8). These equations are called normal equations.

2. If Cov(X) is invertible (equivalently, positive definite), then the BLP is uniquely given by (4.9).

3. Y −BLP has mean zero (because of (4.6)) and Y −BLP is uncorrelated with each Xi, i = 1, . . . , p

(because of (4.8)). In fact, this property characterizes the BLP (see next).

4. If Cov(X) is invertible, then it is clear from the form of the normal equations that the BLP is the

unique linear combination of X1, . . . , Xp such that Y −BLP has mean zero and is uncorrelated

with X1, . . . , Xp.

Example 4.3.1 (The case p = 1). When p = 1, the random vector X has only element X1 so that

Cov(X) is just equal to the number V ar(X1). In that case, the BLP of Y in terms of X1 is given by

BLP = E(Y ) +
Cov(Y,X1)

V ar(X1)
(X1 − E(X1)) .
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In other words, when p = 1,

β∗1 =
Cov(Y,X1)

V ar(X1)
= Corr(Y,X1)

√
V ar(Y )

V ar(X1)
= ρY,X1

√
V ar(Y )

V ar(X1)
.

In the further special case when V ar(Y ) = V ar(X1) and E(Y ) = E(X1) = 0, we have

β∗1 = ρY,X1

so that the BLP is simply given by ρY,X1
X1.

Example 4.3.2. Suppose X1, X2, Z3, . . . , Zn, Zn+1 are uncorrelated random variables and mean zero

random variables. Define random variables X3, . . . , Xn+1 as

Xt = φ1Xt−1 + φ2Xt−2 + Zt for t = 3, . . . , n+ 1.

What is the BLP of Xn+1 in terms of X1, . . . , Xn for n ≥ 2?

By definition,

Xn+1 = φ1Xn + φ2Xn−1 + Zn+1

which means that Xn+1 − φ1Xn − φ2Xn−1 = Zn+1. It is now easy to see that each Xt depends only

on X1, X2, Z3, . . . , Zt for t ≥ 3 which implies that Zn+1 is uncorrelated with all of X1, . . . , Xn.

Therefore φ1Xn+φ2Xn−1 is a linear combination of X1, . . . , Xn such that Xn+1−φ1Xn−φ2Xn−1

is uncorrelated with each of X1, . . . , Xn (it also has mean zero). We deduce therefore that the BLP of

Xn+1 in terms of X1, . . . , Xn equals φ1Xn + φ2Xn−1.

As discussed in the chapter on conditioning, the Best Predictor (BP) of Y in terms of X1, . . . Xp is

the function g∗(X1, . . . , Xp) of X1, . . . , Xp which minimizes

L(g) := E(Y − g(X1, . . . , Xp))
2

over all functions g and we have seen that

g∗(X1, . . . , Xp) = E(Y |X1, . . . , Xp).

In other words, the best predictor is the conditional expectation. In general, the BP and BLP will

differ and the BP will be a more accurate predictor of Y compared to BLP. Note that the BLP only

depends on the variances and covariances between the random variables Y,X1, . . . , Xp while the BP

depends potentially on the entire joint distribution. As a result, the BLP is usually much easier to

estimate based on data compared to the BP.

In general, we shall refer to any quantity involving the distribution of Y,X1, . . . , Xp that depends

only on the mean, variances and covariances of Y,X1, . . . , Xp as a second order property. Note that

the BLP is a second order quantity while the BP is not.
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4.4 Residual

The residual of a random variable Y in terms of X1, . . . , Xp will be denoted by rY |X1,...,Xp
and defined

as the difference between Y and the BLP of Y in terms of X1, . . . , Xp. In other words,

rY |X1,...,Xp
= Y −BLP.

Using the formula for the BLP, we can write down the following formula for the residual:

rY |X1,...,Xp
= Y − E(Y )− Cov(Y,X)(CovX)−1(X − E(X)) (4.10)

where X is the p× 1 random vector with components X1, . . . , Xp.

The residual has mean zero and is uncorrelated with each of X1, . . . , Xp. This can be proved either

directly from the formula (4.10) or from the properties of the BLP.

The variance of the residual can be calculated from the formula (4.10) as follows:

V ar(rY |X1,...,Xp
) = V ar

(
Y − E(Y )− Cov(Y,X)(CovX)−1(X − E(X))

)
= V ar(Y )− 2Cov(Y,Cov(Y,X)(CovX)−1X) + V ar(Cov(Y,X)(CovX)−1(X − E(X)))

= V ar(Y )− 2Cov(Y,X)(CovX)−1Cov(X,Y ) + Cov(Y,X)(CovX)−1Cov(X,Y )

= V ar(Y )− Cov(Y,X)(CovX)−1Cov(X,Y ).

In other words, V ar(rY |X1,...,Xp
) equals the Schur complement (recalled next) of V ar(Y ) in the

covariance matrix: (
Cov(X) Cov(X,Y )

Cov(Y,X) V ar(Y )

)

of the (n+ 1)× 1 random vector (X1, . . . , Xp, Y )T .

Note that the residual is also a second order quantity.

4.5 Detour: Schur Complements

Consider an n× n matrix A that is partitioned into four blocks as

A =

(
E F

G H

)

where E is p× p, F is p× q, G is q × p and H is q × q (p and q are such that p+ q = n).

We define

ES := E − FH−1G and HS := H −GE−1F
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assuming that H−1 and E−1 exist. We shall refer to ES and HS as the Schur complements of E and

H respectively (Warning: This is not standard terminology; it is more common to refer to ES as the

Schur complement of H and to HS as the Schur complement of E. I find it more natural to think of

ES as the Schur complement of E and HS as the Schur complement of H).

Note that both E and ES are p× p while both H and HS are q × q.

Schur complements have many interesting properties such as:

1. det(A) = det(E)det(HS) = det(H)det(ES).

2. If A is positive definite, then E,ES , H,HS are all positive definite.

and many others. Feel free to see the monograph titled Schur Complements and Statistics by Diane

Ouellette for proofs and exposition of these facts (this is not really necessary for this course).

But one very important property of Schur Complements for our purpose is the fact that they arise

naturally in inverses of partitioned matrices. A standard formula for the inverse of a partitioned matrix

(see, for example, https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion) is

A−1 =

(
(ES)−1 −E−1F (HS)−1

−(HS)−1GE−1 (HS)−1

)
(4.11)

It must be noted from this formula that the first (or (1, 1)th) block of A−1 equals the inverse of

the Schur complement of the first block of A. Similarly, the last (or (2, 2)th) block of A−1

equals the inverse of the Schur complement of the last block of A.

We shall use the expression (4.11) for the inverse of the partitioned matrix A but we will not

see how to prove (4.11). You can find many proofs of this fact elsewhere (just google something like

“inverse of partitioned matrices”).

4.6 Partial Correlation

Given random variables Y1, Y2 and X1, . . . , Xp, the partial correlation between Y1 and Y2 given

X1, . . . , Xp is denoted by ρY1,Y2|X1,...,Xp
and defined as

ρY1,Y2|X1,...,Xp
:= Corr

(
rY1|X1,...,Xp

, rY2|X1,...,Xp

)
.

In other words, ρY1,Y2|X1,...,Xp
is defined as the correlation between the residual of Y1 given X1, . . . , Xp

and the residual of Y2 given X1, . . . , Xp.

ρY1,Y2|X1,...,Xp
is also termed the partial correlation of Y1 and Y2 after controlling for X1, . . . , Xp.

Since residuals are second order quantities, it follows that the partial correlation is a second order

https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
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quantity as well. We shall now see how to explicitly write the partial correlation in terms of the

covariances of Y1, Y2 and X.

As

rY1|X1,...,Xp
= Y1 − E(Y1)− Cov(Y1, X)(CovX)−1(X − E(X))

and

rY2|X1,...,Xp
= Y2 − E(Y2)− Cov(Y2, X)(CovX)−1(X − E(X)),

it can be checked (left as an exercise) that

Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

) = Cov(Y1, Y2)− Cov(Y1, X)(CovX)−1Cov(X,Y2).

This, along with the formula for the variance of the residuals from the previous subsections, gives the

following formula for the partial correlation ρY1,Y2|X1,...,Xp
:

Cov(Y1, Y2)− Cov(Y1, X)(CovX)−1Cov(X,Y2)√
V ar(Y1)− Cov(Y1, X)(CovX)−1Cov(X,Y1)

√
V ar(Y2)− Cov(Y2, X)(CovX)−1Cov(X,Y2)

.

When p = 1 so that X equals the scalar random variable X1, the above formula simplifies to (check

this):

ρY1,Y2|X1
=

ρY1,Y2
− ρY1,X1

ρY2,X1√
1− ρ2

Y1,X1

√
1− ρ2

Y2,X1

.

It is instructive to put the variances of the residuals rY1|X1,...,Xp
and ry2|X1,...,Xp

and their covariance

in a matrix. Recall first that:

V ar(rY1|X1,...,Xp
) = V ar(Y1)− Cov(Y1, X)(CovX)−1Cov(X,Y1),

V ar(rY2|X1,...,Xp
) = V ar(Y2)− Cov(Y2, X)(CovX)−1Cov(X,Y2)

and

Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

) = Cov(Y1, Y2)− Cov(Y1, X)(CovX)−1Cov(X,Y2).

Let RY1,Y2|X1,...,Xp
denote the 2 × 1 random vector consisting of the residuals rY1|X1,...,Xp

and

rY2|X1,...,Xp
. The formulae for the variances and covariances of the residuals allows us then to write

the 2× 2 covariance matrix of RY1,Y2|X1,...,Xp
as

Cov(RY1,Y2|X1,...,Xp
) = Cov

(
Y1

Y2

)
−

(
Cov(Y1, X)

Cov(Y2, X)

)
(CovX)−1

(
Cov(X,Y1) Cov(X,Y2)

)
= Cov(Y )− Cov(Y,X)(CovX)−1Cov(X,Y )

where

Y =

(
Y1

Y2

)
and X =



X1

X2

·
·
·
Xp


.
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The right hand side in the formula for Cov(RY1,Y2|X1,...,Xp
) equals precisely the Schur complement of

Cov(Y ) in the matrix (
Cov(X) Cov(X,Y )

Cov(Y,X) Cov(Y )

)
= Cov

(
X

Y

)
=: Σ.

Thus if Σ denotes the covariance matrix of the (p+ 2)× 1 random vector (X1, . . . , Xp, Y1, Y2)T , then

Cov(RY1,Y2|X1,...,Xp
) equals precisely the Schur complement of Cov(Y ) in Σ. We shall come back to

this fact in the next class and use it to describe an expression for the partial correlation ρY1,Y2|X1,...,Xp

involving Σ−1.

4.7 Partial Correlation and Inverse Covariance

We defined partial correlation in the last lecture. Given random variables Y1, Y2 and X1, . . . , Xp, the

partial correlation between Y1 and Y2 given X1, . . . , Xp is denoted by ρY1,Y2|X1,...,Xp
and defined as

ρY1,Y2|X1,...,Xp
:= Corr

(
rY1|X1,...,Xp

, rY2|X1,...,Xp

)
.

In other words, ρY1,Y2|X1,...,Xp
is defined as the correlation between the residual of Y1 given X1, . . . , Xp

and the residual of Y2 given X1, . . . , Xp.

Recall that the residuals rY1|X1,...,Xp
and rY2|X1,...,Xp

have the following expressions:

rY1|X1,...,Xp
= Y1 − E(Y1)− Cov(Y1, X)(CovX)−1(X − E(X))

and

rY2|X1,...,Xp
= Y2 − E(Y2)− Cov(Y2, X)(CovX)−1(X − E(X)),

In the last class, we computed the variances of rY1|X1,...,Xp
and rY2|X1,...,Xp

as well as the covariance

between them. This gave us the formulae:

V ar(rY1|X1,...,Xp
) = V ar(Y1)− Cov(Y1, X)(CovX)−1Cov(X,Y1),

V ar(rY2|X1,...,Xp
) = V ar(Y2)− Cov(Y2, X)(CovX)−1Cov(X,Y2)

and

Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

) = Cov(Y1, Y2)− Cov(Y1, X)(CovX)−1Cov(X,Y2).

We can put these expressions together to get the following formula for the partial correlation between

Y1 and Y2 given X1, . . . , Xp:

Cov(Y1, Y2)− Cov(Y1, X)(CovX)−1Cov(X,Y2)√
V ar(Y1)− Cov(Y1, X)(CovX)−1Cov(X,Y1)

√
V ar(Y2)− Cov(Y2, X)(CovX)−1Cov(X,Y2)

.

We shall now describe the connection between partial correlations and the inverse of the Covariance

matrix. Let RY1,Y2|X1,...,Xp
denote the 2× 1 random vector consisting of the residuals rY1|X1,...,Xp

and
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rY2|X1,...,Xp
. The formulae for the variances and covariances of the residuals allows us then to write

the 2× 2 covariance matrix of RY1,Y2|X1,...,Xp
as

Cov(RY1,Y2|X1,...,Xp
) = Cov

(
Y1

Y2

)
−

(
Cov(Y1, X)

Cov(Y2, X)

)
(CovX)−1

(
Cov(X,Y1) Cov(X,Y2)

)
= Cov(Y )− Cov(Y,X)(CovX)−1Cov(X,Y )

where

Y =

(
Y1

Y2

)
and X =



X1

X2

·
·
·
Xp


.

The right hand side in the formula for Cov(RY1,Y2|X1,...,Xp
) equals precisely the Schur complement of

Cov(Y ) in the matrix (
Cov(X) Cov(X,Y )

Cov(Y,X) Cov(Y )

)
= Cov

(
X

Y

)
=: Σ.

Thus if Σ denotes the covariance matrix of the (p+ 2)× 1 random vector (X1, . . . , Xp, Y1, Y2)T , then

Cov(RY1,Y2|X1,...,Xp
) equals precisely the Schur complement of Cov(Y ) in Σ.

But we know if we invert Σ, then the last diagonal block (or the (2, 2)th block) of Σ−1 equals the

inverse of the Schur complement of the (2, 2)th block of Σ. This and the above connection between

Schur complement and the covariance of RY1,Y2|X1,...,Xp
allows us to deduce that if

Σ−1 =

(
(Σ−1)11 (Σ−1)12

(Σ−1)21 (Σ−1)22,

)

then

(Σ−1)22 =
(
Cov(RY1,Y2|X1,...,Xp

)
)−1

=

(
V ar(rY1|X1,...,Xp

) Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

)

Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

) V ar(rY2|X1,...,Xp
)

)−1

The usual formula for the inverse of a 2× 2 matrix then gives

(Σ−1)22 =
1

D

(
V ar(rY2|X1,...,Xp

) −Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

)

−Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

) V ar(rY1|X1,...,Xp
)

)

where D is the determinant of Cov(RY1,Y2|X1,...,Xp
).

From here it follows that the partial correlation ρY1,Y2|X1,...,Xp
has the alternative expression:

ρY1,Y2|X1,...,Xp
=

Cov(rY1|X1,...,Xp
, rY2|X1,...,Xp

)√
V ar(rY1|X1,...,Xp

)V ar(rY2|X1,...,Xp
)

=
−(Σ−1)(n− 1, n)√

(Σ−1)(n− 1, n− 1)Σ−1(n, n)
.

This shows the connection between partial correlation and inverse covariance matrices.
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More generally, if Y1, . . . , Yn are random variables (no distributional assumptions are needed here)

with covariance matrix given by Σ. Then the partial correlation between Yi and Yj given Yk, k 6= i, k 6= j

can be written in terms of Σ−1 as

ρYi,Yj |Yk,k 6=i,k 6=j =
−(Σ−1)(i, j)√

(Σ−1)(i, i)(Σ−1)(j, j)
.

This implies, in particular, that

(Σ−1)(i, j) = 0 ⇐⇒ ρYi,Yj |Yk,k 6=i,k 6=j = 0

Therefore (Σ−1)(i, j) = 0 is equivalent to the partial correlation between Yi and Yj given Yk, k 6= i, k 6= j

being zero.

Also

(Σ−1)(i, j) ≤ 0 ⇐⇒ ρYi,Yj |Yk,k 6=i,k 6=j ≥ 0 and (Σ−1)(i, j) ≥ 0 ⇐⇒ ρYi,Yj |Yk,k 6=i,k 6=j ≤ 0

In other words, Σ−1(i, j) being nonpositive is equivalent to the partial correlation between Yi and Yj

given Yk, k 6= i, k 6= j being nonnegative. Similarly, Σ−1(i, j) being nonnegative is equivalent to the

partial correlation between Yi and Yj given Yk, k 6= i, k 6= j being nonpositive.

4.8 Partial Correlation and Best Linear Predictor

Consider random variables Y and X1, . . . , Xp. Let β∗0 + β∗1X1 + · · · + β∗pXp denote the BLP of Y in

terms of X1, . . . , Xp.

We have seen before that If p = 1, then X is equal to the scalar random variable X1 and the BLP

then has the expression:

BLP = E(Y ) +
Cov(Y,X1)

V ar(X1)
(X1 − E(X1)).

In other words, when p = 1, the slope coefficient of the BLP is given by

β∗1 =
Cov(Y,X1)

V ar(X1)
= ρY,X1

√
V ar(Y )

V ar(X1)
. (4.12)

When p ≥ 1, we would have p “slope” coefficients X1, . . . , Xp. In this case, one can write a formula

analogous to (4.12) as follows:

β∗i = ρY,Xi|Xk,k 6=i

√
V ar(rY |Xk,k 6=i)

V ar(rXi|Xk,k 6=i)
(4.13)

In other words β∗i equals the slope coefficient of BLP of rY |Xk,k 6=i in terms of rXi|Xk,k 6=i.

We shall prove this fact now. We can assume without loss of generality i = p. The proof for other

i can be completed by rearranging X1, . . . , Xp so that Xi appears at the last position. The formula

for β∗ = (β1, . . . , βp)
∗ is

β∗ = (CovX)−1Cov(X,Y ).
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Let us write

X =

(
X−p

Xp

)
where X−p := (X1, . . . , Xp−1)T consists of all the X’s except Xp. We can partition Cov(X) as

Cov(X) = Cov

(
X−p

Xp

)
=

(
Cov(X−p) Cov(X−p, Xp)

Cov(Xp, X−p) V ar(Xp)

)
.

The formula for β∗ then becomes

β∗ = (CovX)−1Cov(X,Y ) =

(
Cov(X−p) Cov(X−p, Xp)

Cov(Xp, X−p) V ar(Xp)

)−1(
Cov(X−p, Y )

Cov(Xp, Y )

)

In order to derive an explicit formula for β∗p from this expression, we need to figure out the last row of

(CovX)−1. A standard formula for the inverses of partitioned matrices states that

A =

(
E F

G H

)
=⇒ A−1 =

(
something something

−(HS)−1GE−1 (HS)−1

)

where HS := H −GE−1F is the Schur complement of H in A. We shall apply this formula to

E = Cov(X−p), F = Cov(X−p, Xp), G = Cov(Xp, X−p), and H = V ar(Xp)

so that A equals Cov(X). In this case,

HS = V ar(Xp)− Cov(Xp, X−p)(Cov(X−p))
−1Cov(X−p, Xp) = V ar(rXp|Xk,k 6=p)

so that

(HS)−1 =
1

V ar(rXp|Xk,k 6=p)
.

We thus obtain

β∗p = −(HS)−1GE−1Cov(X−p, Y ) + (HS)−1Cov(Xp, Y )

=
Cov(Xp, Y )− Cov(Xp, X−p)(CovX−p)

−1Cov(X−p, Y )

V ar(rXp|Xk,k 6=p)

=
Cov(rY |Xk,k 6=p, rXp|Xk,k 6=p)

V ar(rXp|Xk,k 6=p)
= ρY,Xp|Xk,k 6=p

√
V ar(rY |Xk,k 6=p)

V ar(rXp|Xk,k 6=p)
.

which proves the result for i = p. One can prove it for other i by simply rearranging X1, . . . , Xp so

that Xi appears as the last variable.

An important consequence of (4.13) is:

β∗i = 0 ⇐⇒ ρY,Xi|Xk,k 6=i = 0 (4.14)

In other words, the coefficient of Xi in the BLP of Y based on X1, . . . , Xp equals zero if and only if

the partial correlation between Y and Xi given Xk, k 6= i equals 0.
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Example 4.8.1. Suppose X1, X2, Z3, . . . , Zn, Zn+1 with n ≥ 2 are uncorrelated random variables

having mean zero. Define random variables X3, . . . , Xn+1 as

Xt = φ1Xt−1 + φ2Xt−2 + Zt for t = 3, . . . , n+ 1.

We have seen in the last class that the BLP of Xn+1 in terms of X1, . . . , Xn equals φ1Xn + φ2Xn−1.

This means that the coefficient of Xi in the BLP of Xn+1 in terms of X1, . . . , Xn equals 0 for i =

1, . . . , n− 2. As a consequence of (4.14), we then deduce that

ρXn+1,Xi|Xk,k 6=i,1≤k≤n = 0 for i = 1, . . . , n− 2.

Using the connection between partial correlation and inverse covariance, we can further deduce that if

Σ denotes the (n+ 1)× (n+ 1) covariance matrix of X1, . . . , Xn+1, then

Σ−1(i, n+ 1) = 0 for i = 1, . . . , n− 2.

4.9 BLP when Y is a random vector

Let us first quickly recap the BLP. Given random variables Y and X1, . . . , Xp, a linear predictor of Y

in terms of X1, . . . , Xp is a random variable of the form β0 + β1X1 + · · · + βpXp. The BLP is then

given by β∗0 + β∗1X1 + · · ·+ β∗pXp where β∗0 , . . . , β
∗
p minimize:

L(β0, β1, . . . , βp) := E (Y − β0 − β1X1 − · · · − βpXp)
2

over β0, . . . , βp. We have seen that β∗0 , . . . , β
∗
p can be figured out using calculus and this gives the

formula:

BLP = EY + Cov(Y,X)(CovX)−1(X − EX)

where X stands for the p × 1 random vector with components X1, . . . , Xp. The residual rY |X1,...,Xp

simply equals Y −BLP and we have seen that the variance of rY |X1,...,Xp
equals:

var(rY |X1,...,Xp
) = var(Y )− Cov(Y,X)(CovX)−1Cov(X,Y ).

Note that this is the Schur complement of var(Y ) in Cov

(
X

Y

)
=

(
Cov(X) Cov(X,Y )

Cov(Y,X) var(Y )

)

Now suppose that we have two random variables Y1 and Y2 with Y denoting the 2 × 1 random

vector with components Y1 and Y2. Consider the problem of finding the BLP of Y in terms of X

(where X, as before, is the p× 1 random vector with components X1, . . . , Xp). To formalize this, we

first need to define what a linear predictor is (note that Y is a 2 × 1 random vector and not a scalar

random variable). A linear predictor for Y in terms of X is given by

AX + c
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where A is a 2× p matrix and c is a 2× 1 vector. The accuracy of this linear predictor for predicting

Y can be measured by

L(A, c) := E ‖Y −AX − c‖2 .

The BLP is then given by A∗Y + c∗ where A∗ and c∗ minimize L(A, c) over all A and c. To solve this

minimization, let us first write A and c as

A :=

(
a11 a12 . . . a1p

a21 a22 . . . a2p

)
and c :=

(
c1

c2

)

so that

AX + c =

(
a11X1 + a12X2 + · · ·+ a1pXp + c1

a21X1 + a22X2 + · · ·+ a2pXp + c2

)
and

L(A, c) = E ‖Y −AX − c‖2

= E (Y1 − a11X1 − a12X2 − · · · − a1pXp − c1)
2

+ E (Y2 − a21X1 − a22X2 − · · · − a2pXp − c2)
2

From here it is clear that to minimize the above with respect to A and c, we can minimize the first

term over a11, a12, . . . , a1p, c1 and then minimize the second term over a21, a22, . . . , a2p, c2. From here,

it is easy to see that the BLP of Y =

(
Y1

Y2

)
in terms of X is given by

(
BLP of Y1 in terms of X1, . . . , Xp

BLP of Y2 in terms of X1, . . . , Xp

)
=

(
EY1 + Cov(Y1, X)(CovX)−1(X − EX)

EY2 + Cov(Y2, X)(CovX)−1(X − EX)

)

=

(
EY1

EY2

)
+

(
Cov(Y1, X)

Cov(Y2, X)

)
(CovX)−1(X − EX)

= EY + Cov(Y,X)(CovX)−1(X − EX).

Thus the same formula EY +Cov(Y,X)(CovX)−1(X − EX) gives the BLP for Y in terms of X even

when Y is a 2 × 1 random vector. It is straightforward now to see that this holds when Y is a k × 1

random vector for every k ≥ 1 (not just k = 1 or k = 2). One can define the residual of Y in terms of

X1, . . . , Xp as

RY |X := Y − EY − Cov(Y,X)(CovX)−1(X − EX)

and this is exactly the vector whose ith component is the residual of Yi in terms of X1, . . . , Xp. It is

also straightforward to check that that covariance matrix of RY |X is given by

Cov(RY |X) = Cov(Y )− Cov(Y,X)(CovX)−1Cov(X,Y )

which is exactly the Schur complement of Cov(Y ) in the matrix

(
Cov(X) Cov(X,Y )

Cov(Y,X) Cov(Y )

)



Chapter 5

The Multivariate Normal

Distribution

We shall next move to the last topic of the class: the multivariate normal distribution. For this, it is

helpful to know about moment generating functions of random vectors.

5.1 Moment Generating Functions of Random Vectors

The Moment Generating Function of an n× 1 random vector Y is defined as

MY (a) := Eea
TY

for every a ∈ Rn for which the expectation exists. Note that when a = (0, . . . , 0)T is the zero vector,

it is easy to see that MY (a) = 1.

Just like in the univariate case, Moment Generating Functions determine distributions when they

exist in a neighbourhood of a = 0.

Moment Generating Functions behave very nicely in the presence of independence. Suppose Y(1)

and Y(2) are two random vectors and let Y = (Y T(1), Y
T
(2))

T be the vector obtained by putting Y(1) and

Y(2) together in a single column vector. Then Y(1) and Y(2) are independent if and only if

MY (a) = MY(1)
(a(1))MY(2)

(a(2)) for every a = (aT(1), a
T
(2))

T ∈ Rn.

Thus under independence, the MGF factorizes and conversely, when the MGF factorizes, we have

independence.

121
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5.2 The Multivariate Normal Distribution

The multivariate normal distribution is defined in the following way.

Definition 5.2.1. A random vector Y = (Y1, . . . , Yn)T is said to have the multivariate normal distri-

bution if every linear function aTY of Y has the univariate normal distribution.

Remark 5.2.1. It is important to emphasize that for Y = (Y1, . . . , Yn)T to be multivariate normal,

every linear function aTY = a1Y1 + . . . anYn needs to be univariate normal. It is not enough for

example to just have each Yi to be univariate normal. It is very easy to construct examples where each

Yi is univariate normal but a1Y1 + · · ·+anYn is not univariate normal for many vectors (a1, . . . , an)T .

For example, suppose that Y1 ∼ N(0, 1) and that Y2 = ξY1 where ξ is a discrete random variable taking

the two values 1 and −1 with probability 1/2 and ξ is independent of Y1. Then it is easy to see that

Y2|ξ = 1 ∼ N(0, 1) and Y2|ξ = −1 ∼ N(0, 1).

This means therefore that Y2 ∼ N(0, 1) (and that Y2 is independent of ξ). Note however that Y1 + Y2

is not normal as

P{Y1 + Y2 = 0} = P{ξ = 1} =
1

2
.

Thus, in this example, even though Y1 and Y2 are both N(0, 1), the vector

(
Y1

Y2

)
is not multivariate

normal.

Example 5.2.2. We have seen earlier in the class that if Z1, . . . , Zn are independent and uni-

variate normal, then a1Z1 + . . . anZn is normal for every a1, . . . , an. Therefore a random vector

Z = (Z1, . . . , Zn)T that is made up of independent Normal random variables has the multivariate

normal distribution. In fact, we shall show below that if Y has a multivariate normal distribution,

then it should necessarily be the case that Y is a linear function of a random vector Z that is made of

independent univariate normal random variables.

5.2.1 Moment Generating Function of a Multivariate Normal

Suppose Y = (Y1, . . . , Yn)T is multivariate normal. Let µ = E(Y ) and Σ = Cov(Y ) be the mean vector

and covariance matrix of Y respectively. Then, as a direct consequence of the definition of multivariate

normality, it follows that the MGF of Y equals

MY (a) = E(ea
TY ) = exp

(
aTµ+

1

2
aTΣa

)
. (5.1)

To see why this is true, note that by definition of multivariate normality, aTY is univariate normal.

Now the mean and variance of aTY are given by

E(aTY ) = aTµ and V ar(aTY ) = aTCov(Y )a = aTΣa
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so that

aTY ∼ N(aTµ, aTΣa) for every a ∈ Rn.

Then (5.1) directly follows from the formula for the MGF of a univariate normal.

Note that the MGF of Y (given by (5.1)) only depends on the mean vector µ and the covariance

matrix Σ of Y . Thus the distribution of every multivariate normal vector Y is characterized by the

mean vector µ and covariance Σ. We therefore use the notation Nn(µ,Σ) for the multivariate normal

distribution with mean µ and covariance Σ.

5.2.2 Connection to i.i.d N(0, 1) random variables

Suppose that the covariance matrix Σ of Y is positive definite so that Σ−1/2 is well-defined. Let

Z := Σ−1/2(Y − µ). The formula (5.1) allows the computation of the MGF of Z as follows:

MZ(a) = Eea
TZ

= E exp
(
aTΣ−1/2(Y − µ)

)
= exp(aTΣ−1/2µ)E exp

(
aTΣ−1/2Y

)
= exp(aTΣ−1/2µ)MY (Σ−1/2a)

= exp(aTΣ−1/2µ) exp

(
aTΣ−1/2µ+

1

2
(aTΣ−1/2)Σ(Σ−1/2a)

)
= exp

(
1

2
aTa

)
=

n∏
i=1

exp(a2
i /2).

The right hand side above is clearly the MGF of a random vector having n i.i.d standard normal random

variables. Thus because MGFs uniquely determine distributions, we conclude that Z = (Z1, . . . , Zn)T

has independent standard normal random variables. We have thus proved that: If Y ∼ Nn(µ,Σ) and

Σ is p.d, then the components Z1, . . . Zn of Z = Σ−1/2(Y − µ) are independent standard

normal random variables.

5.3 Joint Density of the Multivariate Normal Distribution

Suppose Y = (Y1, . . . , Yn)T is a random vector that has the multivariate normal distribution. What

then is the joint density of Y1, . . . , Yn?

Let µ = E(Y ) and Σ = Cov(Y ) be the mean vector and covariance matrix of Y respectively. For Y

to have a joint density, we need to assume that Σ is positive definite. We have then seen in the previous

section that the components Z1, . . . , Zn of Z are independent standard normal random variables where

Z = Σ−1/2(Y − µ).
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Because Z1, . . . , Zn are independent standard normals, their joint density equals

fZ1,...,Zn
(z1, . . . , zn) = (2π)−n/2

n∏
i=1

e−z
2
i /2 = (2π)−n/2 exp

(
−1

2
zT z

)
where z = (z1, . . . , zn)T .

Using the above formula and the fact that Y = µ + Σ1/2Z, we can compute the joint density of

Y1, . . . , Yn via the Jacobian formula. This gives

fY1,...,Yn
(y1, . . . , yn) = fZ1,...,Zn

(Σ−1/2(y − µ)) det(Σ−1/2)

=
1

(2π)n/2
√

det(Σ)
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
where y = (y1, . . . , yn)T .

5.4 Properties of Multivariate Normal Random Variables

Suppose Y = (Y1, . . . , Yn)T ∼ Nn(µ,Σ). Note then that µ is the mean vector E(Y ) of Y and Σ is the

covariance matrix Cov(Y ). The following properties are very important.

1. Linear Functions of Y are also multivariate normal: If A is an m×n deterministic matrix

and c is an m× 1 deterministic vector, then AY + c ∼ Nm(Aµ+ c, AΣAT ).

Reason: Every linear function of AY + c is obviously also a linear function of Y and, thus, this

fact follows from the definition of the multivariate normal distribution.

2. If Y is multivariate normal, then every random vector formed by taking a subset of the compo-

nents of Y is also multivariate normal.

Reason: Follows from the previous fact.

3. Independence is the same as Uncorrelatedness: If Y(1) and Y(2) are two random vectors

such that Y = (Y T(1), Y
T
(2))

T is multivariate normal. Then Y(1) and Y(2) are independent if and

only if Cov(Y(1), Y(2)) = 0.

Reason: The fact that independence implies Cov(Y(1), Y(2)) = 0 is obvious and does not require

any normality. The key is the other implication that zero covariance implies independence. For

this, it is enough to show that the MGF of Y equals the product of the MGFs of Y(1) and Y(2).

The MGF of Y equals

MY (a) = exp

(
aTµ+

1

2
aTΣa

)
where Σ = Cov(Y ).

Note that Y(1) and Y(2) are also multivariate normal so that

MY(i)
(a(i)) = exp

(
aT(i)µ(i) +

1

2
aT(i)Σiia(i)

)
for i = 1, 2
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where

µ(i) := E(Y(i)) and Σii := Cov(Y(i)).

Now if Σ12 := Cov(Y(1), Y(2)) and Σ21 = Cov(Y(2), Y(1)) = ΣT12, then observe that

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Σ11 Σ12

ΣT12 Σ22

)

As a result, if a = (a(1), a(2))
T , then

aTΣa = aT(1)Σ11a(1) + aT(2)Σ22a(2) + 2aT(1)Σ12a(2).

Under the assumption that Σ12 = 0, we can therefore write

aTΣa = aT(1)Σ11a(1) + aT(2)Σ22a(2)

from which it follows that

MY (a) = MY(1)
(a(1))MY(2)

(a(2)).

Because the MGF of Y = (Y(1), Y(2))
T factorizes into the product of the MGF of Y(1) and the

MGF of Y(2), it follows that Y(1) and Y(2) are independent. Thus under the assumption of

multivariate normality of (Y(1), Y(2))
T , uncorrelatedness is the same as independence.

4. Suppose Y = (Y1, . . . , Yn)T is a multivariate normal random vector. Then two components Yi

and Yj are independent if and only if Σij = 0 where Σ = Cov(Y ).

Reason: Follows directly from the previous three facts.

5. Independence of linear functions can be checked by multiplying matrices: Suppose Y

is multivariate normal. Then AY and BY are independent if and only if AΣBT = 0.

Reason: Note first that (
AY

BY

)
=

(
A

B

)
Y

is multivariate normal. Therefore AY and BY are independent if and only if Cov(AY,BY ) = 0.

The claimed assertion then follows from the observation that Cov(AY,BY ) = AΣBT .

5.5 Idempotent Matrices and Chi-Squared distributions

We shall next prove that quadratic forms of multivariate normal random variables with identity co-

variance have chi-squared distributions provided the symmetric matrix defining the quadratic form

is idempotent. A square matrix A is said to be idempotent if A2 = A. An important fact about

idempotent matrices is the following.

Fact: If A is an n× n symmetric and idempotent matrix of rank r if and only if

A = u1u
T
1 + · · ·+ uru

T
r (5.2)
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for r orthogonal and unit length vectors u1, . . . , ur.

To prove this fact, note first that if A is symmetric, then by the spectral theorem

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n

for an orthonormal basis u1, . . . , un and real numbers λ1, . . . , λn. The rank of A precisely equals the

number of λi’s that are non-zero. If r is the rank of A, we can therefore write (assuming without loss

of generality that λ1, . . . , λr are non-zero and λr+1 = · · · = λn = 0)

A = λ1u1u
T
1 + · · ·+ λruru

T
r .

It then follows that

A2 = λ2
1u1u

T
1 + · · ·+ λ2

ruru
T
r .

Therefore if A is idempotent, then A2 = A so that

λ1u1u
T
1 + · · ·+ λruru

T
r = λ2

1u1u
T
1 + · · ·+ λ2

ruru
T
r

which implies that λ2
i = λi which gives λi = 1 (note that we have assumed that λi 6= 0). This proves

(5.2).

The following result states that quadratic forms of multivariate normal random vectors with identity

covariance are chi-squared provided the underlying matrix is idempotent.

Theorem 5.5.1. Suppose Y ∼ Nn(µ, In) and let A is an n×n symmetric and idempotent matrix with

rank r. Then

(Y − µ)TA(Y − µ) ∼ χ2
r.

Proof. Because A is symmetric and idempotent and has rank r, we can write A as

A = u1u
T
1 + · · ·+ uru

T
r

for some orthogonal and unit norm vectors u1, . . . , ur. Then

(Y − µ)TA(Y − µ) =

r∑
i=1

(
uTi (Y − µ)

)2
=

r∑
i=1

V 2
i .

where Vi := uTi (Y − µ). Note now that each Vi ∼ N(0, 1) and that V1, . . . , Vr are uncorrelated and

hence independent (because of normality). This proves that (Y − µ)TA(Y − µ) ∼ χ2
r.

Example 5.5.2. Suppose X1, . . . , Xn are i.i.d N(0, 1). Then X̄ ∼ N(0, 1/n) and S ∼ χ2
n−1 where

S :=

n∑
i=1

(
Xi − X̄

)2
.

Moreover X̄ and S are independent.
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The fact that X̄ ∼ N(0, 1/n) is easy. To prove that S ∼ χ2
n−1 and that S and X̄ are independent,

we shall show two methods.

Method One: To prove S ∼ χ2
n−1, the key is to note that

S =

((
I − 1

n
11T

)
X

)T ((
I − 1

n
11T

)
X

)
= XT

(
I − 1

n
11T

)T (
I − 1

n
11T

)
X = XT

(
I − 1

n
11T

)(
I − 1

n
11T

)
X

where X = (X1, . . . , Xn)T and 1 = (1, . . . , 1)T . In the last step above, we used the fact that I − 1
n11T

is symmetric. For the first step, we used the fact that(
I − 1

n
11T

)
X = (X1 − X̄, . . . , Xn − X̄)T .

Now if

A = I − 1

n
11T ,

then clearly A is symmetric and idempotent as

A2 =

(
I − 1

n
11T

)(
I − 1

n
11T

)
= I − 2

1

n
11T +

1T1

n2
11T = I − 1

n
11T = A.

Also the rank of A equals n− 1. Thus by Theorem 5.5.1 (note that X = (X1, . . . , Xn)T ∼ Nn(0, In)),

we have

S = XTAX ∼ χ2
n−1.

In order to prove that S and X̄ are independent, we only need to observe that

X̄ =
1

n
1TX and

(
I − 1

n
11T

)
X (5.3)

are independent because S is a function of(
I − 1

n
11T

)
X.

The independence of the random variables in (5.3) follows because

1

n
1T
(
I − 1

n
11T

)
X = 0

Method Two: Let u1, . . . , un be an orthonormal basis for Rn with u1 = 1/
√
n (check that u1 has

unit norm). Let U be the matrix with columns u1, . . . , un i.e.,

U = [u1 : · · · : un].

Note that UUT = UTU = In (by the properties of an orthonormal basis). Now let Y = UTX. Then

Y is a linear function of X (and X ∼ Nn(0, In)) so that

Y ∼ Nn(UT (0), UT InU) = Nn(0, UTU) = Nn(0, In).
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Further note that
n∑
i=1

Y 2
i = Y TY = XTUUTX = XTX =

n∑
i=1

X2
i (5.4)

and that Y1 = uT1 X = (X1 + · · ·+Xn)/
√
n =
√
nX̄. Thus, (5.4) gives

n∑
i=1

X2
i = Y 2

1 +

n∑
i=2

Y 2
i = nX̄2 +

n∑
i=2

Y 2
i

so that
n∑
i=2

Y 2
i =

n∑
i=1

X2
i − nX̄2 =

n∑
i=1

(Xi − X̄)2 = S.

This and the fact that Y ∼ Nn(0, In) (which is same as saying that Y1, . . . , Yn are i.i.d N(0, 1)) imply

that S ∼ χ2
n−1. Also note that S depends only on Y2, . . . , Yn so that it is independent of Y1 and thus

S and X̄ are independent (note that X̄ = Y1/
√
n).

Example 5.5.3. Suppose that X ∼ Nn(0,Σ) where Σ is an n× n matrix with 1 on the diagonal and

ρ on the off-diagonal. Σ can also be represented as

Σ = (1− ρ)In + ρ11T where 1 := (1, . . . , 1)T .

In other words X1, . . . , Xn are multivariate normal, have mean zero, unit variance and the correlation

between every pair equals ρ. Find the distribution of X̄ and S :=
∑n
i=1(Xi − X̄)2 and argue that they

are independent.

X̄ is a linear function of X and so it will be normal. We then just have to find its mean and

variance. Clearly EX̄ = 0 (as each EXi = 0) and

var(X̄) =
1

n2
var(X1 + · · ·+Xn)

=
1

n2

∑
i

var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

 =
1

n2
(n+ n(n− 1)ρ) =

1 + (n− 1)ρ

n
.

Thus

X̄ ∼ N
(

0,
1 + (n− 1)ρ

n

)
.

Observe that this implies that 1 + (n− 1)ρ ≥ 0 or ρ ≥ −1/(n− 1). In other words, if ρ < −1/(n− 1),

then Σ will not be positive semi-definite.

To find the distribution of S, we can, as in the previous example, write

S = XT

(
I − 1

n
11T

)
X

but we cannot unfortunately use Theorem 5.5.1 as X does not have identity covariance (Theorem 5.5.1)

only applies to multivariate normal random vectors with identity covariance. It turns out that here the

second method (described in the previous example) works here and gives the distribution of S. This is

explained below.
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Let u1, . . . , un be an orthonormal basis for Rn with u1 = 1/
√
n and let U be the matrix with columns

u1, . . . , un so that UTU = UUT = In. Let Y = UTX and note (as in the previous example) that

Y1 =
√
nX̄ and S =

n∑
i=1

(Xi − X̄)2 = Y 2
2 + · · ·+ Y 2

n .

The distribution of Y is now given by Y ∼ Nn(0, UTΣU) and

UTΣU = UT
(
(1− ρ)In + ρ11T

)
U = (1− ρ)UTU + ρ(UT1)(1TU) = (1− ρ)In + ρ(UT1)(1TU).

To calculate 1TU , note that

1TU = (1Tu1,1
Tu2, . . . ,1

Tun) = (
√
n, 0, . . . , 0)

where we used that 1Tu1 = 1T1/
√
n =

√
n and the fact that 1 is orthogonal to u2, . . . , un (this is

because 〈1, ui〉 =
√
n 〈u1, ui〉 = 0 for i > 1). We have thus obtained

UTΣU = (1− ρ)In + ρ(
√
n, 0, . . . , 0)T (

√
n, 0, . . . , 0).

This means that UTΣU is a diagonal matrix with diagonal entries (1− ρ+ nρ), 1− ρ, 1− ρ, . . . , 1− ρ.

Therefore Y ∼ Nn(0, UTΣU) implies that Y1, . . . , Yn are independent with

Y1 ∼ N(0, 1 + (n− 1)ρ) and Yi ∼ N(0, 1− ρ) for i > 1.

Thus

S

1− ρ
=

n∑
i=2

(
Yi√
1− ρ

)2

∼ χ2
n−1

or S ∼ (1 − ρ)χ2
n−1. Also because X̄ only depends on Y1 and S depends only on Y2, . . . , Yn, we have

that S and X̄ are independent.

5.6 Additional Remarks on Multivariate Normals and Chi-

Squared Distributions

In the last class, we saw the following result.

Theorem 5.6.1. If Z ∼ Nn(0, In) and A is a symmetric and idempotent matrix, then ZTAZ ∼ χ2
r

where r is the rank of A.

It turns out that the converse of this result is also true and we have

Theorem 5.6.2. Suppose Z ∼ Nn(0, In) and A is a symmetric matrix. Then ZTAZ ∼ χ2
r if and only

if A is an idempotent matrix with rank r.
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In other words, the only way in which ZTAZ has the chi-squared distribution is when A is idempo-

tent. Thus being idempotent is both necessary and sufficient for ZTAZ to be distributed as chi-squared.

The fact that ZTAZ ∼ χ2
r implies the idempotence of A can be proved via moment generating functions

but we shall skip this argument.

When the covariance is not the identity matrix, Theorem 5.6.1 needs to be modified as demonstrated

below. Suppose now that Y ∼ Nn(0,Σ) and we are interested in seeing whenQ := Y TAY is idempotent

(here A is a symmetric matrix). We know that Z := Σ−1/2Y ∼ Nn(0, In) so we can write (as

Y = Σ1/2Z)

Q = Y TAY = ZTΣ1/2AΣ1/2Z.

Thus Q is chi-squared distributed if and only if Σ1/2AΣ1/2 is idempotent which is equivalent to

Σ1/2AΣ1/2Σ1/2AΣ1/2 = Σ1/2AΣ1/2 ⇐⇒ AΣA = A.

We thus have

Theorem 5.6.3. Suppose Y ∼ Nn(0,Σ) and A is a symmetric matrix. Then Y TAY ∼ χ2
r if and only

if AΣA = A and r = rank(Σ1/2AΣ1/2) = rank(A).

Let us look at some examples of this result.

Example 5.6.4. Suppose Y ∼ Nn(0, σ2In) and let A be an n× n symmetric idempotent matrix with

rank r. Then it turns out that

Q :=
1

σ2
Y TAY ∼ χ2

r.

This can be proved as a consequence of Theorem 5.6.3 because

Q = Y T
A

σ2
Y

and
A

σ2
(σ2In)

A

σ2
=

A

σ2
.

Example 5.6.5. Suppose that X ∼ Nn(0,Σ) where Σ is an n× n matrix with 1 on the diagonal and

ρ on the off-diagonal. Σ can also be represented as

Σ = (1− ρ)In + ρ11T where 1 := (1, . . . , 1)T .

In the last class, we showed that S :=
∑n
i=1(Xi − X̄)2 satisfies

S

1− ρ
∼ χ2

n−1. (5.5)

We shall show this here using Theorem 5.6.3. Note first that

S = XT

(
I − 1

n
11T

)
X

so that
S

1− ρ
= XTAX where A :=

1

1− ρ

(
I − 1

n
11T

)
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Thus to show (5.5), we only need to prove that AΣA = A. For this, see that

ΣA = I − 1

n
11T +

ρ

1− ρ
11T

(
I − 1

n
11T

)
= I − 1

n
11T +

ρ

1− ρ
1

(
1T − 1

n
1T11T

)
= I − 1

n
11T +

ρ

1− ρ
1

(
1T − 1

n
n1T

)
= I − 1

n
11T

so that AΣA = A. Thus Theorem 5.6.3 immediately gives (5.5).

Example 5.6.6. Suppose Y ∼ Nn(0,Σ). Then Y TΣ−1Y ∼ χ2
n. This follows directly from Theorem

5.6.3 by taking A = Σ−1.

Finally let us mention that when Z ∼ Nn(µ, In) and A is idempotent, then ZTAZ will be a

non-central chi-squared distribution. We will not study these in this class.

5.7 Conditional Distributions of Multivariate Normals

Suppose Y ∼ Nn(µ,Σ). Let us partition Y into two parts Y(1) and Y(2) where Y(1) = (Y1, . . . , Yp)
T

consists of the first p components of Y and Y(2) = (Yp+1, . . . , Yn) consists of the last q := n − p

components of Y .

We can then partition the mean vector µ analogously

µ =

(
µ(1)

µ(2)

)
=

(
E(Y(1))

E(Y(2))

)

and the covariance matrix Σ as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Cov(Y(1)) Cov(Y(1), Y(2))

Cov(Y(2), Y(1)) Cov(Y(2))

)

The question we address now is the following: What is the conditional distribution of Y(2) given

Y(1) = y1? The answer is given below.

Fact: Under the assumption that Y ∼ Nn(µ,Σ), we have

Y(2)|Y(1) = y1 ∼ Np
(
µ(2) + Σ21Σ−1

11 (y1 − µ(1)),Σ22 − Σ21Σ−1
11 Σ12

)
. (5.6)

In words, the conditional distribution of Y(2) given Y(1) = y1 is also multivariate normal with mean

vector given by:

E(Y(2)|Y(1) = y1) = µ(2)+Σ21Σ−1
11

(
y1 − µ(1)

)
= E(Y(2))+Cov(Y(2), Y(1))Cov(Y(1), Y(1))

−1
(
y1 − E(Y(1))

)
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and covariance matrix given by

Cov(Y(2)|Y(1) = y1) = Σ22 − Σ21Σ−1
11 Σ12.

We shall go over the proof of (5.6) below. Before that, let us make a few quick remarks on the form

of the conditional distribution:

1. The conditional distributions are also multivariate normal.

2. The conditional expectation E(Y(2)|Y(1) = y1) is a linear function of y1.

3. E(Y(2)|Y(1)) is exactly equal to the BLP of Y(2) in terms of Y(1). Thus the BP and BLP coincide.

4. The conditional covariance matrix Cov(Y(2)|Y(1) = y1) does not depend on y1 (this can be viewed

as some kind of homoscedasticity).

5. The conditional covariance matrix Cov(Y(2)|Y(1) = y1) equals ΣS22 (the Schur complement of Σ22

in Σ). In other words, the conditional covariance matrix Cov(Y(2)|Y(1) = y1) is precisely equal

to the Covariance Matrix of the Residual of Y(2) given Y(1).

Proof of Fact (5.6): It is easy to see that (5.6) is equivalent to:{
Y(2) − µ(2) − Σ21Σ−1

11 (y1 − µ(1))
}
|Y(1) = y1 ∼ Np

(
0,Σ22 − Σ21Σ−1

11 Σ12

)
.

which is further equivalent to{
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1))
}
|Y(1) = y1 ∼ Np

(
0,Σ22 − Σ21Σ−1

11 Σ12

)
. (5.7)

Note that the distribution on the right hand above does not depend on y1. Therefore (5.7) is equivalent

to

Y(2)−µ(2)−Σ21Σ−1
11 (Y(1)−µ(1)) ∼ Np

(
0,Σ22 − Σ21Σ−1

11 Σ12

)
and Y(2)−µ(2)−Σ21Σ−1

11 (Y(1)−µ(1)) ⊥⊥ Y1

where ⊥⊥ denotes independence. Because Y is multivariate normal, we know that linear functions of

Y are also multivariate normal and that linear functions of Y are independent if and only if they are

uncorrelated. The above displayed assertion is therefore equivalent to the following three equations:

1. E
(
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1))
)

= 0

2. Cov
(
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1))
)

= Σ22 − Σ21Σ−1
11 Σ12.

3. Cov
(
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1)), Y(1)

)
= 0.

In other words, we have noted that proving the above three equations is equivalent to proving (5.6) . We

now complete the proof of (5.6) by proving the three equations above. We actually have already proved

these three facts. The first fact simply says that the residual of Y(2) given Y(1) has zero expectation.
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The second fact says that the covariance matrix of the residual equals the Schur complement. The

third fact says that the residual of Y(2) given Y(1) is uncorrelated with Y(1). For completeness, let us

rederive these quickly as follows.

E
(
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1))
)

= µ(2) − µ(2) − Σ21Σ−1
11 (µ(1) − µ(1)) = 0, (5.8)

Cov
(
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1))
)

= Cov

((
−Σ21Σ−1

11 I
)(Y(1) − µ(1)

Y(2) − µ(2)

))

=
(
−Σ21Σ−1

11 I
)
Cov

(
Y(1) − µ(1)

Y(2) − µ(2)

)(
−Σ−1

11 Σ12

I

)

=
(
−Σ21Σ−1

11 I
)(Σ11 Σ12

Σ21 Σ22

)(
−Σ−1

11 Σ12

I

)

=
(

0 Σ22 − Σ21Σ−1
11 Σ12

)(−Σ−1
11 Σ12

I

)
= Σ22 − Σ21Σ−1

11 Σ12 (5.9)

and finally

Cov
(
Y(2) − µ(2) − Σ21Σ−1

11 (Y(1) − µ(1)), Y(1)

)
= Cov(Y(2), Y(1))− Σ21Σ−1

11 Cov(Y(1), Y(1))

= Σ21 − Σ21Σ−1
11 Σ11 = 0 (5.10)

This completes the proof of (5.6).

Let us reiterate that all the three calculations (5.8), (5.9) and (5.10) do not require any distributional

assumptions on Y(1) and Y(2). They hold for all random vectors Y(1) and Y(2). The multivariate

normality assumption allows us to deduce (5.6) from these second order (i.e., mean and covariance)

calculations.

Let us now look at the following special case of (5.6). Fix two components Yi and Yj of Y . Let

Y(2) := (Yi, Yj)
T and let Y(1) denote the vector obtained from all the other components Yk, k 6= i, k 6= j.

Then

Cov(Y(2)|Y(1) = y1) = Cov(Y(2))− Cov(Y(2), Y(1))(CovY(1))
−1Cov(Y(1), Y(2))

Now let rYi|Yk,k 6=i,k 6=j and rYj |Yk,k 6=i,k 6=j denote the residuals of Yi in terms of Yk, k 6= i, k 6= j and Yj

in terms of Yk, k 6= i, k 6= j, then we have seen previously that

Cov

(
rYi|Yk,k 6=i,k 6=j

rYj |Yk,k 6=i,k 6=j

)
= Cov(Y(2))− Cov(Y(2), Y(1))(CovY(1))

−1Cov(Y(1), Y(2)).

We thus have

Cov(

(
Yi

Yj

)∣∣∣∣Yk = yk, k 6= i, k 6= j) = Cov

(
rYi|Yk,k 6=i,k 6=j

rYj |Yk,k 6=i,k 6=j

)
for every yk, k 6= i, k 6= j.
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This means, in particular, that the conditional correlation between Yi and Yj given Yk = yk, k 6=
i, k 6= j is precisely equal to the partial correlation ρYi,Yj |Yk,k 6=i,k 6=j (recall that ρYi,Yj |Yk,k 6=i,k 6=j is the

correlation between rYi|Yk,k 6=i,k 6=j and rYj |Yk,k 6=i,k 6=j).

Now recall the following connection between partial correlation and entries of Σ−1 that we have

seen earlier:

ρYi,Yj |Yk,k 6=i,k 6=j =
−Σ−1(i, j)√

Σ−1(i, i)Σ−1(j, j)
.

Putting the above observations together, we can deduce that the following are equivalent when Y is

multivariate normal with covariance matrix Σ:

1. Σ−1(i, j) = 0

2. ρYi,Yj |Yk,k 6=i,k 6=j = 0

3. The conditional correlation between Yi and Yj given Yk = yk, k 6= i, k 6= j equals 0 for every

choice of yk, k 6= i, k 6= j.

4. Yi and Yj are conditionally independent given Yk = yk, k 6= i, k 6= j equals 0 for every choice of

yk, k 6= i, k 6= j.
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