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1 Introduction

1.1 What is R?

R is both a programming language and a software program bundled into one neat little package.
Normally, software and languages are developed separately, and the program uses the language
by compiling the language into something the software can understand, then finally running the
program. R, however, is an interpreted language, which means that every command you type into
the prompt is immediately read by the software and interpreted, without having to compile and
build a whole program. Therefore, most of the things you do in R will be by typing one line at a
time, at the command prompt, which is represented by the ’> ’ symbol.

Another thing you must know is that R is composed of objects. These include functions, variables,
data, etc., and are stored in the memory of the computer for later use. To perform action on these
objects, we have functions and operators.

1.2 What can I do with R?

R is quite versatile, with capabilities ranging from data analysis to data scraping. We will explore
some analyses that may be performed in R later, but for now here is a list of fundamental things R
can do:
R is a calculator:

> (2+3)
[1] 5
> 2^3
[1] 8
> cos(4.7)
[1] -0.01238866

R can operate on scalar variables:

> x = 6
> 2*x
[1] 12
> exp(x)
[1] 403.4288
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R can operate on vectors:

> x = c(1,2,3,4)
> x
[1] 1 2 3 4
> x[2]
[1] 2
> x+1
[1] 2 3 4 5
> x^2
[1] 1 4 9 16
> cos(x)
[1] 0.5403023 -0.4161468 -0.9899925 -0.6536436
> y = x + 3
> y
[1] 4 5 6 7
> x/y
[1] 0.2500000 0.4000000 0.5000000 0.5714286

R can do logical operations:

> x > 2
[1] FALSE FALSE TRUE TRUE

R can calculate statistics:

> mean(x)
[1] 2.5
> sd(x)
[1] 1.290994

R can plot:

> x = seq(from = -1, to = 1, by = .01)

Here, the seq is a function that creates a sequence, hence the name, of numbers from negative
one to one, with each number separated by .01. If you’re thinking this is very self-explanatory, it
is. If you’re thinking the typing is tedious, don’t worry, seq(-1, 1, .01) does the same, but we’ll
get to that later.

> y = x^2
> plot(x,y)

R can generate random numbers:

> x = rnorm(1000,10,20)
> mean(x)
[1] 9.998576
> sd(x)
[1] 19.93155
> min(x)
[1] -50.95176
> max(x)
[1] 65.02984
> hist(x)

6
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Figure 1: What R graphs as a result of plot(x,y):

Figure 2: What R graphs as a result of hist(x):
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1.3 How Can I Get a Copy?

To obtain a copy of R, visit the site http://cran.cnr.berkeley.edu/, and visit one of the three links
Linux, MacOS X, or Windows in the section Download and Install R. Then simply choose the
distribution of R you desire.

1.4 The Focus of this Tutorial, and other References

This tutorial is written for people who have no experience with R. In turn, we only cover what we feel
to be the most fundamental areas. This allows us to explain the fundamentals in more detail than
might be found in more broadly focused tutorials. Detailed statistical examples have been provided
wherever possible to show how to combine the topics covered. We strongly reccomend observing
the help options (help, ?) for each function covered, to see their full capabilites; something not
covered in this text. Such investigation will also lead to alternatives that may better suit the reader’s
programming style.

This being said, for a more broad coverage of R, see An Introduction to R, by W.N. Ven-
ables, D.M. Smith and the R Development Core Team, at http://www.r-project.org/. Another
is R for Beginners, by Emannual Paradis. Paradis explains in more detail the inner workings
of R, with nice drawings, for those interested. For a summary of commands, vist the website
http://www.stat.berkeley.edu/~epurdom/RNotes.pdf. Charlotte Wickham’s Introduction to R
contains simulation, with exercises and solutions, located at http://cwick.co.nz/camp.html. Many
others are available at the R website, http://www.r-project.org/, under the Documentation
links. The site http://cran.r-project.org/doc/contrib/ contains tutorials in other langu-
uages, such as Vietnamese, Spanish, Italian, and more. If your interest is specifically in the
area of regression in R, please see http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
or http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf. Many others
can be found on this topic.
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2 OBJECTS

2 Objects

2.1 Introduction

We have said before that everything in R is an object. In order to better differentiate these objects,
every object has a mode and a length. The mode gives the basic type of the elements of an object,
and the four main modes are as follows:

• Numeric - A number; either an integer or a double real number.

• Character - A string or word.

• Logical - A TRUE or FALSE value.

• Complex - A complex number (i)

The length is the length of the object, or how many elements are contained within the object.
You can find out the mode and length of any object using the mode and length functions.

> num1 = 3
> mode(num1)
[1] "numeric"
> char1 = "hello"
> mode(char1)
[1] "character"
> bool1 = TRUE
> mode(bool1)
[1] "logical"
> comp1 = 1i
> mode(comp1)
[1] "complex"
> length(num1)
[1] 1
> length(c(1, 2, 3, 4, 5))
[1] 5

Also, for all modes, missing values are always represented as NA (Not Available).
While working in R we will sometimes be dealing with a single number value, or sometimes even

a large dataset. We need a way to store these objects or values for later use. That’s where variables
come in. Variables can be thought of as an attribute which may change its value while it is under
observation. We usually give variables a name or a letter, in order to recognize that it is a variable.
We have already seen an example of using variables when we wrote char1 = "hello" above. When
saving a value to a variable, we call it an “assignment”. Assignments take the result of the statement
on the right of the ’=’ symbol and stores it in a variable whose name is given on the left. In place
of the ’=’ symbol, we can also use the ’<-’ symbol. In the examples provided above, the result of
the expression on the right is simply the number that we happened to type. We then printed out a
variable’s value by typing the name of the variable.

Further note that just as <- says “Take what is on the right of this operator and store it into the
name listed to the left of the operator”, the symbol -> says just the opposite. The intuition is the
same in that we are storing into the direction of the arrow. The latter comes in handy when you
have made a long computation and want to go back and store the value of that computation. For
example, suppose you were calculating your estimated grade in a class as

> 90*.1 + 89*.15 + 91*.15 + 95*.20 + 91*.4
[1] 91.4

9
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But if we wanted to store this, we could either re-enter the operation, with a grade = or grade
<- at the beginning, or push the up arrow key to retrieve the previous line — see Section 2.12 for
more on this. If in a GUI, we could move the mouse cursor to the beginning of the line and enter the
same grade = or grade <-. The easiest way of course is to push up and then -> grade. Though
the example may seem trivial, keep this option in mind, because it will come in handy as your
experience with R expands.

2.2 Numbers

Numbers make up the numeric mode. Numbers can be a simple integer

> a = 3
> a
[1] 3

They can be a decimal

> a = 3.50
> a
[1] 3.5

or they can be a large value in exponential notation.

> a = 3.0e24
> a
[1] 3e+24

They also have some special values, Inf (∞), -Inf (−∞), and NaN (Not a Number).

> infty = 1/0
> infty
[1] Inf
> neg.infty = -1/0
> neg.infty
[1] -Inf
> infty + neg.infty
[1] NaN

We can also perform mathematical functions on numbers and variables:

> a = 3

Improper multiplication :
a(4)

> a(4) #Attempts to pass the integer 4 to a function a, but it doesn’t exist
Error: could not find function "a"
√

a

> sqrt(a)
[1] 1.732051

a5
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> a^5
[1] 243
> a**5
[1] 243

|− a|

> abs(-a)
[1] 3

a ∗ 3/5 + 7− 2

> a*3/5+7/2
[1] 5.3

2.3 Vectors

Vectors are a variable in the commonly understood meaning: a listing of elements in one dimension
that are indexed so that individual items can be selected later by one or more indices. In R, all the
elements of a vector must be of the same mode. For a vector object, the length becomes the number
of elements in the vector.

2.3.1 Creating Vectors

Vectors are most commonly created by using the ’c’ function:

> vec = c(1, 8, 4, 2, 6)
> vec
[1] 1 8 4 2 6
> c(TRUE, FALSE, TRUE)
[1] TRUE FALSE TRUE
> c("hello", "world")
[1] "hello" "world"

When looking at a vector when printed out onto the window, the numbers in brackets (in this
case the ’[1]’) correspond to the first element on each line being printed. The number represents
the index of that element in the vector being printed. So, since when the vector was printed out it
only needed to use one line for output, you will see a ’[1]’ to begin the line of output; this means
that the element immediately following the ’[1]’ is the first element in the vector. If there were
enough numbers to use up more than one line of output, there will be one bracketed number per
line of output, like so:

> numeric.vector = 1:50
> numeric.vector
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[30] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Notice that the number ’30’ has a ’[30]’ in front of it. That is because it is the first element of
that line of output and it is element number 30 in the vector. This numbering system becomes a
little more complicated when dealing with lists (see Section 2.8 for a discussion of lists), because we
can have lists contained within lists. But you don’t need to worry about that for now.

There are three other tools for vector creation that come in handy:
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> seq(from = 1.575, to = 2.075, by = 0.05)
[1] 1.575 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 2.075
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
> rep(1:3, times = 3)
[1] 1 2 3 1 2 3 1 2 3

seq is a function that generates a sequence of numbers, beginning at from and ending at to, with the
interval given by by. The next example, 1:10, is much like a simplified version of the seq function,
where it sequences automatically by from the first number to the second number, either by +1 or
-1, depending on whether the first number is greater than the second. rep is a function that repeats
a vector a designated number of times.

If you try to put objects of different modes into a vector, R will convert all elements to a mode
which all the elements can be converted to:

> c(3, "three")
[1] "3" "three"
> c(3, TRUE)
[1] 3 1
> c(3, 3i)
[1] 3+0i 0+3i
> c(3, 3i, "three")
[1] "3" "0+3i" "three"
> c(3, 3i, FALSE)
[1] 3+0i 0+3i 0+0i

We can also append two vectors together using the same c function:

> vec2 = c(5, 3, 7)
> vec3 = c(vec, vec2)
> vec3
[1] 1 8 4 2 6 5 3 7

2.3.2 Logical and Comparison Operators

Whether subsetting your data or creating logic gates for your functions, you will need logical op-
erators. Logical and comparison operators result in an expression being TRUE or FALSE. Before
moving on to some examples, we note that the ; ends a line of code before what follows it is executed.
Note the wording of the questions that follow :

Question : First, is 3 equal to 4? Secondly, is 3 not equal to 4?

> 3 == 4; 3 != 4
[1] FALSE
[1] TRUE

Question : First, is 3 less than 4? Secondly, is 3 less than or equal to 4?

> 3 < 4; 3 <= 4
[1] TRUE
[1] TRUE

Question : First, is 3 greater than 4? Secondly, is 3 greater than or equal to 4?
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> 3 > 4; 3 >= 4
[1] FALSE
[1] FALSE

Question : First, is 3 greater than 4 and (&&) 4 greater than 3? Secondly, is 3 greater than 4 or (
|| ) 4 greater than 3?

> 3 > 4 && 4 > 3; 3 > 4 || 4 > 3
[1] FALSE
[1] TRUE

You will find that these come in handy when subsetting data and programming in R. Also note
we can compare two objects element-wise( & or |). Compare :

> sc = 1:10; sc1 = sc; sc1[10] = 0
> sc == 1:10 && sc1 == 1:10
[1] TRUE
> sc == 1:10 & sc1 == 1:10
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

The && compares only the first element in sc with the first in 1:10, and then the result with the
comparison between sc1[1] and 1, while the rest is not compared. On the other hand, the &
compares every element and lets the user know exactly where the FALSE occured. The same goes
for || and |.

2.3.3 Indexing Vectors

Returning to our previous example of vec, we can index one or more of its elements by using brackets
containing the indices we want following the name of the vector.

> vec
[1] 1 8 4 2 6
> vec[2]
[1] 8

If we want to grab more than one element, we can provide another vector inside the brackets, with
an element for each index we wish to grab:

> vec[c(1,2)]
[1] 1 8
> vec[c(1,1,3)]
[1] 1 1 4

If we pass a logical test on the vector, out pops a logical vector telling which elements of the vector
pass that test:

> a = 1:10
> a > 6
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
> sum(a > 6)
[1] 4

Now we can use this logical vector to subset the original by putting the logical test within brackets
like so:
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> a[a > 6]
[1] 7 8 9 10

Notice how it only returns the values of a that are greater than 6. Here is one more example:

> a != 3
[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> a[a != 3]
[1] 1 2 4 5 6 7 8 9 10

2.3.4 Vector Arithmetic

Similarly to numbers, we can also do arithmetic on vectors:

> a = 1:3
> b = 4:6
> a+b
[1] 5 7 9
> a*b
[1] 4 10 18
> a^2
[1] 1 4 9
> a/b
[1] 0.25 0.40 0.50

2.4 Matrices

A matrix is just a vector in 2 dimensions, so therefore it has a vector of values, and a dim attribute
which specifies the number of rows and columns of the matrix. To see some examples, we will be
creating matrices using the matrix command.

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

data is the vector of data to be used. nrow and ncol specify the number of rows and columns,
respectively. dimnames can be used to specify the names of the rows and columns, by passing a list
of length 2, containing a vector of names for the rows and a vector of names for the columns.

> matrix(1:6, ncol = 2)
[,1] [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

> matrix(1:6)
[,1]

[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

> matrix(1:6, ncol=4)
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[,1] [,2] [,3] [,4]
[1,] 1 3 5 1
[2,] 2 4 6 2
Warning message:
In matrix(1:6, ncol = 4) :
data length [6] is not a sub-multiple or multiple of the number of columns [4]

Notice that when specifying the number of rows or columns, if the length of the data is not a
multiple of the rows, columns or rows and columns, then the function wraps the data until it fills
the necessary dimensions. byrow is a logical option telling the function to fill the data along the
rows. By default, it is set to FALSE, so the function fills down the columns.

> matrix(1:6, ncol = 2, byrow = TRUE)
[,1] [,2]

[1,] 1 2
[2,] 3 4
[3,] 5 6

Note that passing no arguments to matrix results in a 1x1 matrix containing the element NA .

> matrix()
[,1]

[1,] NA

Given that a matrix is two dimensional, we can call on its elements by row and column. Suppose
we had a matrix as follows :

> matrix(1:6, ncol = 2, byrow = TRUE)->DATA

Now to access the ith row and jth column, we use the form DATA[i,j] to obtain that element.
For example,

> DATA[1,2]
[1] 2

Although matrices are usually indexed with two subscripts, it’s still valid to use just one, in
which case the matrix is treated like a vector consisting of the columns of the matrix. In other
words, the matrix is referenced like a vector, whose elements are ordered by the columns. For an
example:

> DATA[5]
[1] 4

2.5 More on indexing

To expand a matrix by row or column, we use the rbind or cbind functions respectively with the
form rbind(data to bind to, data to bind). For example, we could bind the vector (1, 2, 3),
as a column and then as a row, to DATA as follows :

> cbind(DATA, 1:3)->DATA; DATA
[,1] [,2] [,3]

[1,] 1 2 1
[2,] 3 4 2
[3,] 5 6 3

15



2.5 More on indexing 2 OBJECTS

> rbind(DATA, 1:3)->DATA; DATA
[,1] [,2] [,3]

[1,] 1 2 1
[2,] 3 4 2
[3,] 5 6 3
[4,] 1 2 3

To remove a row or column, use the form DATA[-i,] or DATA[, -j] to remove the ith or jth

column respectively. To get back to our original matrix DATA :

> DATA = DATA[-4,]; DATA = DATA[,-3]; DATA
[,1] [,2]

[1,] 1 2
[2,] 3 4
[3,] 5 6

The same rules apply with removing multiple columns or rows at once with the colon, :, operator.
If we think of DATA[i,j] as saying ”I want DATA, such that I am in the ith row and jth column”

we can begin to see new ways of accessing data. For example, DATA[DATA[,2]==0,] says ”I want
DATA, such that I am in a row where the second column of DATA is equal to zero.” This can
come in handy when having to subset your data (try help(subset) for more on subsetting). The
initial step is to decide what we want, in this case rows, conditional on the columns meeting some
requirement. Note, the setup positions the logical requirement in the row position, stating we want
rows. The logical condition simply states which rows we want. For example,

> DATA[,2] == 2 # gives that it is only TRUE in the first row
[1] TRUE FALSE FALSE
> DATA[DATA[,2] == 2, ] # as we would hope, we obtain the first row
[1] 1 2
> DATA[,1] == 5 # giving a TRUE value for only the third row
[1] FALSE FALSE TRUE
> DATA[DATA[,1] == 5, ] # yields the third row
[1] 5 6

2.5.1 Random Sampling, with sample and more on Matrices

Now, suppose you wanted to take a simple random sample of some population of people represented
as observances in a matrix m hght wght , without replacement. We do not want to list the entire
matrix because it has 100 observances, but use the head and tail functions to observe the matrix :

> head(m_hght_wght)
[,1] [,2] [,3]

[1,] 50 5.657338 180.2695
[2,] 25 6.054519 193.0365
[3,] 18 6.318967 172.9062
[4,] 19 6.185009 160.2709
[5,] 23 5.369326 159.2728
[6,] 37 6.018439 152.3840

> tail(m_hght_wght)
[,1] [,2] [,3]

[95,] 27 6.044246 170.4205
[96,] 60 6.214314 182.7415
[97,] 36 5.902490 172.7300
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[98,] 32 5.935583 171.6148
[99,] 23 6.079838 150.4211
[100,] 35 6.524679 180.6599

Suppose further that we knew the data contains age, height in feet, and weight in pounds.
It is obvious which columns correspond to such categories of data, and we can label the matrix
accordingly, with dimnames, using the form dimnames(matrix) = list(vector of row names,
vector of column names); optionally, you may pass NULL for the column or row names vector. In
our case we have :

> dimnames(m_hght_wght) = list(1:100, c("Age", "Height", "Weight") )
> head(m_hght_wght)

Age Height Weight
1 50 5.657338 180.2695
2 25 6.054519 193.0365
3 18 6.318967 172.9062
4 19 6.185009 160.2709
5 23 5.369326 159.2728
6 37 6.018439 152.3840

Getting back to sampling, we want a sample from the data of size, say 30, among the 100
observances. From our previous subsetting exercises, we know that we can easily create a vector
containing the values 1 to 100, with 1:100. More generally, we want 1 to # rows of our matrix. In R,
this is accomplished with 1:nrow(matrix). If we now sample from this vector, we will have a simple
random sample of numbers from one to 100 in our case. Consider now that the row numbers of our
matrix are just a set of integers ranging from one to 100. In turn, we can call on those row numbers
corresponding to our random sample from 1:100 and we are done. The command to collect a sample
is, quite conveniently, sample, which has the form sample(data, size, replace=, prob=). Here
data is a vector containing more than one element, size is the sample size, replace is an option to
sample with or without replacement and is set to TRUE or FALSE. prob is set to a vector of weights
in the case of each outcome not being equally likely — not relevant in our case. Having all this
information, we can proceed as follows : First, obtain the sample

> hght_wght_sample = sample(1:nrow(m_hght_wght), 30, replace=FALSE)

Then to create a subset of our original matrix we could set some matrix tom hght wght[hght wght sample,
], but instead we use the following, which uses the sort function to order the sample for clarity :

> mat_sample = m_hght_wght[sort(hght_wght_sample), ]
> mat_sample

Age Height Weight
3 18 6.318967 172.9062
6 37 6.018439 152.3840
9 29 5.963140 165.8302
10 29 5.643624 163.0371
22 22 6.126306 178.1228
24 34 5.843123 142.5511
25 51 5.845036 156.9478
27 42 5.955957 142.6088
32 31 5.913583 189.1651
38 29 6.701427 170.1068
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43 38 5.890481 176.5201
44 59 5.831715 179.9074
45 29 6.224545 179.9779
46 19 5.793935 158.3108
47 26 5.821402 157.3966
49 24 5.908695 158.7613
55 52 6.061635 172.1510
65 60 5.934009 174.1347
70 28 5.544163 170.0836
71 44 6.243133 162.2368
72 43 5.669488 184.6373
74 26 5.892242 192.5950
76 34 6.083427 182.1887
77 45 6.035910 155.6650
78 36 6.112459 184.3566
81 36 6.070946 191.7821
84 50 5.903701 166.5692
87 34 6.260220 186.5016
89 49 5.737323 168.7461
92 42 5.964801 146.5358

It should now be clear that mat sample = m hght wght[sort(hght wght sample), ] is the
same as saying you want rows 3, 6, 9, 10, ..., 84, 87, 89, 92 from m hght wght, which is really
nothing new if you were paying attention in the indexing sections earlier. Nonetheless the example
shows how to extend on the idea of indexing, combining it with vector creation to simplify indexing.
In turn, we see that with indexing and the sample function, we can easily draw random samples
from our data.

Now, suppose we wanted to compare the mean height and weights of those people less than or
equal to thirty years of age with those over thrity. Here subsetting comes in handy, again. First let us
look at how to get those people over thirty. This is accomplished with mat sample[ mat sample[,1]
> 30,], or if you like:

> subset(mat_sample, mat_sample[,1] > 30)
Age Height Weight

6 37 6.018439 152.3840
24 34 5.843123 142.5511
25 51 5.845036 156.9478
27 42 5.955957 142.6088
32 31 5.913583 189.1651
43 38 5.890481 176.5201
44 59 5.831715 179.9074
55 52 6.061635 172.1510
65 60 5.934009 174.1347
71 44 6.243133 162.2368
72 43 5.669488 184.6373
76 34 6.083427 182.1887
77 45 6.035910 155.6650
78 36 6.112459 184.3566
81 36 6.070946 191.7821
84 50 5.903701 166.5692
87 34 6.260220 186.5016
89 49 5.737323 168.7461
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92 42 5.964801 146.5358

Similarly, subset(mat sample, mat sample[,1] <= 30) will complete the partition of our set,
so we create the following :

> subset(mat_sample, mat_sample[,1] > 30) ->ovr_30
> subset(mat_sample, mat_sample[,1] <= 30) ->undr_at_30

To finish the comparison, we take advantage of apply to observe the means of the columns of
each set of the partition :

> apply(undr_at_30, 2, mean)
Age Height Weight

25.363636 5.994404 169.738954
> apply(ovr_30, 2, mean)

Age Height Weight
43.000000 5.967126 169.241524

The commands above say “given the data undr at 30, give me the mean of each of it’s columns
(2)”; similarly in the second line for ovr 30. This is explained in more detail in the following section.

2.5.2 Introduction to apply

Suppose you wanted information for each row and column of DATA above, such as the maximum
value stored. Using the apply function, with the form apply(X, MARGIN, FUN, ...), where X is
data to perform function on, MARGIN is a 2 for column or 1 for row specifying where the function,
FUN, should be applied to the data, we can easily obtain our results. Note that to apply the function
across rows (columns), use the value 1 (2), or c(1,2) for rows and columns. For example, to apply
the function max to DATA, by rows, then columns, do the following :

> apply(x, 1, max)
[1] 2 4 6
> apply(x, 2, max)
[1] 5 6

If the function of interest being passed to apply can use parameters, they may also be passed
to apply. Supposing we assigned an NA to DATA[2,2] with DATA[2,2] = NA, we could get one of
the following two results by passing or not passing na.rm=TRUE as a parameter to max in the call to
apply.

> DATA[2,2] = NA
> apply(x, 2, max, na.rm=TRUE)
[1] 5 6
> apply(x, 2, max)
[1] 5 NA

2.6 Strings

Anything in between pairs of single or double quotes are defined as members of the character class,
also called a ”string”:

> b <- "Category A"

We can convert numeric objects to character objects and back:
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> pi = 3.14
> pi = as.character(pi)
> pi
[1] "3.14"
> pi = as.numeric(pi)
> pi
[1] 3.14

We can also paste strings together:

> a = "string1 +"
> b = "string2"
> paste(a,b)
[1] "string1 + string2"

and use them in vectors just like numeric objects:

> x = "element 1"
> y = "element 2"
> c(x,y)
[1] "element 1" "element 2"

2.6.1 Manipulating Strings

To split a string, we use the strsplit function, with the form strsplit(x,split) where x is
the string to be split and split is what to split the string by1. For example, to split the string
“1234567890” by each empty string “”, do the following :

> strsplit("1234567890", "")->myString
> myString
[[1]]
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "0"

Note the double brackets around the 1 above, in [[1]]. This states that myString is a list.
The [[1]] denotes that what follows is the first element in the list. To refer to this element, we must
call myString[[1]]. This will be put to use in a moment. Just as being able to take a car engine
apart doesn’t make one a mechanic, one won’t get far with manipulaing strings if one doesn’t know
how to put strings back together once he, or she, has taken them apart. Combining strings can be
achieved here with the paste function, with the informal form paste(what to paste together,
what you want to separate these items with) . For example, if we wanted to put the string
back to it’s original form, we would paste the elements of myString, separating each element with
an empty character :

paste(myString[[1]], collapse = "")
[1] "1234567890"

We will cover other String manipulations and issues related to data frames in the the sections
on reading data into R2.

1Note that there are important options to this function not covered here. If you are looking for more advanced
text manipulation, please use ?strsplit for a detailed explanation on this funciton

2If you just can’t wait, check out gsub with the call help(gsub).
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2.7 Factors

A factor is a categorical variable, that can be of either the numeric or character mode. They
can be used when needing to categorize data into different groups. A factor includes a vector of
‘labels’ for the categories, as well as number of different levels that the factor contains. Factors can
be created using the factor function:

factor(x, levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

The first argument, x, is a vector of data, that will be attempted to convert into a factor object.

> factor(1:5)
[1] 1 2 3 4 5
Levels: 1 2 3 4 5
> factor(c("high", "high", "low", "medium"))
[1] high high low medium
Levels: high low medium

Notice how the levels contain only the unique values found in the vector of values. The levels
argument designates all the possible levels of the factor, which includes all possible values that the
data could have taken on. Notice that by default this is set to be all of the unique values of the
vector x. Here is an example where we specify the levels ourselves:

> factor(1:3, levels = 1:7)
[1] 1 2 3
Levels: 1 2 3 4 5 6 7

Notice that all of the values in x were also found in the levels vector we specified. However, if
values in x are not found within the vector of levels, they are replaced by <NA> values:

> factor(1:3, levels = c("A", "B", "C", "D", "E"))
[1] <NA> <NA> <NA>
Levels: A B C D E
> factor(1:3, levels = c("A", 3, "C", 2, 1))
[1] 1 2 3
Levels: A 3 C 2 1

labels determines the names of the levels. If you decide to specify the labels of the factor, the
vector of labels must be of the same length as the number of different levels, and R automatically
determines which label goes with which value by assigning the next unique value in the vector x
with the next unique label in labels. Here is an example where we specify the labels ourselves:

> factor(1:3, labels = c("low", "medium", "high"))
[1] low medium high
Levels: low medium high

The number of labels must equal the number of levels, which again is the number of unique
values found in x.

> factor(c(2, 3, 3, 1, 2), labels = c("low", "medium", "high"))
[1] medium high high low medium
Levels: low medium high
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Notice that every ‘1’ is replaced by ’low’, ‘2’ replaced by ’medium’, and ‘3’ replaced by ‘high’.
This is because ‘1’ is the first of the ordered unique values, and ‘low’ is the first label found in
labels. exclude is a vector of values to be excluded when forming the set of levels:

> factor(1:3, exclude = 2)
[1] 1 <NA> 3
Levels: 1 3
> factor(1:3, levels = c("A", 3, "C", 2, 1), exclude = 2)
[1] 1 <NA> 3
Levels: A 3 C 1

Notice how if a value in exclude is found within the vector of values, then it is replaced by <NA>
and removed from the levels as well. If you set exclude to be null, the missing value (NA) is
treated as a valid level, as in:

> factor(c(3, 3, 2, 8, 6, 4, 2, NA), exclude = NULL)
[1] 3 3 2 8 6 4 2 <NA>
Levels: 2 3 4 6 8 <NA>

ordered is a logical argument used to specify whether the levels should be regarded as ordered.
The default value is determined by is.ordered(x), which tells if the values in x are ordered or not.

factor(c("high","high","low","medium"),
+ levels=c("low","medium","high"),ordered=FALSE)
[1] high high low medium
Levels: high low medium
factor(c("high","high","low","medium"),
+ levels=c("low","medium","high"),ordered=TRUE)
[1] high high low medium
Levels: high < low < medium

Notice that if ordered is set to TRUE, ‘high’ is considered earlier in order than ‘low’ or ‘medium’.

2.8 List

A list is pretty much what sounds like: a listing of objects. Lists can contain any object, even lists.
In fact, when lists are created, every object within the list is converted to a list object. Therefore,
lists can go several layers deep:

> y = 1:8

> x = 1:4

> list(x, y)
[[1]]
[1] 1 2 3 4

[[2]]
[1] 1 2 3 4 5 6 7 8

> list(x, list(y))
[[1]]
[1] 1 2 3 4
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[[2]]
[[2]][[1]]
[1] 1 2 3 4 5 6 7 8

Notice that the indexing style for lists is different. [[1]] is indicating that this is the first list
in the list, and [1] is indicating the first element of the vector contained in that list. We can then
select either the list objects or the objects they contain, depending on the sets of brackets we use:

> l1 = list(x, y)
> l1
[[1]]
[1] 1 2 3 4

[[2]]
[1] 1 2 3 4 5 6 7 8

> l1[1]
[[1]]
[1] 1 2 3 4

> l1[[1]]
[1] 1 2 3 4

l1[1] grabs the first list in the list, whereas l1[[1]] grabs the object contained in that list.
Like data frames, the elements of a list can also be named.

> l2 = list(independent = x, dependent = y)
> l2
$independent
[1] 3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84

$dependent
[1] 3.19 4.26 4.47 4.53 4.67 4.69 12.78 6.79 9.37 12.75

We can now access these elements using the ’$’ notation:

> l2$dependent
[1] 3.19 4.26 4.47 4.53 4.67 4.69 12.78 6.79 9.37 12.75

Note that the names function works on our list :

> names(l2)
[1] "independent" "dependent"
> names(l2)[1]
[1] "independent"

If you try to store the strings ‘‘independent" and ‘‘dependent" in vectors, the dollar notation
will not work. As an example, suppose we did the following:

> l2$names(l2)[1]
Error: attempt to apply non-function

Alternatively, observe a subscripting approach :

> l2[[names(l2)[1]]]
[1] 3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84
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2.9 Data Frames

While a matrix can contain only one type of data, a data-frame may hold many different types, so
long as individual columns of the data-frame contain only one type throughout that column. To
create a data-frame, we use the data.frame function, with one of many forms. One way is to create
a data-frame from vectors : data.frame(v1, v2, v3, ..., vn), where each vi is a vector. In this
case the columns of the data-frame will take on the names of the vectors. Another way is to create
a data-frame from a matrix or vector : as.data.frame(m1), where m1 is a matrix or vector. If you
want to set the names of the columns on your own, use the function names with the form names(your
data-frame here) = c(c name1, c name2, ..., c namen), where each c namei is the name you
want to give to column i. Once a data-frame is created you may add a column or row to it using basic
indexing. However, with data-frames, we have many ways of refrencing our variables (columns). For
example, suppose we created the following data-frame :

> v1 = 1:10
> v2 = 2:11
> v3 = 11:2
> v4=rep(c("male", "female"), 5)
> d1 = data.frame(v1,v2, v3, v4)
> d1

v1 v2 v3 v4
1 1 2 11 male
2 2 3 10 female
3 3 4 9 male
4 4 5 8 female
5 5 6 7 male
6 6 7 6 female
7 7 8 5 male
8 8 9 4 female
9 9 10 3 male
10 10 11 2 female

Note that we now have a column of character strings, along with three of numerical type, some-
thing not achievable with the matrix. Also notice that the column names are not very representative
of the data. We now change this :

> names(d1) = c("One_to_10", "Two_to_10", "Eleven_to_2", "Sex")
> d1

One_to_10 Two_to_10 Eleven_to_2 Sex
1 1 2 11 male
2 2 3 10 female
3 3 4 9 male
4 4 5 8 female
5 5 6 7 male
6 6 7 6 female
7 7 8 5 male
8 8 9 4 female
9 9 10 3 male
10 10 11 2 female

Now, d1[,2] is equivalent to d1$One to 10, which is equivalent to d1[,’One to 10’]. That is,
instead of saying we want d1 such that we are in the second column, if it is easier for us to remember
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the name of the second column, we may use that instead, by placing a $ after the data-frame name
and before the column name, or call the data-frame column, refrencing the column name instead of
its location. For example, the following asks whether or not the first sentance of this paragraph is
true, and the notation will be covered soon.

> d1$One_to10 == d1[,1]; d1[,1] == d1[,’One_to_10’]
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

More on this in a moment. The following code displays one of the many ways to add a column to
d1.

> d1[,5] = strsplit("1234567890", ""); names(d1)[5] = "String Column"
> d1

One_to_10 Two_to_10 Eleven_to_2 Sex String Column
1 1 2 11 male 1
2 2 3 10 female 2
3 3 4 9 male 3
4 4 5 8 female 4
5 5 6 7 male 5
6 6 7 6 female 6
7 7 8 5 male 7
8 8 9 4 female 8
9 9 10 3 male 9
10 10 11 2 female 0

We can delete columns just as we can with matrices to obtain our original data-frame, by using
the negative subscript as follows

> d1 = d1[, -4:-5]
> d1

One_to_10 Two_to_10 Eleven_to_2
1 1 2 11
2 2 3 10
3 3 4 9
4 4 5 8
5 5 6 7
6 6 7 6
7 7 8 5
8 8 9 4
9 9 10 3
10 10 11 2

Just as a Matrix, with the name MatrixName, can be subsetted with a call like MatrixName[MatrixName[,j]
== 1, ], to call on some matrix MatrixName where its jth column equals one, so too can a data-
frame be referenced. However, with the data-frame, say dataName we could equally make use of
the fact that data-frame columns have names, and do the following. Supposing a column name of a
data-frame dataName was colName, we could use dataName[ dataName$colName == 1, ], instead
of using the more cryptic dataName[ dataName[,j] == 1,]. Even more instructive, one could use
subset(dataName, colName ==1) for the same result. Similar use with dataName[,’colName’]
works3.

3Some functions you may be interested in at this point, with respect to data-frames are subset, with, head, tail,
and summary
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2.9.1 attach and detach

If you’ve been working out the examples with us so far you may be getting tired of typing things
out like d1$One to 10 and things of that sort. To get around having to type the name of the data
frame we are refering to without explicitly stating it’s name, use attach(what), where what is the
name of your data frame. In our case, we’d type attach(d1). After doing this One to 10 will suffice
for accessing the column named One to 10 of the data frame d1. To detach this data frame, use
detach(what).

2.10 Tables

The table function will create a table counting the number of occurances of a factor in what object
is passed to it. For an illustrative example, we prematurely introduce you to the rnorm function,
which has the form rnorm(n,mean=0,sd=1), where n is the number of observations to generate,
mean and sd the mean and standard deviation of the distribution from which the numbers are
from. Since it creates random numbers, if you try to impliment this same example you will not get
the same results. If you want to create the same numbers twice, set the seed before creating your
numbers with set.seed.

To create and store in, say OurRV, 1000 randomly generated observances of a random variable
following a Normal distribution with mean 0 and standard deviation 3, we would write OurRV =
rnorm(1000, 0, 3). The round function is also used in the following example, with the form
round(x,digits=0), where x is the number to round, by digits decimal places, so, for example,
round(3.4, 0) results in the integer 3. To observe through a table the distribution of counts of
randomly generated N(0, 9) observances, when rounded to integers, we could do the following :

> table(round(rnorm(1000, 0, 3), 0 ) )

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
2 3 11 22 40 65 66 86 134 115 134 103 70 66 39 20 13 6 2 3

We may also compare two objects to each other. For example, we could see how closely generating
two sets of N(0, 9) variables match eachother, when rounded to the nearest integer, element by
element; that is, if the ith element of the first vector matches the jth element of the second vector,
then table will represent this with a count.
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> table(round(rnorm(1000, 0, 3), 0), round(rnorm(1000, 0, 3), 0))

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 12
-12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
-7 0 0 1 0 0 0 0 0 0 2 1 0 0 2 0 0 0 0 0 0 0
-6 0 0 0 0 0 0 1 2 1 2 2 1 3 3 0 0 1 0 0 0 0
-5 0 0 0 0 0 3 2 3 2 3 3 1 0 3 1 0 1 0 0 0 0
-4 0 0 0 0 1 0 3 5 6 7 11 4 9 5 3 2 0 1 0 0 0
-3 0 0 0 0 2 1 3 2 13 13 14 13 11 4 6 7 1 1 1 0 0
-2 0 0 1 0 0 1 3 17 10 14 13 12 8 9 5 4 1 1 1 1 0
-1 0 1 0 0 3 6 9 3 13 14 8 15 11 12 5 4 0 2 1 1 0
0 0 0 1 3 2 4 5 14 15 26 10 14 14 6 12 4 0 2 1 0 0
1 1 0 0 1 2 4 11 13 9 21 19 13 15 15 10 6 2 1 1 0 0
2 0 0 0 1 2 1 11 7 10 11 16 11 10 7 3 3 3 0 0 1 0
3 0 0 0 1 2 0 4 8 13 8 11 15 11 9 7 2 0 1 0 0 0
4 0 0 0 2 1 1 5 3 8 10 10 2 4 5 3 0 3 0 1 0 1
5 0 0 0 1 1 1 3 4 3 2 4 5 1 2 3 1 2 0 0 1 0
6 0 0 0 0 0 1 1 2 4 1 1 5 2 1 2 0 0 0 0 0 0
7 0 0 0 0 0 0 1 1 0 0 1 2 0 1 1 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 2 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

This is called a contingency table. A better example might compare, say, the number of days it
takes different plants to grow to a certain height under different treatments.

2.11 Operators

Operators are a special type of function. They are functions that are used more often, so the designers
decided to make it more easy to use them4. They do not use the ’name(arguments, operators, ...)
format, so they lose some of the control that functions provide. Operators include things such as
arithmetic (+,-, *, ...), comparison (<, >, <=, >=), and logical (==, !=, &&, ||). As you can see, it is
much easier to do something like

> 2+2

than it is to do

> add(2, 2) # Won’t work

which won’t even work unless you create a function called add = function(x,y) = x + y,
though such would not make much sense, since + works fine for adding two numbers. If you are
interested, note the following :

> "+"(2,2)

2.12 Other Things You Must Know About R

• R is Case Sensitive - When you’re dealing with names of variables, functions, etc., be aware
that R is case sensitive, so “item1” is a different variable than “Item1”.

4Some more information on the operators that R provides can be found here:
http://www.statmethods.net/management/operators.html
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• R Ignores whitespace - The only time that whitespace becomes important is when you’re
creating names for variable and functions: they may contain whitespace, but you may find
that this makes working with your variable names quite messy, since you must quote them
each time they are called.

> item one = 3
Error: unexpected symbol in "item one"

Other than this, the R interpreter ignores all whitespace (spaces, tabs).

• Commands Are Separated by Either a “;” or a Newline - You can either type

> 2+2
[1] 4
> 3+3
[1] 6

or

> 2+2;3+3
[1] 4
[1] 6

If you do not complete a command before hitting ’enter’, the prompt will continue to the next
line with a ’+’ prompt, allowing you to continue typing in the command on the next line.

> mean(c(1, 2, 3, 4),
+ na.rm = TRUE)
[1] 2.5

• Sessions - As you know, R saves all objects in memory When you load R for the first time,
a brand new session is created and no new obects (those other than R’s defaults) have been
created. At any time during your session, you can save your session by selecting File > Save
Workspace. Also, when you exit the R interface, you will be prompted as to whether you
would like to save your session. The next time you load R, all of the objects that you created
during your last session will be restored. If not operating out of a GUI, use save.image() to
save your workspace.

• rm() and ls() commands - To view all of the objects that you have created so far, use the
’ls()’ command; this will list the names of any variables or functions that you have created
and are currently stored in memory. To remove all of these objects, simply use the ’rm()’
command, like so:

> num1 = 3
> ls()
[1] "num1"
> rm("num1")
> ls()
character(0)
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• Up/Down Arrow Keys Cycle Through History - All of your previous commands are
remembered in your session’s history. To cycle through them, you may use the up and down
arrow keys, the up arrow key giving you the previous command and the down arrow giving you
the next command. If you entered in a command across multiple lines of prompt, the history
will save the command line-by-line as well.

• Tab Completion - Sometimes, after you have created lots of objects, you might begin to
run out of short, creative names for them. That’s where tab completion comes in handy. Tab
completion makes it faster to reference a variable or function name. After typing in n characters
if you press the ’tab’ key once, sometimes the prompt will automatically choose an object name
that it thinks you are trying to obtain and fills in the rest of the name automatically. If this
is not the object name that you were looking for, you can press the ’tab’ key until you get a
list of all objects that have a name that begins with those n characters. For example, if you
type in

> mea

and then press the ’tab’ key once, R thinks that you are trying to get the ’mean’ command,
so it will fill in the rest of the command like so:

> mean

If this is not the object name that you were looking for, you can press the ’tab’ key until you
obtain a list like so:

> mean
mean mean.data.frame mean.Date mean.default mean.difftime
mean.POSIXct mean.POSIXlt

2.13 Functions

We have actaully introduced you to a couple of built-in functions already. Functions have a name
followed by a pair of parantheses where the user specifies arguments and options. Arguments are
parameters that must be specified for the function to work, while options are simply optional. For
example, if we wanted to find the mean of the group of numbers 1, 2, 3, 4 and 5, we might type:

> mean(c(1, 2, 3, 4, 5), na.rm = TRUE)
[1] 3

R has most of the functions that you’re going to need already built-in. However, R does allow
you to write your own functions, which will be discussed later.

2.13.1 Examples

Here we introduce the functions which.max, which.min, unique, and split through an example.
Suppose we had a data frame on shipping information, shipping, for some product, where the data
had the following form :

> head(shipments)
Utility PropW Dest.St Total.Cost

143 0.8461538 0.8478095 NY 1075.28
371 0.7692308 0.9643333 NY 1075.28
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406 0.7692308 0.9674762 NY 1075.28
461 0.7692308 0.9682143 NY 1079.76
462 0.7692308 0.8191429 NY 1079.76
560 0.8076923 0.7461667 NY 1079.76

Now, if we wanted to know which observance corresponded with the largest Utility, which is
proportion of trailer filled in a shipment, and similarly for PropW which is the proportion of weight to
the maximum legal capacity for the shipment, we could use which.max, with the form which.max(x)
where x is a vector of data.

> apply(shipments[, 1:2], 2, which.max)
Utility PropW

656 573

Now observing these values, we get :

> shipments$Utility[656]
[1] 1
> shipments$PropW[656]
[1] 0.963762

Notice that which.min is used analogously to which.max :

> apply(shipments[, 1:2], 2, which.min)
Utility PropW

28 143
> shipments$Utility[28]
[1] 0.03846154
> shipments$PropW[143]
[1] 0.01478571

To see what the different destination states are, Dest.St, we can use the unique function here with
the form unique(x), where x is a vector, data frame, matrix, or array. There are options available
to pass to unique, but we are only covering the simplest case.

> unique(shipments$Dest.St)
[1] "NY" "IL" "VA" "UT" "TX" "WI" "NC" "CA" "AZ" "IN" "FL" "OH" "SC" "ME" "MD"
[16] "PA" "MO" "CT" "GA" "MI" "MT" "WA" "ND" "OK" "CO" "NV" "NJ" "NM" "ID" "KS"
[31] "AR" "MA" "IA"

Having this information, we may now want to observe summary statistics of the data by state
quickly. The split function is very nice for doing this. The form for our needs is split(x, f,
drop = FALSE), where x is a vector or data frame, and f is a vector of factors for grouping. I
have noticed that passing character vectors works as well. drop just specifies whether or not you
want levels of your factor vector to be dropped from the splitting if they do not occur in values
corresponding to x. It is important to note that split will create a list. Let us first take a peek at
what we could get from splitting the Utility vector by Dest.St :

> head(split(shipments$Utility, as.factor(shipments$Dest.St)))
$AR
[1] 0.4615385

$AZ
[1] 0.9230769 0.8846154 0.9230769 0.8461538 0.9230769 0.9230769 0.9230769
[8] 0.9230769 0.8461538 0.9230769 0.8846154 0.9615385 0.9230769 0.8846154
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[15] 0.9230769 0.9230769 0.9230769 0.8846154 0.9230769 0.8846154 0.9230769
[22] 0.8846154 0.9230769 0.9615385 0.9230769

$CA
[1] 0.6923077 0.6923077 0.5000000 0.6538462 0.6923077 0.9230769 0.9230769
[8] 0.7307692 0.7692308 0.7692308 0.7692308 0.7692308 0.9230769 0.8846154

[15] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[22] 0.6923077 0.7692308 0.7692308 0.9230769 0.9230769 0.9230769 0.9230769
[29] 0.8461538 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[36] 0.6923077 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[43] 0.9230769 0.6538462 0.9230769 0.6923077 0.6923077 0.6923077 0.6923077
[50] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077
[57] 0.6923077 0.6923077 0.2692308 0.6923077 0.9230769 0.6923077 0.6923077
[64] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077
[71] 0.9230769 0.9230769 0.6153846 0.9230769 0.6153846 0.9230769 0.2307692
[78] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[85] 0.9230769 0.9230769 0.9230769 0.9230769 0.3076923 0.6923077 0.9230769
[92] 0.5769231 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[99] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.6923077
[106] 0.6923077 0.6923077 0.8461538 0.8461538 0.6923077 0.9230769 0.9230769
[113] 0.9230769 0.9230769 0.9230769 0.9230769 0.6923077 0.6923077 0.6923077
[120] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.4615385 0.9230769
[127] 0.9230769 0.9230769 0.9230769 0.3461538 0.9230769 0.9230769 0.8846154
[134] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.5769231
[141] 0.6923077 0.6923077 0.6923077 0.6923077 0.9230769 0.9230769

$CO
[1] 0.6538462 0.8846154 0.9230769

$CT
[1] 0.9615385 0.9230769 0.9615385

$FL
[1] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077
[8] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077

Note the information corresponding to $CA above. There is another quick way to get informa-
tion on shipments$Utility. You may recall in earlier sections that we could use shipments[
shipments$Dest.St == "CA", ]$Utility to get this data. Alternatively, we could use the which
function for more clarity. which is used with the form which(x, arr.ind = FALSE), where x is a
logical vector or array, while arr.id either returns or does not return the indices of an array if x is
an array. To obtain the indices of shipments where Dest.St == "CA", we could do the following :

> which(shipments$Dest.St=="CA")
[1] 23 25 32 68 77 79 80 81 82 83 84 85 86 87 88 89 90 91

[19] 92 93 94 95 96 97 98 99 100 101 102 105 106 107 108 109 110 146
[37] 174 175 176 177 183 184 185 186 187 188 190 201 212 217 218 219 220 237
[55] 238 240 244 255 258 259 260 273 278 279 285 289 290 300 309 314 321 322
[73] 323 324 325 326 327 343 344 345 346 347 348 349 350 351 352 353 368 401
[91] 417 427 429 430 431 432 433 434 435 436 437 438 439 440 470 497 512 521
[109] 522 525 527 528 529 530 533 554 570 571 573 588 607 609 616 621 622 623
[127] 624 625 626 627 628 629 630 631 632 633 634 648 649 680 707 713 725 742
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[145] 743 744

Now, use this to index shipments$Utility :

> shipments$Utility[which(shipments$Dest.St=="CA")]
[1] 0.6923077 0.6923077 0.5000000 0.6538462 0.6923077 0.9230769 0.9230769
[8] 0.7307692 0.7692308 0.7692308 0.7692308 0.7692308 0.9230769 0.8846154

[15] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[22] 0.6923077 0.7692308 0.7692308 0.9230769 0.9230769 0.9230769 0.9230769
[29] 0.8461538 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[36] 0.6923077 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[43] 0.9230769 0.6538462 0.9230769 0.6923077 0.6923077 0.6923077 0.6923077
[50] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077
[57] 0.6923077 0.6923077 0.2692308 0.6923077 0.9230769 0.6923077 0.6923077
[64] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077
[71] 0.9230769 0.9230769 0.6153846 0.9230769 0.6153846 0.9230769 0.2307692
[78] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[85] 0.9230769 0.9230769 0.9230769 0.9230769 0.3076923 0.6923077 0.9230769
[92] 0.5769231 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769
[99] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.6923077
[106] 0.6923077 0.6923077 0.8461538 0.8461538 0.6923077 0.9230769 0.9230769
[113] 0.9230769 0.9230769 0.9230769 0.9230769 0.6923077 0.6923077 0.6923077
[120] 0.6923077 0.6923077 0.6923077 0.6923077 0.6923077 0.4615385 0.9230769
[127] 0.9230769 0.9230769 0.9230769 0.3461538 0.9230769 0.9230769 0.8846154
[134] 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.9230769 0.5769231
[141] 0.6923077 0.6923077 0.6923077 0.6923077 0.9230769 0.9230769

If shipments$Utility[which(shipments$Dest.St=="CA")] is easier for you to read than is shipments[
shipments$Dest.St == "CA", ]$Utility, then use which. Now, considering that split(shipments$Utility,
as.factor(shipments$Dest.St)) is a list, why not take a look at the list version of apply? The
function is lapply and has the form lapply(X, FUN, ...), where X is a list and FUN is some func-
tion to perform on each node of the list, while ... are options to pass to FUN. In our case, lets first
store our list and then take a look at the means by state :

> l_util = split(shipments$Utility, as.factor(shipments$Dest.St))
> lapply(l_util, mean)
$AR
[1] 0.4615385

$AZ
[1] 0.9107692

$CA
[1] 0.8061117

$CO
[1] 0.8205128

$CT
[1] 0.948718

$FL
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[1] 0.6923077

$GA
[1] 0.8846154

$IA
[1] 0.923077

$ID
[1] 0.8846154

$IL
[1] 0.7820513

$IN
[1] 0.7618658

$KS
[1] 0.5769231

$MA
[1] 0.923077

$MD
[1] 0.7600962

$ME
[1] 0.9010989

$MI
[1] 0.1318681

$MO
[1] 0.3846154

$MT
[1] 0.9038462

$NC
[1] 0.1451049

$ND
[1] 0.8942308

$NJ
[1] 0.9134615

$NM
[1] 0.9423077

$NV
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[1] 0.8076923

$NY
[1] 0.7850962

$OH
[1] 0.07692308

$OK
[1] 0.4230769

$PA
[1] 0.8435897

$SC
[1] 0.8461538

$TX
[1] 0.6133333

$UT
[1] 0.42

$VA
[1] 0.9134615

$WA
[1] 0.8205128

$WI
[1] 0.5222672

While this is not so appealing to look at, boxplots are, in my opinion, and we will observe how
to quickly break data up in plots using split in Section 3. First, lets resolve the issue of all that
output on the last two pages of the tutorial!

Sometimes we want this data simplified to a vector or matrix. In our example, it would be nice
to have a vector rather than a list. I mean, look at the last two pages! Thats a lot of wasted
space, though there are other reasons you may have for the transformation. We can change the
last breakdown of the data into a vector, rather than a list, and preserve the names of the states
with sapply. It has the form sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE). We
know what X and ... are. The simplify = TRUE is what simplifies from a list to a vector or matrix
if possible. USE.NAMES is what preserves the names in what follows :

> sapply(l_util, mean)
AR AZ CA CO CT FL GA

0.46153846 0.91076923 0.80611170 0.82051282 0.94871795 0.69230769 0.88461538
IA ID IL IN KS MA MD

0.92307692 0.88461538 0.78205128 0.76186579 0.57692308 0.92307692 0.76009615
ME MI MO MT NC ND NJ

0.90109890 0.13186813 0.38461538 0.90384615 0.14510490 0.89423077 0.91346154
NM NV NY OH OK PA SC

0.94230769 0.80769231 0.78509615 0.07692308 0.42307692 0.84358974 0.84615385
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TX UT VA WA WI
0.61333333 0.42000000 0.91346154 0.82051282 0.52226721

Thats better. Observe the different classes :

> class(sapply(l_util, mean)[[1]])
[1] "numeric"
> class(lapply(l_util, mean))
[1] "list"

3 Plotting

This section covers some basic graphical techniques for observing data.

3.1 Histograms

Assuming we had some numerical data, a histogram would partition the data into bins and represent
the frequency of numbers in each bin by the height of each bin. In R, the hist function creates
histograms. The form is hist(x, breaks, prob) where x is data, breaks is a listing of beginning
and ending values for the bins (optional), and prob if set to TRUE will display the bins such that
the area of all the bins sums to one. breaks, for example, if set to c(.00, .02, .04, .06) would
create three bins with ranges (.00, .02), (.02, .04), and (.04, .06). Alternatively, you may simply input
the desired number of bins to breaks, such as breaks = 3. Let us show by example how to make
a customized histogram using these three components of data, breaks, and prob.

If we created 1000 random numbers from the standard normal distribution (rnorm(1000)) and
wanted to generate a histogram of our data, we could proceed as follows. First create the data and
get a summary, so we can find our breaks.

> RandomNormal = rnorm(1000)
> summary(RandomNormal)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.02200 -0.57770 0.03001 0.03561 0.69870 3.07100

We can see that a range of (−3.2,−3.2) would cover the range of our data. We now choose to
make our breaks .2 apart with seq(-3.2,3.2, 0.2). Setting the prob option is as simple as stating
prob=TRUE.

hist(RandomNormal, seq(-3.2,3.2,.2), prob=TRUE)
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Figure 3: Histogram :

Suppose we wanted to see how well random generation of a normal variable with mean 0 and sd
1 does compared to the theoretical Normal(0, 1). For now, we can compare the theoretical curve
to this histogram. The curve function plots a curve for the expression passed to it, and has an add
= TRUE option to plot over the existing histogram. Note that we have passed the function dnorm
for the expressionm, which is much easier than writing out e(−.5∗x2)/

√
2 ∗ π. However, supposing a

function did not exist for your expression, you could either pass the expression as is to curve, or
create your own function and pass it to curve.

> curve((dnorm(x), add = TRUE, col = "red") # same as col = 2
> legend(legend = c("Theoretical N(0,1)"), col = 2, x = "topright", lty = 1)

Figure 4: Histogram :
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3.1.1 colors

To see a list of colors recognized by R enter colors(), or colours(). Passing col a number in
1 through 8 will assign to col one of eight basic colors, and repeats for numbers greater than 8.
That is, col = ”black” is the same as col = 1 + 8k for k ∈ Z+ Alternatively, passing col the value
colors()[i] passes the ith color name stored in colors to col. If the following list isn’t enough
variation for you, please see colors() for an extended list.

# Color
1 black
2 red
3 green
4 blue
5 aqua
6 pink
7 yellow
8 grey

3.2 Box-Plots :

Box-plots can be used to compare the distributions of two variables, or data sets. Medians, 25% and
75% quantiles are shown on each graph for each variable along with a show of outliers in the data.
For example, suppose we created the data-frame DATA.oner. In its construction, recall rnorm(x)
creates x randomly generated numbers following the standard normal distribution, rt(x,df) makes
x random t distributed numbers with degrees of freedom df, and rchisq(x,df) analagously for the
χ2 distribution.

> DATA.oner = data.frame(NORM = rnorm(1000), TEE = rt(1000, 12), CHI = rchisq(1000,1))

Then we could create a box pot of the vectors in that data frame with boxplot as follows :

> boxplot(DATA.oner)

In the graph below the thick horizontal lines represent the respective medians, while the thin
horizontal lines directly above and below are the 75% and 25% quantiles respectively. The lines
above and below these represent a threshold beyond which points are considered outliers.
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Figure 5: Boxplot of DATA.oner

You may pass options to boxplot such as horizontal = TRUE to get the boxplots displayed
horizontally rather than vertically. Please use the command ?boxplot for a complete list of options5.

3.3 Scatter-Plots :

To plot data points from two vectors, x and y, we can use the plot function with the form plot(x,
y) or similarly plot one vector by an index using the form plot(x).

> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")

Figure 6: Scatter Plot :

The limits, or range, on which to plot can be specified in terms of xlim = c(lowerBound,
upperBound) and ylim = c(lowerBound, upperBound) as can be seen in the call to plot above.
main = specifies the title of the plot. Labels may also be specified with the xlab and ylab options.

5See section 6 for information on the help command ?
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We may superimpose points on top of our original plot with the points function. For example, to
distinguish all points (TEEi, NORMi) such that TEEi < NORM2

i −1 as blue points, we could call
points as follws

> points(NORM[NORM^2 -1> TEE], TEE[ TEE + 1< NORM^2], col = "blue")
> legend(legend = c("TEE > NORM^2 - 1 ", "TEE < NORM^2 - 1" ),
+ col = c(1, 4), x = "topright", pch = 1)

Figure 7: Points on Scatter Plot
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Note, the call to pch = 1 tells R to use the point symbol in each label. You could also use pch
=c(1,1).

Lastly, if we wanted to plot all vectors of a data frame against each other, we could pass the
name of the data frame to plot. For example,

> plot(DATA.oner)

yields the following plot

Figure 8: Plotting all vectors in a data frame :
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3.4 Putting Multiple Graphs in One Figure

3.4.1 par

Multiple graphs may be placed on one figure by using the par funcion along with the mfrow option.
mfrow is used with the following format mfrow = c(# rows, # columns). For example,

> par(mfrow = c(1, 2))
> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")
> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")
> points(NORM[NORM^2 -1> TEE], TEE[ TEE + 1< NORM^2], col = "blue")

Figure 9: A figure with two graphs :
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3.4.2 split.screen

You should find that split.screen is more flexable than par, for the purpose of plotting multiple
screens at this level. With split.screen you tell R how you want your figure divided, but then
specifically state where you want each plot to go. Upon doing this, if you change your mind and
only want to alter one graph, you can do this without starting the whole figure over from scratch.
To begin the procedure, make sure that the grid library is loaded — See 4.2.2. You should also
change the background to a non-transparant color. Even if your background looks white, do the
following step before proceeding

> par(bg = "white") # set backgraound to non-transparant color

otherwise, you will end up plotting over existing plots when attempting to update screens.

Then use split.screen with the following form split.screen(c(#rows, # columns), screen
to be split, erase = TRUE). We show its use through a couple of examples :

3.4.3 Replacing a Screen

Suppose we wanted all of the plots from this plotting section on one figure. 6 We could do this with
split.screen as follows

> screen.split(2,2)
[1] 1 2 3 4
screen(1) # what follows goes in slot (1,1)
hist(RandomNormal, seq(-3.2, 3.2, .2), prob = TRUE)
curve(dnorm(x), add = TRUE, col = "red");

screen(2) # what follows goes in slot (1,2);
boxplot(DATA.oner);

screen(3) # similarly for (2,1);
plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot");

screen(4) # similarly for (2,2);
plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot");
points(NORM[NORM^2 - 1 > TEE], TEE[TEE + 1 < NORM^2], col = "blue");

6Please see the lines section for an understanding of what lines and density do.
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Figure 10: Multiple Plots via split.screen

Now, suppose you wanted the box plot in the upperleft slot and the histogram in the upper right
and in addition you wanted to give a title to the boxplot. Simply reassign the contents of each screen
accordingly

> screen(1) # Watch the screen (1,1) go blank
> boxplot(DATA.oner, main = "Box Plots of DATA.oner")
>
> screen(2) # again for slot (1,2)
> hist(RandomNormal, seq(-3.2, 3.2, .2), prob = TRUE)
> curve(dnorm(x), add = TRUE, col = "red")
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Figure 11: Multiple Plots via split.screen

3.4.4 Split Screens within Split Screens

You may have noticed that the legend for the histogram was left out of the plot. That is becuase
it is difficult to fit the legend in so small of a screen. Suppose, to solve this problem, we wanted
a figure containing a large histogram and smaller box plot and scatter graph below. We can split
screens that have already been split to achieve this goal. Observe the following example

> split.screen(c(2,1)) # The screen is now split in two
[1] 1 2
> split.screen(c(1,2), screen = 2) # splits the second into 2
[1] 3 4
> screen(1) # note screen 2 is now refered to as 3 and 4
> hist(RandomNormal, seq(-3.2, 3.2, .2), prob = TRUE)
> curve(dnorm(x), add = TRUE, col = "red")
> legend(legend = c("Theoretical N(0, 1)"),
+ col = c(2, 3), x = "topright", lty = 1)
>
> screen(3) # We call on screen 3 and 4, not 2
> boxplot(DATA.oner, main = "Box Plot of DATA.oner")
>
> screen(4)
> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")
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Figure 12: Splitting Split Screens with split.screen

3.5 abline

To draw straight lines over an existing plot, use abline with the format abline(a,b,h,v), where
a is the intercept, b the slope, h the y value for horizontal line, and v the x value for a vertical line.
For example,

> plot(c(1:10), col = "white")
> abline(h = 2, col = "green")
> abline(v = 2, col = "blue")
> abline(-1,2, col = "red")
> legend(legend = c("y = 2","x = 2","y = 2x - 1"), col = c(3, 4, 2), lty = 1,
+ x = "topright")

For a more practical example, see the section on Linear Regression.
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Figure 13: lines y = 2, x = 2, and y = 2x− 1 :

3.6 lines

To plot a line estimating the density of a vector over an existing histogram of that same vector, we use
the lines function with the form lines(density(vector), col = color of choice). density
produces a smooth analouge of the histogram, when plotted with lines, though it can be used on
its own for information on the data. Here is an example of plotting with lines over a histogram :

> dens.oner = rnorm(1000, 0, 1)
> max(dens.oner); min(dens.oner)
[1] 2.657019
[1] -3.660971
> hist(dens.oner, seq(-3.8, 2.8, .2), prob = TRUE)
> lines(density(dens.oner), col = "blue")
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Figure 14: Using lines to plot the density of data.oner:

3.7 Putting it all together

Now, to get an idea of how well our randomly generated N(0, 1) data does compared to the theoretical
N(0, 1), we can combine hist, curve, lines, and density as follows to get the figure below :

> RandomNormal = rnorm(1000, 0, 1);
> summary(RandomNormal);

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.381000 -0.691600 -0.004104 0.004147 0.707700 3.673000
> hist(RandomNormal, seq(-3.4, 3.8, .2), prob = TRUE);
> legend(legend = c("Theoretical N(0, 1)", "Randomly Generated N(0,1)" ),
> col = c("red", "blue"), x = "topright", lty = 1);
> lines(density(RandomNormal, bw = .2), col = "blue", lty = 1) # same as col = 3;
> curve((dnorm(x), add = TRUE, col = "red") # same as col = 2;

As a review, the second line is used to obtain upper and lower bounds for seq in the call to
hist , in the third line. The prob = TRUE option displays the histogram in terms of the probability
of each value in seq(-3.4, 3.8, .2). In the call to the function legend we specify a vector
of labels in legend = c("Theoretical N(0, 1)", "Randomly Generated N(0,1)" ), colors with
col =c("red", "blue"), location for legend with x= and that we want lines in the legend by lty
=. lines draws a line based on its arguments. density estimates the density of the data passed to
it, RandomNormal, where bw is a smoothing bandwidth. It can be adjusted to make the line more
or less smooth. curve is passed the density function of our theoretical Normal(0, 1) and the add =
TRUE option to plot over the existing histogram.
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Figure 15: Histogram :

3.8 QQ-Plots :

Quantile on Quantile plots, used to compare data-sets via comparison of quantiles, can be produced
with the functions qqplot or qqnorm — the first comparing two vectors and the second comparing
one vector to the appropriate normal distribution.

3.8.1 qqnorm :

To compare the quantiles of a vector to those of the Normal(0, 1) distribution use qqnorm with the
form qqnorm(vector 1). To plot the line the graph should follow if the distributions are the same,
you can use the qqline function, with the form qqline(y, datax=FALSE), where y is your data
and datax signifies whether or not your data should be on the x-axis. For example, to observe the
relationships between a randomly created χ2 with 12 degrees of freedom to the Normal(0, 1), we
could type

> CHI <-rchisq(1000, 12)
> qqnorm(CHI)
> qqline(CHI)
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Figure 16: qqnorm plot :

3.8.2 qqmath (requires installation of lattice package) :

If you want to compare quantiles between your vector and a theoretical distribution that is not
standard normal, you can use the qqmath function, found in the lattice package, with the form
qqmath(x = vector, distribution = q followed by distriution name). However, if your dis-
tribution requires a parameter, like degrees of freedom to the χ2 distribution, then you must make
your own function to pass to qmath. Don’t worry, this is not difficult. For example, suppose we
wanted to compare a randomly generated χ2 with 12 degrees of freedom to the theoretical distribu-
tion. The first step is to define a function, say qchisq.df12, as follows

> qchisq.df12 = function(p) qchisq(p, df = 12)

Then we can pass qchisq.df12 to qqmath as follows

> qqmath(x = CHI, distribution = qchisq.df12 )

Resulting in the following graph

Figure 17: qqmath plot :
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3.8.3 qqplot :

To compare the quantiles of two vectors, x and y, with qqplot the form is qqplot(x, y). For exam-
ple, to compare a vector named D.set with an unknown distribution to a random exponential(λ =
.5) we could use the qqplot correctly as follows

> EXP = rexp(1000, .5)
> qqplot(D.set, EXP)

3.8.4 Adjusting the qqline

If you try to plot a qqline on either of the non-qqnorm plots you will see that it doesn’t work. The
fix is really quite simple. If you ever feel the need to have a qqline on your qqplot, please look to
the 10.5 section for a discussion on how to create QQ-lines for these plots.

3.9 Linear Regression

Linear regression can be achieved using the function lm in R. The form is

lm(y ~ x_1 + x_2 + ... + x_n, data = name.of.data.frame)

where y is the dependent varaible and the x’s are independent variables. The data option is available
in the case that you do not want to explicitly state name.of.data.frame$x i, or name.of.data.frame[,
i], but instead want to use the above x i. The function will give Ordinary Least Squares estimates
for the coefficients corresponding the the x’s and an intercept term. To exclude the intercept, include
-1 in the equation above. To create interactions between variables x 1 and x 2, include x 1:x 2 in
the equation. To include x 1, x 2 and an interaction term in one shot, use x 1*x 2. We show how
to use lm with an example.

Suppose we had the following data set, which is not real data, but randomly created with the
runif function on 0 to 10 and 0 to 1.

> Dating.Data
Men Intelligence Personality Looks Want.Date

1 Jimbo 1.5034497 9.172070 0.1458388 0.18518639
2 Billy-Bob 0.3673967 4.220902 5.1043472 0.57990543
3 Alfonso 9.5904054 5.865495 9.3900688 0.54772520
4 Li 3.1206422 1.941095 2.0819623 0.58571364
5 Bob 2.8993410 3.799475 8.8072740 0.01670105
6 Willie 2.6205701 8.098286 9.0606828 0.65386037
7 Vince 8.7863347 9.397780 4.2379685 0.96369422
8 Roberto 2.9002601 9.055264 9.7020046 0.77544638
9 Hugo 2.2993369 8.883192 2.3891803 0.27258566
10 Gerardo 6.8163340 4.719020 5.9723394 0.51717118

Assuming the second through fourth columns correspond to average rankings from a set of 100
women and the last column is the percentage of women willing to date each man, we could attempt
to run a regression model for Intelligence, Personality, and Looks on the percent of women willing
to date each man. First, let’s try this with one independent variable, Personality, say. We could
do this with the following :

> lm(Want.Date ~ Personality, data = Dating.Data)->dt_prsnlty_lm
> dt_prsnlty_lm
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Call:
lm(formula = Want.Date ~ Personality, data = Dating.Data)

Coefficients:
(Intercept) Personality

0.35647 0.02353

> plot(Dating.Data$Personality, Dating.Data$Want.Date)

To access the coefficients of an object returned from a modeling function (such as lm), use coef with
the form coef(object).This can actually be treated as a list with nodes containing the coefficients
of the model associated with object.

> abline(coef(dt_prsnlty_lm)[[1]], coef(dt_prsnlty_lm)[[2]])

Figure 18: Regression Line:
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Now, Let’s try a multiple regression, including Intelligence and Looks as independent variables
in the model :

> lm(Want.Date ~ Intelligence + Personality + Looks, data = Dating.Data)->lm.Dating

and then get a summary of this regression with the summary function

> summary(lm.Dating)

Call:
lm(formula = Want.Date ~ Intelligence + Personality + Looks,

data = Dating.Data)

Residuals:
Min 1Q Median 3Q Max

-0.42193 -0.19071 0.04056 0.23386 0.25035

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.17964 0.32309 0.556 0.598
Intelligence 0.03360 0.03343 1.005 0.354
Personality 0.02176 0.03718 0.585 0.580
Looks 0.00896 0.03040 0.295 0.778

Residual standard error: 0.3032 on 6 degrees of freedom
Multiple R-squared: 0.2278, Adjusted R-squared: -0.1583
F-statistic: 0.5901 on 3 and 6 DF, p-value: 0.6437

and similarly, get an analysis of variance table with anova

> anova(lm.Dating)
Analysis of Variance Table

Response: Want.Date
Df Sum Sq Mean Sq F value Pr(>F)

Intelligence 1 0.12546 0.12546 1.3647 0.2870
Personality 1 0.02930 0.02930 0.3187 0.5928
Looks 1 0.00798 0.00798 0.0869 0.7781
Residuals 6 0.55156 0.09193

By construction, the residuals should be uncorrelated with the independent variables. To observe
this, you could use the cor function, as follows :

> cor(Dating.Data[,c(-1, -5)], resid(lm.Dating))
[,1]

Intelligence -8.661888e-17
Personality 1.473017e-16
Looks 5.867616e-17

These are essentially zero. If you are concerned about multicolinearity, you may want to check
the correlation between independent varaibles :

> cor(Dating.Data[,c(-1, -5)])
Intelligence Personality Looks
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Intelligence 1.00000000 0.06213098 0.27256812
Personality 0.06213098 1.00000000 -0.05558863
Looks 0.27256812 -0.05558863 1.00000000

We can observe the assumption of normality of the standardized residuals, by plotting lm.Dating
and hitting the Return key until we obtain the qqnorm plot of standardized residuals.

> plot(lm.Dating)
Hit <Return> to see next plot:
Hit <Return> to see next plot:
Hit <Return> to see next plot:

Figure 19: qqnorm Plot of Standardized Residuals :
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This hovers around the QQ-line, but also has outliers. So an assumption is violated. Lastly, to
test for constant variance, you could plot the residuals against the independent variables. To access
the residuals of objects returned from modeling functions (eg lm), use the accessor function resid,
with the form resid(object).

> attach(Dating.Data)
> split.screen(c(2,1))
[1] 1 2
> split.screen(c(1,2), screen = 2)
[1] 3 4
> screen(1)
> plot(Personality, resid(lm.Dating))
> screen(3)
> plot(Intelligence, resid(lm.Dating))
> screen(4)
> plot(Looks, resid(lm.Dating))
> detach(Dating.Data)

Figure 20: Plots of Residuals Against Independent Variables:
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3.9.1 Additional Information

If you are interested in regression analysis, please see http://cren.r-project.org/doc/contrib/
Faraway-PRA.pdf or http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
which are tutorials deticated specifically to regression modeling and analysis, in R.

3.10 Saving Plots

To save plots into pdf files, you can use a combination of the pdf function and the dev.off function.
The format for pdf is pdf(file = "file name to save plot to"). There are many other options
to the pdf function we will not be covering, so we suggest observing the help page for this function
if you want more flexible use of the function. We then enter the commands for the plots we want
to have in the pdf. When finished with the commands, we enter dev.off() to close the process
and finish creation of the file. To save, for example, the plots from a linear regression model, say
lm.Dating, we would do the following

> pdf(file = "Dating.Regression.Plots.pdf")
> plot(lm.Dating)
> dev.off()
null device

1

Then looking for this file in the current directory, we would find all plots from the regression
plot, one per page.

Please note that there are similar functions for png, jpeg, bmp, tiff, and other formats. As usual,
use one of the help functions to see if a function relating to another format exists.

3.11 Adding Text :

3.11.1 text

With the text command, text may be added to a plotting region. Suppose we had a data frame of
shipments called shipments :

> head(shipments)
NAMES VALUES WEIGHT CUBE

1 AKRON 1125.1300 0.7951905 0.8461538
2 ANKENY 774.0000 0.9877619 0.9230769
3 ATLANTA 1601.3700 0.9986667 0.9230769
4 BAKERSFIELD 712.6044 0.8279546 0.8556777
5 BAY SHORE 1336.6167 0.6431270 0.5256410
6 BOZEMAN 1065.2400 0.8958452 0.9038462

where CUBE is the proportion of the trailer that has been filled with goods, and WEIGHT is the
proportion of the trailer’s weight to the maximum legal weight. Assume we created the following
plot though use of the plot and points functions7.

7Actually used with PLOTfcn from 10.5.5.
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Figure 21: Pre-text

While the plot shows the relationship between Cube and Weight, and considers cost ranges, it
does not denote what cities are being shipped to, NAME in our data frame. To add this to the plot
we may use text with the form text(x = shipments$WEIGHT, y = shipments$CUBE, labels =
shipment$NAME, pos = 4, cex = 0.7). There are many other arguments to text to choose from.
As usual, for a complete listing use the help page for this function. For now, the x is the x coordinate
for the text, and analagously for y. labels gives the text to print. cex gives the size of the text, while
pos gives the general location to place the text about the (x,y) pair — (1,2,3,4) = (below, left of,
above, right of). There is also an option offset which is the distance measure from the point the text
is to be placed. Using the command text(x = shipments$WEIGHT, y = shipments$CUBE, labels
= shipment$NAME, pos = 4, cex = 0.7), we get the following :
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Figure 22: text

Note that some of the names are overlapping each other. Sometimes picking alternative pos
values will fix this. Other times, you may just have to create subplots of your data over ranges of
the data. We will discuss how to create functions to easily alter plots in section 10.5.5. For now, a
call to plot using xlim=c(.8,.9) and ylim=c(.6,1) options, followed by points, would yeild the
following after using the line above calling text.
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Figure 23: text on a subplot

3.12 Fine Tuning Plots

3.12.1 mtext

We can actually write a report in pdf format using split.screen, pdf and mtext to plot and write
text directly into pdf files, but this is not very practical. mtext is designed to write in the margins of
your plots. The format is mtext("place text here, or a character vector", line = 0, adj
= NULL). Please see the help page for this function for a detailed description. We show its use in
an example. The placing of text can be altered with line, increasing the height of the starting
line by using line > 0, and decreasing the height with line less than zero. Leaving adj in its
default setting, 0.5, centers the text, while setting it to 0 aligns the text to the left. adj = 1 will
right-adjust the text. As an example, we could use the homemade plotting function discussed in
section 10.5.5 along with mtext to rearrange the title of the plot and create our own legend, which
otherwise may be difficult to place on the plot.8

> PLOTfcn(COST, main = "", xlim = c(.85,1), ylim = c(.85,1))
> mtext("Utilization of Cube versus Weight",side = 3, line = 3, adj = .5)
> mtext(c("o", " : Cost > $2143.00", "o", " : Cost in $(1749.00, 2143.00)"),
+ side = 3, adj = c(0, .02, .6, 1), line = 2, col = c("red", "black", "orange", "black"))
> mtext(c("o", " : Cost in $(1593.00, 1749.00) ", "o", " : Cost in $(1018.00, 1593.00)"),
+ side = 3, adj = c(0, .02, .6, 1), line = 1, col = c("blue", "black", "green", "black"))
> mtext(c("o", " : Cost < 1080"), side = 3, adj = c(0, .02), line = 0, col = c("pink", "black"))

8Note that I took the last line of PLOTfcn containing the legend command out of function for this example, to
supress plotting of the legend.
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Figure 24: An example of using mtext:

Eventually, you will find that the material above is not enough to meet your plotting require-
ments. Suppose you wanted the alter the size of the points you plot based on some characteristic of
the data.... talk about cex and how to use it. title, axis, etc. The following section will discuss
ways to alter your plotting settings. Note that there are many more options available for par than
those discussed here. As usual, see ?par for more.

3.12.2 par revisited

If you open the help page for par you may very well find its contents to be overwhelming. The page
contains all sorts of options to pass to your plotting routines. We will illustrate some of the options
for par through a couple of examples. Suppose you plotted a graph using the following code :

> plot(1:10, (1:10)^2, main = "y=x^2")

Now, suppose we wanted the title and axis labels to be lighter than the points plotted. We
could call on the par function to do this for us. The options we would want to set are col.main,
col.axis, and col.lab. For example, to make the points the darkest, followed by the axes, the
labels, and then the title, you could do the following9 :

> par(col.axis = "grey35")
> par(col.lab = "grey25")
> par(col.main = "grey15")

To plot only the x and y axis we could use byt as an argument to par, and set bty = "n".

> par(bty = "n")

Now, plotting with the original command again,

> plot(1:10, (1:10)^2, main = "y=x^2")

we get the following plot :

9See Section 3.1.1 for information on colors available for plotting
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Figure 25: par Example using col.axis, col.lab, col.main, and bty options

To change the background color to, say yellow, you could use par(bg = "yellow").
For another example, suppose we wanted to plot boxplots for some variable Utility in a data

frame called shipments, by one of its variables Dest.St. If we used the split function on our
data, which partitions the data by the by argument, and then used the usual plotting command
boxplot(split(shipments$Utility,by = as.factor(Dest.St)), horizontal = TRUE) we may
find that the labels on the vertical axis are running off of the figure’s screen (most definately if using
full city names instead of state). One quick remedy for this problem is to use the pty = "s" option
in a call to par to ensure a square plotting region. The default value for pty is “m” for maximal
plotting region.

With the las = 1 option the axis labels are horizontally written. For las you may choose from
the numbers 0 through 3. For more on these options, please use the help or ? command (See section
6), such as ?par and then search the corresponding help seciton for las to observe these options.

> par(pty = "s")
> par(las = 1)

Plotting the data shipments again with the command boxplot(split(shipments$Utility,
by = as.factor(Dest.St)), horizontal = TRUE) should yield the desired effect.

Now suppose that you wanted all of these settings everytime you started R, but didn’t want to
write the code above each time. We discuss a solution in section 5.

4 Packages

4.1 Introduction

In R, built-in functions are stored in packages — collections of functions, and sometimes datasets.
Some come with R upon installation — standard packages — while others you must obtain manually.
We discuss how to install and load packages for use in R.

4.2 Listing Loaded and Installed Packages

To observe the standard packages enter the following after beginning your session
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Figure 26: par Example using pty and las

>search()
[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
[7] "base"

These packages are always available upon starting an R session. We will add to this list in the
following sample sessions. However, each time a new R session is started the libraries loaded will
be reset to the above list. (We introduce a function to make reloading packages a little easier in
Section 10.)

4.2.1 .packages

To list all R packages you have installed, use the .packages function along with the option all.available
= TRUE. (If you have not installed any packages yet, feel free to skip ahead to the Listing All R Pack-
ages section, install a couple and come back to this section. Note how the list from .packages is
different from search before loading of new packages.)

> .packages(all.available =TRUE)
[1] "CGIwithR" "DBI" "KernSmooth" "MASS"
[5] "RMySQL" "RUnit" "Rmetrics" "XML"
[9] "adapt" "base" "boot" "class"
[13] "cluster" "codetools" "datasets" "fArma"
[17] "fAsianOptions" "fAssets" "fBasics" "fCalendar"
[21] "fCopulae" "fEcofin" "fExoticOptions" "fExtremes"
[25] "fGarch" "fImport" "fMultivar" "fNonlinear"
[29] "fOptions" "fPortfolio" "fRegression" "fSeries"
[33] "fTrading" "fUnitRoots" "fUtilities" "foreign"
[37] "grDevices" "graphics" "grid" "lattice"
[41] "lpSolve" "maps" "methods" "mgcv"
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[45] "mnormt" "nlme" "nnet" "polspline"
[49] "quadprog" "rcompgen" "robustbase" "rpart"
[53] "sn" "spatial" "splines" "stats"
[57] "stats4" "survival" "tcltk" "tools"
[61] "urca" "utils" "zoo"

4.2.2 library

Alternatively, a page containing descriptions of each package installed can be obtained with the
library function as follows

>library()

If you are not operating out of the R Graphical User Interface (GUI), but instead from your
computer’s command line on a Unix system, then to search for a specific word on the page, enter
/ followed by your keyword. For example, /base will highlight all instances of base on the page.
Enter q to exit the page.

Use the library function along with the help = option to look at all functions in a particu-
lar package. To do this for "survival", type

>library(help = "survival")

A page titled Information on the package "survival" will appear, listing every function in
the package. At the top of the page is a description of the package. Note the line

Depends: stats, utils, graphics, splines, R (>= 2.0.0)

Compare these packages to the ones listed earlier in calling search().

In order to make a package available for use, use the library function with the general form
library(package). Upon doing this, the package of interest will show up in search() for the rest of
the session. For example, to make survival available for use, type

> library(survival)
Loading required package: splines

Note that survival and splines are now listed with search()

> search()
[1] ".GlobalEnv" "package:survival" "package:splines"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base"

4.3 Listing all R packages

To get a complete listing of all R packages you can use the available.packages() function

> available.packages()
--- Please select a CRAN mirror for use in this session ---
Loading Tcl/Tk interface ... done
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4.4 Installing Packages

4.4.1 From the Command Line :

Upon entering available.packages() you will be prompted to choose a Comprehensive R Archive
Network (CRAN) mirror. This is basically a website or collection of files containing R documentation
copied from the original CRAN server so that we can access the documentation quickly from the
closest mirror. Naturally, you should choose the location closest to your own. Then the list will be
displayed. To install a package, use the install.packages function. For example, to install the
xtable package, type

> install.packages("xtable")

Don’t forget to use library(xtable) to make the package available for use in your R session. If
you knew of a particular CRAN mirror you wanted to use to install the package, you could specify
this with the repose option for install.packages. For example, if you knew you wanted to use the
Berkeley CRAN mirror http://cran.cnr.Berkeley.edu, then use install.packages("xtable",
repos = "http://cran.cnr.Berkeley.edu").For a list of CRAN mirrors, see http://www.r-project.org/.

4.4.2 Using a Graphical User Interface (GUI)

If you are not using the command line, in one way or another, to navigate through your R session, you
are using the R application GUI. In this case, you can use a ”point and click” approach to installing
packages. Find the Packages and Data or Packages option and choose Package Installer. An-
other GUI should appear called R Package Installer. To find a package, enter a keyword in the
search box, click Get List to display a list matching your keyword. Find the package of interest
and then click the Install Selected button. If you look at your R GUI you should see a lot of
script rolling by the page. When this finishes, the last line should display the location where the
package(s) have been stored.

If you are not the administrator on the system you are operating out of, use the At User Level
option.

4.5 Removing Packages

To remove a package, use the remove.packages function with the form remove.packages(pkgs,lib),
where pkgs is a package to remove and lib a directory where package is stored. To remove the
xtable package, for example, type

> remove.packages("xtable", "/Library/Frameworks/R.framework/Resources
+ /library/xtable")

Leaving out the second argument yields the following warning :

> remove.packages("xtable")
Warning in remove.packages("xtable") :

argument ’lib’ is missing: using /Library/Frameworks/R.framework/Resources/library

Unless you specify otherwise, if on a Mac, the location of the package should be in
/Library/Frameworks/R.framework/Resources/library/put-package-name-here
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5 Setting up your working environment and profile

Suppose you wanted to set up particular graphical parameters each time your started your R session,
so that you did not have to manually do it before each plot. One solution is to set up two files :
.Renviron, and .Rprofile. We only discuss the first file as a means to set up the second.

The first step to setting up your environment is to create (or modify an existing) .Renviron file.
If you do not have one in your home directory, simply create a file with this name. Do the same
for .Rprofile. Next, open the .Renviron file and place the following line in the file, if on a Unix
system :

R_PROFILE = ’~/.Rprofile’

You may now save and exit this file. Now open your .Rprofile file. You may now enter all the
code you want to run at the beginning of your R session, such as the setting of graphical parameters
above. However, there is a technicality with libraries here since at this stage the only library that is
loaded is the base library. As a result, you will have to load all libraries that your .Rprofile code
will depend on. For example I would write the following in my .Rprofile to set up my graphical
parameters, though you may find the title and labels to be too light :

library(graphics)
par(bg = "white")
par(bty = "n")
par(las = 1)
par(pty = "s")
par(col.axis = "grey75")
par(col.lab = "grey50")
par(col.main = "grey25")

Now if you saved this file and exited, and then opened an R session in any directory in your file
system you would have your default plotting be as specified in the .Rprofile file10

6 Help R help you

In R there are many sources of help available to the user. The importance of knowing how to access
information about R through its help pages cannot be stressed enough. Without a firm grasp of
them, you will no doubt be lost. We cover the main help options and when to use them.

6.1 help.start

The help.start() help option gives an html version of R documentation. Not only is this more
interactive than help with links to manuals on similar inquiries not available through command line
help, it also offers tutorials, lists of packages and other information at the click of a link. To start
the help.start() mode, simply type

> help.start()

10This is true so long as you do not have local .Renviron and .Rprofile files in those directories that have differing
contents than those in the home directory. Per the help page for .First this is because R first checks the local
directory for files named .Renviron and .Rprofile before searching the home directory on your system.
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6.2 help

In R different functions are stored in libraries, or packages. To see which ones are available in your
session enter search(). If you want information on a command (or summary of commands) you
know exists in any of these libraries, use the following format :

?command

OR

help(”command”)

For example, to get help on the mean function, type

>?mean

OR

>help(mean)

A page will appear telling you all about the mean function. As with library(), if operating out of
the terminal, press q to exit the page. Similarly, in this case, to search for a word or phrase in the
help page type

/word or phrase

followed by the Enter or Return key. Recall, the / puts the page into a search mode, searching
for what follows the slash on the page.

However, if your query is not in any of the packages or libraries currently available for use in
your session (but has been installed) then help will not be able to locate the relevant information
unless you use the option try.all.packages = TRUE. For example :

> ?RollingAnalysis
No documentation for ’RollingAnalysis’ in specified packages and libraries:
you could try ’help.search("RollingAnalysis")’

Before calling on help.search we can try using the try.all.packages= TRUE option whereby
the help function tells us where to find the package necessary for use of RollingAnalysis, given
this is the exact name of some help page.

> help(RollingAnalysis, try.all.packages = TRUE)
Help for topic ’RollingAnalysis’ is not in any loaded package but can
be found in the following packages:

Package Library
fTrading /Library/Frameworks/R.framework/Resources/library

To make the package available for use, type the below line. After doing so, help("Rolling
Analysis") will work.

> library(fTrading)

In general, the form is library(package of interest) where the package of interest has already been
installed.
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6.2.1 Graphical User Interface (GUI) Specific Tip

6.2.2 Mac OS X

If working out of the R GUI, using help(query) will open a page for query if this is the name of a
built in loaded function, or the name of a help page corresponding to a loaded package. Similarly,
if it is not, then R will tell you this and the search will be over. However, if you open the help page
for a function you know exists, like, say, help(mean), then type your inquiry in the search engine
on the GUI help page, you will notice that it matches keywords just as help.search does. That is,
by always keeping the GUI help page open, you always have access to help.search without having
to type help.search each time you want to use it.

6.2.3 Windows OS

On a Windows operating system the idea is similar, but searching is not akin to help.search as
much as it is to a list of topics similar to the query. Nonetheless, you may find it worthwhile to just
keep the help page open throughout your session.

6.3 apropos and find

Alternatively, if you know a keyword that is a part of the function’s name you can use the find and
apropos functions in combination to search for functions from installed packages containing that
keyword. The general format is :

apropos(”keyword”, where = TRUE/FALSE, mode = ”mode of the keyword”)

find(”keyword”, simple.words =TRUE/FALSE, numeric = TRUE/FALSE)

Using the where = TRUE will list the accompanying packages’ locations in search(), while allowing
the default where = FALSE omits this. The mode option allows you to specify the mode of the object
you are looking for. By default, this is set to "any".

6.3.1 searching for functions and their packages

If you are interested in knowing a summary where each function resides, a general strategy is to use
find to list the packages containing the keyword, then use apropos to list the matching functions.
We can easily use the where = TRUE to match. Lets look for packages containing the keyword
”mean” :

> find("mean", simple.words = FALSE, numeric = TRUE)
.GlobalEnv package:rpart package:fUtilities package:zoo

1 2 9 10
package:stats package:base

17 24
> apropos("mean", where = TRUE)

1 9 24 17
"boot.mean.rep" "colMeans" "colMeans" "kmeans"

24 24 24 24
"mean" "mean.Date" "mean.POSIXct" "mean.POSIXlt"

24 24 24 9
"mean.data.frame" "mean.default" "mean.difftime" "mean.timeSeries"

2 3 10 10

66



6.4 help.search 6 HELP R HELP YOU

"meanvar" "rollMean" "rollmean" "rollmean.default"
9 24 17

"rowMeans" "rowMeans" "weighted.mean"

Now, if we were interested in weighted.mean, we would match 17, so it is in the stats package.
If we just wanted the exact name of the function, we could have typed

> apropos("mean")

then used the help function.

6.3.2 searching for lost objects :

From time to time you will misplace an object you have created. However, typically, you will be
able to recall the mode of this object — ie, was it a list, a vector of characters, numbers, etc? For
example, suppose you had recently created an object and all you can recall about it is that it’s a
vector of mode numeric and has the string ”icker”, in its name. Could be tickers, bickers, ickers,
etc. By calling apropos("icker", mode = "numeric") you can get a reduced list for you query if
there happens to be other non-numeric mode objects with ”icker” in the name. For example, the
following code lists 27 matches to apropos("ickers") but only one to apropos("ickers", mode
= "numeric")

> apropos("icker"); apropos("icker", mode = "numeric")
[1] "TICKERS" "ickers.1" "tickers.A" "tickers.B" "tickers.C" "tickers.D"
[7] "tickers.E" "tickers.F" "tickers.G" "tickers.H" "tickers.I" "tickers.J"
[13] "tickers.K" "tickers.L" "tickers.M" "tickers.N" "tickers.O" "tickers.P"
[19] "tickers.Q" "tickers.R" "tickers.S" "tickers.T" "tickers.U" "tickers.V"
[25] "tickers.W" "tickers.X" "tickers.Y"
[1] "ickers.1"

6.4 help.search

The limitations of apropos and find are that (1) the object name must contain the keyword
and (2) it only searches in the loaded packages. Recall, to see what packages are installed type
.packages(all.available = TRUE) or library(). With help.search all R installed packages
will be searched. If you have no idea about the name of a command but know a keyword relating
to it use the help.search function which has the general format :

help.search(”command”)

Upon doing this, a screen will appear listing all matches to your inquery, ”command” in this case.
The list will consist of functions or the name of the help page where the function can be found. Each
is accompanied by a description of its use along with the name of the library necessary for its use in
parentheses. This can be seen in the example below. Further note that when help.search("mean")
is typed, functions such as colSums appear that did not with the use of apropos("mean").

>help.search("mean")
Help files with alias or concept or title matching
’mean’ using regular expression matching:

67



6.4 help.search 6 HELP R HELP YOU

DateTimeClasses(base) Date-Time Classes
Date(base) Date Class
colSums(base) Form Row and Column Sums and Means
difftime(base) Time Intervals
mean(base) Arithmetic Mean
sunspot(boot) Annual Mean Sunspot Numbers
meanabsdev(cluster) Internal cluster functions
tmd(lattice) Tukey Mean-Difference Plot
meanvar(rpart) Mean-Variance Plot for an Rpart Object
kmeans(stats) K-Means Clustering
oneway.test(stats) Test for Equal Means in a One-Way Layout
weighted.mean(stats) Weighted Arithmetic Mean

Type ’help(FOO, package = PKG)’ to inspect
entry ’FOO(PKG) TITLE’.

Scrolling down the help page shows many more functions matching the query. We see that
the mean function requires the base library, which is already available upon starting R. However,
observe meanpart, the 9th function on the list. This requires the library rpart. Let’s try to call
meanvar :

>meanvar
Error: object "meanvar" not found

Now, lets try it again after making the rpart library available for use :

>library(rpart)
>meanvar
function (tree, ...)
UseMethod("meanvar")
<environment: namespace:rpart>

Which in simplest terms means R now recognizes the function meanvar (and all others now in
the rpart library). Now we can use the help command to take a more in depth look at the function
meanvar. Type the following and see what you get :

>help(meanvar)

If you want to narrow your search to a specific package, use the package = option. For example, if
you were confident that the function giving means and sums of the columns and rows of a data-frame
was in the base library, you could write the below code and get the following limited list:

> help.search("mean", package = "base")

DateTimeClasses(base) Date-Time Classes
Date(base) Date Class
colSums(base) Form Row and Column Sums and Means
difftime(base) Time Intervals
mean(base) Arithmetic Mean
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6.5 RSiteSearch

Lastly, there is the option of searching uninstalled packages online through the RSiteSearch func-
tion. To search use the form RSiteSearch("query"). There are many options available for this
function that can be stated explicitly in the call to RSiteSearch or accessed trough the browser it
calls. In particular, at this level, there are pleanty of interesting pages on datasets available upon
installation of neccessary packages.

6.6 Summary

In summary, if you know the exact name of the function and think it is in a loaded package, use
help. If not in a loaded package, try the option try.all.packages = TRUE. If you don’t know the
exact name of the function, but know it is in an installed package, use apropos — along with find
if you need to know the accompanying package. If you are not sure of the name but have a keyword
on the gereral operations of the function, use help.search — along with package = if you have
an idea of what package the function resides in. Using this strategy, you should be able to answer
most questions you have about functions on your own.

7 Reading Data Into R

Most data can be read into R through the use of one of the read functions or through scan. We
cover read.table, scan, an exmple of analyzing data, and an example of cleansing data in R in this
section. While cleaning may often be done outside of R in a text editor, it is good to know how to
do it in R. It is also worth noting that the scan function reads the data in as a vector. In turn, we
show an example of reorganizing this data into an appropriate data-frame form, when the data is
not intended to be a single vector.

7.1 read.table

R has a workhorse in the function read.table. In short, it reads data into R from a file or url
according to your specifications. The general format at this level is (note the quotes around the
filename or url):

read.table(file, header = FALSE, sep = "", skip = 0 , dec = ".", row.names, col.names,
nrow, stringsAsFactors = TRUE)

While a filename or url must be specified, by file, the rest is optional, available to meet your
particular needs. Here sep tells read.table how to separate the entries. dec = "." indicates that
in the data the decimal is “.”. The skip option describes how many lines to skip. col.names
(row.names) is a vector containing names for the columns ( rows ) of the data-frame. header will
tell read.table if the column names are already given in the data. If so, just set header = TRUE.
nrow tells the function when to stop reading rows of data. Lastly, stringsAsFactors set to TRUE,
by default, will change any strings in the data to factors, while setting it to FALSE will read in strings
as character types.

In the rest of this section, we first show a simple example of inputting data followed my an ex-
ample of possible statistical analysis of this data. Secondly, we show a more complex example of
reading data with read.table and scan.

Assume we had the following file, poundData.txt, containing the days that dogs of different breeds
resided at particular pounds :
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dogs,pound.A,pound.B,pound.C
Pit-Bull,124,64,46
Jack-Russell-Terrier,35,13,43
Akita,102,81,100
German-Shephard,51,19,56
Pug,23,30,17
Afghan-Hound,129,48,64
Beagle,54,6,13
Basset-Hound,123,17,92
Cocker-Spaniel,144,80,98
Austrailian-Shephard,21,7,47

We can read this data into R many ways. One way to do this and then display the contents is to
do the following :

> pet.data = read.table("poundData.txt", sep = ",", header = TRUE)
> pet.data

dogs pound.A pound.B pound.C
1 Pit-Bull 124 64 46
2 Jack-Russell-Terrier 35 13 43
3 Akita 102 81 100
4 German-Shephard 51 19 56
5 Pug 23 30 17
6 Afghan-Hound 129 48 64
7 Beagle 54 6 13
8 Basset-Hound 123 17 92
9 Cocker-Spaniel 144 80 98
10 Austrailian-Shephard 21 7 47

You can check to see that pet.data$dogs is indeed a "factor", by entering class(pet.data$dogs).
We can change this with

> pet.data$dogs = as.character(pet.data$dogs)

or by originally using stringsAsFactors = FALSE when reading in the data with read.table.

We could then proceed to do statistical analyses on the data. A nice first step is to use the summary
function on the data

> summary(pet.data)
dogs pound.A pound.B pound.C

Afghan-Hound :1 Min. : 21.0 Min. : 6.0 Min. : 13.00
Akita :1 1st Qu.: 39.0 1st Qu.:14.0 1st Qu.: 43.75
Austrailian-Shephard:1 Median : 78.0 Median :24.5 Median : 51.50
Basset-Hound :1 Mean : 80.6 Mean :36.5 Mean : 57.60
Beagle :1 3rd Qu.:123.8 3rd Qu.:60.0 3rd Qu.: 85.00
Cocker-Spaniel :1 Max. :144.0 Max. :81.0 Max. :100.00
(Other) :4

Assume for a moment that the dogs’ types were unknown and that the dogs were just picked at
random from the pounds — that is, assume we didn’t have the first column of data. Then considering
we don’t know the distribution of the dogs’ time in each pound, we may be interested in ranking
the observances, using the rank function, and then finding the means of ranks as follows
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> Rankings = rank(c(pet.data[,2], pet.data[,3], pet.data[,4]))
> # use Rankings = rank(sapply(sapply(pet.data[,-1], as.matrix), as.matrix))
> # if you have many columns, or treatments
> Rankings.A = Rankings[1:length(pet.data[,1])]
> Rankings.B = Rankings[(length(pet.data[,1]) + 1) : (2*length(pet.data[,1]))]
> Rankings.C = Rankings[(2*length(pet.data[,1]) + 1) : (3*length(pet.data[,1]))]
> mean(Rankings)
[1] 15.5
> mean(Rankings.A)
[1] 20.1
> mean(Rankings.B)
[1] 10.65
> mean(Rankings.C)
[1] 15.75

In the code above, recall that c combines its arguments to form one vector. Since Rankings has
elements one through 10 from pound.A, elements 11 through 20 from pound.B, and elements 21
through 30 from pound.C, we can just pull the appropriate elements from Rankings to get the over-
all rankings of the elements from each of the three pounds. In turn, Rankings.A is defined by simply
indexing the first 10 elements (1:length(pet.data[,1])) of Rankings and assigning these values
to Rankings.A; and a similar pattern holds for the others — Rankings.B and Rankings.C. Please
observe what follows, even if it is above your knowlege of statistics for appreciation of the built-in
function kruskall.test

We could then proceed to do a non-parametric test on the data, such as a Kruskal Wallis Test,
to see if there is a significant difference in the means of the times at each pound, in one of two
general ways. The first is to calculate the approximately χ2

#Treatments−1 statistic K = 12SSB
N(N+1) ,

where N is the total number of observances, 30. SSB is the sum of squared differences between each
treatement’s mean rank and the overall mean rank, times the number of observances per treatment.

> mean(Rankings.A) -> M.R.A
> mean(Rankings.B) -> M.R.B
> mean(Rankings.C) -> M.R.C
> mean(Rankings) -> M.R.Overall
> K = 12*(10*(M.R.A - M.R.Overall)^2 + 10*(M.R.B - M.R.Overall)^2 +
+ 10*(M.R.C - M.R.Overall)^2)/(30*31)
> K
[1] 5.773548

We could then see if the statistic falls in the acceptance region with a Type I error level (or significance
level) of 0.05 : (χ2

2(0.025), χ2
2(0.975)) as follows

> K < qchisq(.975, 2) && K > qchisq(.025, 2) # see the section on Probability
[1] TRUE

This literally asks the question “Are the elements of K between the .025 and .975 quantiles of the
χ2 distribution with two degrees of freedom, TRUE or FALSE?”. The answer is TRUE, so K is in the
acceptance region. So, we would not reject the null hypothesis at the 5% significance level that the
distribution of times in the different pounds have the same location parameters. Here & stands for
the logical operator “AND”. Note that | stands for “OR”. So, to ask “Is K not between the 0.025
and 0.975 quantiles of the χ2 distribution with 2 degrees of freedom” we could ask

> K >= qchisq(.975, 2) || K <= qchisq(.025, 2)
[1] FALSE
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So, the test statistic is not in the rejection region, as we would hope given the previous answer.
We could also get a P-value, using the cumulative density function pchisq to see the probability of
seeing the K value we did or something more extreme, as follows

> pchisq(K, 2)
[1] 0.9442442 # is greater than 0.5, so we want 1 - pchisq(K, 2)
> 1 - pchisq(K, 2)
[1] 0.05575578 # our P-value

The second approach would be to use the built-in Kruskal Wallis test. Try finding it with help.search.
After you do, (or, don’t) observe that the work above is done with one line of code using the built-in
function.

> kruskal.test(pet.data[,-1])

Kruskal-Wallis rank sum test

data: pet.data[, -1]
Kruskal-Wallis chi-squared = 5.7774, df = 2, p-value = 0.05565

You may alternatively want to observe the data using categorical tests. Try this as an exercise
if you have the background.

7.1.1 setwd

You can change your working directory in your R session by using the setwd command. For exam-
ple, suppose we were on a Unix system in our directory /, but poundData.txt was actually located
at

/Users/JoeShmoe/Animal.Data/poundData.txt.

By originally typing

setwd("/Users/JoeShmoe/Animal.Data")

we could then proceed as above by passing poundData.txt to read.table, as opposed to passing the
entire location to read.table. This is very useful if you keep many data sets in one directory.

7.1.2 An Example of Cleaning Data

Assume we had a small file Jimbos.baseball.stats.txt consisting of the following

Jimbo’s Baseball Statistics
Year BA AB BB H R RBI SO HR
1988 .300 10 2 1 3 1 3 1
1989 .300 300 60 90 30 60 90 30
1990* .313 400 80 125 100* 120* 100 60*
1991 .325 400 80 130 70 100 120 40
*There is much controvercy surrounding Jimbo’s 1990 season.

We see that the first line of the file contains Jimbo’s Baseball Statistics, which we do not
want to read into R, so we will tell read.table to skip one line in reading the data with skip =
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1. Further, we see that the columns already have names. Why not just use these for the column
names of our dataset? We can do this with the header = TRUE option. Lastly, we will get an error
message when reading data into R if we don’t deal with the last line *There is much .... To deal
with this we tell R to stop reading the data after four rows have been read — recall the first line
was ignored and the second used as a header, so the count starts with the first observance, or row
of data in our case. We tell read.table to stop reading after four rows with nrow = 4 option. We
can now use these options to read the data into R with the following code :

>Jimbo.data.1 = read.table("Jimbos.baseball.stats.txt", skip = 1, header = TRUE, nrow
= 4)

Checking the data-frame Jimbo.data.1, we have :

> Jimbo.data.1
Year BA AB BB H R RBI SO HR

1 1988 0.300 10 2 1 3 1 3 1
2 1989 0.300 300 60 90 30 60 90 30
3 1990* 0.313 400 80 125 100* 120* 100 60*
4 1991 0.325 400 80 130 70 100 120 40

Now we run across the problem of making computations involving the third row or 6th, 7th, and 9th

columns, which will be recognized as factors by R. As a solution, we could do the following:

> Jimbo.data.1 = read.table("Jimbos.baseball.stats", nrow = 4, skip
+ = 1, header = TRUE, stringsAsFactors = FALSE)
> Jimbo.data.1[3,] = gsub("[^.0-9]","",Jimbo.data.1[3,])
> Jimbo.data.1 = sapply(Jimbo.data.1, as.numeric)
> Jimbo.data.1 = data.frame(Jimbo.data.1)
> Jimbo.data.1

Year BA AB BB H R RBI SO HR
1 1988 0.300 10 2 1 3 1 3 1
2 1989 0.300 300 60 90 30 60 90 30
3 1990 0.313 400 80 125 100 120 100 60
4 1991 0.325 400 80 130 70 100 120 40

The Details :

We read the data, as is, into R and then use built in functions to remove the “*”’s from row 3.
This will involve manipulation of characters, or strings of characters, so we can make things easier
on ourselves by reading the * data into R as characters, with the stringsAsFactors = FALSE op-
tion for read.table.

> Jimbo.data.1 = read.table("Jimbos.baseball.stats", nrow = 4, skip = 1, header = TRUE,
stringsAsFactors = FALSE)
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Next, we use the built in function gsub which has the form gsub(pattern, replacement, x)
where pattern is the pattern to be sought and replaced by replacement in the string of interest x.
We use a regular expression [.∧ 0− 9] . Placing ∧ inside of brackets tells R we do not want what is
to follow the ∧. In this case, [∧.0 − 9]. 0 − 9 represents the numbers zero through nine. Hence in
passing this regular expression to the pattern to be replaced section of gsub, we are replacing
anything in the vector of interest, Row 3, that is not a number or a dot. This will rid the data of
the ‘*’s.

> Jimbo.data.1[3,] = gsub("[^.0-9]","",Jimbo.data.1[3,])

Lastly, we can use the sapply function to convert the character type columns of our data set into
numeric columns. Please see Section 2.13.1 for a description of sapply.

> Jimbo.data.1 = sapply(Jimbo.data.1, as.numeric)

Since sapply turns Jimbo.data.1 into a matrix, this last step turns Jimbo.data.1 back into a
dataframe.

> Jimbo.data.1 = data.frame(Jimbo.data.1)
> Jimbo.data.1

Year BA AB BB H R RBI SO HR
1 1988 0.300 10 2 1 3 1 3 1
2 1989 0.300 300 60 90 30 60 90 30
3 1990 0.313 400 80 125 100 120 100 60
4 1991 0.325 400 80 130 70 100 120 40

You will note as your experience grows that there are easier ways to clean the data. It is the intention
of this section to reveal some new functions, such as gsub, (a very brief intro. to) regular expressions,
and how to combine these with other functions to achieve our goal. As an exercise you may want
to find a more concise way of accomplishing the same goal.

7.2 The Rest of the read Family:

The following table summarizes the read functions that will probabaly be of interest to you. Note
“\t” is tab. Each has a varaition in the sep = and dec = options from read.table

read. sep = dec =
csv "," "."
csv2 ";" ","
delim "\t" "."
delim2 "\t" ","

For example, if your data is separated by tabs, but the decimals are commas, and you don’t want
to explicitly state this in read.table, you could just use read.delim2. There are many more read
functions in R. Another read function of interest is readLines, which is extremely useful for scraping
data from the web. To find out more about this and other read functions, use apropos("read")
and then the help function accordingly.
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7.3 scan

Alternatively, we could have used the scan function which has the general form at this level :

scan(file="filename or url", skip, nlines, what, sep)

Since scan reads the data as a vector, we can take a different approach in creating a data frame from
the file. We cleanse the data as a single vector, then form a data-frame from it :

> Jimbo.data.2 = scan("Jimbos.baseball.stats.txt", skip = 1,
+ nlines = 5, what = "");
> Jimbo.data.2 = gsub("[^.0-z]","",Jimbo.data.2);
> my.names = sapply(Jimbo.data.2[1:9], as.character);
> Jimbo.data.2 = Jimbo.data.2[-1:-9]
> Jimbo.data.2 = as.numeric(Jimbo.data.2)
> Jimbo.data.2 = data.frame(matrix(Jimbo.data.2, nrow = 4, byrow = TRUE));
> names(Jimbo.data.2) = my.names
> Jimbo.data.2

At this point you should understand what each step does. If you don’t , please re-read the read.table
example and see the section on objects and indexing. As an exercise, we suggest you create your
own small file of data and read it into R using the two methods above.

7.4 Missing Values

From time to time you will observe missing values in your data. The examples above are given in
part to help you deal with this problem. If the data is not salvageable, then you will have to ommit
the missing values from calculations involving R. The way to deal with this is to pass the option
na.rm = TRUE to the function you are using to make your calculation. Further, there is another
option to read.table not mentioned above called na.string that will convert values of a particular
pattern to NA in character fields. If for some reason you note an alternative to "NA" used for data
that is not available in a character field of your dataset, then set na.string equal to that value.

8 Probability

Distributions make up a very important part of statistics, and R contains a very wide range of them.
The following table lists the distributions along their name in R.
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Distribution R name
Beta beta
Binomial binom
Cauchy cauchy
Chisquare chisq
Exponential exp
F f
Gamma gamma
Geometric geom
Hypergeometric hyper
Logistic logis
Lognormal lnorm
Negative Binomial nbinom
Normal norm
Poisson pois
Student t t
Uniform unif
Tukey tukey
Weibull weib
Wilcoxon wilcox

There are a few functions that are common to all distribution objects, given by the following table:

Name Description
dname() density or probability function
pname() cumulative density function
qname() quantile function
rname() random number generation

We will not be able to cover all of these distributions in this text, but it should be intuitive enough
from the following examples to carry over to any of these distributions.

8.1 Binomial

A binomial(n,p) distribution is the number of successes in n independent trials where each trial has
probability p of success.

> n1 = 50; p1 = .5
> n2 = 50; p2 = .3
> n3 = 100; p3 = .95
> x1 = rbinom(1000, n1, p1)
> x2 = rbinom(1000, n2, p2)
> x3 = rbinom(1000, n3, p3)
> hist(x1, probability = T, main = "Binomial Distribution\n

n = 50, p = .5")
> lines(density(x1), col = "red", lwd = 2)
> curve(dnorm(x, mean = n1 * p1, sd = sqrt(n1 * p1 * (1-p1))),

add = TRUE, col = "blue", lty = 2, lwd = 2)
> hist(x2, probability = T, main = "Binomial Distribution\n

n = 50, p = .3", ylim = c(0,.13))
> lines(density(x2), col = "red", lwd = 2)
> curve(dnorm(x, mean = n2 * p2, sd = sqrt(n2 * p2 * (1-p2))),

76



8.2 Normal Distribution 8 PROBABILITY

add = TRUE, col = "blue", lty = 2, lwd = 2)
> hist(x3, probability = T, main = "Binomial Distribution\n

n = 100, p = .95")
> lines(density(x3), col = "red", lwd = 2)
> curve(dnorm(x, mean = n3 * p3, sd = sqrt(n3 * p3 * (1-p3))),

add = TRUE, col = "blue", lty = 2, lwd = 2)

Figure 27: Binomial Histograms

rbinom is the function we use to generate 1000 values of the binomial distribution with parameters
n and p. As we can see, for large values of n, the binomial distribution can be approximated by the
normal distribution.

8.2 Normal Distribution

To work with the normal distribution, first we will show how to plot the standard normal distribution.

> x <- seq(from = -4, to = 4, length=100)
> r.dist <- dnorm(x)
> plot(x, r.dist, type = "l", xlab = "x value",

ylab = "Density", main = "Standard Normal Distribution")

Figure 28: The Standard Normal :
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The dnorm function is simply the likelihood function of the normal distribution. The parameters
of the distribution may be specified with additional arguments, such as the mean and sd (standard
deviation). The defaults are mean 0 and a standard deviation of 0.

> x <- seq(from = -4, to = 4, length=100)
> r.dist1 <- dnorm(x, mean = 3, sd = 3)
> plot(x, r.dist1, type = "l", xlab = "x value",

ylab = "Density", main = "Standard Normal Distribution")

Figure 29: Normal(mean = 3, sd = 3)
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We can also plot the cumulative distribution using the pnorm function:

> x <- seq(from = -4, to = 4, length=100)
> r.cumdist1 <- pnorm(x)
> plot(x, r.cumdist1, type = "l", xlab = "x value",

ylab = "Probability", main = "Standard Normal Cumulative Distribution")

Figure 30: CDF for Normal(0,1)
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The quantiles give us the inverse of the cumulative distribution function, and this is given to us by
the qnorm function. This time, we will plot it using the curve function, which takes in an expression
written as a function of x, and from and to variables used to specify the min and max x values:

> curve(qnorm(x), from = 0, to = 1, main = "Standard Normal
Distribution\nGaussian Quantiles\nInverse CDF", xlab = "Percentile")

Figure 31: Inverse CDF :
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Now we can simulate random variables that take on normal distributions by generating random
numbers using the rnorm function. In the following examples, we are working with the standard
normal distribution, with mean 0 and standard deviation 1:

> n = 1000
> x = rnorm(n)
> hist(x, main = "Gaussian Distribution\nStandard Normal")
> hist(x, main = "Gaussian Distribution\nStandard Normal", probability = T)

Figure 32: Histograms of Gaussian :

Notice that the graph on the right was created using the probability argument, which, when set to
TRUE, prints the y-axis as probability densities, and not the frequency. Now we can fit a smoothed
line for the sample density:

> lines(density(x), col = "red", lwd = 2)

The density function computes kernel density estimates for the numeric vector we provide. Now
let’s add a dashed line for the theoretical distribution, in addition to a legend:

> curve(dnorm(x), add = TRUE, col = "blue", lty = 2, lwd = 2)
> legend(x = .9, y = .35,legend = c("Sample Density",

"Theoretical Density"), lwd = 2, lty = c(1, 2), col = c("red", "blue"))

9 Scripting

You will find that it is useful to have a history of your R code from a particular session available for
viewing during that session.

9.0.1 From the Command Line

If you are operating on a Unix system, you may directly open a vi, pico, or emacs editor using those
commands, along with the argument file = "file name". Upon saving your file and exiting you
will return to your R session and the commands from the file will be run immediately. For example

> vi(file = "testing.vi.option.R")
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Figure 33: Theoretical versus Randomly Generated N(0,1)

Figure 34: vi editor :
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Will bring us to the vi editor. If we entered the following text, and then saved and exited by holding
shift and entering zz, we would return to the following output in our R session

> vi(file = "testing.vi.option.R")
[1] "Cool! The vi editor, straight out of my R session!"
[1] "Let’s calculate a trivial mean..."
[1] 5.5

9.0.2 Mac : From the GUI

Scroll the pointer across the icons until you reach either the Create a new, empty document ...
option, or open an existing script from a saved file with the Open Document in Editor option, and
start scripting. Then copy and paste your script into your R session.

9.0.3 Windows : From the GUI

Here you should scroll the pointer to the File option, then to the New Script, or else Open Script
option, and commence scripting.

9.0.4 source

Another option is source, which reads a file of R code into your session, silently. The format is
source("filename"). As usual, tab completion holds. For example,

> source("testing.vi.option.R")
[1] "Cool!The vi editor, straight out of my R session!"
[1] "Let’s calculate a trivial mean..."

Note how the mean of the sequence 1:10 was not output.

10 Functions

10.1 Introduction

R contains built-in functions found in different packages. To see a list of all functions in a particular
loaded package, use the ls function with the form ls("package:name of package"). For example,

> library(survival)
> head(ls("package:survival"))
[1] "Surv" "aml" "as.date" "attrassign" "basehaz"
[6] "bladder"
> tail(ls("package:survival"))
[1] "survreg.fit" "survreg.old" "tcut"
[4] "tobin" "untangle.specials" "veteran"
> length(ls("package:survival"))
[1] 77
> ls("package:survival")[77]
[1] "veteran"

From time to time you may want to create your own functions. For example, suppose you just didn’t
like the fact that function var calculated the sample variance, and you wanted your own function
that calculated the population variance, say my.var. Being able to make your own functions means
you should never be confined to the built in functions R provides for you. The following code shows
how to solve the mentioned problem above and compares the built-in function to our own function
for the population variance.
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> my.var = function(vector){
+ sum((vector - mean(vector))^2)/length(vector)
+ }
> my.var(c(1,2,3)) # from a popuation size 3
[1] 0.6666667
> var(c(1,2,3)) # a sample size of 3 from larger population
[1] 1

10.2 Functional Form

The general form for creating a function is as follows :

functionName = function(arg1, arg2, ..., argn, option1, ..., optionm){
+command1

+command2

.

.

.
+ commandp

+ return(value)
}

To use the function, the form is :

functionName(arg1, arg2, ..., anrgn, option1, ..., optionm)

In the first line, calling function() tells R we want functionName to be a function. argi and
optioni are arguments and options, and commandi are expressions to be evaluated, in the function.
The return(value) will return value when the function is called. If you intend to return more than
one object from the function, you will have to make value a list containing the relevant objects. If
we omit return(value), then the last line evaluated would be returned by default, commandp above,
if there is anything to be returned. Functions need not return objects.

As an example, if we wanted to create our own mean function, our.mean, we could do the
following

>our.mean = function(x){
+ sum(x)/length(x)
+}

10.3 Naming Functions

If a function is created that has the same name as a built-in function, then the newly created function
will over-ride the built-in. For example, naming a function q will make it impossible to cleanly exit
your session. To restore the built-in function, use rm with the form rm(”function name”). To take
precaution against over-riding the built-in functions, before naming your function use the exists
command with the form exists(”proposed function name”). If the name exists already, TRUE will be
displayed; if not, then FALSE will be displayed. To see the contents of the function, simply wirte its
name at the command line.

> exists("our.mean")
[1] TRUE
> exists("our.mean.xyz")
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[1] FALSE
> our.mean
+ function(x){
+ sum(x)/length(x)
+ }

10.4 Functions and Loops

More often we will have to either slightly modify or use multiple built-in functions to accomplish
some desired result. Typically we have the option of working with loops or with built in functions. It
is important to stress that the choice is a matter of taste. Some will feel more comfortable with for,
while, or repeat loops. Many times the use of loops can be omitted with the use of functions like
replicate, sapply, tapply, or mapply. In the following two sections if you begin to feel bogged
down in the complexities of the for or repeat loops, please skip immediately to the replicate
section.

10.4.1 for loops

The general form of a for loop is as follows :

for(dummy.variable in sequence){
+command1; command2; ...; commandn

+}

First, to understand what follows, the body of the loop is what lies between the { and the} .
If the loop is just on one line, such as for(dummy.variable in sequence) command1, then command1

is the body of the loop. Here is an example of a for loop. This is bootstrapping, or sampling many
times from a population to get an estimate of some statistic, the mean in our case. We start by
creating a numeric vector my mean, and a data set to test on, called my data. Then in each iteration
of the for loop we create a sample of size 200 from my data, and calculate its mean, adding an
element to my mean. Now we have a sample of sample means, and take the mean and sd of my means
to obtain some confidence interval for the population mean. Testing this below, we see that the true
mean indeed falls within our confidence interval.

my_mean = rep(0,1000);
my_data = runif(1000, 0, 100);
for(i in 1:100) {

smpl_dta = sample(my_data,200, replace = TRUE);
my_mean[i] = mean(smpl_dta);

my_sd = sd(smpl_dta)
}

my_mean = sort(my_mean);
my_sd = sort(my_sd);

Note that we have sorted these vectors, from lowest to highest values, with the sort function. Now
to get 90% confidence intervals for the mean of my data, we could just observe the 5th and 95th

observances in the sorted vectors, since 90% of the time our sample mean resided in this range11.
11This example is based on a problem from Karl Rohe’s lab from Statistics 135, Spring 2008
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> my_mean_90_ci = c(my_mean[5], my_mean[95]);
> my_sd_90_ci = c(my_sd[5], my_sd[95]);
> my_mean_90_ci
[1] 46.63772 53.52116
> my_sd_90_ci
[1] 27.59648 31.02859
> mean(my_mean)
[1] 50.29266
> mean(my_sd)
[1] 29.2549

Now we can compare these to the actual mean and sd of my data.

> mean(my_data)
[1] 50.4192
> sd(my_data)
[1] 29.37525

Not bad at all, eh? What the for loop does is execute the commands within its body n times — if n
is the length of your sequence — advancing the dummy variable to the next number in the sequence,
once on each run through the body. We’ll show this in the following example of bootstrapping the
difference in means between two vectors:

> Boot.mean.oner = function(T.1, T.2){
+ F.P.B = rep(0,1000)
+ F.N.B = rep(0,1000)
+ for(i in 1:1000){
+ if(i %% 100 == 0) print(paste(c("index = ", as.character(i)), collapse = ""))
+ F.P.B[i] = mean(sample(T.1, length(T.1), replace = TRUE))
+ F.N.B[i] = mean(sample(T.2, length(T.2), replace = TRUE))
+ }
+ Diff.oner = F.P.B - F.N.B
+ hist(Diff.oner)
+ return(sort(Diff.oner))
+}

Note how the two vectors that were filled by the for loop were initialized before the loop. If you run
this function with two vectors of equal length, and at the same time set an object equal to the run
function, such as Boot.run.1 = Boot.mean.oner(r.1, r.2), you will see the following wiz by the
screen

> Boot.run.1 = Boot.mean.oner(r.1, r.2)
[1] "index = 100"
[1] "index = 200"
[1] "index = 300"
[1] "index = 400"
[1] "index = 500"
[1] "index = 600"
[1] "index = 700"
[1] "index = 800"
[1] "index = 900"
[1] "index = 1000"
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and a histogram will appear. The function, in turn, tells you how many hundreds of times the loop
has been run, as soon as the index is set. Note that after the 1000th index has been set the histogram
appears. This is because the for loop is not finished until the index, i in the code, is set to 1000 and
the body of the loop on that run is completed. Also note how the function could be simplified as :

> Boot.mean.oner = function(T.1, T.2){
+ Diff.oner = rep(0,1000)
+ for(i in 1:1000){
+ Diff.oner[i] = mean(sample(T.1, length(T.1), replace = TRUE)) -
+ mean(sample(T.2, length(T.2), replace = TRUE))
+ }
+ hist(Diff.oner)
+ return(Diff.oner)
+ }

10.4.2 On the Myth of loops being bad form in R

Note in the code above that space is allocated for Diff.oner in the line Diff.oner = rep(0,1000),
instead of just declaring Diff.oner=0 and then adding elements to the vector. In the first case,
the program first finds memory to hold Diff.oner and then is free to perform the calculations that
follow in the for loop. In the second case space for one number is allocated in memory, refered to
by us in R as Diff.oner. Then the for loop runs with i=1 and Diff.oner is set to a particular
value in the loop. But then in the second run through the loop would actually be extending the size
of Diff.oner stored in memory. In turn R will allocate space for this now vector of length 2, and
then set it to a particular value in the loop. And so the procedure continues until (or if) the block
of memory where Diff.oner is being stored becomes too small to store Diff.oner. Then R will
reallocate space for Diff.oner to a larger block of memory and the, say nth element if the vector
Diff.oner will be set. The process will complete, or perhaps another slot in memory will have to be
found before finishing the calculation. Note that the problem is not in the loop. the problem is in
the decision to not allocate enough space for Diff.oner ahead of time. Admitedly, the mentioned
problem will likeley not occur with a small vector. However, it is bound to be a problem if you are
expanding the size of a moderately sized matrix in a loop because of the way matrices are stored
in memory. When a matrix is expanded the entire contents of the matrix must be rearranged to
new locations in memory. Imagine how much this will slow your program down. Again, this is not
a problem if the size of the matrix is allocated ahead of time. Just remember this when you are
running loops and you should not have any major problems.

10.4.3 repeat loops

Alternatively, we could use repeat, which has the following form :

initialize incremeting variable
repeat{
+ incrementing rule; expression.1; expression.2; ...; expression.n;
+condition to stop repetition
+}

We could do the previous example as follows :

> i = 0
> Diff.oner = rep(0, 1000)
> repeat{
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+ i = i + 1
+ Diff.oner[i] = mean(sample(T.1, length(T.1), replace = TRUE))
+ - mean(sample(T.2, length(T.2), replace = TRUE))
+ if(i > length(Diff.oner) - 1){
+ i = 0
+ break
+ }
+ }

Note that when using repeat we must initialize our incrementing (or dummy) variable before the
repeat loop, as done in line 1. Line two should be no surprise. The remainder is the body of the
repeat function. We begin the body with an incrementing rule, basically stating that each time we
run through the body of the loop we will increment our counter i by one. The second and third
lines are straight from the previous example. Lastly,

+ if(i > length(Diff.oner) - 1){
+ i = 0
+ break
+ }

can be interpreted as if(i > length(Diff.oner) - 1){ : ”When the incrementor i is greater than
999 execute the commands that are listed before the next }”. i = 0 is obvious. break : ”exit the
repeat loop”.

As with the for loops above, we can create a function for this. In so doing we can make the
same computations in one line of code :

> boot.mean.rep = function(T.1, T.2, n){
+ i = 0
+ Diff.oner = rep(0, n)
+ repeat{
+ i = i + 1
+ Diff.oner[i] = mean(sample(T.1, length(T.1), replace = TRUE))
+ - mean(sample(T.2, length(T.2), replace = TRUE))
+ if(i > length(Diff.oner) - 1){
+ return(Diff.oner)
+ break
+ }
+ }
+ }

Now, boot.mean.rep(T.1, T.2, 1000) calculates similar values to boot.mean.oner(T.1, T.2),
with slight differences arising from randomness from sampling.

10.4.4 replicate

If the previous examples seemed like a lot of work, then replicate is probably the right function
for you. The general form is replicate(n, expr, simplify=TRUE) where n is the number of
replications, expr the expression to replicate, and simplify an option to simplify the result to a
vector (or matrix) or a list. The last argument is simplify set to TRUE whereby the result is a
vector or matrix. Setting simplify = FALSE will create a list. Now we illustrate the power of the
built-in function. The work done by the previous loops are done by replicate as follows :

> Diff.oner = replicate(1000, mean(sample(T.1, length(T.1), replace = TRUE))
+ - mean(sample(T.2, length(T.2), replace = TRUE)))
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That’s it! Though it may seem like a dirty trick to put such a gem at the end of the list, we wanted
the reader to first experience the alternatives, for appreciation. replicate actually uses a loop,
as does apply and sapply. However, you may find in some cases that these built in functions are
easier to use than are writing your own loops. Note that nowhere in replicate do we have to index
Diff.oner. Note the same for apply and sapply in earlier sections of the tutorial. Nonetheless, you
will find at times that writing a loop out yourself is the most instructive way to perform some task
and you should not feel as if this is something taboo, so long as you allocate space for the object
you will be operating on ahead of time.

10.5 Examples of Homemade Functions :

10.5.1 Uploading a set of Packages

Suppose you wanted to load a certain set of installed packages at the beginning of your R sessions.
The following function solves the mentioned problem.

>.packages(all.available = TRUE) # for matching
>#create vector, vector, containing the locations of entries you want
>package.loader = function(vector)
+ for(i in vector){
+ library(.packages(all.available = TRUE)[i], character.only = TRUE)
+}

Note that you may set this up in your .Rprofile file, so that it runs automatically each time you
start R.

10.5.2 Adjusting the QQ-line for Comparisons with Theoretical Distributions

To plot QQ-lines for non-standard normal distributions, we have to modify the built in qqline. To
figure out how to create qqlines that meet our needs, we examine the qqline function.

> qqline
function (y, datax = FALSE, ...)
{

y <- quantile(y[!is.na(y)], c(0.25, 0.75))
x <- qnorm(c(0.25, 0.75))
if (datax) {

slope <- diff(x)/diff(y)
int <- x[1] - slope * y[1]

}
else {

slope <- diff(y)/diff(x)
int <- y[1] - slope * x[1]

}
abline(int, slope, ...)

}

We see that our needs can be met by adjusting the line x <- qnorm(c(0.25, 0.75)), in creating
our own slightly modified qqline function. We know that rexp(1000, .5) is approximately the
theoretical exponential(λ = .5). We can make an altered qqline to compare D.set to the theoretical
exponential(λ = 0.5) as follows (simply changing lines 1 and 3 of qqline)

> exp.qqline = function (y, datax = TRUE, rate, ...)
+ {
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+ y <- quantile(y[!is.na(y)], c(0.25, 0.75))
+
+ x <- qexp(c(0.25, 0.75), rate = rate)
+ if (datax) {
+ slope <- diff(x)/diff(y)
+ int <- x[1] - slope * y[1]
+ }
+ else {
+ slope <- diff(y)/diff(x)
+ int <- y[1] - slope * x[1]
+ }
+ abline(int, slope, ...)
+ }

Now, we can pass D.set to exp.qqline and get an approximate qqline. All we did is replace the
normal quantile function qnorm with the exponential quantile function qexp and allowed for the
passing of a rate of decay rate to the qexp.

> exp.qqline(D.set, rate = .5)

Figure 35: approximated qqline by using exp.qqline

Similarly, we could create an adjustable qqline function for theoretical Normal means '= 0 and
sd '= 1. That is, by changing the first line to FunctionName = function(y, datax = TRUE, mean,
sd){ and the third line to x<-qnorm(c(0.25, 0.75), mean, sd) we could achieve the mentioned
goal — as would similar appropriate changes work for other distributions.

10.5.3 adjusting qqline for two sample comparison

Lastly, we could compare the quantiles of the actual data by adding x to the arguments and replacing
the line x <- qnorm(c(0.25, 0.75)) with x <- quantile(x[!is.na(x)], c(0.25, 0.75)).

10.5.4 A More Adjustable QQ-line :

The following function will plot a qqline for comparison of a vector with any built in base package
density function in R. The first argument y is the vector to compare with the density function. The
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second argument datax should be TRUE if this vector is on the x axis of the existing plot, otherwise
FALSE. The third argument fcn is the name of the quantile density for comparison, in quotes — for
example fcn = "qexp". See the vector fcn.list for possible entries.

> m.qqline = function(y, datax, fcn, pList, ...){
+ exit = 0
+ y = quantile(y[!is.na(y)], c(0.25, 0.75))
+ fcn.list.f = c(qexp, qnorm, qbeta, qbinom, qcauchy, qf, qchisq, qgamma,
+ qgeom, qhyper, qlogis, qlnorm, qnbinom, qpois, qt, qunif, qtukey,
+ qweibull, qwilcox)
+ fcn.list = c("qexp", "qnorm", "qbeta", "qbinom", "qcauchy", "qf",
+ "qchisq","qgamma", "qgeom", "qhyper", "qlogis", "qlnorm", "qnbinom",
+ "qpois","qt", "qunif", "qtukey", "qweibull", "qwilcox")
+ fcn.par.l = c(1, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2)
+ exit = 0
+ j = 1
+ repeat{
+ if((fcn == fcn.list[j]) && (length(pList) == fcn.par.l[j])){
+ if(length(pList) == 1){
+ fcn.list.f[j][[1]](c(0.25, 0.75), pList[1])->x
+ exit = 1} else
+ if(length(pList) == 2){
+ fcn.list.f[j][[1]](c(0.25, 0.75), pList[1], pList[2])->x
+ exit = 1} else
+ if(length(pList) == 3){
+ fcn.list.f[j][[1]](c(0.25, 0.75), pList[1], pList[2], pList[3])->x
+ exit = 1}
+ }
+ if(exit == 1){
+ if(datax){
+ slope = diff(x)/diff(y)
+ int = x[1] - slope*y[1]
+ }
+ else {
+ slope = diff(y)/diff(x)
+ int = y[1] - slope*x[1]
+ }
+ abline(int, slope, ...)
+ break}
+ if(j > length(fcn.list.f)){"You have entered too many or too few parameters
+ for the function, or an invalid function name for fcn"
+ break
+ }
+ j = j+1
+}
+}

For example :

> r.2 = rexp(1000, 2)
> r.1 = rexp(1000, .5)
>
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> par(mfrow = c(2, 1))
> qqplot(r.1, r.2)
> m.qqline(r.1, datax = TRUE, "qexp", 2, col = 2)
> m.qqline(r.2, datax = FALSE, "qexp", .5, col = 4)
> legend(legend = c("Line if both exp(2)", "Line if both exp(.5)"),
> col = c(2, 4), x = "topleft", lty = 1)
>
> n.1 = rnorm(1000, 1, 2)
> n.2 = rnorm(1000, 2, 2)
> qqplot(n.1, n.2)
> m.qqline(n.1, datax = TRUE, "qnorm", c(2,2), col = 2)
> m.qqline(n.2, datax = FALSE, "qnorm", c(1,2), col = 4)
> legend(legend = c("Line if both N(2,2)", "Line if both N(1,2)"),
> col = c(2, 4), x = "topleft", lty = 1)

Figure 36: Results from the m.qqplot :
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To compare exponentials and normals and χ2:

> qqplot(r.2, n.1)
> m.qqline(r.2, datax = TRUE, "qnorm", c(1,2), col = 2)
> m.qqline(n.1, datax = FALSE, "qexp", 2, col = 4)
> legend(legend = c("Line if both N(1,2)", "Line if both exp(2)")
+ , col = c(2, 4), x = "bottomright", lty = 1)
>
> CHI = rchisq(1000, 12)
>
> qqplot(CHI, n.1)
> m.qqline(CHI, datax = TRUE, "qnorm", c(1,2), col = 2)
> m.qqline(n.1, datax = FALSE, "qchisq", 12, col = 4)
> legend(legend = c("Line if both N(1,2)", "Line if both chi^2(12)"),
+ col = c(2, 4), x = "bottomright", lty = 1)

Figure 37: Results from the m.qqplot :

10.5.5 Flexible Plotting Routines

Here is an example of a function to plot the data in the section 3.11.1.12

> PLOTfcn = function(COST, cex = .7, pos = 4, ylim = c(0,1), xlim = c(0,1),
+ main = "Place your title here", text = TRUE){;
+ plot(COST[,4], COST[,5], ylim = ylim, xlim = xlim, xlab = "Utilization
+ of Weight", ylab = "Utilization of Cube", main = main);
+ points(COST[ COST$VALUES > 2143 & COST$VALUES > 2143, 4], COST[
+ COST$VALUES > 2143 & COST$VALUES > 2143, 5], col = "red");
+ points(COST[ COST$VALUES <= 2143 & COST$VALUES > 1749, 4], COST[
+ COST$VALUES <= 2143 & COST$VALUES > 1749, 5], col = "orange");
+ points(COST[ COST$VALUES <= 1749 & COST$VALUES > 1593, 4], COST[
+ COST$VALUES <= 1749 & COST$VALUES > 1593, 5], col = "green");

12If you like this kind of stuff, please look into the lattice package for many nice graphing techniques.
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+ points(COST[ COST$VALUES <= 1593 & COST$VALUES > 1018, 4], COST[
+ COST$VALUES <= 1593 & COST$VALUES > 1018, 5], col = "blue");
+ points(COST[ COST$VALUES <= 1018 & COST$VALUES > 0, 4], COST[
+ COST$VALUES <= 1018 & COST$VALUES > 0, 5], col = "pink");
+ if(text == TRUE)
+ text(COST[,4], COST[,5], COST$NAMES, cex = cex, pos = pos, col = "black");
+ legend( legend = sort(unique(COST[,3])), col = c("red", "orange", "blue", "green",
+ "pink"), x = "bottomright", pch = "o");
+};

where the actual data frame was named COST and looked like this :

> head(COST)
NAMES VALUES TO_PRINT

1 AKRON 1125.1300 4.) Between $1593.00 and $1018.00 Average Cost
2 ANKENY 774.0000 5.) Less than $1018.00 Average Cost
3 ATLANTA 1601.3700 3.) Between $1749.00 and $1593.00 Average Cost
4 BAKERSFIELD 712.6044 5.) Less than $1018.00 Average Cost
5 BAY SHORE 1336.6167 4.) Between $1593.00 and $1018.00 Average Cost
6 BOZEMAN 1065.2400 4.) Between $1593.00 and $1018.00 Average Cost

WEIGHT CUBE
1 0.7951905 0.8461538
2 0.9877619 0.9230769
3 0.9986667 0.9230769
4 0.8279546 0.8556777
5 0.6431270 0.5256410
6 0.8958452 0.9038462

Note that you could easily generalize the function more than it is by creating more options to be
passed to the function and by replacing instances of COST$VALUES with COST[, k] where k is some
index for a column.
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