Statistics 210B, Spring 1998

Class Notes

P.B. Stark

stark@stat.berkeley.edu

www.stat.berkeley.edu/~stark/index.html

March 19, 1998

Fifth Set of Notes

1 More on the Bounded Normal Mean

Lemma 1 Stein's Lemma. (See Evans and Stark, 1996. Ann. Stat., 24, 809-815, for a substantial generalization.) Suppose $X \sim N(\theta, 1)$, and that $\delta(\cdot)$ is differentiable, with $E_{\theta}|\delta'(X)| < \infty$, $\lim_{x \to \pm \infty} \delta(x) \exp\{-(x-\theta)^2/2\} = 0$, and that $E_{\theta}[\delta(X)(X-\theta)]$ is finite. Then

$$E_{\theta}[\delta(X)(X-\theta)] = E_{\theta}\delta'(X). \tag{1}$$

Proof. Let $\phi(x)$ be the standard normal density. Integrate by parts:

$$E_{\theta}[\delta(X)(X-\theta)] = \int_{-\infty}^{\infty} \delta(x)(x-\theta)\phi(x-\theta)dx$$

$$= \int_{-\infty}^{\infty} \delta(x)(x-\theta)\phi(x)dx$$

$$= -\delta(x)\phi(x)|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \delta'(x)\phi(x)dx$$

$$= \int_{-\infty}^{\infty} \delta'(x)\phi(x)dx$$

$$= E_{\theta}\delta'(X).$$
(2)

Lemma 2 Consider estimating the mean θ of a normal distribution with unit variance using an estimator δ that satisfies the conditions of Stein's Lemma. For squared-error loss,

$$R(\theta, \delta) = 1 - E_{\theta}(2\psi'(X) - \psi^2(X)), \qquad (3)$$

where $\psi(x) = x - \delta(x)$.

Proof.

$$R(\theta, \delta) = E_{\theta}(\theta - \delta(X))^{2}$$

$$= E_{\theta}(\theta - X + X - \delta(X))^{2}$$

$$= E_{\theta}(-(X - \theta) + \psi(X))^{2}$$

$$= E_{\theta}\left((X - \theta)^{2} - 2(X - \theta)\psi(X) + \psi(X)^{2}\right)$$

$$= 1 - E_{\theta}\left(2\psi'(X) - \psi^{2}(X)\right), \qquad (4)$$

using the lemma in the last step.

Bickel (1981, Ann. Stat., 9, 1301-1309) studies the minimax problem as the bound goes to infinity and finds the asymptotic form of the least-favorable prior. We have a single observation $X \sim N(\theta, 1)$, with $\theta \in \Theta = [-m, m]$. The loss function $\ell(\theta, a) = |\theta - a|^2$. The action space is $\mathcal{A} = \mathbf{R}$ (which we might as well limit to [-m, m] if we can). The "natural" estimator is $\delta^0(x) = x$, and the maximum likelihood estimator is the truncation estimator:

$$\delta_{MLE}(x) = \begin{cases} m, & x \ge m \\ x, & |x| < m, \\ -m, x \le -m \end{cases}$$
(5)

Clearly, the risk of δ^0 is unity for all θ , the maximum risk of the MLE is for $\theta = 0$, and the minimum risk is for $\theta = \pm m$.

Lemma 3 (Bickel, 1981; special case of Brown, 1971) Suppose $X \sim N(\theta, 1), \theta \in \Theta, \theta \sim \pi$. Let f_{π} be the density of the marginal distribution of X:

$$f_{\pi}(x) = \phi \star \pi(x) = \int_{-\infty}^{\infty} \phi(x - \theta) \pi(d\theta).$$
(6)

The Bayes risk for π for squared-error loss is

$$r(\pi) = 1 - \int_{-\infty}^{\infty} \frac{(f'_{\pi}(x))^2}{f_{\pi}(x)} dx.$$
(7)

Proof. The Bayes estimator for prior π is the posterior mean of θ given x. The derivative of $f_{\pi}(x)$ with respect to x is

$$\frac{d}{dx}f_{\pi}(x) = \int_{-\infty}^{\infty} \frac{d}{dx}\phi(x-\theta)\pi(d\theta)$$

$$= \int_{-\infty}^{\infty} (-(x-\theta))\phi(x-\theta)\pi(d\theta)$$

$$= -xf_{\pi}(x) + \int_{-\infty}^{\infty} \theta\phi(x-\theta)\pi(d\theta)$$

$$= (-x+E(\theta|x))f_{\pi}(x),$$
(8)

so the posterior mean of θ given x is

$$\delta(x) = \delta_{\pi}(x) = x + f'_{\pi}(x) / f_{\pi}(x).$$
(9)

Applying the previous lemma, with $\psi(x) = x - \delta(x) = -f'_{\pi}(x)/f_{\pi}(x)$ gives the risk at θ of this estimator for squared-error loss to be

$$1 - E_{\theta} \left(2\psi'(X) - \psi^{2}(X) \right) = 1 - E_{\theta} \left(-2f_{\pi}''(X) / f_{\pi}(X) + 2(f_{\pi}'(X))^{2} / f_{\pi}^{2}(X) - (f_{\pi}'(X))^{2} / f_{\pi}^{2}(X) \right)$$
$$= 1 - E_{\theta} \left(f_{\pi}'(X) \right)^{2} / f_{\pi}^{2}(X) - 2f_{\pi}''(X) / f_{\pi}(X) \right).$$
(10)

Taking the expectation with respect to π to find the Bayes risk, and using Fubini's Theorem yields

$$r(\pi) = E_{\pi}R(\theta, \delta_{\pi}) = 1 - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{(f'_{\pi}(x))^2 - 2f''_{\pi}(x)f_{\pi}(x)}{f_{\pi}^2(x)} \phi(x-\theta)\pi(d\theta)dx$$

$$= 1 - \int_{-\infty}^{\infty} \frac{(f'_{\pi}(x))^2 - 2f''_{\pi}(x)f_{\pi}(x)}{f_{\pi}^2(x)} f_{\pi}(x)dx$$

$$= 1 - \int_{-\infty}^{\infty} \frac{(f'_{\pi}(x))^2}{f_{\pi}(x)}dx + 2f'_{\pi}(x)|_{x=-\infty}^{\infty}.$$
 (11)

Because f_{π} is the result of convolution with a Gaussian density, its derivatives of all orders vanish as $x \to \pm \infty$, so we have

$$r(\pi) = 1 - \int_{-\infty}^{\infty} \frac{(f'_{\pi}(x))^2}{f_{\pi}(x)} dx.$$
 (12)

Note that for a distribution F with absolutely continuous density f, the Fisher information is

$$I(F) = \int_{-\infty}^{\infty} \frac{(f'(x))^2}{f(x)} dx,$$
(13)

so the equality just established is $r(\pi) = 1 - I(\Phi \star \pi)$, where Φ is the standard normal distribution. Thus we have a relation between the Bayes risk for a given prior on θ and the Fisher information of the marginal distribution of the observation X for that prior. The least favorable prior is that for which the Fisher information of $\Phi \star \pi$ is minimal.

Let $\rho(m)$ be the minimax risk for squared-error loss with $\Theta = [-m, m]$, and let $r(\pi)$ be the Bayes risk for squared-error loss using prior π on θ . Bickel (1981) uses the relation between the Bayes risk and the Fisher information, and properties of the Fisher information, to show that if π_1 is the distribution on [-1, 1] with density

$$g_1(s) = \begin{cases} \cos^2(s\pi/2), & |s| \le 1\\ 0, & \text{otherwise,} \end{cases}$$
(14)

and π_m is the distribution on [-m,m] with density

$$g_m(s) = m^{-1}g_1(s/m), (15)$$

then the priors $\{\pi_m\}$ are approximately least favorable.

Theorem 1 (Bickel, 1981, Theorem 2.1). As $m \to \infty$,

$$\rho(m) = r(\pi_m) + o(m^{-2}), \tag{16}$$

and

$$r(\pi_m) = 1 - \frac{\pi^2}{m^2} + o(m^{-2}).$$
(17)

Let π_m^0 be the least favorable prior when $\Theta = [-m,m]$, and let $\pi_1^{(m)}$ be the distribution obtained by scaling π_m^0 to [-1,1]: $\pi_1^{(m)}(s) = \pi_m^0(ms)$. Then $\pi_1^{(m)}$ converges weakly to π_1 .

Perhaps surprisingly, the Bayes estimators $\delta_{\pi_m}(x)$ are not asymptotically minimax (indeed, $\limsup_m R(m, \delta_{\pi_m}) > 1$, so it does not dominate the naive estimator $\delta(x) = x$). Bickel (1981) also shows how to modify the estimator to be asymptotically minimax to order m^{-2} .

Casella and Strawderman (1981, Ann. Stat., 9, 870-878) and Gatsonis, MacGibbon and Strawderman (1987, Stat. Prob. Lett., 6, 21-30) address the estimation of a bounded normal mean, using squared-error loss. The former paper looks at Bayes estimators for 2-point and 3-point priors, and shows that they are minimax when the bound on the mean is small; the latter shows that a uniform prior performs surprisingly well in a minimax sense.

Let π_m^0 put mass 1/2 on $\pm m$. Because the loss is squared-error, the Bayes estimator δ_m^0 against that prior is the posterior mean of θ given x, which we can calculate. The marginal density of X is

$$f_X(x) = \frac{1}{2\sqrt{2\pi}} \left[e^{-(x-m)^2/2} + e^{-(x+m)^2/2} \right].$$
 (18)

Proceeding blithely without concern for rigor, the posterior "density" of θ given X = x is

$$f_{\theta|X=x}(\theta) = \frac{\delta_{\theta-m}e^{-(x-m)^2/2} + \delta_{\theta+m}e^{-(x-m)^2/2}}{e^{-(x-m)^2/2} + e^{-(x+m)^2/2}},$$
(19)

where δ_x is the Dirac delta measure (a point-mass at x = 0). The posterior mean is

$$\delta_{m}^{0}(x) = E(\theta|X = x)$$

$$= \left[\frac{me^{-(x-m)^{2}/2} - me^{-(x-m)^{2}/2}}{e^{-(x-m)^{2}/2} + e^{-(x+m)^{2}/2}}\right]$$

$$= m\frac{e^{mx} - e^{-mx}}{e^{mx} + e^{-mx}}$$

$$= m\tanh(mx).$$
(20)

Similarly, let π_m^{α} put mass α at zero, and mass $(1 - \alpha)/2$ at $\pm m$. The Bayes estimator for that prior is

$$\delta_m^{\alpha}(x) = \frac{(1-\alpha)m\tanh(mx)}{1-\alpha+\alpha\exp(m^2/2)\mathrm{sech}(mx)}.$$
(21)

Finally, let π_m be the uniform prior on [-m, m]. Let's find the corresponding Bayes estimator. The conditional distribution of X given θ is as before, and the marginal density of X is

$$\frac{1}{2m} \int_{\theta=-m}^{m} \phi(x-\theta) d\theta = \frac{1}{2m} (\Phi(x-m) - \Phi(x+m)), \tag{22}$$

where $\phi(\cdot)$ is the standard normal density and $\Phi(\cdot)$ is the standard normal cdf. The posterior density of θ is

$$f(\theta|x) = 1_{|\theta| \le m} \frac{\phi(x-\theta)}{\Phi(x-m) - \Phi(x+m)}.$$
(23)

The Bayes estimator $\delta_m(x)$ is the posterior mean, namely

$$\frac{\int_{-m}^{m} \theta \phi(\theta - x) d\theta}{\Phi(x - m) - \Phi(x + m)}.$$
(24)

Let's work on the numerator:

$$\int_{-m}^{m} \theta \phi(\theta - x) d\theta = \int_{-m}^{m} (\theta - x) \phi(\theta - x) d\theta + \int_{-m}^{m} x \phi(\theta - x) d\theta$$
$$= e^{-(x-m)^2/2} - e^{-(x+m)^2/2} + x(\Phi(x-m) - \Phi(x+m)).$$
(25)

Thus 24 is

$$\delta_m(x) = x + \frac{e^{-(x-m)^2/2} - e^{-(x+m)^2/2}}{\Phi(x-m) - \Phi(x+m)}.$$
(26)

One use the results following Stein's lemma to calculate the risks differently.

Lemma 4 (Casella and Strawderman, 1981, Lemma 3.1) The Bayes estimator δ_m^0 has maximum risk

$$\max_{\theta \in [-m,m]} R(\theta, \delta_m^0) = \max\left(R(0, \delta_m^0), R(m, \delta_m^0)\right).$$
(27)

Proof. Let $\delta(x) = \delta_m^0(x)$.

$$\delta'(x) = (d/dx)\delta(x) = m(d/dx)\tanh(mx)$$
$$= m^2 - m^2\tanh^2(mx)$$
$$= m^2 - \delta^2(x), \qquad (28)$$

and

$$\delta''(x) = (d^2/dx^2)\delta(x) = -2\delta(x)\delta'(x).$$
(29)

Note that in general, if $\delta(x)$ is differentiable (any other conditions needed?) and θ is a location parameter,

$$\lim_{a \to 0} \frac{E_{\theta+a}\delta(X) - E_{\theta}\delta(X)}{a} = \lim_{a \to 0} \frac{E_{\theta}\delta(X+a) - E_{\theta}\delta(X)}{a}$$
$$= \lim_{a \to 0} \frac{E_{\theta}(\delta(X+a) - \delta(X))}{a}$$
$$= E_{\theta} \lim_{a \to 0} \frac{\delta(X+a) - \delta(X)}{a}$$
$$= E_{\theta}\delta'(X).$$
(30)

The risk of δ at θ is

$$E_{\theta}|\theta - \delta(X)|^2 = \theta^2 - 2\theta E_{\theta}\delta(X) + E_{\theta}\delta^2(X).$$
(31)

The derivative of the risk w.r.t. θ is (applying 30)

$$d/d\theta R(\theta, \delta_m^0) = 2\theta - 2E_{\theta}\delta(X) - 2\theta E_{\theta}\delta'(X) + 2E_{\theta}\delta(X)\delta'(X)$$

$$= 2E_{\theta} \left[(\theta - \delta(X))(1 - \delta'(X)) \right]$$

$$= 2E_{\theta} \left[((\theta - X) + (X - \delta(X)))(1 - \delta'(X)) \right]$$

$$= E_{\theta} \left[(X - \delta(X)) - \delta'(X)(X + \delta(X)) \right].$$
(32)

Casella and Strawderman use Karlin's change of sign lemma to show that this can have at most three sign changes; recall that E_{θ} is a variation-diminishing transformation for $N(\theta, 1)$, so the result follows if the argument of the expectation has at most three sign changes. The argument is

$$(x - \delta(x)) - \delta'(x)(x + \delta(x)), \tag{33}$$

which vanishes at x = 0. Its other zeros solve

$$x - \delta(x) = \delta'(x)(x + \delta(x)), \tag{34}$$

or equivalently (for $x \neq 0$)

$$1 - \delta(x)/x = \delta'(x)(1 + \delta(x)/x).$$
(35)

For x > 0, $\delta(x)/x$ and $\delta'(x)$ are positive and decreasing. Thus for x > 0, $(1 - \delta(x)/x)$ is increasing, and $\delta'(x)(1+\delta(x)/x)$ is decreasing, so 35 has at most one solution for x > 0. Note that $\delta'(x)$ is an even function, and $\delta(x)$ and x are odd functions, so $(x - \delta(x)) - \delta'(x)(x + \delta(x))$ is odd, and it has at most one zero for x < 0, and thus at most three zeros counting the one at x = 0. Both $\delta(x)$ and $\delta'(x)$ are bounded, so the argument is negative for $x \to -\infty$ and positive for $x \to +\infty$; hence, the sign sequence of the argument is -+-+. By the change of sign lemma, the expectation also has at most three sign changes, in the same order. Again because the argument is odd,

$$E_0[(X - \delta(X)) - \delta'(X)(X + \delta(X))] = 0.$$
(36)

Thus the risk is stationary at $\theta = 0$. The derivative of the risk at $\theta > 0$ is the negative of the derivative of the risk at $-\theta$ (as you can see from symmetry). Thus a local extremum of

the risk for some $\theta > 0$ must be a minimum, and hence the maximum risk is either at $\theta = 0$ or at $\theta = \pm m$. This proves the lemma.

If we can establish that the Bayes risk of the estimator is equal to its maximum risk, the estimator is minimax.

Lemma 5 Casella and Strawderman, 1981, Lemma 3.2. The function

$$f(m) = R(0, \delta_m^0) - R(m, \delta_m^0)$$
(37)

has only one sign change as m goes from 0 to ∞ . The sign change is from negative to positive, so there is a unique $m_0 \in \mathbf{R}$ s.t. $f(m) \leq 0, \forall m \leq m_0$.

Proof. The difference in risks is

$$f(m) = E_0(\delta(X) - 0)^2 - E_m(\delta(X) - m)^2$$

= $E_0(m \tanh(mX))^2 - E_m(m \tanh(mx) - m)^2$
= $m^2 \left[E_0 \tanh^2(mX) - E_m(1 - \tanh(mx))^2 \right]$
= $m^2 g(m).$ (38)

Differentiating g(m) gives

$$\frac{d}{dm}g(m) = 2E_0(X\tanh(mX)\mathrm{sech}^2(mX)) + 2E_m((X+m)(1-\tanh(mX))\mathrm{sech}^2(mX)).$$
(39)

The second expectation is of an argument with but one sign change, from negative to positive, so if its expectation is positive at $\theta = 0$, it is positive for $\theta = m \ge 0$ (the distribution of the argument will be stochastically larger). Define $Q = X \tanh(mX) \operatorname{sech}^2(mX)$. We have

$$\frac{d}{dm}g(m) \geq 2E_0(X \tanh(mX)\operatorname{sech}^2(mX)) + 2E_0((X+m)(1-\tanh(mX))\operatorname{sech}^2(mX))$$

$$= 2E_0Q + 2E_0\left((X+m)\operatorname{sech}^2(mX) - Q\right)$$

$$= 2E_0\left((X+m)\operatorname{sech}^2(mX)\right)$$

$$= 2mE_0\operatorname{sech}^2(mX) + 2E_0X\operatorname{sech}^2(mX)$$

$$= 2mE_0\operatorname{sech}^2(mX)$$

$$\geq 0 \text{ for } m \geq 0.$$
(40)

(The penultimate step uses the fact that $X \operatorname{sech}^2(mX)$ is an odd function.) This proves the lemma, and takes us to one of the main theorems of Casella and Strawderman:

Theorem 2 Casella and Strawderman, 1981, Theorem 3.1. If $X \sim N(\theta, 1)$, $\theta \in \Theta = [-m, m]$, $0 \leq m \leq m_0$, then $\delta_m^0(x) = m \tanh(mx)$ is minimax for squared-error loss, and τ_m^0 is a least-favorable prior.

Proof. The two lemmas show that for $m \leq m_0$, $\max_{\theta \in \Theta} R(\theta, \delta_m^0) = R(m, \delta_m^0)$. But for the prior π_m^0 that assigns mass 1/2 to $\pm m$, the Bayes risk is

$$r(\pi_m^0, \delta_m^0) = \frac{1}{2}R(-m, \delta_m^0) + \frac{1}{2}R(m, \delta_m^0) = R(m, \delta_m^0).$$
(41)

We have already seen that if the Bayes risk of the Bayes estimator for a given prior equals the maximum risk of the Bayes estimator over the parameter set, the Bayes estimator is minimax. We are done.

Casella and Strawderman go on to show that π_m^0 is not least favorable for $m > m_0 \approx 1.05$. As $m \uparrow$, the least favorable prior concentrates at a larger and larger number of discrete points in [-m, m]. The three-point priors π_m^{α} are minimax for some range of values of m, including at least about $m \in [1.4, 1.6]$.