
Tackling PageRank with R
by

Erica Christenson & Sadhana Nathan

I. Introduction to PageRank

PageRank is a method developed by Larry Page and Sergey Brin at
Stanford University that uses the link structure of the web to rank the importance
of web pages, and assigns numeric values to represent their importance. By
using the link structure, if page A has more back links (other pages that contain a
link to page A) than page B, page A is considered more important than page B
(see Figure 1). In an article called “Google’s PageRank Explained”, Phil Craven
describes that, “Google figures that when one page links to another page, it is
effectively casting a vote for the other page. The more votes that are cast for a
page, the more important the page must be” [Cra03].

Figure 1. Figure 2.

While PageRank is concerned with the number of back links a page
has, PageRank also takes into consideration the rankings of the pages that
contain back links. So a higher ranked page bumps up the ranking of sites that it
links to more so than a page with a lower ranking. For example, if page C and
page D each have one back link from page A and page B, respectively, and
page A has a higher rank than page B, then page C will rank higher than page D
(see Figure 2). With his casting votes metaphor, Phil Craven points out that,
“The importance of the page that is casting the vote determines how important
the vote itself is” [Cra03].

II. Our approach to PageRank
a. Data Collection

Data collection begins with a set of initial URIs to parse. The slashes at
the end of the set of initial URIs are removed (if there are any). This is done to
ensure that the end results will consist of completely unique URIs instead of
similar versions of the same URI. Before parsing of a URI begins, the set of
initial URIs is checked to make sure it is nonempty. If it is nonempty, the function
begins parsing the initial URIs in the order they are given in the vector, and the

set is also put into a list called toBeProcessed. Later, the forward links collected
from all the different URIs will also be added onto this toBeProcessed list.

The inital URIs are the first to be parsed because the function is not
traditionally recursive, and instead links are parsed on a "first come first serve
basis." So the forward links retrieved from parsing the first initial URI (call it A) is
attached to the end of the list called toBeProcessed. If there is more than one
inital URI this is the next link to be processed (call it B), and B’s forward links will
be added to the end of toBeProcessed so that B's forward links succeed A's
forward links. This process continues until all of the initial URIs have been
exhausted, and then A's forward links will be processed in the order in which
they were retrieved, followed by B's forward links, and so on. The function halts
when the list toBeProcessed has been exhausted or when the specified
maximum limit has been reached.

During data collection, only one URI is parsed at a time. Every time a
new URI begins the parsing process, it is checked to make sure it is valid. If the
URI is not valid, the URI is ignored and the function begins parsing the next URI.
If the URI is valid, it is parsed and the forward links on the page are obtained.
From this collection of forward links, links to email addresses are identified and
removed from the collection if the email argument is FALSE. The collection of
forward links is then stored in a named list where the name of each element in
the list is the URI from which the forward links were obtained and the contents of
each element is a character vector containing the forward links. This list is used
as the output of the function if the extend argument is FALSE. Otherwise, the list
is modified in a way that will be explained later.

The set of forward links obtained from parsing a page cannot be directly
stored into the toBeProcessed list as potential URIs to process because the set
contains internal links (identified by hash marks), non-html pages (such as pages
with extensions .pdf, .zip, .exe), URIs outside the specified domain(s), and
relative links (which are not fully qualified). For this reason, internal links and all
non-html pages are removed from the set of potential URIs to process. Then, the
host information from the URI that the forward links were acquired from is used
to make completely qualified URIs out of all relative links in the set of potential
URIs to process. If the domain argument is TRUE, the host information from the
initial URIs is used as a way to restrict the collection of potential URIs to certain
domains. Following this, the URI that has just been parsed to obtain its forward
links is removed from the list toBeProcessed to ensure that it is not parsed
again. Next, the set of potential URIs is checked against the URIs contained in
toBeProcessed and also against all the links in the list that will be used as the
output. This guarantees that the potential links have not already been parsed
and are not already in the toBeProcessed list. Finally, the set of potential links is
added to the list toBeProcessed. In the case that the extend argument is TRUE,
further processing is done to make completely qualified URIs out of the forward
links in the named list that will be used as the output to the function. This is done
by going through the forward links of each named element in the list, checking to
see if it is fully qualified, and if it is not, using the host information from the name
of the list it comes from to make a fully qualified URI.

As mentioned above, the data collection function catalogLinks produces
a named list where each named element is a URI that has been processed and

its contents are the forward links retrieved from the particular site. While this list
structure served well to collect the data, the data must be manipulated in order to
analyze it further. Thus, the function connectivityMatrix is used to manipulate the
data into a different structure that will make the data easier to analyze.

b. Manipulating the Data

The connectivityMatrix function creates a square matrix with the number
of rows and columns equal to the amount of unique links collected from
traversing the URI(s) given to the function catalogLinks. As mentioned above, a
maximum number of links to be processed can be set as an argument in the
function catalogLinks. However, this does not determine the size of the
connectivity matrix because this limit only represents the number of sites visited,
but does not take into account the total number of forward links gathered at each
of the visited sites. Thus, the dimension of the connectivity matrix will often be
bigger than the limit set by the function catalogLinks.

The structure of the output of catalogLinks is used to determine which
URIs link to each other. The matrix created by using the output is filled with
zeros and ones where the ith row has a unique name (usually a fully qualified
URI) corresponding to the jth column with the same name. A one in the ith row, jth

column represents a forward link from the jth URI to the ith URI and also a back
link from the ith URI to the jth URI. A zero means that no direct forward link exists
from the jth URI to the ith URI. The matrix that is created is quite sparse,
containing a majority of zeros.

The function connectivityMatrix can either use the output generated by
catalogLinks to make a matrix or it can be given a set of URI(s). If it is given a
set of URI(s) then connectivityMatrix passes those URIs to catalogLinks called
within the function. In either case, the same structure is generated (a list where
each named element is a URI that has been processed by catalogLinks and its
contents are the forward links retrieved from that particular site). The function
goes on to deal with the internal links. We remove these URIs because they only
link within webpages, and they are not outgoing links. Next, the function creates
fully qualified URIs out of the relative links to establish a unique identification for
each URI. This is done by first checking each forward link to see if it qualifies as
a relative URI. Then, for each forward link that is a relative link, the name of the
list that the relative link originated from is used to determine a host that can be
appended to the relative link. Once each URI has a unique identification, a
unique set of URIs is taken from the entire collection of links and will be used to
index the rows and columns of the matrix.

At this point, a square zero matrix is constructed with dimensions
equivalent to the number of URIs in the unique set. The set of unique URIs is
used as names for the rows and columns of the matrix. We use the structure
from the output of catalogLinks as indicators for where ones should be placed in
the matrix, signifying that a link exits between two websites. This is done by
using the name of an element in the list as an index for the column and the
contents of the character vector corresponding to the element in the list as an
index for the rows of the matrix, and ones are placed accordingly.

The connectivity matrix created with the function connectivityMatrix
organizes the data in a matrix structure which is necessary to determine the

page rank of each collected URI. This structure of the connectivity matrix will
next be used to figure out the transition probabilities.

c. Finding the Transition Probabilities
The function transitionMatrix uses the output from connectivityMatrix

and replaces the zeros and ones with the transition probabilities for each
element in the matrix.

Before continuing, some terms that will be used later must be explained.
The sum of the kth column in the connectivity matrix is the outdegree of the URI
corresponding to the kth column. The outdegree can be thought of as the number
of sites the kth site links to. In contrast to this, the indegree is the sum of the kth

row and represents the number of sites linking to the kth site, or the backlinks to
the kth site. The value p is the fraction of time a link from a currently visited page
will be followed, and 1-p is the fraction of time that an arbitrary URI will be
followed [Cle02]. The function transitionMatrix uses .85 as the value for p.

TransitionMatrix begins by finding the outdegree for every URI in the
connectivity matrix. If the outdegree of the jth URI (the URI corresponding to the
jth column) is greater than zero, then every element in the jth column is multiplied
by p, divided by the column sum and a factor delta is added to each element.
Delta is defined as (1-p)/(total number of pages collected). If the outdegree is
zero, then there are no outgoing links from that page. This means that there is
an equal probability of staying at the jth URI and going to any other page in the
collection of unique URIs. Thus, each element in a column that sums to zero is
given a transition probability equal to 1/(total number of pages collected).

The function transitionMatrix creates a matrix filled with the transition
probabilities of moving from one state to another or from a given page to any of
the pages that it links to. These transition probabilities are calculated and the
transition matrix is constructed through the function pageRanker which calls the
function transitionMatrix. The final steps in figuring out the page ranks are
described in the next section of the paper.

d. Obtaining page rank's
The transition matrix is passed to the eigen function to compute the

page ranks. The eigenvector corresponding to the eigenvalue equal to one
contains the page ranks for each website possessing a row and column in the
connectivity matrix. The function pageRanker finds the transition probabilities
with the function transitionMatrix that is called within it, and then calls the eigen
function to finally compute the page ranks for all the links that are collected by
the function catalogLinks. The output of pageRanker is a named vector that is
the length of the dimension size of the inputted connectivity matrix, that is the
number of unique URIs collected with catalogLinks. Each element corresponds
to the page rank of one of the websites collected and stored in the connectivity
matrix. The vector is ordered from the pages with the highest page ranking to the
pages with the lowest page ranking. Thus, the pages are ordered from most
important to least important. The name of each element in the vector
corresponds to the name of the website that the page rank belongs to.

III. Examples and Results

a. PageRank by Example
 As mentioned earlier, PageRank takes into account not only the number
of back links into a page, but also the rank of the pages that link into a page. The
following examples will expand on those presented earlier and help clarify how
PageRank works.

Figure 4.

In the above example of a website [HT03], hobby has the lowest page
rank because it has only one back link from home, and photos and bio each are
referred to by home as well (see Figure 4). Next in ranking is photos, because in
addition to the back link from home, it also has a back link from hobby, which
adds to its page rank. Even though bio has two back links just like photos does,
it does not have the same page rank as photos. Bio has a higher page rank
because photos holds more rank than hobby, and as a result has more rank to
give to bio than hobby has to give to photos. Thus, bio accumulates more rank
from its back links than photos does, and bio is bumped up above photos.
Lastly, home holds the highest page rank because it gains ranking from all the
other pages that refer to it. In this example, home equally distributes the degree
of its page rank among the three other pages, making it so that no one page
benefits more than another page from its forward link.

Figure 5.

Figure 5 is an example of a symmetric network of links [HT03]. Home
links to lecture 1, and then each lecture links to the next successive lecture. The
loop ends with lecture 5 linking back to home. With this structure each page has
an equal page rank. This is because every page is referenced by only one other
page, and each page has the same degree of page rank to pass onto the page it
links to.

Figure 6.

This example (Figure 6) has a slight variation from the previous example
[HT03]. Now, all the pages refer back to home. Home has the highest page rank

because it has the greatest number of back links and thus all the pages give
some of their page rank to home. Since home directly points to lecture 1, it has
the next highest page rank. Lecture 2 has a lower page rank than lecture 1
because lecture 1 has less page rank to pass onto lecture 2 than home had to
pass onto lecture 1. This continues to happen, and lecture 5 ends up having the
lowest page rank.

b. PageRank results
Since the web is so complex and some websites are so big, we decided

to limit ourselves to the domain of the website we chose to study. Two-hundred-
nine unique URIs were obtained from crawling ggobi.org. Table 1 lists the
indegree, PageRank (obtained using the pageRanker function), and node
color/number (corresponding to Figure 7) for the seven highest ranked sites of
ggobi.org. Not surprising, the top sites all had very high indegrees which means
they all had many other sites (at least 80) linking to them. In fact, the top seven
sites had higher indegrees, and thus more backlinks, than any other sites within
ggobi.org.

Figure 7 is a graph of the links between the unique URIs in ggobi.org.
Numbers were used in the graph because the URI corresponding to the node
would not fit within the small space. The colored edges in the graph represent a
link into one of the top seven sites. For example, a yellow edge from node 99
shows a link from the URI corresponding to node 99 to the site
http://www.ggobi.org/html/functions.html which is represented in the graph by a yellow
node numbered 64.

Figures 8-14 show the seven highest ranked sites individually and the
sites that link into them. The colors and numbers representing the different sites
are the same as those in Figure 7 and described in Table 1.

Table 1.

URI Indegree PageRank
Node

Color/Number
http://www.ggobi.org/html/index.html 87 0.3433636 Red / 18
http://www.stack.nl/~dimitri/doxygen/index.html 81 0.3360240 Pink / 66
http://www.ggobi.org/html/modules.html 80 0.3258151 Blue / 61
http://www.ggobi.org/html/globals.html 80 0.3258151 Purple / 65
http://www.ggobi.org/html/annotated.html 80 0.3258151 Green / 62
http://www.ggobi.org/html/files.html 80 0.3258151 Orange / 63
http://www.ggobi.org/html/functions.html 80 0.3258151 Yellow / 64

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

IV. Problems We are Aware of
There is a chance that URIs which point to the same pages could all be

processed. For example, http://www.stat.berkeley.edu and http://stat.berkeley.edu point
to the same page in a browser, but because they are syntactically different, the
function catalogLinks can not detect it and eliminate one from being processed.

Another problem is that the number of unique URIs crawled was limited
by the amount of memory needed to compute the eigenvectors and eigenvalues
with the pageRanker function. This posed a problem because we were not able
to crawl the entire extent of the World Wide Web. We had to limit the process
set by a maximum in the function catalogLinks. By doing this, we were able to
get a good idea of the actual page ranks that a site would receive, but they are
not entirely accurate.

V. Things we learned and challenges that we faced

The greatest challenge we faced was determining how to go about
traversing the web. Using a traditionally recursive method results in traversing
down a path until an endpoint is reached. Since we had to limit the number of
total links that would be processed we were unsure whether the function would
ever return to complete parsing the forward links it encountered early in the
process. A method we devised traversed by levels. This ensured that forward
links were processed in the order in which they were retrieved. Thus, our method
allowed us to get a better view of the connections between websites. In the
following examples we demonstrate the benefits of the method that we chose to
use.

Figure 15. Figure 16.

Figure 17. Figure 18.

 Figure 15 illustrates the order, according to the numbers in each node,
that a website would be traversed using our non-traditionally recursive method,
and Figure 17 shows the traversing order using the recursive method. Figure 16
shows how much of the website is traversed if the maximum number of URIs to
visit is set to 5 using our non-traditionally recursive method. As shown by the
graphs, the method that we used enables us to see a cohesive portion of the
connections within the website. This is an important aspect because we were
not able to traverse the entire extent of the web, so if a traditionally recursive
method were used, as seen in Figure18, the left most portion would be traveled

down leaving the web of connections stemming from node 7 unknown about.
Figure 18 reveals the loss of information which occurs from traversing down in a
traditional manner, and how the complete picture is lost resulting in an
interrupted representation of how the pages are connected.

Processing order presented another challenge as we were constructing
the function catalogLinks. For example, when the email argument is FALSE,
email addresses need to be removed before storing the forward links of a given
page otherwise unnecessary processing would need to be done to the final
output. Also, internal links had to be removed from the list of potential links to
process before completely qualified URIs were formed because the helper
function hashURI was not able to handle completely qualified URIs. Through trial
and error, we ended up discovering a proficient way to process the URIs.

It was a painstaking process to maximize efficiency and make sure that
the process was accurately done. There were many occasions when we found
that it would be easier to work with multiple lists of the links collected, but we had
to think about using one list for several purposes because of the memory taken
up by storing other versions of the list. In the beginning of this project, we stored
everything in different variables instead of just modifying the variables we
already had. For example, instead of subtracting the link that was recently
parsed from the list toBeProcessed (as explained above), we were storing a
subset of the toBeProcessed list in an entirely new variable. This was
unnecessary because instead of making a dynamic list to keep track of the links
that were going to be processed, we created two lists that were almost identical
to each other. We did this because we felt it was easier to keep track of the
complex process and we had also never encountered memory storage problems
in our past experiences with R. Eventually, we discovered the practical aspects
of using a dynamic list, and began modifying previously stored objects instead of
creating new ones.

When we began this project we did not realize the immense variation
between web pages. Making a generalized function that could handle all the
different cases that we might come upon was difficult because we could not
foresee all the different possibilities that might arise. For instance, we never
thought that every forward link collected from a URI could potentially be thrown
out by the various ways we filter the retrieved links. This resulted in an empty
vector being passed to functions that needed a vector to have content. As a
result, the structure of the vector was changed into an empty list which
completely paralyzed our function, and was yet another improvement we had to
make to the function.

VI. Conclusion
Our research was an attempt to replicate the way that Google takes the

structure of the web and ranks pages according to their positions within the web.
We did it on a very small scale compared to Google in order to learn how the
process and algorithm worked to compute the page ranks. Even though it was
on a very small scale, we learned a lot about all the cases Google deals with in
order to obtain these page ranks such as badly formed html, and the filtering
process necessary to obtain the URIs of interest. We tried to remedy all the
problems we ran into, but there were just too many and not enough time.

Needless to say, now that we know everything that Google deals with, we have
come to respect Google and all the foresight its creators had in dealing with the
complexity of the growing web.

References

[Cle02] Cleve Moler. The World’s Largest Matrix Computation: Google’s
PageRank is an eigenvector of a matrix of order 2.7 billion.
http://www.mathworks.nl/company/newsletters/news_notes/clevescorner/oct02_cleve.ht
ml.

[Cra03] Phil Craven. Google’s PageRank explained and how to make the most
of it. http://www.webworkshop.net/pagerank.html.

[HT03] Desmond J. Higham and Alan Taylor. The Sleekest Link Algorithm. 28
August 2003.

