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1.1 Sets

A set is a collection of objects, called members or elements of the set, without regard for their order.

a ∈ A, pronounced “a is an element of A,” “a is in A,” or “a is a member of A” means that a is an

element of the set A. This is the same as writing A 3 a, which is pronounced “A contains a.” If a

is not an element of A, we write a 6∈ A. Sets may be described explicitly by listing their contents,

or implicitly by specifying a property that all elements of the set share, or a condition that they

satisfy. The contents of sets are enclosed in curly braces: {}. Examples:

• A = {a, b, c, d}: the set containing the four elements a, b, c, and d.

• ∅ = {}: the empty set, the set that contains no elements.

• Z ≡ {. . . ,−2,−1, 0, 1, 2, . . .}: the integers.

• IN ≡ {1, 2, 3, . . .}: the natural (counting) numbers.

• IR ≡ (−∞,∞): the real numbers.

• IR+ ≡ [−∞,∞]: the extended real numbers.

• C ≡ {a+ bi : a, b ∈ IR}, where i =
√
−1: the complex numbers.

• Q ≡ {a/b : a, b ∈ Z}: the rational numbers.

B is a subset of A, written B ⊂ A or A ⊃ B, if every element of the set B is also an element of

the set A. Thus IN ⊂ Z ⊂ Q ⊂ IR ⊂ C. The empty set ∅ is a subset of every set. If A ⊂ B and

B ⊂ A, A and B are the same set, and we write A = B. If B is not a subset of A, we write B 6⊂ A

or A 6⊃ B. B is a proper subset of A if B ⊂ A but A 6⊂ B.

The complement of A (with respect to the universe X ), written Ac or A′, is the set of all objects

under consideration (X ) that are not elements of A. That is, Ac ≡ {a ∈ X : a 6∈ A}.

The intersection of A and B, written A∩B or AB, is the set of all objects that are elements of

both A and B:

A ∩B ≡ {a : a ∈ A and a ∈ B}. (1)

If A ∩B = ∅, we say A and B are disjoint or mutually exclusive.
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The union of A and B, written A ∪ B, is the set of all objects that are elements of A or of B

(or both):

A ∪B ≡ {a : a ∈ A or a ∈ B or both}. (2)

The difference of A and B, A \B, pronounced “A minus B,” is the set of all elements of A that

are not elements of B:

A \B ≡ {a ∈ A : a 6∈ B} = A ∩Bc. (3)

Intervals are special subsets of IR:

[a, b] ≡ {x ∈ IR : a ≤ x ≤ b}

(a, b] ≡ {x ∈ IR : a < x ≤ b}

[a, b) ≡ {x ∈ IR : a ≤ x < b}

(a, b) ≡ {x ∈ IR : a < x < b}.

Sometimes we have a collection of sets, indexed by elements of another set: {Aβ : β ∈ B}. Then

B is called an index set . If B is a subset of the integers Z, usually we write Ai or Aj, etc., rather

than Aβ. If B = IN, we usually write {Aj}∞j=1 rather than {Aβ : β ∈ IN}.

⋂
β∈B

Aβ ≡ {a : a ∈ Aβ ∀β ∈ B}. (4)

(∀ means “for all.”) If B = {1, 2, . . . , n}, we usually write
⋂n
j=1Aj rather than

⋂
j∈{1,2,...,n}Aj. The

notation
⋃
β∈B Aβ and

⋃n
j=1Aj are defined analogously.

A collection of sets {Aβ : β ∈ B} is pairwise disjoint if Aβ ∩ Aβ′ = ∅ whenever β 6= β′. The

collection {Aβ : β ∈ B} exhausts or covers the set A if A ⊂ ⋃β∈B Aβ. The collection {Aβ : β ∈ B}

is a partition of the set A if A = ∪β∈BAβ and the sets {Aβ : β ∈ B} are pairwise disjoint. If

{Aβ : β ∈ B} are pairwise disjoint and exhaust A, then {Aβ ∩ A : β ∈ B} is a partition of A.

A set is countable if its elements can be put in one-to-one correspondence with a subset of IN.

A set is finite if its elements can be put in one-to-one correspondence with {1, 2, . . . , n} for some

n ∈ IN. If a set is not finite, it is infinite. IN, Z, and Q are infinite but countable; IR is infinite and

uncountable.

The notation #A, pronounced “the cardinality of A” is the size of the set A. If A is finite, #A

is the number of elements in A. If A is not finite but A is countable (if its elements can be put in

one-to-one correspondence with the elements of IN), then #A = ℵ0 (aleph-null).
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The power set of a set A is the set of all subsets of the set A. For example, the power set of

{a, b, c} is

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. (5)

If A is a finite set, the cardinality of the power set of A is 2#A. This can be seen as follows: suppose

#A = n is finite. Consider the elements of A to be written in some canonical order. We can specify

an element of the power set by an n-digit binary number. The first digit is 1 if the first element

of A is in the subset, and 0 otherwise. The second digit is 1 if the second element of A is in the

subset, and 0 otherwise, etc. There are 2n n-digit binary numbers, so there are 2n subsets. The

cardinality of the power set of IN is not ℵ0.

If A is a finite set, B is a countable set and {Aj : β ∈ B} is a partition of A, then

#A =
∑
β∈B

#Aβ. (6)

1.2 Cartesian Products

The notation (s1, s2, . . . , sn) ≡ (sj)
n
j=1 denotes an ordered n-tuple consisting of s1 in the first position,

s2 in the second position, etc. The parentheses are used instead of curly braces to distinguish

n-tuples from sets: (sj)
n
j=1 6= {sj}nj=1. The kth component of the n-tuple s = (sj)

n
j=1, is sk,

k = 1, 2, . . . , n. Two n-tuples are equal if their components are equal. That is, (sj)
n
j=1 = (tj)

n
j=1

means that sj = tj for j = 1, . . . , n. In particular, (s, t) 6= (t, s) unless s = t. In contrast,

{s, t} = {t, s} always.

The Cartesian product of S and T is S
⊗
T ≡ {(s, t) : s ∈ S and t ∈ T}. Unless S = T ,

S
⊗
T 6= T

⊗
S. IRn is the Cartesian product of IR with itself, n times; its elements are n-tuples of

real numbers. If s is the n-tuple (s1, s2, . . . , sn) = (sj)
n
j=1,

Let A be a finite set with #A = n. A permutation of (the elements of) A is an element s

of
⊗n
j=1A = An whose components are distinct elements of A. That is, s = (sj)

n
j=1 ∈ An is a

permutation of A if #{sj}nj=1 = n. There are n! = n(n − 1) · · · 1 permutations of a set with n

elements: there are n choices for the first component of the permutation, n − 1 choices for the

second (whatever the first might be), n − 2 for the third (whatever the first two might be), etc.

This is an illustration of the fundamental rule of counting : in a sequence of n choices, if there are m1

possibilites for the first choice, m2 possibilities for the second choice (no matter which was chosen
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in the first place), m3 possibilities for the third choice (no matter which were chosen in the first two

places), and so on, then there are m1m2 · · ·mn =
∏n
j=1mj possible sequences of choices in all.

The number of permutations of n things taken k at a time, nPk, is the number of ways there are

of selecting k of n things, then permuting those k things. There are n choices for the object that

will be in the first place in the permutation, n− 1 for the second place (regardless of which is first),

etc., and n − k + 1 choices for the item that will be in the kth place. By the fundamental rule of

counting, it follows that nPk = n(n− 1) · · · (n− k + 1) = n!/(n− k)!.

The number of subsets of size k that can be formed from n objects is

nCk =

(
n

k

)
= nPk/k! = n(n− 1) · · · (n− k + 1)/k! =

n!

k!(n− k)!
. (7)

Because the power set of a set with n elements can be partitioned as

∪nk=0 {all subsets of size k} , (8)

it follows that
n∑
j=0

nCk = 2n. (9)

1.3 Mappings and Functions

Functions are subsets of Cartesian products. We write f : X → Y , pronounced “f maps X into

Y” or “f is a function with domain X and co-domain Y” if f ⊂ X ⊗Y such that for each x ∈ X ,

∃1y ∈ Y such that (x, y) ∈ f . (The notation ∃1y means that there exists exactly one value of

y.) The set X is called the domain of f and Y is called the co-domain of f . If the X -component

of an element of f is x, we denote the Y-component of that element of f by fx or f(x), so that

(x, fx) ∈ f ; we write f : x 7→ y = f(x). The functions f and g are equal if they are the same subset

of X ⊗Y , which means that they have the same domain X , and fx = gx ∀x ∈ X .

Let A ⊂ X . The image of A under f is

fA = f(A) ≡ {y ∈ Y : (x, y) ∈ f for some x ∈ A}.

More colloquially, we would write this as

fA = {y ∈ Y : f(x) = y for some x ∈ A}.
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If fX is a proper subset of Y , f is into. If fX = Y , f is onto. For B ⊂ Y , the inverse image of B

under f or pre-image of B under f is

f−1B ≡ {x ∈ X : fx ∈ B}.

Similarly, f−1y ≡ {x ∈ X : fx = y} If ∀y ∈ Y , #{f−1y} ≤ 1, f is one-to-one (1:1). If f is

one-to-one and onto, i.e., if ∀y ∈ Y , #{f−1y} = 1, f is a bijection.

Exercise 1 1. Does f−1(fA) = A?

2. Does f(f−1B) = B?

3. Does f−1(C ∩D) = f−1C ∩ f−1D?

4. Does f(C ∩D) = fC ∩ fD?

5. Does f(C ∪D) = fC ∪ fD?

1.4 Groups

Definition 1 A group is an ordered pair (G,×), where G is a collection of objects (the elements of

the group) and × is a mapping from G⊗G onto G,

× : G⊗G → G
(a, b) 7→ a× b,

satisfying the following axioms:

1. ∃e ∈ G s.t. ∀a ∈ G, e× a = a. The element e is called the identity.

2. For each a ∈ G, ∃a−1 ∈ G s.t. a−1 × a = e. (Every element has an inverse.)

3. If a, b, c ∈ G, then a× (b× c) = (a× b)× c. (The group operation is associative.)

If, in addition, for every a, b ∈ G, a × b = b × a (if the group operation commutes), we say that

(G,×) is an Abelian group or commutative group.
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Examples of groups include the real numbers together with ordinary addition, (IR,+); the real

numbers other than zero together with ordinary multiplication, (IR \ {0}, ∗); the rational numbers

together with ordinary addition, (Q,+); and the integers 0 to p−1, p prime, together with addition

modulo p, ({0, 1, . . . , p− 1},+).

Exercise 2 1. Show that ∀a ∈ G, a × a−1 = e. (The inverse from the left is also the inverse

from the right; equivalently, (a−1)−1 = a.)

2. Show that ∀a ∈ G, ae = a. (The identity from the left is also the identity from the right.)

1.5 Fields

Definition 2 An ordered triple (F ,×,+) is a field if F is a collection of objects and × and + are

operations on F × F such that

1. F is an Abelian group under the operation +, with identity 0.

2. F \ {0} is an Abelian group under the operation ×, with identity 1.

3. × is distributive over +. I.e., for any a, b, c ∈ F a× (b+ c) = a× b+ a× c and (a+ b)× c =

a× c+ b× c.

The additive inverse of a is denoted −a; the multiplicative inverse of a is a−1 = 1/a.

Examples: (IR,×,+), where × is ordinary (real) multiplication and + is ordinary (real) addition.

The complex numbers C, with complex multiplication and addition.

These (and the extended reals) are the only fields we will use.

1.6 Arithmetic with ∞

We shall use the following conventions:

• 0 · ∞ =∞ · 0 = 0

• x+∞ =∞+ x =∞, x ∈ IR

• x · ∞ =∞ · x =∞, x > 0

With these conventions, ([−∞,∞],×,+) is a field.
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1.7 Linear Vector Spaces

Definition 3 A linear vector space is an ordered quadruple ((F ,×,+1),X , ·,+2) where (F ,×,+1)

is a field, X is a set of objects (the vectors), and · is an operation on F⊗X and +2 is an operation

on X ⊗X such that:

1. (X ,+2) is an Abelian group with identity 0 (the zero vector)

2. · : F × X → X ; (α, x) 7→ α · x such that:

(a) If 1 is the multiplicative identity on F , 1 · x = x ∀x ∈ X .

(b) α · (x+2 y) = α · x+2 α · y ∀α ∈ F , x, y ∈ X . (distribution)

(c) α · (β · x) = (α× β) · x ∀α, β ∈ F , x ∈ X . (association)

(d) (α +1 β) · x = α · x+2 β · x, ∀α, β ∈ F , x ∈ X . (distribution)

We rarely distinguish notationally between +1 and +2, between × and ·, or between the additive

identity 0 of the field F and the identity 0 of the Abelian group X . Sometimes, the multiplication

symbols are omitted; e.g., α ·x = αx. Usually, one just calls X a linear vector space (LVS), omitting

mention of the other elements of the quadruple. For our purposes, F is almost always IR. In that

case, X is called a real linear vector space (RLVS).

Definition 4 A functional on a linear vector space is a mapping from the vectors X to the field F

of the linear vector space.

Definition 5 A linear combination of {xj}nj=1 ⊂ X , X a linear vector space, is a vector x =∑n
j=1 αjxj, where {αj}nj=1 ⊂ F A set {xα : α ∈ A} ⊂ X is linearly dependent if there exist

constants {βα : α ∈ A} ⊂ F , not all equal to zero, such that
∑
α∈A βαxα = 0. A set is linearly

independent if it is not linearly dependent.

Definition 6 A subspace of a linear vector space X is a subset of X that is a linear vector space

with the same field F and operations +1, ·,+2,× as X .

Definition 7 Let X be a linear vector space, A,B ⊂ X , x ∈ x, α ∈ F .

• αA ≡ {αa : a ∈ A}
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• −A ≡ {−1 · a : a ∈ A}

• x+ A ≡ {x+ a : a ∈ A} = A+ x

• x− A ≡ {x− a : a ∈ A}

• A+B ≡ {a+ b : a ∈ A, b ∈ B}

Exercise 3 1. Does x− A = −(A− x)?

2. Does A+ A = 2A?

3. When does A− A = 2A?

If you cannot find necessary conditions, give sufficient ones.

Definition 8 A mapping M from a linear vector space X into a linear vector space Y with the

same field F is linear iff

M(αx+ βy) = αMx+ βMy, ∀α, β ∈ F , x, y ∈ X .

Definition 9 Let X be a real linear vector space. A set C ⊂ X is convex iff αC + (1− α)C ⊂ C

∀α ∈ [0, 1]. A set B ⊂ X is balanced iff αB ⊂ B ∀α with |α| ≤ 1.

Note that this requires us to define | · | on the field F . For F = IR, let | · | be absolute value; for

F = C, let | · | be the modulus.

Exercise 4 Show that if C, D ⊂ X are convex, then

1. αC is convex, α ∈ IR

2. C ∩D is convex.

Definition 10 A linear combination
∑
j βjxj of elements {xj} of a linear vector space is a convex

combination if

1. {βj} ⊂ IR,

2. βj ≥ 0, ∀j, and
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3.
∑
j βj = 1.

Definition 11 The convex hull of a set A ⊂ X is the intersection of all convex sets that contain

A. Equivalently, it is the set of all convex combinations of elements of A. If C is convex, a point

x ∈ C is an extreme point of C if x cannot be written as a convex combination of a subset of C

unless that subset contains x. A polytope is the convex hull of a finite collection of points.

Definition 12 A set {xα : α ∈ A} is a basis for a linear vector space X if every x ∈ X has a unique

representation x =
∑
α∈A βαxα with {βα : α ∈ A} ⊂ F . If X has a basis with n elements, n ∈ IN,

X is finite-dimensional and the dimension of X , dim(X ), is n. If X is not finite-dimensional, it is

infinite-dimensional.

Exercise 5 Show that if Y is a subspace of X and dim(X ) = n, then dim(Y) ≤ n.

Definition 13 A Hamel basis for a linear vector space X is a maximal linearly independent subset

of X .

1.8 Normed linear vector spaces

Norms, completeness.

1.9 Metric spaces

1.10 Topological spaces

Neighborhoods, completeness. Topologies induced by metrics. Cauchy sequences.

1.11 Duals of linear vector spaces

Linear functionals, duality, norms of linear functionals.

1.12 Banach Spaces

Normed linear vector spaces that are complete w.r.t. topology induced by norm.
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1.13 Hilbert Spaces

Complete inner product spaces. Self-dual. Riesz Hilbert space representation theorem. Isometric

isomorphism between H∗, normed dual of H, and H itself. That is, every bounded linear functional

on H can be written as the inner product with an element of H; every element of H defines a

bounded linear functional on H; norm of the linear functional and norm of the element are equal.

1.14 Reproducing Kernel Hilbert Spaces

Hilbert spaceH of functions on some domainD. Point evaluator (the linear functional that evaluates

an element ofH at an arbitrary point x ∈ D) is a bounded linear functional. By Riesz representation

theorem, point evaluator is the inner product with an element of H. Elements of H are functions

on D. Denote by Kx(y) the element of H corresponding to evaluation at the point x ∈ D. Kernel

is Kx(y), viewed as a function of (x, y) ∈ D ×D.

Examples: finite-dimensional spaces of functions are reproducing Kernel Hilbert spaces. Suppose

H is an n-dimensional set of functions. Let {fj(y)}nj=1 be an orthonormal basis for H, so that any

element f of H can be written f =
∑n
j=1 αjfj(y) for some set of real numbers {αj}nj=1. Since

{fj(y)}nj=1 are orthonormal, αj = 〈f, fj〉. Hence

f(x) =
n∑
j=1

〈f, fj〉fj(x)

= 〈f,
n∑
j=1

fj(x)fj〉. (10)

Thus Kx(y) =
∑n
j=1 fj(x)fj(y).

1.15 Partial order and convexity

Definition 14 A relation ≤ is a partial order on a set X if for all x, y, z ∈ X ,

1. x ≤ x, ∀x ∈ X

2. if x ≤ y and y ≤ x, then x = y

3. if x ≤ y and y ≤ z then x ≤ z

If, in addition, for any x, y ∈ X , either x ≤ y or y ≤ x (or both), then ≤ is an order.
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The usual ≤ is an order on IR. Set inclusion gives an order among the power set (set of all

subsets) of a given set: x ≤ y if x ⊂ y. One can think of orders as subsets of X ⊗X or as mappings

from X ⊗X → {0, 1}. Henceforth, we take IR to be ordered by ≤.

Definition 15 A set C ⊂ X , X a linear vector space, is a cone with vertex 0 iff αC ⊂ C ∀α ≥ 0.

A set C ⊂ X , X a linear vector space, is a cone with vertex p if C = p + C0, where C0 is a cone

with vertex 0.

Definition 16 Let X be a LVS and let P ⊂ X be a convex cone with vertex 0. For any x, y ∈ X ,

we write x ≤ y (w.r.t. P ) if y − x ∈ P . The cone P is called the positive cone in X . N ≡ −P is

the negative cone. We write x ≥ y if y − x ∈ N (equivalently, if x− y ∈ P ).

Examples. In IR, [0,∞) is the usual positive cone. In IRn, the positive orthant (n-tuples whose

components are all non-negative) is the usual positive cone. The set of non-negative functions and

the set of monotone functions can form the positive cones in some function spaces.

Note: the relation ≤ defined above is almost–but not quite–a partial order on the linear vector

space X : it does not satisfy the second axiom. If P satisfies (x ∈ P and − x ∈ P ) implies x = 0,

then the relation ≤ is a partial order.

Exercise 6 For x, y ∈ IRn, define

R(x, y) =

 true, maxnj=1(yj − xj) ≥ 0

false, otherwise.
(11)

Does R(·, ·) define a partial order on IRn? Why or why not?

Definition 17 Let X and Y be linear vector spaces, let P be the positive cone on Y, and let

T : X → Y have domain D. T is convex if

1. D is a convex subset of X

2. T (αx1 + (1− α)x2) ≤ αTx1 + (1− α)Tx2, ∀x1, x2 ∈ D, and all α ∈ [0, 1].

Note that convexity depends on the definition of the positive cone P in Y ! Convexity and

related (such as pseudoconvexity and quasiconvexity), play a crucial role in optimization theory.

(A mapping T is quasiconvex if its domain is convex and T (αx1 + (1 − α)x2) ≤ max(Tx1, Tx2),

∀x1, x2 ∈ D, and all α ∈ [0, 1].)
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Definition 18 Let T be a subset of a linear vector space X . The cone generated by T or star of T

is the set

C(T ) ≡ {αt : α ∈ [0,∞), t ∈ T} ⊂ X . (12)

1.16 General-purpose Inequalities

1.16.1 The Arithmetic-Geometric Mean Inequality

1.16.2 Rearrangement Inequalities

Two functions, three functions.

1.16.3 The Triangle Inequality and Generalizations

1.16.4 The Cauchy-Schwartz Inequality

If H is a Hilbert space and x, y ∈ H, then

|(x, y)| ≤ ‖x‖‖y‖. (13)

1.16.5 Parseval’s Theorem

1.16.6 The Projection Theorem

1.17 Probability Inequalities

This follows [?] rather closely.

1.17.1 A Helpful Identity

If X is a nonnegative real-valued random variable,

EX =
∫ ∞
0

Pr{X ≥ x}dx (14)

1.17.2 Jensen’s Inequality

If φ is a convex function from X to <, then φ(EX) ≤ Eφ(X).
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1.17.3 Markov’s, Chebychev’s, and related inequalities

From 13,

EX ≥
∫ t

0
Pr{X ≥ x}dx ≥ tPr{X ≥ t} (15)

so

Pr{X ≥ t} ≤ EX
t
. (16)

Moreover, for any strictly monotonic function f and nonnegative X,

Pr{X ≥ t} = Pr{f(X) ≥ f(t)} ≤ Ef(X)

f(t)
. (17)

In particular, for any real-valued X and real q > 0, |X−EX| is a nonnegative random variable and

f(x) = xq is strictly monotonic, so

Pr{|X − EX| ≥ t} = Pr{|X − EX|q ≥ tq} ≤ E|X − EX|q

tq
. (18)

Chebychev’s inequality is a special case:

Pr{|X − EX|2 ≥ t2} ≤ E|X − EX|2

t2
=

VarX

t2
. (19)

1.17.4 Chernoff bounds

Apply 16 with f(x) = esx for positive s:

Pr{X ≥ t} = Pr{esX ≥ est} ≤ EesX

est
(20)

for all s. For particular X, can optimize over s.

1.17.5 Hoeffding’s Inequality

Let {Xj}nj=1 be independent, and define Sn ≡
∑n
j=1Xj. Then, applying 19 gives

Pr{Sn − ESn ≥ t} ≤ e−stEesSn = e−st
n∏
j=1

es(Xj−EXj). (21)

Hoeffding bounds the moment generating function for a bounded random variable X: If a ≤ X ≤ b

with probability 1, then

EesX ≤ es
2(b−a)2/8, (22)
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from which follows Hoeffding’s tail bound .

If {Xj}nj=1 are independent and Pr{aj ≤ Xj ≤ bj} = 1, then

Pr{Sn − ESn ≥ t} ≤ e−2t
2/
∑n

j=1
(bj−aj)2 (23)

and

Pr{Sn − ESn ≤ −t} ≤ e−2t
2/
∑n

j=1
(bj−aj)2 (24)

1.17.6 Hoeffding’s Other Inequality

Suppose f is a convex, real function and X is a finite set. Let {Xj}nj=1 be a simple random sample

from X and let {Yj}nj=1 be an iid uniform random sample (with replacement) from X . Then

Ef

 n∑
j=1

Xj

 ≤ Ef

 n∑
j=1

Yj

 . (25)

1.17.7 Bernstein’s Inequality

Suppose {Xj}nj=1 are independent with EXj = 0 for all j, Pr{|Xj| ≤ c} = 1, σ2
j = EX2

j and

σ = 1
n

∑n
j=1 σ

2
j . Then for any ε > 0,

Pr{Sn/n > ε} ≤ e−nε
2/2(σ2+cε/3). (26)
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1.17.8 The Probability Transform
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