Statistics 210B, Spring 1998 Class Notes

P.B. Stark
stark@stat.berkeley.edu
WWW.stat.berkeley.edu/~stark/index.html

March 7, 1998

Fourth Set of Notes

1 Some remarks on Bayes and Minimax estimators

We observe $X \sim \mathbf{P}_{\theta}, \theta \in \Theta$. Let π be the prior distribution of θ; we assume that the support of π is a subset of Θ. Suppose the conditional distribution of X given θ is \mathbf{P}_{θ}, with corresponding expectation operator E_{θ}. The action space is \mathcal{A}, and we seek a decision rule $\delta: \mathcal{X} \rightarrow \mathcal{A}$. The risk of a decision δ is $R(\theta, \delta)=E_{\theta} \ell(\theta, \delta(X))$. Define the average risk of an estimator δ to be

$$
\begin{align*}
r_{\pi}(\delta) & \equiv E_{X, \theta} \ell(\theta, \delta(X)) \\
& =E[E(\ell(\theta, \delta(X))) \mid X)] \tag{1}
\end{align*}
$$

where the expectation is with respect to the product measure of X and θ. The Bayes estimator minimizes the average risk.

The posterior risk of an action a is $r_{\pi}(a, x)=E_{\pi}(\ell(\theta, a) \mid X=x)$, where the subscript π is to remind us of the prior, but the expectation is with respect to the conditional distribution of θ given X, which is derived from the product measure on X and θ. Ideally, we would like
to find the decision rule $\delta_{\pi}: \mathbf{R} \rightarrow \mathcal{A}$ that minimizes $r(\delta \mid x)$ for each x; such a rule would also minimize the Bayes risk. In general, such a rule need not exist; if one exists, it need not be unique (vide infra).

An estimator δ is unbiased for $\tau(\theta)$ if $E_{\theta} \delta(X)=\theta$. Recall that an estimator δ is inadmissible if there exists another estimator that does at least as well for all values of θ, and better for some value of θ. That is, if there is a δ_{0} and θ_{0} such that

$$
\begin{equation*}
R\left(\theta, \delta_{0}\right)=E_{\theta}(\ell(\theta, \delta(X)) \leq R(\theta, \delta) \quad \forall \theta \in \Theta \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(\theta_{0}, \delta_{0}\right)<\leq R\left(\theta_{0}, \delta\right) \tag{3}
\end{equation*}
$$

One of the nice properties of Bayes estimators is that if they are unique, they are admissible.

Lehmann, TPE, §4.1 Theorem 1.1 states (in slightly different notation)

Theorem 1 Let θ have distribution π, and, given $\theta=\gamma$, let X have distribution \mathbf{P}_{γ}. Suppose $\ell(\theta, a)$ is nonnegative for all θ, and that there exists an estimator δ_{0} with finite risk for estimating estimating $\tau(\theta)$. If for almost all x there exists a rule $\delta_{\pi}(x)$ minimizing $E_{\pi}\{\ell(\theta, \delta(x)) \mid X=x\}$, then δ_{π} is a Bayes estimator.

Corollary 1 If $\ell(\theta, a)=|a-\tau(\theta)|^{2}$, then $\delta_{\pi}=E_{\pi}\{\tau(\theta) \mid X=x\}$.

Corollary 2 If $\ell(\theta, a)$ is strictly convex in a, a Bayes estimator δ_{π} is unique a.e. $\mathcal{P}=\left\{\mathbf{P}_{\theta}\right\}$, provided the average risk of δ_{π} is finite, and provided the marginal distribution Q of X

$$
\begin{equation*}
Q(A)=\int \mathbf{P}_{\theta}\{X \in A\} d \pi(\theta) \tag{4}
\end{equation*}
$$

is such that a.e. Q implies a.e. \mathcal{P}.

The condition on Q ensures that measures \mathbf{P}_{θ} that are the only ones to assign mass to some points $x \in \mathcal{X}$ are not themselves given zero measure by π.

Note that we typically give up unbiasedness in moving to Bayes decisions:

Theorem 2 (Lehmann, TPE, 4.4 Theorem 1.2) Let $\theta \sim \pi$ and let \mathbf{P}_{θ} be the conditional distribution of X given θ. Consider estimating $\tau(\theta)$ for squared-error loss. If $\delta(X)$ is unbiased, it cannot be Bayes unless

$$
\begin{equation*}
E_{X, \theta}[\delta(X)-\tau(\theta)]^{2}=0 \tag{5}
\end{equation*}
$$

Proof. Suppose δ is unbiased and is Bayes for $\tau(\theta)$. Then $\delta(X)=E_{\pi}[\tau(\theta) \mid X]$ a.e. Unbiasedness implies $E[\delta(X) \mid \theta=\gamma]=\tau(\gamma)$ for all $\gamma \in \Theta$. Conditioning on X gives

$$
\begin{align*}
E[\tau(\theta) \delta(X)] & =E\{\delta(X) E[\tau(\theta) \mid X]\} \\
& =E \delta^{2}(X) \tag{6}
\end{align*}
$$

Conditioning on θ gives

$$
\begin{align*}
E[\tau(\theta) \delta(X)] & =E\{\tau(\theta) E[\delta(X) \mid \theta]\} \\
& =E g^{2}(\theta) \tag{7}
\end{align*}
$$

Thus

$$
\begin{equation*}
E[\delta(X)-\tau(\theta)]=E \delta^{2}(X)+E g^{2}(\theta)-2 E[\tau(\theta) \delta(X)]=0 \tag{8}
\end{equation*}
$$

The Bayes estimator minimizes a weighted average of the risks for different possible values of the parameter $\theta \in \Theta$, where the weight is the prior distribution on those values. In contrast, the minimax decision rule minimizes the largest risk for any $\theta \in \Theta$:

$$
\begin{equation*}
\sup _{\theta \in \Theta} R(\theta, \delta) \tag{9}
\end{equation*}
$$

There is a truly wonderful duality between the risks. A prior π for θ is least favorable if the Bayes risk is no larger for any other prior than for it; i.e., if δ_{π} denotes the Bayes estimator for prior π on θ, then π^{*} is least favorable if

$$
\begin{equation*}
r_{\pi^{*}}\left(\delta_{\pi^{*}}\right) \geq r_{\pi}\left(\delta_{\pi}\right) \tag{10}
\end{equation*}
$$

for all priors π on Θ.

Theorem 3 (Lehmann, TPE, 4.2 Theorem 2.1) Suppose that π is a prior distribution on Θ such that

$$
\begin{equation*}
E_{\pi} R\left(\theta, \delta_{\pi}\right)=\sup _{\theta \in \Theta} R\left(\theta, \delta_{\pi}\right) \tag{11}
\end{equation*}
$$

where δ_{π} is the Bayes decision for prior π, as before. Then

1. δ_{π} is minimax over Θ.
2. If δ_{π} is the unique Bayes decision for prior π, it is the unique minimax decision.
3. π is least favorable.

Proof.

1. Let δ be a different decision rule. Then

$$
\begin{align*}
\sup _{\theta \in \Theta} R(\theta, \delta) & \geq E_{\pi} R(\theta, \delta) \\
& \geq E_{\pi} R\left(\theta, \delta_{\pi}\right) \\
& =\sup _{\theta \in \Theta} R\left(\theta, \delta_{\pi}\right) \tag{12}
\end{align*}
$$

2. same proof as (1), using $>$.
3. Let π_{1} be another prior distribution on Θ. Then

$$
\begin{align*}
r_{\pi_{1}}\left(\delta_{\pi_{1}}\right) & =E_{\pi_{1}} R\left(\theta, \delta_{\pi_{1}}\right) \\
& \leq E_{\pi_{1}} R\left(\theta, \delta_{\pi}\right) \\
& \leq \sup _{\theta \in \Theta} R\left(\theta, \delta_{\pi}\right) \\
& =r_{\pi} . \tag{13}
\end{align*}
$$

For the Bayes risk of the Bayes estimator to equal the maximum risk of the Bayes estimator implies that

$$
\begin{equation*}
\mathbf{P}_{\pi}\left\{R\left(\theta, \delta_{\pi}\right)=\sup _{\nu \in \Theta} R\left(\nu, \delta_{\pi}\right)\right\}=1 \tag{14}
\end{equation*}
$$

This, together with the theorem, implies that if a Bayes estimator has constant risk (over $\Theta)$, it is minimax. Moreover, if there is a set $\omega \subset \Theta$ with $\pi(\omega)=1$ such that $R\left(\theta, \delta_{\pi}\right)$ attains its maximum at all $\theta \in \omega$, then δ_{π} is minimax.

The preceeding development has tacitly assumed that we are restricting attention to non-randomized estimators. When the loss function is strictly convex, the every randomized estimator is dominated by a non-randomized estimator. When the loss function is merely convex, for each randomized estimator, there is a non-randomized estimator whose risk is no larger than that of the randomized estimator. Thus in many situations (squared-error loss, in particular) it suffices to consider non-randomized estimators.

The following material is drawn primarily from TPE.

Lemma 1 Jensen's inequality. Let $f: \mathcal{X} \rightarrow \mathbf{R}$ be a convex function, and let X be a random variable taking values in \mathcal{X}. Then

$$
\begin{equation*}
f(E X) \leq E f(X) \tag{15}
\end{equation*}
$$

If f is strictly convex, the inequality is strict unless X is almost surely constant.

Definition $1 A$ randomized decision rule δ is a mapping from the sample space \mathcal{X} to a random variable $Y(x)$ that takes values in the action space \mathcal{A} (which is assumed to be a measurable space). To each $x \in \mathcal{X}, \delta$ assigns a random variable $Y(x)$ with known distribution \mathbf{P}_{x}. The decision rule assigns to an observed value x an observation from the random variable $Y(x) \sim \mathbf{P}_{x}$. The risk of a randomized decision rule is $E_{\theta} E_{X} \ell(\theta, Y(X))$.

Theorem 4 (Lehmann, TPE, §1.5, Theorem 5.1) Suppose $X \sim \mathbf{P}_{\theta}, \theta \in \Theta$, and let T be sufficient for \mathbf{P}_{Θ}. For any estimator $\delta(X)$ of $\tau(\theta)$ there exists a (possibly randomized) estimator based on T that has the same risk function as $\delta(X)$.

Sketch of proof. Given T, the conditional distribution of X does not depend on θ. Let $\mathbf{P}(\cdot \mid T=t)$ denote this distribution. Given $T=t$, one can construct a random variable X_{t}^{\prime} that has distribution $\left.\mathbf{P}_{(} \cdot \mid T=t\right)$ The unconditional distributions of X_{t}^{\prime} and X are the same: $\mathbf{P}_{\theta}\left\{X_{t}^{\prime} \in A\right\}=\mathbf{P}_{\theta}\{X \in A\}$ for all measurable subsets $A \subset \mathcal{X}$. Thus if one knows the value of T, performing a subsequent randomization by drawing from $\left.\mathbf{P}_{(} \cdot \mid T=t\right)$, allows one to generate data with the same distribution as the original experiment gave. One can therefore construct an estimator $\delta^{\prime}(t)$ that depends on the data only through T and that
is risk-equivalent to $\delta(x)$ by taking $\delta(t)$ to be $\delta\left(X_{t}^{\prime}\right)$, whose value depends on the data only through T.

Remark. Any randomized estimator from data X is equivalent to a non-randomized estimator from data $X^{\prime}=(X, U)$, where $U \sim U[0,1]$ is independent of X.

Theorem 5 The Rao-Blackwell Theorem (see Lehmann, TPE, §1.6, Theorem 6.4). Let X have distribution $\mathbf{P}_{\theta} \in \mathbf{P}_{\Theta}=\left\{\mathbf{P}_{\nu}: \nu \in \Theta\right\}$, and let T be sufficient for \mathbf{P}_{Θ}. Let $\delta: \mathcal{X} \rightarrow \mathcal{A}$ be an estimator of $\tau(\theta)$, and let the loss $\ell(\theta, a)$ be strictly convex in a. Suppose $E_{\theta} \delta(X)<\infty$ and $E_{\theta} \ell(\tau(\theta), \delta(X))<\infty, \theta \in \Theta$. Let the estimator $\eta(t) \equiv E[\delta(X) \mid T=t]$. Then

$$
\begin{equation*}
R(\theta, \eta)<R(\theta, \delta) \tag{16}
\end{equation*}
$$

unless $\delta(X)=\eta(T)$ with probability 1 .

Proof. If ℓ is strictly convex in a, then applying Jensen's inequality to the conditional expectation given $T=t$,

$$
\begin{equation*}
\ell(\theta, \eta(t))<E\{\ell(\theta, \delta(X)) \mid T=t\} \tag{17}
\end{equation*}
$$

unless $\delta(X)=\eta(t)$ a.s. Thus

$$
\begin{equation*}
E_{\theta} \ell(\theta, \eta(t))<E_{\theta} E\{\ell(\theta, \delta(X)) \mid T=t\} \tag{18}
\end{equation*}
$$

which was to be shown.

Corollary 3 (Lehmann, TPE, \$1.6, Corollary 6.2) If the loss function ℓ is strictly convex, every randomized estimator of $\tau(\theta)$ is dominated by a non-randomized estimator. If ℓ is convex, there is a non-randomized estimator whose risk function is pointwise no larger than that of any randomized estimator.

Proof. Any randomized estimator is equivalent to a nonrandomized estimator based on (X, U), and X is sufficient for X.

Note that the "zero-one" loss associated with confidence intervals is not convex. If the loss is

$$
\ell(\theta, a)= \begin{cases}0, & |\theta-a| \leq \chi \tag{19}\\ 1, & |\theta-a|>\chi\end{cases}
$$

then the risk of δ is the non-coverage probability of the fixed-length interval $[\delta-\chi, \delta+\chi]$, which one would like to minimize for a given χ. This loss is not convex: take $a_{0}=\theta$ and $a_{1}=\theta+3 \chi$. Then $\ell\left(\theta, a_{0}\right)=0, \ell\left(\theta, a_{1}\right)=1$, and

$$
\begin{equation*}
\ell\left(\theta,\left(a_{0}+a_{1}\right) / 2\right)=1>\left(\ell\left(\theta, a_{0}\right)+\ell\left(\theta, a_{1}\right)\right) / 2=1 / 2 . \tag{20}
\end{equation*}
$$

(This loss is, however, quasiconvex. A quasi-convex function f is one for which

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\} \tag{21}
\end{equation*}
$$

for all x, y, and for all $\lambda \in[0,1]$. If the inequality is strict whenever $\lambda \in(0,1)$ and $x \neq y, f$ is strictly quasiconvex. For any two actions a_{0} and a_{1}, we have

$$
\begin{equation*}
\ell\left(\theta, \lambda a_{0}+(1-\lambda) a_{1}\right) \leq \max \left(\ell\left(\theta, a_{0}\right), \ell\left(\theta, a_{1}\right)\right), \quad \forall \lambda \in[0,1], \tag{22}
\end{equation*}
$$

so ℓ is quasiconvex (but not strictly) in a. A different characterization of quasiconvex functions is that f is quasiconvex iff its level sets $\{x: f(x) \leq b\}$ are convex for every b. A local minimum of a strictly quasiconvex function is a global minimum.)

Lehmann (TPE, 4.2 Example 2.2) gives an example for this zero-one loss where a randomized decision does better than a non-randomized one. Suppose we are estimating the probability p of success in n i.i.d. Bernoulli (p) trials from the total number X of successes in the trials, which is a binomially-distributed sufficient statistic. Suppose the interval halfwidth is $\chi<1 /(2(n+1))$. There are only $n+1$ possible data, so a non-randomized rule can take only $n+1$ possible values. Because the interval is so short, the union of the intervals centered at those values cannot include all of $\Theta=[0,1]$, and thus the maximum risk for the minimax non-randomized rule is 1 . (Hence, just picking $\delta(X)=0$ is minimax among non-randomized decisions.) On the other hand, suppose we use the randomized rule $\delta_{r}(X) \sim U(0,1)$, independent of the data and ignoring the data completely. Then

$$
\begin{equation*}
\sup _{\theta \in[0,1]} \mathbf{P}\{|U-\theta|>\chi\}=1-\chi<1 . \tag{23}
\end{equation*}
$$

In this case, a randomized rule does uniformly better (as measured by maximum risk over $\Theta)$ than the best non-randomized rule.

2 Some Math

Before we begin, some math.

Definition $2 A$ set \mathcal{X} is partially ordered by a relation \leq if for $x, y, z \in \mathcal{X}$,

1. $x \leq y$ and $y \leq z \Rightarrow x \leq z$ (transitivity)
2. $x \leq x$ for all $x \in \mathcal{X}$ (reflexivity)
3. $x \leq y$ and $y \leq x \Rightarrow x=y$.

A subset \mathcal{X}_{0} of \mathcal{X} is totally ordered by \leq if for every $x, y \in \mathcal{X}$, either $x \leq y$ or $y \leq x$. If \mathcal{X}_{0} is totally ordered, $x, y \in \mathcal{X}_{0}, x \leq y$, and $x \neq y$, we write $x<y$.

That every nonempty partially ordered set contains a maximal totally ordered subset is Hausdorff's maximality theorem.

Definition 3 Suppose the sets \mathcal{X} and \mathcal{Y} are totally ordered. Let $K(x, y): \mathcal{X} \times \mathcal{Y} \rightarrow \mathbf{R}$. We say $K(x, y)$ is sign regular of order $r\left(S R_{r}\right)$ if for every $1 \leq m \leq r$ there is a constant $\epsilon_{m}= \pm 1$ such that for every pair of increasing sets of elements $\left(x_{1}<x_{2}<\ldots<x_{m}\right)$ and $\left(y_{1}<y_{2}<\ldots<y_{m}\right)$,
$\epsilon_{m} K\binom{x_{1}, x_{2}, \ldots, x_{m}}{y_{1}, y_{2}, \ldots, y_{m}} \equiv\left|\begin{array}{ccc}K\left(x_{1}, y_{1}\right) & K\left(x_{1}, y_{2}\right) & \cdots \\ K\left(x_{1}, y_{m}\right) \\ K\left(x_{2}, y_{1}\right) & K\left(x_{2}, y_{2}\right) & \cdots \\ \cdots & K\left(x_{2}, y_{m}\right) \\ \cdots & \cdots & \cdots \\ K\left(x_{m}, y_{1}\right) K\left(x_{m}, y_{2}\right) \cdots K\left(x_{m}, y_{m}\right) & & \end{array}\right| \geq 0$,
where the vertical bars denote the determinant of the matrix. If the inequality 24 is strict, K is said to be strictly sign regular of order $r\left(S S R_{r}\right)$. If all ϵ_{j} equal $+1,1 \leq j \leq r, K$ is said to be totally positive of order $r\left(T P_{r}\right)$. If all ϵ_{j} equal $+1,1 \leq j \leq r$, and the inequality 24 is strict, we say K is strictly totally positive of order $r\left(S T P_{r}\right)$. If the inequality 24 holds for all finite r, r is omitted from the notation, and K is said to be sign regular (SR), strictly sign regular (SSR), totally positive (TP), or strictly totally positive (STP), respectively.

For statistical applications, a very useful fact is that the "kernel" $K(x, y)$ associated with the "density" of a one-parameter exponential family is totally positive. That is, if \mathcal{X} and \mathcal{Y} are totally ordered subsets of \mathbf{R}, the kernel $K(x, y)=\beta(x) e^{x y}$ is totally positive. This follows from the fact that an exponential polynomial $\sum_{j=1}^{n} p_{j}(y) e^{c_{j} y}$, where $c_{j} \neq c_{j}$ for $i \neq j$, and p_{j} is a real polynomial of degree d_{j}, either vanishes identically, or has at most $n-1+\sum_{j=1}^{n} d_{j}$ zeros (counting multiplicities).

Definition 4 The lower number of sign changes of a finite real-valued sequence $\left(x_{j}\right)_{j=1}^{m}$, $S^{-}\left(\left(x_{j}\right)\right)$, is the number of sign changes in the sequence, discarding zeros. The upper number of sign changes of $\left(x_{j}\right), S^{+}\left(\left(x_{j}\right)\right)$, is the maximum number of sign changes in the sequence when the terms that equal zero are counted as having arbitrary signs. Let f be a real-valued function defined on a totally ordered subset \mathcal{I} of \mathbf{R}. The lower number of sign changes of f, $S^{-}(f)$ is

$$
\begin{equation*}
S^{-}(f)=\sup _{m<\infty,\left\{x_{j}\right\} \subset \mathcal{I}: x_{1}<x_{2}<\ldots x_{m}} S^{-}\left(\left(f\left(x_{j}\right)\right)_{j=1}^{m}\right), \tag{25}
\end{equation*}
$$

and the upper number of sign changes of $f, S^{+}(f)$, is

$$
\begin{equation*}
S^{+}(f)=\sup _{m<\infty,\left\{x_{j}\right\} \subset \tau: x_{1}<x_{2}<\ldots x_{m}} S^{+}\left(\left(f\left(x_{j}\right)\right)_{j=1}^{m}\right) \tag{26}
\end{equation*}
$$

A very important result (which we shall use presently) is that transformations induced by a sign-regular kernel are variation diminishing: they do not increase the number of zerocrossings of a function.

Theorem 6 (Karlin, §3, Theorem 3.1) Let $K(x, y): \mathcal{X} \times \mathcal{Y} \rightarrow \mathbf{R}$ be Borel measurable, where \mathcal{X} and \mathcal{Y} are totally ordered topological spaces. Let μ be a sigma-finite regular measure on \mathcal{Y}, such that $\mu(U)>0$ for each open set U for which $U \cap \mathcal{Y} \neq \emptyset$. Let X be a totally ordered topological space, and let $K(x, y): \mathcal{X} \times \mathcal{Y} \rightarrow \mathbf{R}$ be Borel-measureable, and assume that $\int_{\mathcal{Y}} K(x, y) d \mu(y)$ exists for every $x \in \mathcal{X}$. Let $f: \mathcal{Y} \rightarrow \mathbf{R}$ be a bounded, Borel-measurable function on \mathcal{Y}. Define the transformation $(T f): \mathcal{X} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
(T f)(x)=\int_{\mathcal{y}} K(x, y) f(y) d \mu(y) \tag{27}
\end{equation*}
$$

1. If $K(x, y)$ is $S R_{r}$, then if $S^{-}(f) \leq r-1$,

$$
\begin{equation*}
S^{-}(T f) \leq S^{-}(f) \tag{28}
\end{equation*}
$$

If K is $T P_{r}$ and f is piecewise continuous, then if $S^{-}(f)=S^{-}(T f) \leq r-1, f$ and Tf have the same sequence of signs as their arguments increase.
2. If K is $S S R_{r}$ and $f \neq 0$ a.e. (μ),

$$
\begin{equation*}
S^{+}(T f) \leq S^{-}(f) \tag{29}
\end{equation*}
$$

$$
\text { if } S^{-}(f) \leq r-1
$$

A transformation that does not increase the number of zero crossings of a function is called variation diminishing. Because the kernel associated with a one-parameter exponential family is $T P$, the theorem implies that integration against the density of an exponential family is variation diminishing.

For example, we obtain the Normal distribution with unit variance by taking $\beta(x)=$ $e^{-x^{2} / 2} / \sqrt{2 \pi}$ and $d \mu(y)=e^{-y^{2} / 2} d y$. Suppose f is bounded and Borel-measurable. Let

$$
\begin{align*}
(T f)(x) & =\int_{\mathbf{R}} f(y) e^{-x^{2} / 2} / \sqrt{2 \pi} e^{x y} e^{-y^{2} / 2} d y \\
& =\int_{\mathbf{R}} f(y) e^{-(x-y)^{2} / 2} / \sqrt{2 \pi} d y \\
& =\int_{\mathbf{R}} f(y) \phi(x-y) d y \\
& =f \star \phi \tag{30}
\end{align*}
$$

where ϕ is the density of the standard normal distribution and \star denotes convolution. Then $S^{-}(f \star \phi) \leq S^{-}(f)$.

In this case, $K(x, y) d \mu(y)$ is a probability density for fixed x. Suppose Y is a random variable with that density. Then a different notation for the transformation T is $(T f)(x)=$ $E_{x} f(Y)$.

See Karlin, 1968, Total Positivity, Stanford Univ. Press, Stanford CA, for more on total positivity.

