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1 Robustness and related topics

For references, see

Hampel, F.R., Rousseeuw, P.J., Ronchetti, E.M., and Strahel, W.A., 1986. Robust Statis-

tics: The approach based on inuence functions, Wiley, NY.; Huber, P.J., 1981. Robust

Statistics, Wiley, N.Y. Bickel

1.1 Heuristics

The optimality theory we studied at the beginning of the course is predicated upon the

assumption that F 2 F , which was often a parametric family of distributions. An estimator

or test that is optimal for some family of distributions can have terrible performance if the

\model" F 2 F is wrong, even by a small amount (in some distance on measures). In a

loose sense, an estimator or test is robust if its performance is good over a neighborhood of

distributions including the family in which the truth is modeled to lie.
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Virtually every real data set has some \gross outliers," which are in some sense corrupted

measurements. Data can be transcribed incorrectly, data transmission can corrupt bits,

cosmic rays can hit satellite-borne instruments, power supplies can have surges, operators

can miss their morning cups of co�ee, etc. Even without gross outliers, there is always a

limit on the precision with which data are recorded, leading to truncation or rounding errors

that make continuous models for data error distributions only approximate. Furthermore,

parametric error models are rarely dictated by direct physical arguments; rather, the central

limit theorem is invoked, or some historical becomes standard in the �eld.

One early attempts to deal with gross outliers is due to Sir Harold Je�reys, who (in the

1930s) modeled data errors as a mixture of two Gaussian distributions, one with variance

tending to in�nity. The idea is that the mixture fraction of that Gaussian represents a

fraction of gross outliers possibly present in the data; one wants to minimize the inuence

of such observations on the resulting estimate or test. Considerations in favor of �tting to

minimize mean absolute deviation instead of least squares go back much further.

We will be looking at ways of quantifying robustness, and of constructing procedures

whose performance when the model is true is not much worse than the optimal procedure,

but whose performance when the model is wrong (by a little bit) is not too bad, and is often

much better than the performance of the optimal procedure in that event.

The kinds of questions typically asked in the robustness literature are:

1. Is the procedure sensitive to small departures from the model?

2. To �rst order, what is the sensitivity?

3. How far from the model can one go before the procedure produces garbage?

The �rst issue is that of qualitative robustness; the second is quantitative robustness; the

third is the \breakdown point."

1.2 Resistance and Breakdown Point

Resistance has to do with changes to the observed data, rather than to the theoretical

distribution underlying the data. A statistic is resistant if arbitrary changes to a few data
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(such as might be caused by gross outliers, or small changes to all the data (such as might be

caused by rounding or truncation), result in only small changes to the value of the statistic.

Suppose we are allowed to change the values of the observations in the sample. What

fraction would we need to change to make the estimator take an arbitrary value?

For example, consider the sample mean �X = 1
n

Pn
j=1Xj as an estimator of the mean of

F (T (F ) =
R
xdF ; � = T (F�).) By corrupting a single observation, we can make the sample

mean take any real value: the breakdown point is 1
n
. In contrast, consider the \�-trimmed

mean," de�ned as follows: Let k` = b�nc and kh = d�ne. Let X(j) be the jth order statistic

of the data. De�ne

�X� =
1

kh � k` + 1

khX
j=k`

X(j): (1)

This measure of location is less sensitive to outliers than is the sample mean: the breakdown

point is min(k`; n � kh + 1)=n. An alternative, not necessarily equivalent, de�nition of the

�-trimmed mean is through the functional

T (F ) =
1

1 � 2�

Z 1��

�
F�1(t)dt: (2)

This version has breakdown point �.

We shall make the notion of breakdown point more precise presently; a few de�nitions

are required.

De�nition 1 The L�evy distance between two distribution functions F and G on R is

�(F;G) = inff� : F (x� �)� � � G(x) � F (x+ �) + � 8x 2 Rg: (3)

De�nition 2 A Polish space X is a complete, separable topological space whose topology is

metrizable by a metric d.

Examples of Polish spaces include Rk. Let M denote the space of probability measures

the Borel �-algebra B of subsets of X . (B is the smallest �-algebra containing all the open

sets in X .) LetM0 denote the set of �nite signed measures on (X ;B); this is the linear space
of measures generated by M. The measures in M are regular in the sense that for every

F 2 M,

sup
C�B; C compact

F (C) = F (B) = inf
G�B; G open

F (G): (4)
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The weak-star topology inM is the weakest topology for which the functional

Z
 dF (5)

is continuous for every continuous, bounded function  : X ! R.

In this section, we assume that X is a Polish space, and that all measures are de�ned

on B. An overbar (e.g., �A) will denote topological closure, and the superscript c will denote

complementation (Ac = fx 2 X : x 62 Ag).

De�nition 3 For any subset A of the sample space X and any metric d : X � X ! R+,

the closed �-neighborhood of A is

A� = fx 2 X : inf
a2A

d(x; a) � �g: (6)

It will be important presently that

A� = �A� = �A� = ��A�: (7)

De�nition 4 The Prohorov distance between two measures F and G de�ned on a common

algebra A of subsets of a metric space X is

�(F;G) = inff� � 0 : F (A) � G(A�) + � 8A 2 Ag (8)

Expanding the events by � to form A� corresponds to the measure G being \shifted"

slightly from F , for example, by rounding. The addition of � corresponds to a fraction � of

the observations being from a completely di�erent distribution.

We shall verify that the Prohorov distance really is a metric if the sample space X is a

Polish space. Clearly, it is nonnegative, and �(F;F ) = 0. We need to show symmetry, the

triangle inequality, and that f�(F;G) = 0g ) fF = Gg. The following proof follows that in
Huber (1981).

Symmetry. This will follow immediately if we can show that if F (A) � G(A�) + � for all

A 2 A, then G(A) � F (A�)+ � for all A 2 A. Recall that because A is an algebra, if A 2 A,
then Ac 2 A as well. Take any � > �, and consider A = (B�)c = B�c for any B 2 B. Note
that A 2 B, so by the premise,

F (B�c) � G(B�c�) + �; (9)

4



or

1� F (B�) � 1�G(B�c�c) + � (10)

G(B�c�c) � F (B�) + �: (11)

However, B � B�c�c, as we shall see. This statement is equivalent to B�c� � Bc. This is

essentially immediate from � > �: if x 2 B�c�, then 9y 62 B� s.t. d(x; y) < � (typo in Huber

here). Thus x 2 Bc, because otherwise d(x; y) > � > �. Thus

G(B) � G(B�c�c) � F (B�) + �: (12)

But B� = \�>�B�, so the result follows.

To show that �(F;G) = 0 ) F = G, note that the closure of A is �A = \�>0A�. Thus

�(F;G) = 0 implies F (A) � G(A) and G(A) � F (A) for all closed sets A 2 A.
Triangle inequality. If �(F;G) � � and �(G;H) � �, then for every A 2 B,

F (A) � G(A�) + � � H((A�)�) + �+ �: (13)

But by the triangle inequality for the metric d on X , (A�)� � A�+�, so we are done.

Note that the Prohorov distance between F̂n and the \contaminated" empirical distribu-

tion one gets by changing k of the data by an arbitrary amount is k
n
.

Theorem 1 (Strassen, 1965; see Huber Thm 2.3.7.) The following are equivalent:

1. F (A) � G(A�) + � for all A 2 B

2. There are dependent X -valued random variables X, Y such that L(X) = F , L(Y ) = G,

and Pfd(X;Y ) � �g � 1� �. (here L(X) denotes the probability law of X, etc.

De�nition 5 Suppose that the distance function d on X � X is bounded by one (one can

replace d by d(x; y)=(1 + d(x; y)) to make this so). The bounded Lipschitz metric on M is

dBL(F;G) = sup
�:j (x)� (y)j�d(x;y)

����
Z
 dF �

Z
 dG

���� : (14)

This, too, is truly a metric on M.
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Theorem 2 The set of regular Borel measures M on a Polish space X is itself a Polish

space with respect to the weak topology, which is metrizable by the Prohorov metric and by

the bounded Lipschitz metric.

Consider a collection of probability distributions indexed by �, such as the Prohorov

neighborhood

P�(�;F ) = fG 2 M : �(F;G) � �g (15)

or the \gross error contamination neighborhood" (not truly an neighborhood in the weak

topology)

Pgross error(�;F ) = fG 2 M : G = (1� �)F + �H;H 2 Mg: (16)

Let M(G;Tn) denote the median of the distribution of Tn(G) � T (F ). Let A(G;Tn)

denote some �xed percentile of the distribution of jTn(G) � T (F )j .

De�nition 6 Consider a sequence fTng of estimators that is Fisher consistent and converges

in probability to a functional statistic T . The maximumbias of fTng at F over the collection

P(�) is
b1(�) = b1(�;P; F ) = sup

G2P(�)
jT (G)� T (F )j: (17)

The maximum asymptotic bias of fTng at F over the collection P(�) is

b(�) = b(�;P; F ) = lim
n!1

sup
G2P(�)

jM(G;Tn)j: (18)

If b1 is well de�ned, b(�) � b1(�). Note that for the gross-error model and for the L�evy

and Prohorov distances, b(�) � b(1), because the set P(1) =M.

De�nition 7 (Following Huber, 1981.) For a given collection P(�) of distributions indexed
by � � 0, the asymptotic breakdown point of T at F is

�� � ��(F; T;P(�)) = supf� : b(�;P(�); F ) < b(1)g: (19)

De�nition 8 (Following Hampel et al., 1986.) The breakdown point of a sequence of esti-

mators fTng of a parameter � 2 � at the distribution F is

��(Tn; F ) � supf� � 1 : 9K� � �; K� compact, s.t. �(F;G) < �) G(fTn 2 K�g)! 1 as n!1g:
(20)
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That is, the breakdown point is the largest Prohorov distance from F a distribution can

be, and still have the estimators almost surely take values in a given compact as n!1.

De�nition 9 The �nite-sample breakdown point of the estimator Tn at x = (xj)nj=1 is

��(Tn; x) � 1

n
max

(
m : max

i1 ;:::;im
sup

y1;:::;ym

jT (z1; : : : ; zn)j <1
)
; (21)

where

zj =

8><
>:
xj; j 62 fikgmk=1

yk; j = ik for some k:
(22)

This de�nition makes precise the notion that corrupting some fraction of the measure-

ments can corrupt the value of the statistic arbitrarily. Note that the �nite-sample breakdown

point is a function not of a distribution, but of the sample and the estimator. Typically, its

value does not depend on the sample. It is this \breakdown point" that we saw was zero for

the sample mean; it is a measure of resistance, not robustness.

De�nition 10 A sequence of estimators fTng is qualitatively robust at F if for every � > 0,

9� > 0 such that for all G 2 M and all n,

�(F;G) < �) �(LF (Tn);LG(Tn)) < �: (23)

That is, fTng is qualitatively robust at F if the distributions of Tn are equicontinuous w.r.t.

n.

1.3 The Inuence Function

The next few sections follow Hampel et al. (Ch2) fairly closely. Consider an estimator of a

real parameter � 2 �, where � is an open subset of R, based on a sampleXn of size n. Each

observation takes values in X . We consider a family F of distributions fF� : � 2 �g, which
are assumed to have densities ff� : � 2 �g with respect to a common dominating measure.

Consider estimators �̂ = Tn(F̂n) that asymptotically can be replaced by functional esti-

mators. (That is, either Tn(F̂n) = T (F̂n) for all n, or there is a functional T : dom(T )! R

such that if the components of Xn are iid G,

Tn(Ĝn)! T (G) (24)
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in probability as n ! 1. T (G) is the asymptotic value of fTng at G. Suppose that for

G 2 dom(T ), , where T (F�) = � 8� 2 � (this is Fisher consistency of the estimator).

De�nition 11 A functional T de�ned on probability measures is Gâteaux di�erentiable at

the measure F in dom(T ) if there exists a : R! R s.t. 8G 2 dom(T ),

lim
t!0

T ((1� t)F + tG)� T (F )

t
=
Z
a(x)dG(x): (25)

That is,
@

@t
T ((1� t)F + tG)jt=0 =

Z
a(x)dG(x): (26)

Gâteaux di�erentiability is weaker than Fr�echet di�erentiability. Essentially, Gâteaux

di�erentiability at F ensures that the directional derivatives of T exist in all directions that

(at least in�nitesmally) leave one in the domain of T .

Let �x be a point mass at x.

De�nition 12 The inuence function of T at F is

IF(x;T;F ) � lim
t!0

T ((1� t)F + t�x)� T (F )

t
(27)

at the points x 2 X where the limit exists.

The inuence function can exist even when the Gâteaux derivative does not, because

the set of directions considered is less rich. The inuence function gives the e�ect on T

of an in�nitesmal perturbation to the data at the point x. This leads to a \Taylor series"

expansion of T at F :

T (G) = T (F ) +
Z
IF(x;T;F )d(G� F )(x) + remainder: (28)

(Note that
R
IF(x;T;F )dF (x) = 0.)

1.3.1 Heuristics using IF(x;T;F )

Consider what happens for large sample sizes. The ecdf F̂n tends to F , and Tn(F̂n) tends to

T (F̂n). We have F̂n =
1
n

Pn
j=1 �Xj , so

(Tn(F̂n)� T (F )) � 1

n

nX
j=1

IF(Xj;T;F ) + remainder; (29)
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or
p
n(Tn(F̂n)� T (F )) � 1p

n

nX
j=1

IF(Xj;T;F ) + remainder: (30)

Now fIF(Xj ;T;F )gnj=1 are n iid random variables with mean zero, so the sum is asymptot-

ically normal. If the remainder vanishes asymptotically (not that easy to verify, typically,

but often true), then
p
n(Tn(F̂n) � T (F )) is also asymptotically normal, with asymptotic

variance

V (T;F ) =
Z
IF(x;T;F )2dF (x): (31)

When the relationship holds, an asymptotic form of the Cram�er-Rao bound relates

asymptotic e�ciency to the inuence function. Suppose T is Fisher consistent. The Fisher

information at F�0 is

I(F�0) =
Z  

@

@�
ln f�(x)

�����
�0

!2

dF�0: (32)

Then T is asymptotically e�cient only if

IF(x;T;F ) = I(F�0)
�1 @

@�
(ln f�(x))j�0: (33)

1.3.2 Relation to the Jackknife

There is an asymptotic connection between the jackknife estimate of variance and the inu-

ence function as well. Recall that for a functional statistic Tn = T (F̂n), we de�ne the jth

pseudovalue by

T �nj = nT (F̂n)� (n� 1)T (F̂(j)); (34)

where F̂(j) is the cdf of the data with the jth datum omitted. The jackknife estimate is

T �n =
1

n

nX
j=1

T �nj: (35)

The (sample) variance of the pseudovalues is

Vn =
1

n� 1

nX
j=1

(T �nj � T �n)
2: (36)

The jackknife estimate of the variance of Tn is 1
n
Vn. Plugging into the de�nition 27 and

taking t = �1
n�1 gives

n� 1

�1
�
T
�
1� �1

n� 1
F̂n +

�1
n� 1

�xj

�
� T (F̂n)

�
= (n� 1)[T (F̂n)� T (F̂(j))]

= T �nj � T (F̂n): (37)
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The jackknife is thus an approximation to the inuence function.

1.3.3 Robustness measures de�ned from IF(x;T;F )

The gross error sensitivity of T at F is

� = �(T;F ) = sup
fx:IF(x;T;F ) existsg

jIF(x;T;F )j: (38)

This measures the maximum change to T a small perturbation to F at a point can induce,

which is a bound on the asymptotic bias of T in a neighborhood of F . If �(T;F ) <1, T is

B-robust at F (B is for bias). For Fisher-consistent estimators, there is typically a minimum

possible value of �(T;F ), leading to the notion of most B-robust estimators. There is

typically a tradeo� between e�ciency and B-robustness: for a given upper bound on �,

there is a most e�cient estimator.

The gross error sensitivitymeasures what can happen when the di�erence between what is

observed and F can be anywhere (perturbing part of an observation by an arbitrary amount).

There is a di�erent notion of robustness related to changing the observed values slightly. The

(in�nitesmal) e�ect of moving an observation from x to y is IF(y;T;F )� IF(x;T;F ). This

can be standardized by the distance from y to x to give the local shift sensitivity

�� = ��(T;F ) = sup
fx 6=y:IF(x;T;F ) and IF(y;T;F ) both existg

jIF(y;T;F )� IF(x;T;F )j
jy � xj : (39)

This is the Lipschitz constant of the inuence function. (A real function f with domain

dom(f) is Lipschitz continuous at x if there exists a constant C > 0 such that jf(x)�f(y)j �
Cjx � yj for all y 2 dom(f). A real function f is Lipschitz continuous if it is Lipschitz

continuous at every x 2 dom(f). The Lipschitz constant of a Lipschitz-continuous function

f is the smallest C such that jf(x)�f(y)j � Cjx�yj for all x; y 2 dom(f). These de�nitions

extend to functions de�ned on metric spaces, and by taking exponent of jx� yj to be other

than unity.)

Another measure of robustness involving the inuence function is the rejection point

�� = ��(T;F ) = inffr > 0 : IF(x;T;F ) = 0 8jxj > rg: (40)
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This measures how large an observation must be before the estimator ignores it completely.

If very large observations are deemed almost certainly to be gross errors, it is good for �� to

be �nite.

1.3.4 Example

Suppose X � N(�; 1); � 2 � = R; �0 = 0; F = �; Tn(Xn) = �X = 1
n

Pn
j=1Xj;

T (G) �
Z
xdG(x): (41)

The functional T is Fisher-consistent. Calculating IF gives

IF(x;T;F ) = lim
x!0

R
ud((1 � t)� + t�x)(u)� R

ud�(u)

t

= lim
t!0

(1 � t)
R
ud�(u) + t

R
ud�x(u)� R

ud�(u)

t

= lim
t!0

tx

t

= x: (42)

The Fisher information of the standard normal with unknown mean is I(�) = 1, so

Z
IF2(x;T;�)d� = 1 = I�1(�); (43)

and IF / (@=@�)(lnf�)j0. The arithmetic mean is the MLE and is asymptotically e�cient.

The gross-error sensitivity is � = 1, the local shift sensitivity is �� = 1, and the rejection

point is �� =1.

1.4 M -estimators

We shall consider in more detail what is needed for an M -estimator to be robust. An M

estimator is one of the form

Tn(X) = arg min
Un

nX
j=1

�(Xj ; Un); (44)

where � is a function on X ��. This is a generalization of maximum likelihood, where one

would minimize the negative log-likelihood, which for independent data, would be of the
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form just given, with �(Xj; Un) = � log f(x; �). If � is di�erentiable in �, with

 (x; �) =
@

@�
�(x; �); (45)

then Tn is a stationary point, and so satis�es

nX
j=1

 (Xj; Tn) = 0: (46)

An estimator that can be characterized as the solution of an equation of either form 44 or

46 is an M-estimator. In such cases, the estimator is identi�ed with � or  .

Take the second form. De�ne T implicitly as the functional for which

Z
 (x; T (G))dG = 0 (47)

for all G for which the integral exists; then the estimator is T (F̂n). Let's calculate the IF at

F of an estimator of this form. De�ne Ft;x � (1 � t)F + t�x. We want the limit as t! 0 of

T 0 � lim
t!0

T (Ft;x)� T (F )

t
: (48)

Assuming we can interchange integration and di�erentiation, we can di�erentiate ?? to get

Z
 (x; T (F ))d(�x� F ) +

Z
@

@�
 (x; �)

�����
T (F )

dF � @
@t
T (Ft;x)

�����
t=0

= 0: (49)

This yields

IF(x; ;F ) =
 (x; T (F ))

� R @

@�
 (y; �)

���
T (F )

dF (y)
; (50)

assuming the denominator is not zero. The estimator given by  is B-robust i�  (�; T (F ))
is bounded.

In the special case of a location estimate, the dependence of  on x and � is  (x; �) =

 (x� �), which yields

IF(x;F; T ) =
 (x� T (F ))R
 0(x� T (F ))dF

: (51)

The inuence function is proportional to  .

Therefore, M -estimates have �nite gross error sensitivity only if  is bounded, �nite

rejection point only if  redescends to zero for large values of its argument. For the mean,

this does not occur.
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1.4.1 Robustness of M-estimates

See Huber, Ch3 for more details; this is drawn from there.

Let's calculate b1(�) for the L�evy metric for an M -estimate of location, with  (x; t) =

 (x� t), with  monotonically increasing. We will use � to denote something new in this

section, so let dL(F;G) denote the L�evy distance between distributions (or cdfs) F and G.

Accordingly, we take P(�) � fG : dL(F;G) � �g. Assume that T (F ) = 0. De�ne

b+(�) = sup
G2P(�)

T (G) (52)

and

b�(�) = inf
G2P(�)

T (G): (53)

Then b1(�) = maxf�b�(�); b+(�)g (because T (F ) = 0). De�ne

�(t;G) = EG (X � t) =
Z
 (x� t)dG(x): (54)

Because  is monotonic, � is decreasing in t, but not necessarily strictly decreasing, so the

solution of �(t;G) = 0 is not necessarily unique. De�ne

T �(G) = supft : �(t;G) > 0g (55)

and

T ��(G) = infft : �(T ;G) < 0g: (56)

Then T �(G) � T (G) � T ��(G). Note that �(t;G) increases if G is made stochastically

larger. The stochastically largest element of fG : dL(F;G) � �g is

F1(x) = (F (x� �)� �)+ =

8><
>:

0; x � x0 + �

F (x� �)� � x > x0 + �;
(57)

where x0 solves F (x0) = �. (Assume that x0 exists; the discontinuous case introduces some

additional bookkeeping.) Note that this distribution puts mass � at x =1. For G 2 P(�),

�(t;G) � �(t;F1) =
Z 1

x0

 (x� t+ �)dF (x) + � (1): (58)
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It follows that

b+(�) = sup
G2P(�)

T (G)

= T ��(F1)

= infft : �(t;F1) < 0g: (59)

Note that

`+ = lim
t!1

�(t;F1) = (1 � �) (�1) + � (1): (60)

Provided `+ < 0 and  (1) <1, b+(�) < b+(1) =1. Thus to avoid breakdown from above

we need
�

1� �
< � (�1)

 (1)
: (61)

We can calculate b�(�) in the same way: the stochastically smallest element of P(�) is

F�1 = (F (x+ �) + �) ^ 1 =

8><
>:
f(x+ �) + �; x � x1 � �

1; x > x1 � �;
(62)

where x1 solves F (x1) = 1� �. This distribution assigns mass � to x = �1. We have

�(t;G) � �(t;F�1) = � (�1) +
Z x1

�1
 (x� t� �)dF (x): (63)

Thus

b�(�) = inf
G2P(�)

T (G)

= T �(F�1)

= supft : �(t;F�1) > 0g: (64)

Note that

`� = lim
t!�1

�(t;F�1) = � (�1) + (1 � �) (1): (65)

To avoid breakdown from below, we need  (�1) > �1 and `� > 0, which leads to

�

1� �
> �  (1)

 (�1)
: (66)

Combining this with 61 gives

�  (1)

 (�1)
<

�

1� �
< � (�1)

 (1)
: (67)
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De�ne

� � min

(
� (�1)

 (1)
;�  (1)

 (�1)

)
: (68)

The breakdown point is then

�� =
�

1 + �
: (69)

The maximum possible value �� = 1=2 is attained if  (1) = � (�1). The breakdown

point is �� = 0 if  is unbounded.

This calculation also shows that if  is bounded and �(t;F ) has a unique zero at t = T (F ),

then T is continuous at F ; otherwise, T is not continuous at F .

For non-monotone functions  , things are much more complicated. This is the case for

\redescending inuence functions," to which we shall turn presently.

1.4.2 Minimax Properties for location estimates

It is straightforward to �nd the minimax bias location estimate for symmetric unimodal

distributions; the solution is the sample median (see Huber, x4.2). Minimizing the maximum

variance is somewhat more di�cult. De�ne

v1(�) = sup
G2P(�)

A(G;T ); (70)

where A(G;T ) is the asymptotic variance of T at G. Assume the observations are iidG(���).
The shape varies over the family P(�); the parameter varies over the reals. Such families

are not typically compact in the weak topology. Huber uses the vague topology to surmount

this problem. The vague topology is the weakest topology on the setM+ of sub-probability

measures for which F ! R
 dF is continuous for all continuous functions  with compact

support. (A subprobability measure can have total mass less than one, but is otherwise the

same as a probability measure.) Because R is locally compact,M+ is compact.

De�ne F0 to be the distribution in P(�) with smallest Fisher information

I(G) = sup
 2C1

K

(
R
 0dG)2R
 2dG

; (71)

where C1K is the set of all compactly supported, continuously di�erentiable functions  s.t.R
 2dF > 0. This extends the de�nition of the Fisher information beyond measures that
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have densities; in fact, I(F ) <1 i� F has an absolutely continuous density w.r.t. Lebesgue

measure, and
R
(f 0=f)2fdx <1.

Proof. (Following Huber, pp78�.) By assumption,
R
 2dx <1. If

R
(f 0=f)2fdx <1,

�Z
 0fdx

�2

=

 
 f j1�1 �

Z
 
f 0

f
fdx

!2

=

 Z
 
f 0

f
fdx

!2

�
�Z

 2fdx
�0@Z  

f 0

f

!2

fdx

1
A ; (72)

by the weighted Cauchy-Schwarz inequality. Thus I(F ) � R
(f 0=f)2fdx <1. Now suppose

I(F ) <1. Then L( ) = � R  0dF is a bounded linear functional on the (dense) subset C1K
of L2(F ), the Hilbert space of square-integrable functions w.r.t. F . By continuity, L can

be extended to a continuous linear functional on all of L2(F ). By the Riesz Representation

Theorem, there then exists a function g 2 L2(F ) such that for all  2 L2(F ),

L =
Z
 gdF: (73)

Clearly, L1 =
R
gdF = 0. De�ne

f(x) �
Z
y<x

g(y)F (dy) =
Z
1y<xg(y)F (dy): (74)

By the Cauchy-Schwarz inequality,

jf(x)j2 � (
Z
12y<xF (dy))(

Z
g(y)2F (dy)) = F ((�1; x))

Z
g2F (dy); (75)

which tends to zero as x! �1; jf(x)j also tends to zero as x!1. For  2 C1K ,

�
Z
 0(x)f(x)dx = �

Z
y<x

Z
 0(x)g(y)F (dy)dx =

Z
 (y)g(y)F (dy) = L (76)

by Fubini's theorem. Thus the measure f(x)dx and the measure F (dx) give the same linear

functional on derivatives of functions in C1K . This set is dense in L2(F ), so they de�ne

the same measure, and so f is a density of F . We can now integrate the de�nition of the

functional L by parts to show that

L = �
Z
 0fdx =

Z
 
f 0

f
fdx: (77)
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Thus

I(F ) = kLk2 =
Z
g2dF =

Z  f 0
f

!2

fdx: (78)

The functional I(G) is lower-semicontinuous with respect to the vague topology, so I(G)

attains its in�mum on any vaguely compact set. Furthermore, I(G) is a convex function of

G.

Theorem 3 (Huber, Proposition 4.5) Let P be a set of measures on R. Suppose P is convex,

F0 2 P minimizes I(G) over P, 0 < I(F0) < 1, and the set where the density f0 of F0 is

strictly positive is (a) convex and (b) contains the support of every distribution in P.
Then F0 is the unique minimizer of I(G) over P.

The reciprocal of I(F0) lower-bounds the (worst) asymptotic variance of any estimator

over all G 2 P, so if one can �nd an estimator whose asymptotic variance is 1=I(F0), it is

minimax (for asymptotic variance).

Finding F0 can be cast as a variational problem; see Huber, x4.5.
The least-informative distributions in neighborhoods of the normal tend to have thinner

tails than the normal. If one believes that outliers might be a problem, it makes sense to

abandon minimaxity in favor of estimators that do somewhat better when the truth has

thicker tails than the normal. That leads to considering redescending inuence functions,

for which  = 0 for x su�ciently large.

One can develop \minimax" estimators in this restricted class. For example, we could seek

to minimize the asymptotic variance subject to  (x) = 0, jxj > c. For the �-contamination

neighborhood of a normal, the minimax  in this class is

 (x) = � (�x) =

8>>>>><
>>>>>:

x; 0 � x � a

b tanh
�
b(c�x)

2

�
a � x � c

0; x � c:

(79)

The values of a and b depend on �.

Other popular redescending inuence functions include Hampel's piecewise linear inu-
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ence functions:

 (x) = � (�x) =

8>>>>>>>><
>>>>>>>>:

x; 0 � x � a

a a � x � b

a c�x
c�b

b � x � c

0; x � c;

(80)

and Tukey's \biweight"

 (x) =

8><
>:
x(1� x2)2; jxj � 1

0; jxj > 1:
(81)

A complication in using redescending inuence functions is that scaling (some form of Stu-

dentizing) is much more important for them to be e�cient than it is for monotone inuence

functions. The slope of the inuence function in the descending regions can also inate the

asymptotic variance (recall that (
R
 0dF )2 is in the denominator of A(F; T )).

1.5 Estimates of Scale

We require that a scale estimate Sn be equivariant under changes of scale, so that

Sn(aX) = aSn(X) 8a > 0: (82)

It is common also to require that a scale estimate be invariant under sign changes and

translations, so that

Sn(�X) = Sn(X) = Sn(X + b1); (83)

where b 2 R and 1 is an n-vector of ones. The most common need for a scale estimate is to

remove scale as a nuisance parameter in a location estimate, by Studentizing.

It turns out that the bias properties of a scale estimate are more important for stu-

dentizing than the variance properties. That leads to considering something involving the

median deviation. The single most widely used robust scale estimator is the median absolute

deviation (MAD). Let Mn(x) be the median of the list of the elements of x: medfxjgnj=1.

Then

MADn(x) = medfjxj �Mn(x)jgnj=1: (84)

The breakdown point of the MAD is �� = 1=2. Typically, the MAD is multiplied by a 1.4826

(1=��1(3=4)) to make its expected value unity for a standard normal.
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1.6 Robust Regression
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