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Abstract

The nature of statistics is changing significantly with many opportunities to broaden the
discipline and its impact on science and policy. To realize this potential, our curricula and
educational culture must change. While there are opportunities for significant change in many
dimensions, we focus more narrowly on computing and call for computing concepts to be in-
tegrated into the statistics curricula at all levels. Computational literacy and programming are
as fundamental to statistical practice and research as mathematics. We advocate that our field
needs to define statistical computing more broadly to include advancements in modern com-
puting, beyond traditional numerical algorithms. Information technologies are increasingly
important and should be added to the curriculum, as should the ability to reason about compu-
tational resources, work with large data sets, and perform computationally intensive tasks. We
present an approach to teaching these topics in combination with scientific problems and mod-
ern statistical methods that focuses on ideas and skills for statistical inquiry and working with
data. We outline the broad set of computational topics we might want students to encounter
and offer ideas on how to teach them. We also discuss efforts to share pedagogical resources
to help faculty teach this modern material.
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1 Introduction

The main message of this paper is that the digital age is having a profound impact on statistics

and the nature of data analysis, and these changes necessitate revaluation of the training and ed-

ucation practices in statistics. Computing is an increasingly important and necessary aspect of a

statistician’s work, and needs to be incorporated into the statistics. Successful statisticians must

be facile with the computer, for they are expected to be able to access data from various sources,

apply the latest statistical methodologies, and communicate their findings to others in novel ways

and via new media. In addition, researchers exploring new statistical methodology rely on com-

puter experiments and simulation to explore the characteristics of methods as an aid to formalizing

their mathematical framework. We believe that for the field of statistics to have its greatest im-

pact on policy and science, statisticians must seriously reflect on these major changes and their

implications for statistics education.

The ability to express statistical computations is an essential skill (analogous to algebra and

analysis/calculus) for practicing data analysts, statistical researchers and students. But, how well

are we, as a community of statistics educators, preparing our students for this modern era of statis-

tics research and practice? Peck and Chance (2007) hail the need for educators to try to find out

what students are actually learning as they complete the course work for the statistics major. They

suggest beginning with an “open and frank discussion of the following question: When your stu-

dents graduate, what is something observable that you think they ought to be able to do?” We

follow their lead and ask the questions: When they graduate, what ought our students be able to

do computationally, and are we preparing them adequately in this regard? Do we provide students

the essential skills needed to engage in statistical problem solving and keep abreast of new tech-

nologies as they evolve? Do our students build the confidence needed to overcome computational

challenges to, e.g., reliably design and run a synthetic experiment or carry out a comprehensive

data analysis? Overall, are we doing a good job preparing students who are ready to engage in and

2



succeed at statistical inquiry? We believe that in general, we fall short of these goals, and call on

the statistics community to work together, to challenge ourselves and each other, and to make a

significant cultural shift to embrace computing and integrate it fully into statistics undergraduate

major and graduate programs.

The recent article, “What is Statistics?” (Brown and Kass, 2009), calls attention to the chang-

ing landscape for the field of statistics where success requires “highly flexible problem-solving

strategies,” yet they observe a “worrisome tendency” to “attack problems using blunt instruments

and naive attitudes.” Brown and Kass attribute part of the problem to our courses and degree

programs. They point out that historically “mathematical thinking influenced both research and

infrastructure” in statistics departments and currently may not be serving the field well. It is really

important that statisticians are beginning to reflect on the changes in the field and how these impact

training programs. We share many of the same concerns and solutions as described in Brown and

Kass (2009), and call for the statistics community to examine the legacy of computational training

for statisticians. The skill set needed even 20 years ago for a statistician is very different today.

1.1 Three key components

Computational ability supports statistical inquiry and is vital to all facets of a statistician’s work.

Yet, it occupies an astonishingly small proportion of the statistics curricula. Many statisticians

would agree that there should be more computing in the statistics curriculum and that statistics

students need to be more computationally capable and literate. However, it can be difficult to de-

termine what specifically to teach and how to practically change the curriculum. In our experience

with designing and teaching new courses in computing, the following considerations have come to

the forefront.

1. Broaden statistical computing Within the past five to ten years, an ever larger array of com-

puting topics have impacted the work of practicing statisticians and this is only likely to continue
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to increase as the Web is used to disseminate data in rich new ways. While the traditional area of

computing related to the study of numerical analysis and algorithms for statistical methods (often

referred to as “computational statistics”) is still very important to the field, other topics have also

become significant, and to different categories of students. Today, and in the future, statisticians

must access and integrate large amounts of data via Web services and databases, manipulate com-

plex data (e.g. text, network graphs) into forms more conducive to statistical analysis, and produce

interesting statistical presentations of data as exemplified by GapMinder (GapMinder Foundation,

2008). The importance of these innovations on the access, analysis, and presentation of data, make

a strong case for broadening the statistics curriculum to include these non-traditional topics.

2. Deepen computational reasoning and literacy In many regards, computing skills are similar

to mathematical skills, which are not important to statistics in their own right but in how they allow

us to reason about and express statistical ideas and techniques. Statistics students, at the major and

graduate levels, must be able to express themselves through computations, understand the funda-

mental concepts common to programming languages, and discuss and reason about computational

problems precisely and clearly. Instruction must move beyond how-to examples, idioms and tem-

plates for students to copy. They need to gain explicit experience with programming an algorithm

and with programming language concepts such as variables, assignments, flow control, functions,

parameters, data structures, input and output, error handling, debugging, and so on. Whether they

enter the workforce from an undergraduate degree in statistics or enter graduate programs and re-

search careers, future statisticians will encounter an ever changing array of “current” technologies,

data formats, and programming languages. They need a solid understanding of programming con-

cepts, paradigms and fundamentals to meet these emerging changes and challenges and to solve

novel computing problems.
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3. Compute with data in the practice of statistics We believe that statistical computing, like

statistical methods, should be taught in the context of statistical practice to give students both the

motivation to interact with data and the experience needed to be successful in their future statistical

endeavors. The nature of “computing with data” needs to be addressed by working on real compu-

tational problems that arise from data acquisition, statistical analysis, and reporting. One important

side effect of this approach is that statistical computing could be taught in a way that offers an al-

ternative approach to teaching statistical concepts (both elementary and advanced). Computing

offers a possible approach to addressing the larger issues facing our entire curriculum: how to

teach statistical thinking and problem solving in the scientific context. Furthermore, computing

can be used to teach statistical methodology in a quite complementary and different manner than

mathematics where students actively “construct”, i.e. program, and explore methods.

These three key aspects (broaden statistical computing to include emerging areas, deepen com-

putational reasoning skills, and combine computational topics with data analysis in the practice of

statistics) are discussed in greater detail in Sections 2, 3, and 4, respectively, of this paper. The

question of what specifically should be taught is addressed in Section 5. There we present a myriad

of possible topics, which we collect into six main groups: 1. Fundamentals in scientific computing

with data, 2. Information technologies, 3. Computational statistics (e.g. numerical algorithms)

for implementing statistical methods, 4. Advanced statistical computing, 5. Data visualization,

and 6. Integrated development environments. We also provide examples, sketches and snippets

of possible approaches to teaching these topics in Section 5 and the Appendix. Section 6 makes

a final plea to the statistics community to take the challenge and work ambitiously to incorporate

statistical computing into the statistics curricula and suggests some practical approaches that may

help make such changes feasible.

In short, a good foundation and skills in computing are essential for all who participate in

research and scientific inquiry, and increasingly so for statisticians. Specifically, we advocate that

computing must be central to the statistics curriculum at the undergraduate and graduate levels. For
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example, at Berkeley, there are now three upper-division courses, one each in probability, statistics

and computing with data, that form the core of the major program. Of course, not all institutions

have the flexibility to develop a statistics course on computing with data, but it is crucial to have

a basic course that addresses computational reasoning and the fundamentals of programming with

data, which is very different from a typical introductory programming class. Such a course may

be taught as part of an applied mathematics or computer science major, e.g. Macalester College’s

mathematics department offers the MATLAB-based course, Scientific Programming, and uses the

text by Kaplan (2004). In addition to a core computational course, we strongly advocate integrating

computational problems and vocabulary into traditional statistics courses.

1.2 Our Backgrounds

We have been thinking about and working on making changes in these directions for several years.

Our perspectives come from our different backgrounds and experiences. Temple Lang spent many

years in Bell Labs in industrial research and development, and Nolan received formal training in

programming while working for IBM 30 years ago. A significant aspect of Temple Lang’s re-

search focuses on both developing scientific computing environments and integrating information

technologies with statistics. Nolan’s general work in pedagogy, and particularly in the use of tech-

nology in statistics education, provides yet another viewpoint. Both of us teach at the University of

California, on the Berkeley (Nolan) and Davis (Temple Lang) campuses. For the past six years, we

have been involved in curriculum reform at our respective campuses. Temple Lang is in the process

of introducing a new sequence of courses and topics in statistical computing in the graduate and

undergraduate programs at Davis, and Nolan and Temple Lang have designed new undergraduate

courses in computing and data technologies that are core components of their major programs.

We have developed these undergraduate courses in close cooperation, yet they differ in that they

focus on different levels of students: at UC Davis the audience has been a mixture of graduate and

undergraduate students, and at UC Berkeley the students are undergraduates in statistics, applied
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math, and other science majors. The courses are also of different lengths because Berkeley has a

15-week semester and Davis a 10-week quarter. Both center on programming fundamentals and

thinking and information technologies and how they connect to statistics. They also incorporate

problems with real, complex data arising in industry and research settings, and they engage students

in statistical practice, exposing them to some modern/non-traditional statistical methodology.

Most recently our perspectives have also been shaped by our shared experience organizing a

series of NSF-funded workshops to assist faculty in acquiring the knowledge, skills, and teaching

practices in new areas of statistical computing. The first workshop, held in 2007, brought together

computing specialists and industrial research consultants to help determine modern syllabi and

curricula involving computing. Subsequent workshops focused on providing instructors with the

background and skills needed to teach statistical computing courses, and collectively developing

examples or case studies of modern data-analysis projects to share with the statistics community.

To support continued discussion and assistance for faculty and to build a community of educators

interested in incorporating computing into the statistics curriculum and sharing course materials,

we have also created electronic mailing lists, discussion boards, and a wiki. See Nolan et al.

(2007a) for a more complete description of these efforts and materials, and see the Appendix for

example data sets and simulation studies.

2 Broaden Statistical Computing

In answer to the question, “What do you regard as the greatest contribution to statistics over the

last 40 years?” Hartigan (Barry, 2005) chose the S language (Chambers and Wilks, 1988) and the

Internet:

the Internet has made a great contribution in that data that used to be hard to get hold of

are much more available these days ... people are much more realistic when thinking

statistically ... They pay attention to data much more ... These [the S language and
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the Internet] are both statistical computing things that have had a very big effect on

statistics and will continue to have an effect.

We wholeheartedly agree. Statisticians at all levels increasingly deal with large amounts of data

from many and varied sources (increasingly via the Web) and the challenges to data analysis start

well before the computational steps involved in model fitting. Traditionally, the computing taught

in the statistics curriculum falls into one of two camps: (a) numerical analysis and algorithms for

statistical methods; and (b) the nuts and bolts of how to use a programming language. We think

that statistical computing encompasses more than these topics. While algorithms are still relevant

to our field, information technologies is an emerging topic that is becoming important as well.

For many, merely defining the terms Web, data, and information technologies may prove dif-

ficult and the separation between programming and data technologies is not black and white. We

think of data technologies as computational tools, techniques, and paradigms that allow access to

and transformation of data from varied sources and formats and also the presentation of informa-

tion, results, and conclusions in rich, dynamic ways. These technologies include: shell commands

or Perl/Python programs to pre-process data; regular expressions for text manipulation; relational

database management systems for storing and accessing data; Web services for structured access

to remote data and services; the eXtensible Markup Language (XML) used for many purposes,

including exchanging self-describing data and supporting Web services; and Keyhole Markup

Language (KML), JavaScript and Flash to publish Web displays or “mash-ups” of data that are

interactive. That is, information technologies are essential tools by which researchers access and

present data and results. As the Web continues to grow and interesting data are made available in

rich ways on the Web, these technologies are becoming increasingly important for a statistician’s

work.

In the spirit of Peck and Chance, we ask what do our students do when they graduate? We

have found that bachelors and Masters students who enter the workforce spend much of their

efforts retrieving, filtering and cleaning data and doing initial exploratory data analysis. These
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responsibilities increasingly demand working with different data technologies and having general

programming skills. The potential for interesting and rich interactions for a statistician is greatly

increased if he or she has a good knowledge of information technologies. One former student

recently wrote to us about exactly that:

I am currently working at a consulting firm that specializes in statistical and economic

research and data analysis for large corporations. ... Every day I work with data, and

whether it is running regressions, cleaning data, finding summary statistics, parsing

documents, or working in different database environments, [this statistical computing

class] gave me the tools and foundation to succeed in my current position and gave me

the confidence to land the job in the first place.

Computing with data is an issue in which our field should be taking the lead in order to try to

improve the level of data competency and literacy within the broader scientific community. Also, if

“companies” are not engaged in these activities now, they soon will be and we as educators should

enable them to do so by producing graduates who can do new things and avail of the massive

growth in available data and sources. In other words, we should not simply be teaching students

skills that industry currently values in order to get a job. We should also be developing our students

into discerning, critical-thinking active participants of an emerging data-driven society. Academia

has an opportunity to lead and aid in the new era of ubiquitous data and information.

The goal of teaching computing and information technologies is to remove obstacles to en-

gagement with a problem. If students gain a basic familiarity with various technologies, they can

carry these skills with them and build on them to address new problems. In this way, they are more

autonomous, more “can do”, and less dependent on others to define the problem and present them

with the data. Technology will continually evolve, which is why it is crucial to teach students the

art of learning new technologies so that they can understand, evaluate and compare them as they

emerge. More important than the details of the specific technologies, we should teach students

to learn how to learn about new technologies on their own, e.g. to cull information from on-line
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documentation, tutorials, and resources and to identify important concepts. We should not expect

them to learn this skill on their own, however. We must teach this important material and this

requires solid foundations in computing principles and reasoning.

3 Deepen Computational Reasoning and Literacy

The ability to express computations is an essential skill for practicing data analysts, statistical

researchers and students that improves every aspect of their work. Furthermore, as analysis and

research continue to become more complex, more novel computational approaches are required

and a deeper understanding of computational technologies can make intractable problems feasible.

The ability to reason about and express the computations is not the end-goal, but it is a vital

aspect of the overall task and one that is involved in and supports all facets of a statistician’s work.

Friedman (2001) noted almost 10 years ago that:

Computing has been one of the most glaring omissions in the set of tools that have so

far defined Statistics. Had we incorporated computing methodology from its inception

as a fundamental statistical tool (as opposed to simply a convenient way to apply our

existing tools) many of the other data related fields would not have needed to exist.

They would have been part of our field.

We agree with Friedman and fear that if we don’t address this challenge more coherently,

statistics will become marginalized and less relevant at a time when its importance is growing

dramatically. However, we do offer an opinion as to how to achieve this goal of adding computing

to the statistician’s toolbox. Foremost, to gain skills and competency in computational reasoning,

“programming” courses must cover broad concepts as well as the specifics and recipes. While

statistics students need to learn practical details of programming (e.g., language syntax), faculty

must strive to teach higher level concepts, including a computing vocabulary and computational

thinking that will enable students to reason about and discuss computational problems precisely
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and clearly. As computing and information technologies continue to evolve rapidly, it is essential

that students develop a good foundation rather than a thin memorization of specifics so that they

are able to reason about computational tasks and continue to learn new aspects of computation.

Additionally, a lack of computational reasoning skills makes it difficult for statisticians to work in

a team where others are computationally capable, independent, and autonomous. We believe that

adding some structure and guidance in teaching computing fundamentals yields large professional

gains for students, research assistants, and professionals and our field generally.

Many statisticians advocate – or at least practice – the approach in which students are told

to learn how to program by themselves, from each other, or from their teaching assistant in a

two-week “crash course” in basic syntax at the start of a course. Let’s reflect on how effective

this approach has been. Can our students compute confidently, reliably, and efficiently? We find

that this do-it-yourself ‘lite’ approach sends a strong signal that the material is not of intellectual

importance relative to the material covered in lectures. In addition, students pick up bad habits,

misunderstandings, and, more importantly, the wrong concepts. They learn just enough to get what

they need done, but they do not learn the simple ways to do things nor take the time to abstract

what they have learned and assimilate these generalities. Their initial knowledge shapes the way

they think in the future and typically severely limits them, making some tasks impossible.

4 Computing with Data in the Practice of Statistics

Why teach statistical computing in the context of solving scientific problems through data analysis?

We offer several reasons.

• Programming is technical and often frustrating, but when embedded in exploring data, draw-

ing plots, looking for anomalies, making conjectures and looking for supporting evidence,

the students learn the computational aspects as part of an interesting, challenging, exciting,

confidence-building process. The computer provides feedback to the students and helps to
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guide their activities and learning.

• For most students, it is a big leap from practicing basic programming skills to embracing

problem-solving methodologies and general computing principles. When computing with

data in the context of solving a scientific problem, students, ideally, gain this experience as

they behave like scientists/statisticians who work with data.

• By computing in the context of statistics practice, students are exposed to a much more

subjective, creative activity than typically encountered in traditional computing and statistics

methodology classes and as a result gain a deeper, richer appreciation for the practice of

statistics.

• Typically this approach involves multiple computational aspects, e.g. text manipulation with

regular expressions, a simulation study, and advanced graphics, and in this way, students

learn to be facile with computational tools to express ideas and map concepts to program-

ming instructions.

• Statistical computing topics that are integrated with data and context adds a new pedagogical

dimension to the entire statistics curriculum and can expose students to methodology that

they would not typically encounter.

It is commonly accepted that statistics should be taught in context. Many statistics educators

have argued that teaching “mathematical statistics” must include experience with data and real

problems, and there is evidence that courses and curricula are changing in this direction. See Nolan

and Speed (2000); Ramsey and Schafer (2002); Utts and Heckard (2003). We believe the same

approach is needed for teaching statistical computing. This approach, however, requires rebuilding

much of the usual infrastructure for teaching in order to integrate support in the classroom for

statistical and computational reasoning.
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In the courses we have designed, we teach computational topics through a combination of lec-

tures, computer labs, hands on computing tasks in homework, and group projects. The projects are

key because they integrate multiple computational topics in the context of a modern data problem.

Students gain hands-on experience with statistical concepts flowing from contextual problem solv-

ing with data, and they make their own discoveries by posing and answering questions rather than

solely fitting models or using “this week’s lecture’s methodology” as a computing exercise. These

projects form an important part of the students’ work. They get the experience of working on a

statistical problem from beginning to end, gathering data, doing the analysis and presenting the

results. We attempt to foster a culture of active engagement, where students work with open-ended

questions, are continually exposed to modern methods and basic statistical concepts, and encour-

aged to be creative throughout several stages of data analysis. This approach aligns with that of

Weiman (2008):

True understanding only comes through the student actively constructing their own un-

derstanding through a process of mentally building on their prior thinking and knowl-

edge through effortful study.

Creating class projects requires finding a substantial and interesting data set with an associated

scientific or social problem and then designing a sequence of feasible tasks that lead to the peda-

gogical goal. In our experience, this typically means trying four or more data sets to find one that

fits all the necessary criteria. (The Appendix lists some data sets and simulation studies that we

have found effective as class projects, and another source is the Data Expo competition organized

by the ASA Statistical Computing and Graphics Sections (Wickham, 2009b)). It is a lot of work,

and we strongly advocate pooling resources so that the materials needed to teach the topics are

available in formats that can be quickly adapted and customized for different situations. To this

end, in 2009 we began working with a group of faculty to create, gather, and disseminate materials

that can be used for projects, assignments, and classroom materials (Nolan et al., 2007a). With

these efforts, we hope to seed the statistical community with resources for introducing and teach-
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ing computing at the major and graduate levels, much as CAUSEweb (2009) and DASL Project

(2009) do for introductory statistics courses.

5 Topics in Computing for Data

What specific topics should be taught, and how should they be organized? Figure 1 displays a

plethora of topics that fall under the statistical computing rubric. Not all students need exposure to

all topics or to particular topics at the same level. We have collected these topics into six groups:

1. Fundamentals in scientific computing with data, 2. Information technologies and Web tech-

nologies, 3. Computational statistics (numerical algorithms), 4. Advanced statistical computing,

5. Data visualization, and 6. Integrated development environments. We note that many topics fall

within multiple groups, and this division is not cut-and-dried, nor is the set of topics comprehen-

sive. This figure is a starting point for developing a logical taxonomy for computing in statistics.

We have placed the figure on the Web

http://www.stat.berkeley.edu/users/statcur/

in order to annotate it and adapt it as topics are further clarified and formalized into a taxonomy.

Although, one might consider teaching a separate course on each group of topics, we do not

suggest that as the only, or even the ideal, approach. Topics within each of these categories can

be mixed and matched across categories to produce courses for different levels and different needs

of students, and they can be incorporated into traditional statistics courses. For undergraduates,

we strongly endorse a course in programming and scientific computing with a heavy mix of ex-

ploratory data analysis and modern statistical methods. Table 1, provides a list of topics for an

undergraduate course that we teach that covers scientific computing, information technology, vi-

sualization, and modern data analysis. In general, at the undergraduate level, we emphasize basic

proficiency, problem solving and familiarity with useful programming environments. We recom-

mend that a course with this focus be a core requirement for all undergraduate majors.
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Figure 1: This image shows the broad array of computational topics relevant to statistics. These
topics are loosely arranged into several groups. As seen here, many topics fall into multiple cate-
gories, and given the two-dimensional constraints, it is difficult to show all of the overlap. The list
is not meant to be exhaustive, but rather indicative of the types of topics that we consider relevant
to statistical practice and research. It shows additional, non-traditional statistical computing topics
that are of increasing importance in this changing world of data sciences.
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Concepts in Computing with Data
Sample Syllabus for an Undergraduate Course

General Topic Examples
Introduction to R environment language syntax
Visualization and graphics simple graphics, vocabulary, composition
Fundamental Data Structures vectors, lists & data frames, factors, subsetting
Digital information file system and formats
Programming control flow, basics of writing functions
The UNIX Shell batch programming, basic stream tools
Modern Methods recursive partitioning, Naive Bayes
Text processing regular expressions (in R)
Advanced Graphics grid, Google Earth, Scalable Vector Graphics (SVG)
Writing functions breaking tasks into separate functions, nested call frames, recursion
Simulation stochastic processes, random number generation
Debugging, Optimization and Efficiency stepping through code, exceptions, profiling, efficient idioms
Relational Databases and SQL the SELECT statement
HTML and Structured content report generation
HTML/XML programming Web scraping

Table 1: Provided here is a list of possible topics for a 15-week undergraduate course that covers
topics in programming in R, information technologies, and visualization. For examples of how this
material might be taught, including ideas for projects, see Sections 5.1 and 5.2. The column on the
left provides the general topic and the right-hand column provides one or two specific examples
for the topic.
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For graduate students, we propose that they have a course in the fundamentals of programming

and scientific computing with data. In addition, depending on their area of research, we rec-

ommend extensive exposure to information technologies, computational statistics and advanced

computing. These additional topics might be taught through regularly offered computing courses

and/or woven into traditional statistics courses. One example of an advanced computing class in

high performance computing is provided in Section 5.4.

In the following subsections, we discuss each of these groups of topics. We highlight a few

different important aspects in teaching each particular group, including how one might go about

teaching this material and why. Several example syllabi have been collected on the Web and

Wiki (Nolan et al., 2007a,b), if the reader wishes to see more examples and more details.

5.1 Fundamentals in Statistical Computing

We earlier made the case that both undergraduate majors and graduate students need to have facility

in computational reasoning and thinking. How might one go about teaching these fundamentals?

Our aim is to first teach students how to think about a language such as R or MATLAB, and use

it to express concepts. That is, we demonstrate the usage paradigm of the language, and from

there, we move on to discuss programming concepts and computational techniques. In this pro-

gramming environment, we find that students quickly gain experience with the syntax of simple

assignment statements, computing with variables, and calling standard functions with input argu-

ments. The students independently compose queries of data, and as they explore the programming

environment, they receive instant feedback (and gratification).

Next we introduce data structures, and discuss why they came to be in the language and not

other, alternative ones. Reading different types of data from files or over the Web and illustrating

the different data types that result is an easy starting point. As we discuss representations of data,

the students embark on explorations that require them to operate on data structures. We have found

that exploratory data analysis and graphics provides a rich context in which to cover the essentials.
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This approach puts students in an active role, trying different things, figuring out what to try next,

and thinking about why one command worked and a previous one did not. This retrospective

analysis is essential for learning computing effectively and richly.

One example that we have had success with involves the signal strength data described in the

next section. These data arrive as a ragged array where each row provides the signal strength

emitted from a device at a particular location in a building and measured at a variable number of

access points. Once the maximum number of access points is determined, the data can be organized

with a column of signal strength measurements for each access point, with missing values for those

locations where the access points detected no signal. Alternatively, the data can be organized into

a “stacked” structure with one column for the signal strength measurement and another to identify

the access point from which the measurement was taken. Given the size of the data, students must

face issues of efficiency when creating the data structure, redundancy of information in the data

structure, and ease of performing subset and plotting operations.

We have also found that simulation studies make for excellent projects and exercises in function

writing. One such project is a simulation study of the Biham-Middleton-Levine Traffic Model

(BML, Angel et al. (2005)), which is a simple stochastic process that exhibits a phase-transition.

There are two types of cars moving on a grid, one type moves south to north and the other west

to east. Cars populate the grid at random, and the occurrance of the phase transition relates to the

density of cars. The algorithm for simulating this process depends on the representation of the

data, e.g. as a matrix with values indicating whether the position is occupied by a west-east car, a

south-north car, or unoccupied, or as a data frame where each row corresponds to a car in the grid

and the columns provide information about its location and direction.

In addition, we believe it is important for students to be exposed to more than one language.

The comparison of a second language helps solidify the similarities of the computational models

of both languages as well as fundamental programming concepts. It also illustrates that different

languages have different purposes. We have found that exposure to one or more of shell tools,
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regular expressions, SQL, and XPath offer a variety of perspectives, different evaluation models,

and semantics. As an example, one assignment we give has students explore baseball data that

are in a relational database (Lahman, 2008). The RSQLite (James, 2009) package allows them to

issue SQL statements from within R to extract data from the database. An important aspect of this

assignment is to determine where to perform the computations, i.e. in the database before the data

are brought into R, or in R. Thus students have the opportunity to directly compare the different

evaluation models and semantics of the two languages. These languages are sufficiently different

in nature and used for very different tasks so that discussing them does not confuse the students.

In the early stages of the course, we give students guidance on how to structure the composition

of a function to make it easier to understand and be re-used in other contexts and problems by

others and by themselves. We describe language details such as default values for parameters, but

we also discuss general principles of computing and program design. Again, this abstraction is

vital if the students are to come away with general, reusable concepts and the ability to think about

computational problems rather than just mimic.

Students solidify programming fundamentals and learn to discuss and reason about computa-

tional problems through work on longer projects. Early on, we often break up projects into parts

with the first few tasks given as homework assignments. With this approach we: (i) model the

practice of function writing, identifying sub-tasks and writing “helper” functions to handle these

tasks; (ii) focus on one aspect of programming, such as how to debug and profile code; and (iii)

demonstrate how to validate code by using diagnostic statistics on the output. Additionally, from a

course management perspective, this approach of breaking a project into stages allows us to: help

students subsequently manage a large project with greater success; discuss solutions to intermedi-

ate problems in class; and provide alternative versions of functions that students can employ in the

final project.
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5.2 Information Technologies

When we teach information technologies, we introduce many of the important and emerging tools

in the context of their use in statistical practice and research. Students learn to access complex

data in “raw” forms such as documents, citations, log files, DNA sequences, or annotations. We

discuss software development for the data analysis process, including text processing, accessing

and creating relational databases, and working with web servers. While students may be able to

take courses in computer science on these various topics, such courses may not be the best option.

For example, with databases, statisticians are generally consumers and need not initially focus on

the details of optimizations performed in the execution of a relational database query. Instead,

they should understand the general principles of the relational database model and the common

elements of the Structured Query Language (SQL) used to extract data from a database. This

essential material can be covered in a few lectures, and can be combined with lectures on an array

of other data technologies that are geared to the needs of modern data analysis.

The main topics included under information technologies were discussed in Section 2 (and dis-

played in Figure 1). These topics demand an example-driven approach to teaching in part because

there are few teaching resources available. We describe three undergraduate projects that we have

our students work on. They mix fundamentals in programming with information technologies, and

help students develop their computational reasoning skills through putting the material learned in

the classroom into practice with real, complex problems. We have developed this material into

a modern, vibrant course that includes advances in statistical methodology and applications with

data, which we describe in an upcoming book (Nolan and Temple Lang, 2011).

One project involves a problem in geo-location using wireless signals. Students begin by famil-

iarizing themselves with the data (King et al., 2008), which consist of signal strengths for multiple

access points measured on a hand-held client device at fixed locations and orientations throughout

a building. They find ways to reorganize the data into a form that is more amenable to further anal-

ysis. They explore and create interesting visualizations of these data, by, for example, overlaying
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contour plots of signal strength on a floor plan of the building or making three-dimensional plots

and heat maps of signal strength. Students write functions to compute nearest neighbor distances,

and use this intuitive method (along with cross validation) that is not traditionally taught to build

and test a model for estimating the physical location of an object from the received signal strength

at the access points.

A second project involves filtering spam e-mail. The data consist of a collection of over 9,000

emails (SpamAssassin, 2007), provided as raw text files that have been classified and named ac-

cording to whether they are spam or ham (regular email). Students use connections, string manipu-

lation and regular expressions to break the text files apart, identifying the header information, body,

and attachments. Then groups of students write functions to extract information into dozens of

variables, e.g. the percent of yelling (capitalization) in the subject line, the number of attachments,

presence of HTML, etc. Via exploratory data analysis they identify the derived variables that may

be good predictors for spam. At this point they fit statistical models to predict spam using recursive

partitioning/classification trees, and they use cross-validation to select tuning parameters such as

choice of metric. In the final stages of the project, they assess, through visualization, how well

their method works on test data that were set aside and explore patterns in the mis-classifications.

Another project has students study the migratory patterns of an elephant seal that has been

followed with a tracking device (Brillinger and Stewart, 1998). Students fit smooth curves to the

seal’s migratory path; conduct a simulation study to compare the seal’s path to a random walk on

a great circle on the earth; and present their findings via an animated “mash-up” on Google Earth.

Through these projects, we attempt to instill in students a problem solving ability so they will

have a basic familiarity with computing technologies which they can carry with them in addressing

new problems. This strategy also helps prepare students to meet the challenge of constantly evolv-

ing technologies because in the projects they learn the art of learning new technologies and are

better able to understand, evaluate and compare them as they emerge in the information world. Fur-

thermore, as instructors in today’s Web-based world of information exchange, we no longer need
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to think in units of textbooks but rather smaller units that can be combined creatively into courses,

e.g. well-documented case studies with data that cover multiple computational and methodological

topics and have open-ended extensions.

5.3 Computational statistics

By computational statistics, we mean the more traditional topics in numerical analysis and meth-

ods. Which specific topics should be taught has been addressed in detail by others (Gentle, 2004;

Lange, 2004; Monahan, 2004). These include linear algebra decompositions, numerical optimiza-

tion, and aspects of approximation and numerical analysis. These are methods for obtaining so-

lutions efficiently or approximately, or both, and often become necessary in advanced research.

These classical topics are of importance and, all else being equal, students should master them.

However, we wish to provoke thought about their importance relative to other potential topics in

computing.

We think it is important to distinguish between two goals of teaching these topics: (i) to under-

stand the components and underpinnings of existing software when choosing what software to use;

and (ii) to create one’s own software. For the first goal, students need to be aware of the computa-

tional issues and the circumstances under which an algorithm is best or even suitable. We suggest

that this understanding not be limited to a computational course. Instead, these topics would be

most effectively taught when woven into other more traditional statistical theory or methodology

courses in which the need for efficient, stable algorithms is encountered.

For the second goal, we expect graduate students to be able to contribute robust and accu-

rate software to support their research and to critically understand the techniques used in existing

software. We advocate that the material be taught with extensive computer experiments to fully

understand the characteristics of the algorithm and simultaneously teach aspects of experimental

design for computer experiments. Therefore topics in numerical algorithms for statistical meth-

ods – essentially how to do statistical computations properly – presuppose adequate programming
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skills and are more appropriate as a follow-up to an introductory course in statistical programming

and computing environments. Additionally, issues about software development are important and

we discuss them in the next section.

5.4 Advanced Computing

In addition to programming languages, graduate students will often need to learn new paradigms,

such as compiled languages and parallel/distributed computing. The latter is no longer an exotic,

specialized topic but an increasingly commonly used technique for implementing scientific compu-

tations. Similarly, as statisticians continue to publish software implementing their methodological

research, graduate students need to understand some essential principles of software engineering.

Issues of portability, memory management, data structures, object-oriented programming, compi-

lation, efficiency, profiling, unit testing, extensible design, leveraging existing software, and so on

are very important in developing software for others to use. What might have been considered rare

in computing a decade ago is becoming more important for doctoral students so that they can suc-

cessfully function in, and contribute to, the scientific community and disseminate their scholarship

in rich, new ways.

One version of an advanced course might focus on high performance computing, i.e. dealing

with large data sets and computationally intensive methods. Such a course might provide a mix

of formalism, infrastructure, tools and applications that deal with efficient computing related to

data analysis, simulation, scientific computing and visualization. It would be a mix of how-tos

and tutorials, surveying the topics, extracting the high-level, abstract concepts, and providing good

techniques and practical approaches to problems. The aim would be to provide students with

an understanding of the issues in the area of resource-constrained computing problems and to

address practical solutions and understand their characteristics. It would focus on using high-

level languages and the associated tools while mixing these with other facilities and languages to

perform computations.
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How might one organize such a course? One approach would be to begin with examples of

computations that consume resources and are infeasible. This is done in R and MATLAB with

comparisons of the two. Having addressed approaches for efficient computation in high-level

interpreted languages, we would then examine lower-level, high-performance languages. Topics

covered might be:

• General and simple approaches to reduce consumption of resources, such as constant-folding

or invariant extraction from loops, pre-allocation of space, and elementary rewriting of code.

• Algorithms, profiling and measurement of code, and reorganizing computations to speed

them up or simply make them feasible.

• Estimation of resources that are needed for a particular task (i.e. memory and time/cycles)

using both theoretical computations and experimental/empirical approaches including simu-

lations and profiling.

• Algorithm-specific approaches to improve efficiency, such as out-of-memory or block al-

gorithms, which illustrate the general technique of reorganizing the computations, and data

reduction techniques.

• Integration of lower-level, high-performance languages, e.g. C/C++, FORTRAN and Java,

with R and MATLAB, including writing interface code, compiling, linking and loading the

native code, and debugging.

• Distributed and parallel computing, including the essential framework, the problem of syn-

chronization, and approaches used to resolve this problem, and the effect of data distribution

and aspects of random number generation.
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5.5 Data visualization

We include topics in visualization under the statistical computing umbrella partly because of its

tight coupling with computing and its general importance, and also because it is another under-

represented topic within our curricula.

A goal of teaching data visualization is to provide a framework with which students can cri-

tique, compose and create graphics that usefully display information from data, including the stan-

dard types of displays used in statistics. The on-line data visualization tools for shared visualiza-

tion, e.g. Many Eyes (IBM, 2009) and Swivel (Dimov and Mulloy, 2009), offer an abundance of

graphics with accompanying data for students to deconstruct, critique, and reconstruct in, e.g., R.

In addition to teaching the mechanics of creating graphics, other topics include cognitive percep-

tion and aspects such as shape, size, texture and color models. This material is quite different from

the field of scientific visualization which tends to focus on computer modeling of objects, surfaces

and shapes with, for example, complex light models.

There has been a recent influx of books in data visualization, which provide material for teach-

ing these topics, e.g. Cook and Swayne (2007); Murrell (2006, 2009); Sarkar (2008); Theus and

Urbanek (2009); Wickham (2009a). We also refer the reader to the Wiki (Nolan et al., 2007b) for

links to a variety of new courses in visualization.

In addition, the display of complex or large data, such as network topologies, DNA sequences,

and geographic maps, require new visualization techniques. Furthermore, the way we view graphi-

cal representations of data has significantly changed in recent years. Creative and imaginative ways

to display complex data using tools such as Google Earth and interactive Web-based technologies

are becoming more prevalent. Viewers expect to interact with a graphic on the Web by clicking on

it to get more information, to produce a different view, or control an animation.

25



5.6 Integrated development environments

Our students may be digital natives, but the majority of them are not familiar with basic practices

for organizing and carrying out a project involving computing on data. The use of appropriate

technologies and clear workflow is important to model and reinforce throughout our curriculum to

ensure that these skills are on a firm footing. These topics include: familiarity with file formats, e.g.

understanding the difference between an HTML file and Word document; shell tools for managing

files and task flow; version control to coordinate work across a team; software distribution, e.g.

building an R package; and recent developments in reproducible analysis tools, e.g. Lenth (2009);

Leisch (2002); Gentleman and Temple Lang (2007); Nolan and Temple Lang (2007); Long (2009).

For example, it is increasingly important to understand the shell/command line. It offers an

entry point to the command line interface to the operating system, programmatic handling of files,

running programs in batch mode, remote login to other systems, and general management of a

computational process.

In one approach we use to teach this material, we take a a project that students have just

completed and step through it showing how we would have carried out the project. We demonstrate

how we use the computing environment to do our work, introducing along the way text editors,

shell tools, file system concepts, etc. This material is very new to most students but an important

component of modern scientific computing for many disciplines.

6 Summary

We believe strongly that the field of statistics is at a crucial tipping point and bold measures of re-

form are called for revising the curricula. Modernizing the statistics curricula to include computing

in the way proposed here is an issue that needs widespread attention and action. We believe faculty

need to indicate to students that computing is an important element of their statistics education, and

it must be taught with an intellectual foundation that provides students with skills to reason about
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important computational tasks and continue to learn about new computational topics. To a large

extent, this means learning from the past and challenging the status quo. Instead of teaching similar

concepts with varying degrees of mathematical rigor, statisticians need to address what is missing

from the curricula and take the lead in improving the level of students’ data competence. It is our

responsibility, as statistics educators, to ensure our students have the computational understand-

ing, skills, and confidence needed to actively and whole-heartedly participate in the computational

arena.

These changes are necessary in order to attract and prepare future statisticians, and to keep

pace with the rapidly changing “big science” fields. As the practice of science and statistics re-

search continues to change, its perspective and attitudes must also change so as to realize the field’s

potential and maximize the important influence that statistical thinking has on scientific endeav-

ors. We agree with SIAM’s perspective (SIAM Working Group on CSE Education, 2001) that

computational science (which includes statistical computing) needs to be considered “an equal and

indispensable partner, along with theory and experiment, in the advance of scientific knowledge

and engineering practice.”

One challenge to the success of this sea change is that statisticians often have not been taught

computing formally, they have not had the opportunity to learn it well, and feel they cannot teach

it effectively and so the cycle persists. This is very unfortunate as it means that new students do

not have the opportunity to learn it well either. Furthermore, computing has become so much more

important in the statistics field than even five years ago that a “just enough” level of understanding

of computing is not adequate. We hope to encourage statisticians to break from tradition and take

on the challenge.

Now is the time to dramatically rethink our curricula. In the past, some have argued that there

is no room for computing in our already packed curricula. While this may have once been true,

the growth in data analysis and availability in all sciences and the relative intractability of com-

plex models and methods makes computational skills of immense importance in modern statistics.
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Instead of trying to fit bits and pieces into a crowded curriculum, statisticians must take the op-

portunity to be bold and design curricula from scratch that embrace new and innovative topics and

paradigms for teaching.

The call for change we have made here is not only a call to increase the quantity of computing

topics in the curriculum, but includes a change in the topics taught, how they are taught, and how

they are integrated with other topics. The ideas presented here are a reflection of our work in

designing statistics courses and programs where statistics students attain their potential. Although

we have expressed an argument that is quite utilitarian, at the same time it is less end-oriented in

its focus on computational reasoning. With this approach, we believe that students will be able

to embark on new projects and ultimately improve statistics and sciences for the future. We hope

these ideas and this discussion will seed the statistics community to make significant changes to

how and what we teach statistics students.
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APPENDIX: SAMPLE DATA SETS AND SIMULATIONS
Ad-hoc networks Ad-hoc networks for wireless communication, have no centralized node or
fixed structure or topology (D’Souza et al., 2003). Instead, devices move over time and dynami-
cally enter and exit the network. A synthetic experiment can study the properties of the network,
e.g. the distribution of the minimally connected graph of nodes as a function of the power level of
the nodes.

Airline delays The flight arrival and departure details for all commercial flights within the USA,
from October 1987 to April 2008 are available in a database for the Data Expo:
http://stat-computing.org/dataexpo/2009/
A subset of these data, e.g. information for 2007 and 2008 for the Sacramento, Oakland, San
Francisco, and Los Angeles airports, provide ample opportunity for visual exploration.

Baseball statistics Sean Lahman’s Baseball Archive is a database that contains information
about major league baseball teams, players, managers, and franchises for the years 1871 through
2008. Lahman (2008). An enormous number of questions and ideas can be explored through
visualizations of the results of SQL queries to the database.

Biham-Middleton-Levine Traffic Model The BML traffic model (Angel et al., 2005) is one of
the very simplest processes that exhibits a phase-transition. The model is for two types of cars
moving on a grid, one type can move from south to north and the other from west to east. Cars
populate the grid at random, and the phase transition relates to the density of cars. The phase
transition of this process can be studied by simulation.

Birth and assassination process In a birth and death process proposed by Aldous (Aldous and
Krebs, 1990), the head of the family has children according to a stochastic process, and he is
“assassinated” at a random time, after which, his children become heads of their respective families
and vulnerable to assassination. This process can be studied via simulation and presented via
animations.

California freeways The Performance Measurement System Performance Measurement Sys-
tem (2009) collects historical and real-time data from freeways in the State of California. Loop
detector data collected in 5 minute intervals at locations throughout the freeway system can be
used to examine the relationship between traffic flow and occupancy, and study responses to traffic
incidents.

Email filtering Spam Assassin has classified thousands of email messages as spam or regular
email SpamAssassin (2007). Regular expressions can be used to examine the text in the mail mes-
sage and derive variables, e.g. the number of recipients to whom the mail was sent, the percentage
of capital words in the body of the text, whether or not the message is a reply to another message.
Once the data have been derived, predictors can be investigated, e.g. using CART. Alternatively,
naive Bayes methods can be used on word counts.

Geo-location from wireless signals Inside a building, Global Positioning Systems do not pro-
vide an effective means for locating people and other things. Instead, systems are built that use
WiFi set up for Internet access to locate objects. The University of Mannheim provides training
data King et al. (2008) for building and testing models to estimate the physical location of an object
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based on the received signal strength of the client from multiple access points. Intuitive methods,
such as those based on nearest neighbor techniques, work well in this situation.

Intrusion detection in network traffic The Lincoln Labs network intrusion detection experi-
ment Lincoln Laboratory (2008) with over 1.3 million connection records provides rich data for
exploring. Accessing these data requires consideration of when to perform computations in the
database that contains the data and when to pull data into R. Furthermore, given the volume of the
data, plotting requires special consideration because you cannot “see” anything with the standard
plotting routines.

Precipitation in the Colorado Frontrange The National Center for Atmospheric Research pro-
vides access to forty years of observed daily precipitation data for the Colorado Front Range (Ny-
chka, 2007), a combination of relative flat plains with a transition to high mountains. These can
be used to investigate the distribution of precipitation over space and time and to compare actual
precipitation to that simulated from a regional climate model.

Presidential election results County level data for the 2008 presidential election can be scraped
from news Web sites Times (2009). With these data, students can make maps of the election
results. Alternatively, results from the and the Democratic primaries can be scraped, combined
with county-level census data Census (2008), and counties that are pro-Obama vs. pro-Clinton
mapped can be compared via maps and classification trees.

State of the Union speeches Project Gutenberg (Project Gutenberg Literary Archive Foundation,
2009) makes available the State of the Union Address by United States Presidents from 1790-2001,
which can be augmented to include the recent addresses. The text data can be summarized into
word counts for each speech, and the speeches can be compared (e.g. via multi-dimensional scaling
and hierarchical clustering) to see how they differ across time and party.

Seal migration Brillinger and Stewart (1998) contains daily tracking data for a female elephant
seal. To study the migratory patterns of the seal, students can smooth the seal’s path, compare it to
a random walk on a great circle via simulation, and create an animated “mash-up” of their findings
on Google Earth.
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