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Second Set of Notes

1 More on Testing and Con�dence Sets

See Lehmann, TSH, Ch. 3, 4, 5.

De�nition 1 S(X) is a con�dence level 1� � con�dence set for the parameter � (P�) if

P�fS(X) 3 � (�)g � 1 � � 8� 2 �: (1)

De�nition 2 Accuracy of Con�dence Sets. The accuracy at � () of the con�dence set S(X)

for the parameter � (�) is

P�fS(X) 3 � (P)g; � (�) 6= � (): (2)

That is, it is the probability that the con�dence set contains � (), when that is not the true

value of � .

The accuracy is the same as the \false coverage" probability that appeared on the right

hand side of the Ghosh-Pratt identity. Typically, when there are nuisance parameters, there

is no con�dence set S(X) that minimizes 2 for all  such that � (�) 6= � () (there is no
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uniformly most accurate con�dence set). However, if one restricts the class of con�dence sets

in ways that are sometimes reasonable, there are then optimal sets in the restricted class.

De�nition 3 A 1� � con�dence set S(X) for the parameter � (�) is unbiased if for all �,

P�fS(X) 3 � ()g � 1� � 8 s.t. � (�) 6= � (): (3)

That is, a con�dence set is unbiased if the probability of covering a false value of � is

smaller than the con�dence level 1 � �. In some sense, a biased con�dence set treats some

parameter values � specially. For example, a biased 95% con�dence set for the mean � of a

unit variance normal is f0g [ [X � 1:96;X + 1:96]. The coverage probability is 95% for all

� 2 R except � = 0, which is in the set with probability one.

The analogous property of a test is that there is no alternative value of � for which the

probability of rejection is less than the level � of the test:

De�nition 4 A level � test � of H against the alternative K is unbiased if

��(P�) � � 8� 2 H (4)

and ��(P�) � � 8� 2 K: (5)

If the second inequality is strict (>), the test is strictly unbiased.

There exist UMP unbiased tests in many problems for which there is no UMP test, in

particular, when � (�) 6= � (when there are nuisance parameters on which the distribution of

X depends, but which are irrelevant to the truth of the hypothesis).

Lemma 1 (Lehmann, TSH, Lemma 4.1.1) Suppose � � R, and let 
 be the common

boundary of f� : P� 2 Hg and f� : P� 2 Kg. If P� is such that the power function ��(P)

is a continuous function of  for every �, and if �0 is UMP among all level � tests such that

��() = � 8 2 
; (6)

then �0 is UMP unbiased.
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This lemma reduces questions about UMP unbiased tests to their behavior on the boundary

between the null and alternative, provided the level is a continuous function of the parameter.

In one-parameter exponential families, we saw that there exist UMP tests of one-sided

hypotheses about the parameter. For two-sided hypothesesH : 1 � � � 2 versusK : � < 1

or � > 2, there exist UMP unbiased tests; the form of their decision functions is (Lehmann,

TSH, 4.2)

�(x) =

8>>>>><
>>>>>:

1; T (x) < c1; T (x) > c2

ai T (x) = ci; i = 1; 2

0 c1 < T (x) < c2);

(7)

with c1 and c2 chosen s.t.

EP1
�(X) = EP1

�(X) = �: (8)

Example. (Lehmann, TSH, x4.2) Suppose P�, � = [0; 1] is distributions of the number of

successes X in a sequence of a �xed number n of independent trials, each with probability �

of success. (I.e., X � Bin(n; �).) This is a one-parameter exponential family. Consider the

null hypothesis H : P� = Bin(n; ), for �xed  2 [0; 1]. The null hypothesis is of the form 7

with 1 = 2 = , and T (x) = x, so the constraint 8 reduces to

EP
�(X) == 1�

c2�1X
x=c1+1

nCx
x(1�)n�x�a1nCc1

c1(1�)n�c1�a2nCc2
c2(1�)n�c2 = 1��

(9)

Note again that in practice, typically one would choose � so that a1 = a2 = 0, rather than

use a randomized test.

De�nition 5 A family of con�dence level 1� � con�dence sets S(X) for � (�) is uniformly

most accurate unbiased if for all � 2 �, it minimizes the probabilities

P�fS(X) 3 � ()g 8 s.t. � () 6= � (�): (10)

Con�dence sets derived by inverting uniformly most powerful unbiased tests are uniformly

most accurate unbiased.
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2 Equivariant and Invariant Procedures

De�nition 6 A group is a set G and an operation � : G � G ! G that satis�es for every g,

h, k in G

1. g � (h � k) = (g � h) � k (associativity)

2. There exists a unique e 2 G such that e � g = g � e = g for every g 2 G (existence of

an identity element)

3. For each g 2 G, there exists g�1 2 G s.t. g � g�1 = g�1 � g = e.

Typically, the dot in the notation will be omitted, so we shall write gh (multiplication)

in place of g � h. Another symbol commonly used for the group operation is +. Also, while

formally a group is the pair (G; �), G is commonly referred to as the group, with the group

operation � understood from context.

De�nition 7 A group of transformations on the set X is a collection G of transformations

g : X ! X and an operation � : G � G ! G such that (G; �) is a group.

For example, let X = Rn, and for each  2 Rn, let

g : X ! X

� ! � +  (vector addition in Rn) (11)

Let + denote the group operation, and de�ne g + g� = g+�. With these de�nitions,

(G = fg :  2 Rng;+) is a group of transformations on X . The identity element of the

group is g0, the inverse of g is g� , and associativity of the group operation + follows from

the associativity of vector addition on Rn. This group is called the translation group on Rn.

De�nition 8 Invariance of decision procedures. A statistical decision problem (a set P� of

distributions on an outcome space X , a loss function L, and a set of possible decisions D)

is invariant under the group G of transformations of the outcome space X if

4



1. The family P� is closed under G, in the sense that for any  2 � and any g 2 G, there

exists � 2 � such that if X � P , gX � P� , with � 2 �, and the mapping �g : �! �,

 7! � is one-to-one and onto (�g� = �).

2. For each g 2 G, there is a transformation h(g) : D ! D such that h(g1g2) = h(g1)h(g2),

and L(�g; h(g)d) = L(; d) for all , g, and d.

Example. Suppose � = Rm, P� = fN(�; I) : � 2 �g is the set multivariate normal

distributions with independent, unit variance components, � (�) = �, D = Rm, and that

L(�; ) = k� � k2. Let G be the translation group on Rm. Clearly, the set P� is closed

under G: if X � P�, then gX � P�+ . The set of transformations on P� induced by the

action of G on X is �G, whose elements �g(g) = �g map P� to P�+ . ( �G is also a group, with

the group operation de�ned by �g + �g� = �g(g+�)). If we de�ne h(g�) : D ! D,  7!  + �,

then h(g�g�)() = h(g�)h(g�), and L(�g��; h(g�)) = L(�; ), as required by the conditions

of equivariance.

When the decision problem is invariant under G, it is reasonable to consider only invariant

decision rules � : X ! D, for which �(gx) = h(g)�(x). Lehmann (TSH, 1.5) draws a

distinction between invariant and equivariant decision rules: for the former, h(g)d = d for

all d, while for the latter, �(gx) varies with g. In the invariant case, the decision problem is

unchanged under X 7! gX.

De�nition 9 Suppose we are testing H against K. Given a transformation g on X , if

fP�g� : P� 2 Hg = H and fP�g� : P� 2 Kg = K, we say the problem of testing H against K

is invariant under the transformation g.

The set of transformations under which a testing problem is invariant is always a group,

with the group operation de�ned in the natural way; the induced set �G of transformations

on P� also form a group ( �G is a homomorphism of G).

De�nition 10 A function M : X ! Y is maximal invariant with respect to the G of trans-

formations on a set X if

1. M(x) = M(gx) for all g 2 G (M is invariant under G) and
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2. M(x) = M(y) ) x = gy for some g 2 G.

A test is invariant if and only if it depends on x only through a maximal invariant

M(x). For example, suppose the observation X is an iid sample of size n from some common

distribution. The distribution of X is clearly invariant under permutations of its components,

so we could work instead with the set of order statistics without losing any information about

�. The order statistics are in fact a maximal invariant of the permutation group, so invariant

tests regarding � need depend on X only through its order statistics. Any test that treated

the components of X di�erently would have an ad hoc avor. Ceteris paribus, it makes sense

to base tests on a maximal invariant function of the data X (with respect to G) if the testing

problem is invariant under G.

Subject to some measurability considerations, the set of all invariant tests is characterized

by the set of all decision functions �(x) = h(M(x)) where M(x) is a maximal invariant.

Basing tests on su�cient statistics reduces the outcome space X . Invariant tests reduce not

only the outcome space X , but also the parameter space �:

Theorem 1 (See Lehmann, TSH, 6.3 Th.3.) If M(x) is maximal invariant with respect to

G and if �(�) is maximal invariant with respect to the induced group �G, then the distribution

of M(X) depends on � only through �(�).

The utility of this theorem results from the fact that M(x) and �(�) can turn out to be

real-valued, even when the dimensions of X and � are large, with the distribution of M(X)

having monotone likelihood ratio in �(�). That makes it possible to �nd UMP invariant

tests using the one-dimensional optimality theory we saw earlier.

De�nition 11 A test with decision function � is almost invariant with respect to G if for

all g 2 G, �(gx) = �(x) except on a P�-null set Ng that can depend on g.

Remark. The power function of a test that is almost invariant under G is invariant under

the induced group �G. The converse is not true in general.

Remark. Unbiasedness and invariance are not equivalent in general, in that UMP unbiased

tests can exist when UMP almost-invariant ones do not, and vice versa. However, Lehmann
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(6.6, Th. 7) shows that if in a given testing problem, there exists a UMP unbiased test with

decision function �� that is unique up to sets of measure zero, and there also exists a UMP

almost-invariant test w.r.t. some group G, then the UMP almost-invariant test is also unique

up to sets of measure zero, and the two tests are the same a.e.

De�nition 12 Equivariant Con�dence Set. Suppose that the set of distributions P� on X

is preserved under the group G, and let �G be the group of transformations on � induced by

the action of G on X . Suppose that the action of �G on the component � (�) of the more

general parameter � depends only on � (�); that is, � (�g(�)) = � (�g()) if � (�) = � (). For

each g 2 G, let ~gS = f� (�g(�)) : � (�) 2 Sg. If S(x) is such that

~gS(x) = S(gx) 8x 2 X ; g 2 G; (12)

we say S is equivariant under G.

Equivariant con�dence sets result from inverting invariant tests.
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