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1.1 Heuristics

So far, we have been concerned with nonparametric tests and procedures: tests and procedures

with minimal assumptions about the probability distribution that gives rise to the data. Examples

of the kinds of assumptions we have made in various places are that the distribution is continuous,

that the observations are iid, that subjects are randomized into treatment and control, etc.

We now consider assumptions that are more restrictive, but still less restrictive than the para-

metric assumptions common to much of statistical theory. In a loose sense, an estimator or test is

robust if its performance is good over a neighborhood of distributions including the family in which

the truth is modeled to lie.

Virtually every real data set has some “gross errors,” which are in some sense corrupted mea-

surements. Data can be transcribed incorrectly, bits can be corrupted in transmission or storage,

cosmic rays can hit satellite-borne instruments, power supplies can have surges, operators can miss

their morning cups of coffee, etc. Hampel et al. (1986) quote studies that find gross errors comprise
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up to 20% of many data sets in physical, medical, agricultural and social sciences, with typical rates

of 6% or more.

Even without gross errors, there is always a limit on the precision with which data are recorded,

leading to truncation or rounding errors that make continuous models for data error distributions

only approximate. Furthermore, parametric error models rarely are dictated by direct physical

arguments; rather, the central limit theorem is invoked, or some historical assumption becomes

standard in the field.

One early attempt to deal with gross outliers is due to Sir Harold Jeffreys, who (in the 1930s)

modeled data errors as a mixture of two Gaussian distributions, one with variance tending to infinity.

The idea is that the high-variance Gaussian represents a fraction of gross outliers possibly present

in the data; one wants to minimize the influence of such observations on the resulting estimate

or test. Considerations in favor of fitting by minimizing mean absolute deviation instead of least

squares go back much further.

We will be looking at ways of quantifying robustness and of constructing procedures whose

performance when the model is true is not much worse than the optimal procedure, but whose

performance when the model is wrong (by a little bit) is not too bad, and is often much better than

the performance of the optimal procedure when the model for which it is optimal is wrong by a

little bit.

The kinds of questions typically asked in the robustness literature are:

1. Is the procedure sensitive to small departures from the model?

2. To first order, what is the sensitivity?

3. How wrong can the model be before the procedure produces garbage?

The first issue is that of qualitative robustness; the second is quantitative robustness; the third is

the “breakdown point.”

1.2 Resistance and Breakdown Point

Resistance has to do with changes to the observed data, rather than to the theoretical distribution

underlying the data. A statistic is resistant if arbitrary changes to a few data (such as might be
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caused by gross outliers, or small changes to all the data (such as might be caused by rounding or

truncation), result in only small changes to the value of the statistic.

Suppose we are allowed to change the values of the observations in the sample. What is the

smallest fraction would we need to change to make the estimator take an arbitrary value? The

answer is the breakdown point of the estimator.

For example, consider the sample mean X̄ = 1
n

∑n
j=1Xj as an estimator of the mean of F . (The

mean can be written as a functional of the distribution: T (F ) =
∫
xdF ; θ = T (Fθ).) Corrupting a

single observation can make the sample mean take any real value: the breakdown point is 1
n
.

In contrast, consider the “α-trimmed mean,” defined as follows: Let k` = bαnc and kh =

d(1− α)ne. Let X(j) be the jth order statistic of the data. Define

X̄α =
1

kh − k` + 1

kh∑
j=k`

X(j). (1)

This measure of location is less sensitive to outliers than the sample mean is: Its breakdown point

is n−1 min(k`, n − kh + 1). An alternative, not necessarily equivalent, definition of the α-trimmed

mean is through the functional

T (F ) =
1

1− 2α

∫ 1−α

α
F−1(t)dt. (2)

This version has breakdown point α.

We shall make the notion of breakdown point more precise presently; a few definitions are

required.

Definition 1 The Lèvy distance between two distribution functions F and G on IR is

λ(F,G) = inf{ε : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε, ∀x ∈ IR}. (3)

The Lévy distance makes sense for probability distributions on the real line, where we can define

the cdf. We want to extend this kind of notion to probability distributions on more complicated

sample spaces, including IRk. Ultimately, we want a metric on probability distributions on Polish

spaces, which are defined below. To do that, we need a bit more abstract structure.

The following definitions are given to refresh your memory. For more detail, see Rudin, W.

(1974). Real and Complex Analysis , 2nd edition, McGraw-Hill, N.Y., pages 636–650 of Le Cam, L.

(1986). Asymptotic Methods in Statistical Decision Theory , Springer-Verlag, NY, or Halmos, P.R.

(1974). Measure Theory , Springer-Verlag, N.Y.
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Definition 2 A topology V on a space X is a collection of subsets V of X such that

1. ∅ ∈ V.

2. If Vj ∈ V, j = 1, . . . , n, then ∩nj=1Vj ∈ V.

3. For any collection {Vα}α∈A of elements of V, ∪α∈AVα ∈ V.

The elements of V are called open sets, and we call X a topological space. Complements of elements

of V are called closed sets. Every open set V that contains x ∈ X is called a neighborhood of x.

The collection of sets B ⊂ V is a base if for every x ∈ X and every neighborhood V of x, x ∈ B ⊂ V

for some B ∈ B. The space X is separable if it has a countable base. Let A be a subset of X . The

largest open set contained in A is called the interior of A, denoted A◦. The smallest closed set that

contains A is called the closure of A, denoted Ā.

Definition 3 Let X be a topological space with topology V and let Y be a topological space with

topology W. A mapping f : X → Y is continuous if f−1(W ) ∈ V for every W ∈ W.

That is, a function from one topological space into another is continuous if the preimage of

every open set is an open set. (The preimage of a set A ⊂ Y under the mapping f : X → Y is

f−1(A) ≡ {x ∈ X : f(x) ∈ A}. Note that the preimage of a set that contains a single point can be

a set containing more than one point.)

Definition 4 A collection M of subsets of a set X is a σ-algebra on X if

1. X ∈M

2. A ∈M implies Ac ∈M

3. if Aj ∈M, j = 1, 2, 3, . . ., then ∪∞j=1Aj ∈M

If M is a σ-algebra on X , then we call X a measurable space and we call the elements of M the

measurable sets of X . If X is a measurable space with σ-algebra M and Y is a topological space

with topology W then f : X → Y is a measurable function if f−1(W ) ∈M for every W ∈ W.

For any collection F of subsets of a set X , there is a smallest σ-algebra containing F .
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Theorem 1 If each member of a sequence {fj}∞j=1 is a measurable function from a measurable

space X into [−∞,∞], then so is supj fj and so is lim supj fj.

Definition 5 A real-valued function s : X → <+ on a measurable space X is simple if its range

consists of finitely many points in <+. Such a function can be written in the form

s(x) =
n∑
j=1

aj1x∈Aj
(4)

for a set {aj}nj=1 ⊂ <+ and a collection of subsets {Aj}nj=1 of X . If {Aj}nj=1 are measurable, then s

is a measurable simple function.

Definition 6 A positive measure µ on a measurable space X with σ-algebra M is a mapping from

M→ <+ such that

1. µ(A) ≥ 0 ∀A ∈M

2. if {Aj}∞j=1 are pairwise disjoint, then

µ(∪∞j=1Aj) =
∞∑
j=1

µ(Aj). (5)

A positive measure µ for which µ(X ) = 1 is called a probability measure. A measurable space on

which a measure is defined is called a measure space.

Definition 7 The integral of a measurable simple function s of the form 4 with respect to the

measure µ is ∫
X
sdµ ≡

n∑
j=1

ajµ(Aj). (6)

Integrals of more general measurable functions are defined as limits of integrals of simple func-

tions.

Theorem 2 Every nonnegative real-valued measurable function f is the limit of an increasing se-

quence {sn} of measurable simple functions.

Definition 8 The integral of a nonnegative measurable function f with respect to the measure µ is∫
X
fdµ ≡ sup

s≤f,s simple

∫
X
sdµ. (7)
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The positive part f+ of a real-valued function f is f+(x) ≡ max(f(x), 0) ≡ f ∨ 0. The negative

part f− of a real-valued function f is f−(x) ≡ −min(f(x), 0) ≡ f ∧ 0. If f is measurable, so are

|f |, f+ and f−.

Definition 9 The integral of a measurable function f with respect to the measure µ is

∫
X
fdµ ≡

∫
X
f+dµ−

∫
X
f−dµ (8)

if
∫
X |f |dµ <∞.

The following three theorems are the workhorses of the theory:

Theorem 3 (Lebesgue’s Monotone Convergence Theorem.) Let {fj}∞j=1 be a nonnegative

sequence of functions such that for every x ∈ X , f1(x) ≤ f = 2(x) ≤ · · · ≤ ∞ and fj(x)→ f(x) as

j →∞. Then f is measurable and
∫
X fjdµ→

∫
X fdµ.

Theorem 4 (Fatou’s Lemma.) If {fj} is a sequence of nonnegative measurable functions, then

∫
X

(lim inf
j→∞

fj)dµ ≤ lim inf
j→∞

∫
X
fjdµ. (9)

Theorem 5 (Lebesgue’s Dominated Convergence Theorem.) Let {fj}∞j=1 be a sequence of

measurable functions such that for every x ∈ X , f(x) = limj fj(x) exists. If there is a function

g such that
∫
X |g|dµ < ∞ and |fj(x)| ≤ g(x) for all x ∈ X and all j ≥ 1, then

∫
X |f |dµ < ∞,

limj

∫
X |fj − f |dµ = 0, and limj

∫
X fjdµ =

∫
X fdµ.

Definition 10 If X is a topological space with topology V, the Borel σ-algebra B on X is the

smallest σ-algebra containing V. The elements of B are called the Borel sets of X .

Definition 11 A metric space is a set X and a metric function d : X × X → IR+ such that

1. d(x, x) = 0

2. d(x, y) = 0 implies x = y

3. d(x, y) = d(y, x), for all x, y ∈ X (symmetry)

4. d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X (triangle inequality)
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If d satisfies all these axioms but (2), it is called a pseudometric.

An open ball with radius ε ≥ 0 centered at the point x in the metric space X is the set

Bε(x) = {y ∈ X : d(x, y) < ε}. If X is a metric space and V is the collection of all sets in X that

are unions of open balls, then V is a topology on X ; it is called the topology induced by d.

If V is a topology on X such that there exists a metric d on X for which V is the topology

induced by d, then V is metrizable.

Definition 12 A sequence {xj}∞j=1 of elements of a metric space X is a Cauchy sequence if for

every ε > 0 there exists an integer N = N(ε) such that d(xn, xm) < ε if min(n,m) > N .

Definition 13 A sequence {xj}∞j=1 of elements of a metric space X converges to x ∈ X if

lim
j→∞

d(xj, x) = 0. (10)

Definition 14 A metric space X is complete if every Cauchy sequence in X converges to an element

of X .

Definition 15 A subset D of a metric space X is dense if for every element x of X and every

ε > 0, there exists y ∈ D such that d(y, x) < ε.

Definition 16 A metric space X is separable if it contains a countable dense subset.

Definition 17 A vector space over the real numbers is an Abelian group X of vectors with the group

operation (+ : X × X → X , (x, y) 7→ x + y), together with the operation of scalar multiplication

(: <× X → X , (λ, x) 7→ λx), such that for all λ, µ ∈ < and all x, y ∈ X ,

1. λ(x+ y) = λx+ λy

2. (λ+ µ)x = λx+ µx

3. λ(µx) = (λµ)x

4. 1x = x

5. 0x = 0
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Definition 18 A function ‖ · ‖ : X → IR+ on a vector space X is a norm if for all x, y ∈ X and

all λ ∈ IR,

1. ‖x‖ ≥ 0 (positive semidefinite)

2. ‖x‖ = 0 implies x = 0 (with (1), this means the norm is positive definite)

3. ‖λx‖ = |λ|‖x‖ (positive scalar homogeneity)

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

If ‖ · ‖ satisfies all but (2), it is a seminorm. If ‖ · ‖ is a norm on a vector space X , we call X a

normed (linear) vector space.

A normed linear vector space is a metric space under the metric d(x, y) ≡ ‖x− y‖.

Definition 19 A Banach space is a complete normed linear vector space.

Definition 20 A Polish space X is a separable topological space whose topology is metrizable by a

metric d with respect to which X is complete.

Equivalently, a Polish space is a topological space that is homeomorphic to a separable Banach

space.

Examples of Polish spaces include IRk. Let M denote the space of probability measures on the

Borel σ-algebra B of subsets of X . (The Borel σ-algebra is the smallest σ-algebra containing all the

open sets in X .) LetM′ denote the set of finite signed measures on (X ,B); this is the linear space

of measures generated by M. The measures in M′ are regular in the sense that for every F ∈M′,

sup
C⊂A; C compact

F (C) = F (A) = inf
G⊃A; G open

F (G). (11)

The weak-star topology in M′ is the weakest topology for which the functional∫
ψdF (12)

is continuous for every continuous, bounded function ψ : X → IR.

In this section, we assume that the space X of possible data is a Polish space, and that all

measures are defined on B. An overbar (e.g., Ā) denotes topological closure, the superscript ◦ (e.g.,

A◦) denotes the topological interior, and the superscript c will denote complementation (Ac = {x ∈

X : x 6∈ A}).
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Definition 21 For any subset A of a metric space X with metric d : X × X → IR+, the closed

ε-neighborhood of A is

Aε = {x ∈ X : inf
a∈A

d(x, a) ≤ ε}. (13)

It will be important presently that

Aε = Āε = Aε = Āε. (14)

Definition 22 The Prohorov distance between two measures F and G defined on a common algebra

A of subsets of a metric space X is

π(F,G) = inf{ε ≥ 0 : F (A) ≤ G(Aε) + ε, ∀A ∈ A} (15)

Expanding the events by ε to form Aε corresponds to the measure G being “shifted” slightly

from F , for example, by rounding. The addition of ε corresponds to a fraction ε of the observations

being from a completely different distribution.

We shall verify that the Prohorov distance really is a metric if the sample space X is a Polish

space. Clearly, it is nonnegative, and π(F, F ) = 0. We need to show symmetry, the triangle

inequality, and that {π(F,G) = 0} ⇒ {F = G}. The following proof follows that in Huber (1981).

Symmetry. This will follow immediately if we can show that if F (A) ≤ G(Aε) + ε for all A ∈ A,

then G(A) ≤ F (Aε) + ε for all A ∈ A. Recall that because A is an algebra, if A ∈ A, then Ac ∈ A

as well. Take any δ > ε, and consider A = (Bδ)c = Bδc for any B ∈ A. Note that A ∈ A, so by the

premise,

F (Bδc) ≤ G(Bδcε) + ε, (16)

or

1− F (Bδ) ≤ 1−G(Bδcεc) + ε (17)

G(Bδcεc) ≤ F (Bδ) + ε. (18)

However, B ⊂ Bδcεc, as we shall see. This statement is equivalent to Bδcε ⊂ Bc. This is essentially

immediate from δ > ε: if x ∈ Bδcε, then ∃y 6∈ Bδ s.t. d(x, y) < ε (typo in Huber here). Thus

x ∈ Bc, because otherwise d(x, y) > δ > ε. Thus

G(B) ≤ G(Bδcεc) ≤ F (Bδ) + ε. (19)
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But Bε = ∩δ>εBδ, so the result follows.

Positive definite. To show that (π(F,G) = 0) ⇒ (F = G), note that the closure of A is

Ā = ∩ε>0A
ε. Thus π(F,G) = 0 implies F (A) ≤ G(A) and G(A) ≤ F (A) for all closed sets A ∈ A.

Triangle inequality. If π(F,G) ≤ ε and π(G,H) ≤ δ, then for every A ∈ A,

F (A) ≤ G(Aε) + ε ≤ H((Aε)δ) + ε+ δ. (20)

But by the triangle inequality for the metric d on X , (Aε)δ ⊂ Aε+δ, so we are done.

Note that the Prohorov distance between F̂n and the “contaminated” empirical distribution one

gets by changing k of the data by an arbitrary amount is k
n
.

Theorem 6 (Strassen, 1965; see Huber Thm 2.3.7.) The following are equivalent:

1. F (A) ≤ G(Aδ) + ε for all A ∈ B

2. There are (possibly) dependent X -valued random variables X, Y such that L(X) = F , L(Y ) =

G, and IP{d(X, Y ) ≤ δ} ≥ 1− ε. (Here, L(X) denotes the probability law of X, etc.)

Definition 23 Suppose that the distance function d on X ×X is bounded by one (one can replace

d by d(x, y)/(1 + d(x, y)) to make this so). The bounded Lipschitz metric on M is

dBL(F,G) = sup
ψ:|ψ(x)−ψ(y)|≤d(x,y)

∣∣∣∣∫ ψdF −
∫
ψdG

∣∣∣∣ . (21)

The bounded Lipschitz metric is truly a metric on M′.

Theorem 7 The set of regular Borel measures M′ on a Polish space X is itself a Polish space

with respect to the weak topology, which is metrizable by the Prohorov metric and by the bounded

Lipschitz metric.

Consider a collection of probability distributions indexed by ε, such as the Prohorov neighbor-

hood

Pπ(ε;F ) = {G ∈M : π(F,G) ≤ ε} (22)
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or the “gross error contamination neighborhood” (not truly a neighborhood in the weak topology)

Pgross error(ε;F ) = {G ∈M : G = (1− ε)F + εH,H ∈M}. (23)

Let M(G, Tn) denote the median of the distribution of Tn(G)−T (F ). Let A(G, Tn) denote some

fixed percentile of the distribution of |Tn(G) − T (F )| . If T (Fθ) = θ, ∀θ ∈ Θ, we say that T is

Fisher consistent for θ.

Definition 24 Consider a sequence {Tn} of estimators that is Fisher consistent and converges in

probability to a functional statistic T . The maximum bias of {Tn} at F over the collection P(ε) is

b1(ε) = b1(ε,P , F ) = sup
G∈P(ε)

|T (G)− T (F )|. (24)

The maximum asymptotic bias of {Tn} at F over the collection P(ε) is

b(ε) = b(ε,P , F ) = lim
n→∞

sup
G∈P(ε)

|M(G, Tn)|. (25)

If b1 is well defined, b(ε) ≥ b1(ε). Note that for the gross-error model and for the Lèvy and

Prohorov distances, b(ε) ≤ b(1), because the set P(1) =M.

Definition 25 (Following Huber, 1981.) For a given collection P(ε) of distributions indexed by

ε ≥ 0, the asymptotic breakdown point of T at F is

ε∗ ≡ ε∗(F, T,P(·)) = sup{ε : b(ε,P(ε), F ) < b(1)}. (26)

Definition 26 (Following Hampel et al., 1986.) The breakdown point of a sequence of estimators

{Tn} of a parameter θ ∈ Θ at the distribution F is

ε∗(Tn, F ) ≡ sup{ε ≤ 1 : ∃Kε ⊆ Θ, Kε compact, s.t. π(F,G) < ε⇒ G({Tn ∈ Kε})→ 1 as n→∞}.

(27)

That is, the breakdown point is the largest Prohorov distance from F a distribution can be, and

still have the estimators almost surely take values in some compact set as n→∞.

Definition 27 The finite-sample breakdown point of the estimator Tn at x = (xj)
n
j=1 is

ε∗(Tn, x) ≡ 1

n
max

{
m : max

i1,...,im
sup

y1,...,ym∈X
|Tn(z1, . . . , zn)| <∞

}
, (28)
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where

zj =

 xj, j 6∈ {ik}mk=1

yk, j = ik for some k.
(29)

This definition makes precise the notion that corrupting some fraction of the measurements

can corrupt the value of the statistic arbitrarily. Note that the finite-sample breakdown point is a

function not of a distribution, but of the sample and the estimator. Typically, its value does not

depend on the sample. It is this “breakdown point” that we saw was zero for the sample mean; it

is a measure of resistance, not robustness.

Definition 28 A sequence of estimators {Tn} is qualitatively robust at F if for every ε > 0, ∃δ > 0

such that for all G ∈M and all n,

π(F,G) < δ ⇒ π(LF (Tn),LG(Tn)) < ε. (30)

That is, {Tn} is qualitatively robust at F if the distributions of Tn are equicontinuous w.r.t. n.

1.3 The Influence Function

The next few sections follow Hampel et al. (Ch2) fairly closely. Consider an estimator of a real

parameter θ ∈ Θ, where Θ is an open convex subset of IR, based on a sample Xn of size n. The

sample space for each observation is X . We consider a family F of distributions {Fθ : θ ∈ Θ},

which are assumed to have densities {fθ : θ ∈ Θ} with respect to a common dominating measure.

In our treatment of the bootstrap, we considered problems in which it suffices to know the

empirical distribution of the data: the estimator could be assumed to be a function of the empirical

distribution—at least asymptotically. We do the same here. Consider estimators θ̂ = Tn(F̂n) that

asymptotically can be replaced by functional estimators. That is, either Tn(F̂n) = T (F̂n) for all

n, or there is a functional T : dom(T ) → IR such that if the components of Xn are iid G, with

G ∈ dom(T ), then

Tn(Ĝn)→ T (G) (31)

in probability as n→∞. T (G) is the asymptotic value of {Tn} at G. We assume that T (Fθ) = θ,

∀θ ∈ Θ (this is Fisher consistency of the estimator T ).
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Definition 29 A functional T defined on probability measures is Gâteaux differentiable at the mea-

sure F in dom(T ) if there exists a function a : X → IR s.t. ∀G ∈ dom(T ),

lim
t→0

T ((1− t)F + tG)− T (F )

t
=
∫
a(x)dG(x). (32)

That is,
∂

∂t
T ((1− t)F + tG)|t=0 =

∫
a(x)dG(x). (33)

Gâteaux differentiability is weaker than Fréchet differentiability. Essentially, Gâteaux differ-

entiability at F ensures that the directional derivatives of T exist in all directions that (at least

infinitesimally) stay in the domain of T .

Let δx be a point mass at x.

Definition 30 The influence function of T at F is

IF(x;T, F ) ≡ lim
t→0

T ((1− t)F + tδx)− T (F )

t
(34)

at the points x ∈ X where the limit exists.

The influence function is similar to the Gâteaux derivative, but it can exist even when the

Gâteaux derivative does not, because the set of directions it involves is not as rich. The influence

function gives the effect on T of an infinitesimal perturbation to the data at the point x. This leads

to a “Taylor series” expansion of T at F :

T (G) = T (F ) +
∫

IF(x;T, F )d(G− F )(x) + remainder. (35)

(Note that
∫

IF(x;T, F )dF (x) = 0.)

1.3.1 Heuristics using IF(x;T, F )

Consider what happens for large sample sizes. The empirical distribution F̂n tends to the theoretical

distribution F , and Tn(F̂n) tends to T (F̂n). We will use F̂n to denote both the empirical cdf and

the empirical measure, so F̂n = 1
n

∑n
j=1 δXj

. Thus

(Tn(F̂n)− T (F )) ≈ 1

n

n∑
j=1

IF(Xj;T, F ) + remainder, (36)
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or
√
n(Tn(F̂n)− T (F )) ≈ 1√

n

n∑
j=1

IF(Xj;T, F ) + remainder. (37)

Now {IF(Xj;T, F )}nj=1 are n iid random variables with mean zero and finite variance, so their sum is

asymptotically normal. If the remainder vanishes asymptotically (not that easy to verify, typically,

but often true), then
√
n(Tn(F̂n)− T (F )) is also asymptotically normal, with asymptotic variance

V (T, F ) =
∫

IF(x;T, F )2dF (x). (38)

When the relationship holds, an asymptotic form of the Cramér-Rao bound relates asymptotic

efficiency to the influence function. Suppose T is Fisher consistent. Recall that the Fisher informa-

tion at Fθ0 is

I(Fθ0) =
∫ (

∂

∂θ
ln fθ(x)

∣∣∣∣∣
θ0

)2

dFθ0 . (39)

The Cramér-Rao information inequality says that (under regularity conditions on {Fθ}θ∈Θ, including

being dominated by a common measure µ, sharing a common support, and having densities fθ(x)

w.r.t. µ that are differentiable in θ) for any statistic T with EθT 2 <∞ for which

d

dθ
EθT =

∫ ∂

∂θ
Tfθµ(dx), (40)

V (T, Fθ) ≥

[
∂
∂θ
EθT

]2
I(Fθ)

. (41)

Thus T is asymptotically efficient only if

IF(x;T, F ) = I(Fθ0)
−1 ∂

∂θ
(ln fθ(x))|θ0 . (42)

1.3.2 Relation to the Jackknife

There is an asymptotic connection between the jackknife estimate of variance and the influence

function as well. Recall that for a functional statistic Tn = T (F̂n), we define the jth pseudovalue

by

T ∗nj = nT (F̂n)− (n− 1)T (F̂(j)), (43)

where F̂(j) is the cdf of the data with the jth datum omitted. The jackknife estimate is

T ∗n =
1

n

n∑
j=1

T ∗nj. (44)
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The (sample) variance of the pseudovalues is

Vn =
1

n− 1

n∑
j=1

(T ∗nj − T ∗n)2. (45)

The jackknife estimate of the variance of Tn is 1
n
Vn. Plugging into the definition 34 and taking

t = −1
n−1

gives

n− 1

−1

(
T
(

(1− −1

n− 1
)F̂n +

−1

n− 1
δxj

)
− T (F̂n)

)
= (n− 1)[T (F̂n)− T (F̂(j))]

= T ∗nj − T (F̂n). (46)

(Note that (1 − −1
n−1

)F̂n + −1
n−1

δxj = F̂(j).) The jackknife pseudovalues thus give an approximation

to the influence function.

1.3.3 Robustness measures defined from IF(x;T, F )

The gross error sensitivity of T at F is

γ∗ = γ∗(T, F ) = sup
{x:IF(x;T,F ) exists}

|IF(x;T, F )|. (47)

This measures the maximum change to T a small perturbation to F at a point can induce, which

is a bound on the asymptotic bias of T in a neighborhood of F . If γ∗(T, F ) < ∞, T is B-robust

at F (B is for bias). For Fisher-consistent estimators, there is typically a minimum possible value

of γ∗(T, F ), leading to the notion of most B-robust estimators. There is usually a tradeoff between

efficiency and B-robustness: for a given upper bound on γ∗, there is a most efficient estimator.

The gross error sensitivity measures what can happen when the difference between what is

observed and F can be anywhere (perturbing part of an observation by an arbitrary amount).

There is a different notion of robustness related to changing the observed values slightly. The

(infinitesimal) effect of moving an observation from x to y is IF(y;T, F )− IF(x;T, F ). This can be

standardized by the distance from y to x to give the local shift sensitivity

λ∗ = λ∗(T, F ) = sup
{x 6=y:IF(x;T,F ) and IF(y;T,F ) both exist}

|IF(y;T, F )− IF(x;T, F )|
|y − x|

. (48)

This is the Lipschitz constant of the influence function. (A real function f with domain dom(f)

is Lipschitz continuous at x if there exists a constant C > 0 such that |f(x) − f(y)| ≤ C|x − y|
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for all y ∈ dom(f). A real function f is Lipschitz continuous if it is Lipschitz continuous at every

x ∈ dom(f). The Lipschitz constant of a Lipschitz-continuous function f is the smallest C such

that |f(x) − f(y)| ≤ C|x − y| for all x, y ∈ dom(f). These definitions extend to functions defined

on metric spaces, and to bounding |f(x)− f(y)| by a multiple of |x− y|ν with ν 6= 1.)

Another measure of robustness involving the influence function is the rejection point

ρ∗ = ρ∗(T, F ) = inf{r > 0 : IF(x;T, F ) = 0, ∀|x| > r}. (49)

This measures how large an observation must be before the estimator ignores it completely. If very

large observations are almost certainly gross errors, it is good for ρ∗ to be finite.

1.3.4 Examples

Suppose X ∼ N(θ, 1); θ ∈ Θ = IR; θ0 = 0; F = Φ; Tn(Xn) = X̄ = 1
n

∑n
j=1Xj;

T (G) ≡
∫
xdG(x). (50)

The functional T is Fisher-consistent. Calculating IF gives

IF(x;T, F ) = lim
t→0

∫
ud((1− t)Φ + tδx)(u)−

∫
udΦ(u)

t

= lim
t→0

(1− t)
∫
udΦ(u) + t

∫
udδx(u)−

∫
udΦ(u)

t

= lim
t→0

tx

t

= x. (51)

The Fisher information of the standard normal with unknown mean is I(Φ) = 1, so∫
IF2(x;T,Φ)dΦ = 1 = I−1(Φ), (52)

and IF ∝ (∂/∂θ)(ln fθ)|0. The arithmetic mean is the MLE and is asymptotically efficient. The

gross-error sensitivity is γ∗ = ∞, the local shift sensitivity is λ∗ = 1, and the rejection point is

ρ∗ =∞.

Suppose X = {0, 1, 2, . . .}, λ(A) = #A, {Xj}nj=1 iid Poisson(θ), θ ∈ Θ = (0,∞). Then fθ(k) =

e−θθk/k!. The MLE of θ is

θ̂ = arg max
η∈(0,∞)

n∏
j=1

fη(Xj)
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= arg max
η
e−nη

∏
j

ηXj/Xj!

= arg max
η
e−nηηn

∑
j
Xj
∏
j

1/Xj!

≡ max
η
L(η|{Xj}nj=1). (53)

Stationarity requires

0 = ∂/∂ηL(η|{Xj}nj=1)|θ̂

∝ e−nθ̂
∑
j

Xj θ̂
∑

j
Xj−1 − ne−nθ̂θ̂

∑
j
Xj . (54)

Which reduces to ∑
j

Xj θ̂
−1 − n = 0; i.e., θ̂ =

1

n

∑
j

Xj = X̄. (55)

This can be written as the functional estimator T (F̂n) where T is defined by

T (F ) ≡
∫
X
xf(x)λ(dx) (56)

This estimator is clearly Fisher consistent because

T (Fθ) =
∞∑
k=0

ke−θθk/k! = θ, ∀θ ∈ Θ. (57)

The influence function is defined only at points x ∈ X . The functional T is linear, so

IF(x;T, Fθ) ≡ lim
t→0

T ((1− t)Fθ + tδx))− T (Fθ)

t

= lim
t→0

(1− t)T (Fθ) + tT (δx)− T (Fθ)

t

= x− θ, x ∈ X . (58)

1.4 M-estimators

We shall consider in more detail what is needed for an M -estimator to be robust. An M -estimator

is one of the form

Tn(X) = arg min
Un

n∑
j=1

ρ(Xj, Un), (59)

where ρ is a function on X×Θ. M -estimators generalize maximum likelihood estimators. Maximum

likelihood estimators minimize the negative log-likelihood, which for independent data would be of

the form just given, with ρ(Xj, Un) = − log f(x; θ). If ρ is differentiable in θ, with

ψ(x, θ) =
∂

∂θ
ρ(x, θ), (60)
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then Tn is a stationary point, so it satisfies

n∑
j=1

ψ(Xj, Tn) = 0. (61)

An estimator that can be characterized as the solution of an equation in the form of either 59

or 61 is an M-estimator. The two are not quite equivalent: If ρ is not differentiable, there is no

corresponding ψ. Conversely, ψ need not be the partial derivative of some ρ. An M -estimator is

characterized by (and identified with) ρ or ψ.

Consider the second form, based on ψ. Define T implicitly as the functional for which∫
ψ(x, T (G))dG = 0 (62)

for all G for which the integral exists; then the estimator is T (F̂n). We calculate the IF at F of an

M -estimator of this form. Define Ft,x ≡ (1− t)F + tδx. We want

T ′ ≡ lim
t→0

T (Ft,x)− T (F )

t
. (63)

Assume we can interchange integration and differentiation; then we can differentiate 62 to get∫
ψ(x, T (F ))d(δx − F ) +

∫ ∂

∂θ
ψ(x, θ)

∣∣∣∣∣
T (F )

dF · ∂
∂t
T (Ft,x)

∣∣∣∣∣
t=0

= 0. (64)

This yields

IF(x;ψ, F ) =
ψ(x, T (F ))

−
∫ ∂
∂θ
ψ(y, θ)

∣∣∣
T (F )

dF (y)
, (65)

if the denominator is not zero. It turns out that even when ψ is not smooth, equation 65 holds.

The estimator given by ψ is B-robust iff ψ(·, T (F )) is bounded. The asymptotic variance of the

M -estimate defined by ψ is

V (T, F ) =

∫
ψ2(x, T (F ))dF (x)(∫

∂ψ(y, θ)/∂θ|T (F ) dF (y)
)2 . (66)

The maximum likelihood estimate (MLE) is a special case of an M -estimate, taking

ρ(x, θ) = − ln fθ(x). (67)

The IF of the MLE is

IF(x;T, Fθ) =
∂ ln fγ/∂γ|θ
V (T, Fθ)

. (68)
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The asymptotic variance is in this case the reciprocal of the Fisher information J(Fθ), which shows

the asymptotic efficiency of the MLE.

The maximum likelihood scores function s(x, θ) is

s(x, θ) ≡ ∂ ln fγ(x)

∂γ

∣∣∣∣∣
θ

; (69)

the MLE solves
n∑
j=1

s(Xj,MLEn) = 0. (70)

For estimates of location parameters, ψ typically depends on x and θ only through their differ-

ence: ψ(x; θ) = ψ(x− θ). For the estimate to be Fisher-consistent, we need
∫
ψdF = 0; then

IF(x;F, T ) =
ψ(x− T (F ))∫
ψ′(x− T (F ))dF

. (71)

The influence function is proportional to ψ. (We might as well take ψ to be the IF.)

Therefore, M -estimates have finite gross error sensitivity only if ψ is bounded, and have a finite

rejection point only if ψ redescends to zero for large values of its argument. For the mean, this does

not occur.

The asymptotic variance of such an M -estimate of a location parameter is

V (ψ, F ) =

∫
ψ2dF

(
∫
ψ′dF )2 . (72)

1.4.1 Robustness of M-estimates

See Huber, Ch3 for more details; this is drawn from there.

Let’s calculate b1(ε) for the Lévy metric for an M -estimate of location, with ψ(x; t) = ψ(x− t),

with ψ monotonically increasing. We will use λ to denote something new in this section, so let

dL(F,G) denote the Lévy distance between distributions (or cdfs) F and G. Accordingly, we take

P(ε) ≡ {G : dL(F,G) ≤ ε}. Assume that T (F ) = 0. Define

b+(ε) = sup
G∈P(ε)

T (G) (73)

and

b−(ε) = inf
G∈P(ε)

T (G). (74)
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Then b1(ε) = max{−b−(ε), b+(ε)} (because T (F ) = 0). Define

λ(t;G) = EGψ(X − t) =
∫
ψ(x− t)dG(x). (75)

Because ψ is monotonic, λ is decreasing in t, but not necessarily strictly decreasing, so the solution

of λ(t;G) = 0 is not necessarily unique. Define

T ∗(G) = sup{t : λ(t;G) > 0} (76)

and

T ∗∗(G) = inf{t : λ(T ;G) < 0}. (77)

Then T ∗(G) ≤ T (G) ≤ T ∗∗(G). Note that λ(t;G) increases if G is made stochastically larger. The

stochastically largest element of {G : dL(F,G) ≤ ε} is

F1(x) = (F (x− ε)− ε)+ =

 0, x ≤ x0 + ε

F (x− ε)− ε x > x0 + ε,
(78)

where x0 solves F (x0) = ε. (Assume that x0 exists; the discontinuous case introduces some addi-

tional bookkeeping.) Note that this distribution puts mass ε at x =∞. For G ∈ P(ε),

λ(t;G) ≤ λ(t;F1) =
∫ ∞
x0

ψ(x− t+ ε)dF (x) + εψ(∞). (79)

It follows that

b+(ε) = sup
G∈P(ε)

T (G)

= T ∗∗(F1)

= inf{t : λ(t;F1) < 0}. (80)

Note that

`+ = lim
t→∞

λ(t;F1) = (1− ε)ψ(−∞) + εψ(∞). (81)

Provided `+ < 0 and ψ(∞) < ∞, b+(ε) < b+(1) = ∞. Thus to avoid breakdown from above we

need
ε

1− ε
< −ψ(−∞)

ψ(∞)
. (82)
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We can calculate b−(ε) in the same way: the stochastically smallest element of P(ε) is

F−1 = (F (x+ ε) + ε) ∧ 1 =

 F (x+ ε) + ε, x ≤ x1 − ε

1, x > x1 − ε,
(83)

where x1 solves F (x1) = 1− ε. This distribution assigns mass ε to x = −∞. We have

λ(t;G) ≥ λ(t;F−1) = εψ(−∞) +
∫ x1

−∞
ψ(x− t− ε)dF (x). (84)

Thus

b−(ε) = inf
G∈P(ε)

T (G)

= T ∗(F−1)

= sup{t : λ(t;F−1) > 0}. (85)

Note that

`− = lim
t→−∞

λ(t;F−1) = εψ(−∞) + (1− ε)ψ(∞). (86)

To avoid breakdown from below, we need ψ(−∞) > −∞ and `− > 0, which leads to

ε

1− ε
> − ψ(∞)

ψ(−∞)
. (87)

Combining this with 82 gives

− ψ(∞)

ψ(−∞)
<

ε

1− ε
< −ψ(−∞)

ψ(∞)
. (88)

Define

η ≡ min

{
−ψ(−∞)

ψ(∞)
,− ψ(∞)

ψ(−∞)

}
. (89)

The breakdown point is then

ε∗ =
η

1 + η
. (90)

The maximum possible value ε∗ = 1/2 is attained if ψ(∞) = −ψ(−∞). The breakdown point is

ε∗ = 0 if ψ is unbounded.

This calculation also shows that if ψ is bounded and λ(t;F ) has a unique zero at t = T (F ), then

T is continuous at F ; otherwise, T is not continuous at F .

Things are much more complicated for non-monotone functions ψ, including “redescending in-

fluence functions,” which we shall examine presently.
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1.4.2 Minimax Properties for location estimates

It is straightforward to find the minimax bias location estimate for symmetric unimodal distribu-

tions; the solution is the sample median (see Huber, §4.2). Minimizing the maximum variance is

somewhat more difficult. Define

v1(ε) = sup
G∈P(ε)

A(G, T ), (91)

where A(G, T ) is the asymptotic variance of T at G. Assume the observations are iid G(· − θ).

The shape varies over the family P(ε); the parameter varies over the reals. Such families are not

typically compact in the weak topology. Huber uses the vague topology to surmount this problem.

The vague topology is the weakest topology on the set M+ of sub-probability measures for which

F →
∫
ψdF is continuous for all continuous functions ψ with compact support. (A subprobability

measure can have total mass less than one, but is otherwise the same as a probability measure.)

Because IR is locally compact, M+ is compact.

Define F0 to be the distribution in P(ε) with smallest Fisher information

I(G) = sup
ψ∈C1K

(
∫
ψ′dG)2∫
ψ2dG

, (92)

where C1
K is the set of all compactly supported, continuously differentiable functions ψ s.t.

∫
ψ2dF >

0. This extends the definition of the Fisher information beyond measures that have densities; in fact,

I(F ) <∞ iff F has an absolutely continuous density w.r.t. Lebesgue measure, and
∫

(f ′/f)2fdx <

∞.

Proof. (Following Huber, pp78ff.) By assumption,
∫
ψ2dx <∞. If

∫
(f ′/f)2fdx <∞,

(∫
ψ′fdx

)2

=

(
ψf |∞−∞ −

∫
ψ
f ′

f
fdx

)2

=

(∫
ψ
f ′

f
fdx

)2

≤
(∫

ψ2fdx
)∫ (

f ′

f

)2

fdx

 , (93)

by the weighted Cauchy-Schwarz inequality. Thus I(F ) ≤
∫

(f ′/f)2fdx <∞. Now suppose I(F ) <

∞. Then L(ψ) = −
∫
ψ′dF is a bounded linear functional on the (dense) subset C1

K of L2(F ),

the Hilbert space of square-integrable functions w.r.t. F . By continuity, L can be extended to a
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continuous linear functional on all of L2(F ). By the Riesz Representation Theorem, there then

exists a function g ∈ L2(F ) such that for all ψ ∈ L2(F ),

Lψ =
∫
ψgdF. (94)

Clearly, L1 =
∫
gdF = 0. Define

f(x) ≡
∫
y<x

g(y)F (dy) =
∫

1y<xg(y)F (dy). (95)

By the Cauchy-Schwarz inequality,

|f(x)|2 ≤ (
∫

12
y<xF (dy))(

∫
g(y)2F (dy)) = F ((−∞, x))

∫
g2F (dy), (96)

which tends to zero as x→ −∞; |f(x)| also tends to zero as x→∞. For ψ ∈ C1
K ,

−
∫
ψ′(x)f(x)dx = −

∫
y<x

∫
ψ′(x)g(y)F (dy)dx =

∫
ψ(y)g(y)F (dy) = Lψ (97)

by Fubini’s theorem. Thus the measure f(x)dx and the measure F (dx) give the same linear func-

tional on derivatives of functions in C1
K . This set is dense in L2(F ), so they define the same measure,

and so f is a density of F . We can now integrate the definition of the functional L by parts to show

that

Lψ = −
∫
ψ′fdx =

∫
ψ
f ′

f
fdx. (98)

Thus

I(F ) = ‖L‖2 =
∫
g2dF =

∫ (
f ′

f

)2

fdx. (99)

The functional I(G) is lower-semicontinuous with respect to the vague topology, so I(G) attains

its infimum on any vaguely compact set. Furthermore, I(G) is a convex function of G.

Theorem 8 (Huber, Proposition 4.5) Let P be a set of measures on IR. Suppose P is convex,

F0 ∈ P minimizes I(G) over P, 0 < I(F0) < ∞, and the set where the density f0 of F0 is strictly

positive is (a) convex and (b) contains the support of every distribution in P.

Then F0 is the unique minimizer of I(G) over P.

The reciprocal of I(F0) lower-bounds the (worst) asymptotic variance of any estimator over all

G ∈ P , so if one can find an estimator whose asymptotic variance is 1/I(F0), it is minimax (for

asymptotic variance).
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Finding F0 can be cast as a variational problem; see Huber, §4.5.

The least-informative distributions in neighborhoods of the normal tend to have thinner tails

than the normal. If one believes that outliers might be a problem, it makes sense to abandon

minimaxity in favor of estimators that do somewhat better when the truth has thicker tails than

the normal. That leads to considering redescending influence functions, for which ψ = 0 for x

sufficiently large.

One can develop “minimax” estimators in this restricted class. For example, we could seek to

minimize the asymptotic variance subject to ψ(x) = 0, |x| > c. For the ε-contamination neighbor-

hood of a normal, the minimax ψ in this class is

ψ(x) = −ψ(−x) =


x, 0 ≤ x ≤ a

b tanh
(
b(c−x)

2

)
a ≤ x ≤ c

0, x ≥ c.

(100)

The values of a and b depend on ε.

Other popular redescending influence functions include Hampel’s piecewise linear influence func-

tions:

ψ(x) = −ψ(−x) =



x, 0 ≤ x ≤ a

a a ≤ x ≤ b

a c−x
c−b b ≤ x ≤ c

0, x ≥ c,

(101)

and Tukey’s “biweight”

ψ(x) =

 x(1− x2)2, |x| ≤ 1

0, |x| > 1.
(102)

A complication in using redescending influence functions is that scaling (some form of Studentizing)

is much more important for them to be efficient than it is for monotone influence functions. The

slope of the influence function in the descending regions also can inflate the asymptotic variance

(recall that (
∫
ψ′dF )2 is in the denominator of A(F, T )).

1.5 Estimates of Scale

We require that a scale estimate Sn be equivariant under changes of scale, so that

Sn(aX) = aSn(X), ∀a > 0. (103)
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It is common also to require that a scale estimate be invariant under sign changes and translations,

so that

Sn(−X) = Sn(X) = Sn(X + b1), (104)

where b ∈ IR and 1 is an n-vector of ones. The most common need for a scale estimate is to remove

scale as a nuisance parameter in a location estimate, by Studentizing.

It turns out that the bias properties of a scale estimate are more important for studentizing

than the variance properties. That leads to considering something involving the median deviation.

The most widely used robust scale estimator is the median absolute deviation (MAD). Let Mn(x)

be the median of the list of the elements of x: med{xj}nj=1. Then

MADn(x) = med{|xj −Mn(x)|}nj=1. (105)

The breakdown point of the MAD is ε∗ = 1/2. Typically, the MAD is multiplied by 1.4826

(1/Φ−1(3/4)) to make its expected value unity for a standard normal.

1.6 Robust Regression

This section follows Hampel et al. (1986), Chapter 6, rather closely. Suppose we have a linear

statistical model: we observe {(Xj, Yj)}nj=1 iid with Yj ∈ IR, Xj ∈ IRp (p ≥ 1), and

Y = Xθ + ε, (106)

where Y = (Yj)
n
j=1, X is an n by p matrix with entries Xjk = (Xj)k, 1 ≤ j ≤ n, 1 ≤ k ≤ p,

θ ∈ Θ ⊂ IRp is unknown, Θ is an open convex subset of IRp, and ε ∈ IRn is a vector of iid noise with

mean zero. We assume that εj is independent of Xj, that the common distribution of the noise

components is symmetric about zero and continuous. Let K be the common distribution of {Xj},

and let k be the density of K with respect to Lebesgue measure on IR. The joint density of (Xj, Yj)

with respect to Lebesgue measure on IR2 is

fθ(x, y) = σ−1g ((y − xθ)/σ) k(x). (107)

Let Fθ(x, y) be the corresponding measure. For now, we take X and Y to be random (we don’t

condition on X).
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The least-squares (LS) estimate of θ is

θ̂LS ≡ arg min
γ∈Θ

n∑
j=1

((yj − xjγ)/σ)2 . (108)

The least squares estimate minimizes the 2-norm of the residuals. The Gauss-Markov theorem says

that if Eεj = 0, 1 ≤ j ≤ n, and cov(ε) = σ2I, then bθ̂LS is the unique minimum variance unbiased

linear estimator of any estimable linear functional bθ of θ. The restriction to linear estimators is

severe—for example, the MLE is nonlinear for many distributions. When the error distribution is

normal, the minimum variance estimate is in fact linear, but otherwise, there can be a large loss of

efficiency in restricting to linear estimators.

Moreover, a single outlier can influence the least-squares estimate arbitrarily—the least-squares

estimate is neither robust nor resistant. (See http://www.stat.berkeley.edu/users/stark/Java/Correlation.htm

for an interactive demonstration.)

Huber (1973, Robust regression: asymptotics, conjectures, and Monte Carlo. Ann. Stat., 1 ,

799–821.) proposed using least squares with weights on the residuals computed iteratively to reduce

the influence of extreme observations. The weights are

wj = min(1, c/|rj|), (109)

where c is a positive constant and rj is the jth residual. This is a special case of the estimator

θ̂ρ ≡ arg min
γ∈Θ

n∑
j=1

ρ ((yj − xjγ)/σ) , (110)

where ρ is a nonnegative function. The case ρ(r) = r2/2 is least squares. The case ρ(r) = ρc(r) =

wr2 yields the MLE when the errors have density proportional to exp(−ρc(r)).

The case ρ(r) = |r| is minimum L1 estimation, which is resistant. Minimum L1 regression can

also be performed using linear programming. We shall use linear programming in our discussion of

density estimation later, so I’ll take a bit of space here to set up the L1 regression problem as a

linear program.

Linear programming solves the problem

min
z:z≥0,Az=b

`z, (111)

where z, ` ∈ IRk, A is an m by k matrix, and b ∈ IRm. (There are other canonical forms for linear

programs, such as minz:Az≤b `z.) Linear programming and its infinite-dimensional extensions play

a central role in game theory and minimax statistical estimation.
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Linear programming involves minimizing a convex functional over a convex set, so any local

minimum attains the global minimal value. However, neither the constraint set nor the objective

functional is strictly convex, so in general more than one parameter vector attains the global minimal

value of the objective functional. The nonnegativity constraint and the linear equality constraints

restrict the solution to lie within a convex polytope, which is analogous to a convex polygon in

IR2: it is the intersection of a collection of closed half-spaces. The fundamental theorem of linear

programming says that if the linear program is consistent (if there is some vector z that satisfies all

the constraints), then some vertex of the polytope attains the global minimal value of `.

We seek to cast the problem

min
γ∈IRp

n∑
j=1

|Xjγ − yj| (112)

as a linear program. The minimizing γ is the L1 regression estimate of θ. Define

A = [X −X I − I], (113)

b = y, (114)

z = [f g d e]T , (115)

(with f, g ∈ IRp and d, e ∈ IRn), and

` = [0 1] (116)

(with 0 ∈ IR2p and 1 ∈ IR2n). Then

Az = b⇐⇒ X(f − g) + d− e = y, (117)

and minimal value of `z minimizes
n∑
j=1

(dj + ej). (118)

Note that if, for some j, both dj and ej are greater than zero, then replacing the smaller of the

two with 0 and the larger of the two with |dj − ej| reduces `z but does not change the value of Az.

Thus for the optimal z, either dj = 0 or ej = 0 (or both) for each j. Therefore, at the optimum,

|dj − ej| = dj + ej; i.e.,

|Xj(f − g)− yj| = dj + ej, (119)

and
n∑
j=1

|Xj(f − g)− yj| = `z. (120)
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The L1 regression estimate of θ is clearly θ̂L1 = f − g, where f and g are the first p and second p

components of z∗, the solution to the linear programming problem above.

Linear programming also can solve L∞ regression problems:

min
γ

max
j
|Xjγ − yj|. (121)

L∞ regression is extremely non-resistant.

The most popular algorithm for solving linear programs is the simplex algorithm. The simplex

algorithm starts with a feasible point, then moves from vertex to vertex of the polytope defined by

the linear constraints, continually decreasing the value of `z. (The fundamental theorem of linear

programming guarantees that there is a vertex that attains the optimal value.) At each vertex,

the algorithm checks the Kuhn-Tucker conditions, which say that at an optimal solution, every

direction of descent points out of the constraint set.

We continue with the discussion of robust regression for a more general weight function ρ. If ρ

is differentiable with derivative ∂ρ(r)/∂r = ψ(r), then θ̂ρ can be characterized as a stationary point

n∑
j=1

ψ
(
(yj − xj θ̂ρ)/σ

)
xj = 0. (122)

(Note that for L1 regression, ρ is not differentiable at 0.)

Typically, σ is not known. It could be estimated together with θ; I think it is more common to

use the MAD of the residuals, estimated iteratively for a few iterations, then “frozen” for the rest

of the iterations in the estimation of θ.

For the Huber estimate using the weight function w, the influence of the residual is bounded,

but the influence of the x-coordinate of a datum is not bounded. (See Fig. 1, p. 314, in Hampel et

al.) If we want to use the errors-in-variables model, that should be considered as well. The influence

function can be factored into the influence of the residual (IR) and the influence of position in factor

space (IP)–analogous to the leverage of the point.

Hampel et al. (1986, ch. 6.3, p. 315) define an M -estimator Tn for linear models as the solution

to the equation
n∑
j=1

η (Xj, (yj −XjTn)/σ)xj = 0, (123)

where η : IRp × IR→ IR is suitably well behaved:
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1. For every x ∈ IRp, η(x, ·) is continuous except possibly at a finite set, where it has finite left

and right limits.

2. For every x ∈ IRp, η(x, r) is an odd function of r, and is nonnegative for nonnegative r.

3. For every x ∈ IRp, the set of points at which η′(x, r) ≡ ∂η(x, r)/∂r fails to exist or fails to be

continuous, is a finite set.

4. M ≡ Eη′(x, r)xxT exists and is a nonsingular matrix.

5. Q ≡ Eη2(x, r)xxT exists and is a nonsingular matrix.

This is more restrictive than the general M -estimation set up: the function ψ(Xj, yj, θ) that this

implicitly defines has the same direction as Xj, and depends on yj only through the residual yj−Xjθ.

According to Hampel et al., the functions η that have been proposed in the literature all factor

into a weight that depends on x and function of the residual weighted by a different function of x:

η(x, r) = w(x)ψ(rv(x)), (124)

where w : IRp → IR+, v : IRp → IR+, and ψ : IR → IR. Three different types of η functions are

sketched on p. 322 of Hampel et al.:

1. The Huber estimator discussed above takes w(x) = v(x) = 1:

n∑
j=1

ψc(rj)Xj = 0. (125)

This estimator does not limit the influence of position.

2. The Mallows estimator takes v(x) = 1:

n∑
j=1

ψc(rj)wjXj = 0. (126)

This estimator limits the leverage of a datum regardless of the size of the residual at that

design point.

3. The Hampel-Krasker estimator takes w(x) = 1/v(x):

n∑
j=1

ψc(rj/uj)ujXj =
n∑
j=1

ψcuj(rj)Xj = 0. (127)
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Figure 2 on p. 323 of Hampel et al. illustrates the difference in the fitted regression function for

these three estimators for the bivariate case with one outlier with large leverage.

Below is a collection of Matlab routines that solve iteratively reweighted least squares using

robust estimates of scale. The routines do not bound the influence of position; they just bound the

influence of the residuals. (The extension to weight by position is straightforward.) Included are

Matlab routines to calculate Tukey’s Biweight and the weight function for minimum L1 regression

by reweighting. At the end is a routine for minimum L1 regression using linear programming. I

wrote this code in 1997 and would write it differently now . . .

function [ b, res, wssr, it ] = irwls(y,X,wfunc,param,start)

% irwls iteratively re-weighted least squares

% Can solve "robust" regression problems using

% robust weights.

% Usage:

% [b, res, wssr, it ] = irwls(y,X,wfunc,param,start)

%

% Arguments:

% y n-vector of data

% X nxp design matrix

% wfunc the name of the weight function subroutine, passed as a string

% W = wfunc(res, scale, param) must take three arguments:

% res vector of residuals

% scale resistant estimate of scale (MAD/.6745)

% param array of particular parameters passed by caller

% wfunc must return a vector W of the same dimension as res

% param a vector of parameters to pass to wfunc.

% DEFAULT = 1.

% start a flag for what to use as a starting model to get

% the estimate of scale that is passed to the weight

% function. To get the estimate of scale, the algorithm
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% uses the median absolute deviation (MAD) of the residuals,

% standardized to that of the normal distribution.

% If start = ’ols’, the median absolute deviation of

% the residuals from the ordinary least-squares regression

% function are used.

% If start = ’median’, the median absolute deviation

% of the residuals from the median are used, completely

% ignoring the possible variation of the "true" function.

% If start = ’one-step’, the first estimate of scale

% is the same as for ’median’, but the scale estimate is

% updated based on the residuals from the first step

% of the least squares fit using that scale (the scale estimate

% is only updated once, after the first wls).

% DEFAULT = ’ols’

%

% Output:

% b p-vector of fitted coefficients

% res n-vector of final residuals

% wssr final sum of squared weighted residuals

% it number of iterations taken

% P.B. Stark stark@stat.berkeley.edu

% 9 July 1997

chgTol = 0.001; % tolerance for convergence

% of coefficients

maxit = 500; % maximum number of iterations

% check dimensions

[n,p] = size(X);
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[ny, py] = size(y);

if (n ~= ny),

error(’number of rows of y ~= number of rows of X’)

end

if (py ~= 1),

error(’y has more than one column’)

end

if (nargin < 3),

param = 1;

start = ’ols’;

elseif (nargin < 4),

start = ’ols’;

end

if (~(strcmp(start,’ols’) | strcmp(start,’median’) | ...

strcmp(start,’one-step’))),

error([’start = ’, start, ’ not supported’])

end

%

if (strcmp(start,’ols’)),

W = ones(n,1); % initial weight matrix

[b, res, wssr] = wls(y,X,W); % initial regression

scale = 1.483*median(abs(res-median(res)));

elseif (strcmp(start,’median’)),

res = y - median(y);

scale = 1.4843*median(abs(res-median(res)));

32



W = diag(sqrt(feval(wfunc,res,scale,param)));

[b, res, wssr] = wls(y, X, W);

elseif (strcmp(start,’one-step’)),

res = y - median(y);

scale = 1.4843*median(abs(res-median(res)));

W = diag(sqrt(feval(wfunc,res,scale,param)));

[b, res, wssr] = wls(y, X, W);

scale = 1.4843*median(abs(res-median(res)));

end

% loop

relchg = 1; % relative change in coefficients

it = 0;

while (relchg > chgTol & it < maxit), % stop when the relative change in

% regression coefficients between

% iterations is small enough

lastB = b;

it = it + 1;

W = diag(sqrt(feval(wfunc,res,scale,param)));

[b, res, wssr] = wls(y, X, W);

relchg = max( abs( b - lastB ) ./ abs(b));

end

if (it == maxit ),

error([’maximum number of iterations (’ num2str(maxit) ...

’) exceeded’])

end

return

function [b, res, wssr] = wls(y,X,W)
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% wls Multiple linear regression using weighted least squares.

%

% Usage:

% [b, res, wssr] = wls(y,X,W) returns the p-vector b of

% regression coefficients such that

% (Xb - y)’ W’W (Xb - y) (**)

% is minimal, along with the residual n-vector

% res = y - Xb,

% and the weighted sum of squared residuals

% wssr = (Xb - y)’ W (Xb - y).

% Arguments:

% y n-vector of observations

% X nxp design matrix

% W nxn positive semi-definite square matrix of weights,

% or a vector of nonnegative weights.

% Note that W is the square-root of what one would think

% of as the data error covariance matrix.

%

%

% Algorithm: Uses the QR decomposition as follows.

% Define Z = WX and d = Wy. Then (**) can

% be written as an OLS (ordinary least squares)

% problem: minimize

% || Zb - d ||^2.

% If [Q, R] is the QR decomposition of Z,

% stationarity yields

% 2Z’(Zb - d) = 0,

% or Z’Zb = Z’d.

% The QR decomposition gives

% R’Rb = R’Q’d; for nonsingular R,
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% Rb = Q’d.

% Matlab can solve this triangular system stably using

% b = R\(Q’d).

%

if nargin < 3,

error(’wls requires three input arguments.’);

end

% Check that X, y, and W have compatible dimensions

[n,p] = size(X);

[ny,py] = size(y);

[nW,pW] = size(W);

dimW = max(nW, pW);

minDimW = min(nW, pW);

%

if (n ~= ny),

error( ’The number of rows in y must equal the number of rows in X’ );

elsif ( py ~= 1 ),

error( ’y must be a vector, not a matrix’ );

elsif ( minDimW > 1 & nW ~= pW ),

error( ’W must be a square matrix or a vector’ );

elsif ( dimW ~= n ),

error( ’W must have the same number of rows as X and y’ );

elsif ( minDimW == 1 & min(W) < 0 ),

error( ’W must be nonnegative’ );

end

% build the weighted design matrix and data
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if ( minDimW == 1),

W = diag(W); % in case W is a vector

end

Z = W*X;

d = W*y;

[Q, R] = qr(Z, 0);

b = R\(Q’*d);

yHat = X*b; % predicted data values

res = y - yHat; % residuals

wssr = norm(W*res); % weighted sum of squared residuals

return;

function W = l1wght(res, scale, param)

% function W = l1wght(res, scale, param)

%

% computes the weight function for minimum l_1 regression

% for iteratively reweighted least squares: scale/|res|

%

% arguments:

% res: vector of residuals

% scale: robust estimate of scale such as MAD

% param: not used--present only for consistent

% calling signature with other weights

%

% returns:
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% W: the vector of l_1 weights

%

%

% P.B. Stark stark@stat.berkeley.edu

% 11 July 1997.

thresh = eps^(1/3);

unit = ones(size(res))*thresh;

res(abs(res) <= thresh ) = unit(abs(res) <= thresh);

W = (abs(res)).^(-1);

return;

function W = biwght(res, scale, param)

% function W = biwght(res, scale, param)

%

% computes Tukey’s biweight function for robust regression

%

% biwght(x) = (1-x^2/param^2)^2 , |x| < param; 0, |x| >= param.

%

% arguments:

% res: vector of residuals

% scale: robust estimate of scale, such as MAD

% param: parameter of the biweight function.

% 8 is a reasonable number, and is the

% default.

%

% returns:

% W: the vector of biweight weights

%

%
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% P.B. Stark stark@stat.berkeley.edu

% 11 July 1997.

p = 8;

if (nargin == 3),

p = param;

end

res = res/scale;

W = (ones(size(res)) - res.^2/p^2).^2 .* (abs(res) < p);

return;

Here is an implementation of L1 regression using Matlab’s linear programming routine. Note

that this requires the Optimization Toolbox.

function [ b, res, msft ] = l1rgres(y, X, verb, alg)

% l1rgres minimum l_1 misfit regression using linear programming

%

% WARNING: Matlab’s lp implementation is unstable!

%

% Usage:

% [ b, res, msft ] = l1rgres(y, X, verb, alg)

%

% Input:

% y n-vector of data

% X nxp design matrix

% verb if verb = -1, LP runs silently.

% alg string for the linear programming algorithm to use.
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% If alg == ’lp’, uses the MATLAB Optimization toolbox

% LP.M routine.

% Defaults to ’lp’.

%

%

% Output:

% b p-vector of fitted coefficients

% res n-vector of final residuals

% msft l_1 misfit of solution

%

% P.B. Stark stark@stat.berkeley.edu

% 10 July 1997

%

% check dimensions

[n,p] = size(X);

[ny, py] = size(y);

if (n ~= ny),

error(’number of rows of y ~= number of rows of X’)

end

if (py ~= 1),

error(’y has more than one column’)

end

% output level?

talk = 0;

if (nargin >= 3),
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talk = verb;

end;

%

% set up slack variables and their bounds

%

% want to minimize

% sum_{j=1}^n ( pos_j + neg_j )

% subject to

% y = Ab + pos - neg

% 0 <= pos <= infty

% 0 <= neg <= infty

%

% what to do depends on the linear programming algorithm used.

%

lpalg = ’lp’;

if (nargin == 4),

lpalg = alg;

if (~strcmp(lpalg,’lp’) ),

error([’1: the algorithm ’ lpalg ’ is not supported’])

end;

end;

%

% use ols to get a cheap feasible starting model

[xols, olsres, rssols] = wls(y, X, ones(n,1));

% the residuals give the values of the slacks

pos = zeros(size(olsres));

neg = pos;
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pos(olsres > 0) = olsres(olsres > 0);

neg(olsres < 0) = -olsres(olsres < 0);

clear olsres; % free the memory

% now the lp phase

if (talk >= 0),

disp(’starting LP phase’)

end

% cases, by LP algorithm invoked

%

if (strcmp(lpalg,’lp’)),

lpn = p + 2*n; % number of variables, including slacks

lpm = n; % total number of constraints

neq = n; % number of equality constraints

f = [zeros(1,p) ones(1,2*n)]; % objective vector (a row vector)

vlb = [-inf * ones(p,1); ...

zeros(2*n,1) ]; % lower bounds on variables

vub = inf * ones(lpn,1); % upper bounds

A = [X ones(n) -ones(n)]; % add the slacks to the constraints

% this gets HUGE quickly!

x0 = [xols; pos; neg];

lpx = lp(f, A, y, vlb, vub, x0, neq, talk);

msft = f * lpx;

b = lpx(1:p); % extract solution

res = y - X*b;

else

error([’impossible error: algorithm ’, alg, ’ not supported’])

end;
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return
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