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Abstract

I will discuss some inference problems in election auditing

and litigation that can be solved using probability inequali-

ties. The lead example, illustrated with case studies in au-

diting elections and estimating damages in civil litigation, is

to construct nonparametric one-sided confidence bounds for

the mean of a nonnegative population. If time permits, I will

also discuss a contested election in which a simple probabil-

ity inequality provided evidence the court found persuasive.

This seminar is partly a plea for help from probabilists: I hope

someone in the audience can point me to inequalities that are

sharper than those I’m using.
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Election Auditing: Any way of counting votes makes mis-

takes.

If there are enough mistakes, apparent winner could be wrong.

If there’s an audit trail that reflects the right outcome, can

ensure big chance of fixing wrong outcomes.

Crucial question: when to stop counting.

Solution: If there’s compelling evidence that outcome is

right, stop; else, audit more.
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Risk-Limiting Audits

If the electoral outcome is wrong, there’s a known min-

imum chance of a full hand count (which fixes it),

no matter what caused the outcome to be wrong.

The risk is the largest chance that an outcome that is wrong
won’t be fixed.

“Wrong” means the outcome isn’t what a full hand count
would show.

More delicate in parliamentary elections than in “first past
the post” elections: Did each party get the right number of
seats?

Role of statistics: Less counting when the outcome is right,
but still a big chance of a full hand count when outcome is
wrong.
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Essential that voters create a durable audit trail that reflects
the true outcome.

Essential that voting systems enable auditors to access re-
ported results (total ballots, counts for each candidate) in
auditable batches.

Essential to perform “ballot accounting” to ensure that no
ballots appeared or disappeared.

Essential to select batches at random, after the results are
posted or “committed.” (Can supplement with “targeted”
samples.)

Need a plan for when to count more ballots, possibly leading
to full hand count. “Explaining” or “resolving” isn’t enough.
Plan must ensure that the chance of a full hand count is high
whenever the outcome is wrong.

Compliance audits vs. materiality audits.
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Quantifying the Evidence the Audit Sample Gives

What is the biggest chance that—if the outcome is wrong—

the audit would have found “as little” error as it did?

Chance can be big even if no errors are found—if the sample

is small or the margin is small.

Don’t stop counting until that chance is small!

Sequential test of null hypothesis that the outcome is wrong

at significance level α controls the risk to α.
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Notation

1 contest at a time (can combine C contests), vote for ≤ f

of K candidates.

Results subtotaled in N auditable batches, p = 1, . . . , N .

akp: actual votes for candidate k in batch p.

vkp: reported votes for candidate k in batch p.

Ak ≡
∑N

p=1 akp; Vk ≡
∑N

p=1 vkp.

Vw` ≡ Vw − V`: margin of w over `

W: the f apparent winners; L: the K − f apparent losers.

If w ∈ W and ` ∈ L, then Vw` > 0.
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Summarizing error

Candidate w really beat candidate ` if Aw −A` > 0.

Relative overstatement of the margin between w ∈ W and

` ∈ L in batch p:

ew`p =
vwp − v`p − (awp − a`p)

Vw`
.

The outcome of the race is correct if ∀w ∈ W, ` ∈ L,
N∑

p=1

ew`p < 1.

Apparent winner(s) are real winner(s) if no margin was over-

stated by 100% or more of that margin.
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Maximum relative overstatement of pairwise margins

Let

ep ≡ max
w∈W,`∈L

ew`p.

To audit C contests simultaneously,

ep ≡ max
c

max
w∈Wc,`∈Lc

ew`p.

Now

max
w∈W,`∈L

∑
p

ew`p ≤
∑
p

max
w∈W,`∈L

ew`p =
∑
p

ep.

All apparent outcomes are right if

E ≡
N∑

p=1

ep < 1.
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Testing E ≥ 1

How strong is the evidence that E < 1? Maximum P -value.

Need upper bounds on {ep}; otherwise P -value for E ≥ 1 large

unless we audit most batches.

bp: bound on valid votes for any candidate in batch p.∗

Reported margin vs. all bp votes really for `:

ew`p ≤
vwp − v`p − (0− bp)

Vw`

=
bp + vwp − v`p

Vw`
.

∗E.g., from voter registrations, accounting of ballots, pollbook signa-
tures.
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A priori batch error bounds

Define

up ≡ max
c

max
w∈Wc,`∈Lc

bp + vwp − v`p

Vw`
.

Then

ep ≤ up.

Surprisingly controversial among EI advocates.

Less controversial among elections officials. Hmmm.

Extends to simultaneous audits of several races (MARROP);

controls FWER with cost comparable to controlling PCER.
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Sampling Designs

Simple

Stratified (by county, voting method, other)

PPEB

NEGEXP

Stratified PPEB?

Sampling scheme affects choice of test statistic—analytic

tractability

Weighted max for simple & stratified sampling.

More efficient choices possible for PPEB.
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PPEB sampling

total error bound: U ≡
N∑

p=1

up.

“taint” of batch p: tp ≡ ep/up ≤ 1.

Draw n times iid, chance up/U of drawing batch p.

Tj = tp if batch p is selected in draw j

IETj ≡
N∑

p=1

tp
up

U
=

E

U
.

Outcome must be right if IETj < 1/U .
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One-sided test or confidence bound for expected value of RV

bounded on one side

Test whether mean of upper-bounded r.v. < 1/U from iid

sample.

Canonical form:

{Xj} iid, IP{X ≥ 0} = 1.

Find lower confidence bound for IEX1

Transform via Xj ≡ 1− Tj.
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Binning

Define new RVs:

X̃j ≡
{

0, Xj < t
t, Xj ≥ t

, j = 1, . . . , n.

Let p ≡ IP{X̃1 > 0}.

Then

IEX̃1 = pt ≤ IEX1.

n∑
j=1

X̃j ∼ t×Bin(n, p).

Confidence bound on IEX1 from confidence bound on p.
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Tests from Markov’s Inequality

Markov’s inequality: If IP{X ≥ 0} = 1, then

IP{X ≥ IEX/τ} ≤ τ.

Implies that if {Xj}nj=1 iid, IP{X1 ≥ 0} = 1,

IP
{
∩j{Xj ≥ IEX1/τ}

}
≤ τn.

(i) Reject the hypothesis IEX1 ≤ µ at significance level α on
observing X̄ ≡ 1

n

∑n
j=1 Xj = x if

x ≥ µ/α.

(ii) Reject the hypothesis IEX1 ≤ µ at significance level α on
observing X− ≡ minn

j=1 Xj = x if

x ≥ µ/α1/n.

16



MDKW confidence bounds

IP(Xk ≥ 0) = 1; {Xk}nk=1 iid, cdf F .

F̂n(x) ≡
1

n

n∑
k=1

1x≥Xk

IEX ≡
∫

xdF (x)

One-sided Kolmogorov-Smirnov statistic

Dn = sup
x

(F (x)− F̂n(x)).
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MDKW inequality:

IPF{Dn > χ} ≤ exp(−2nχ2) for exp(−2nχ2) ≤ 1
2.

Hence IPF

{
Dn >

√
−lnα

2n

}
≤ α.

Shift as much mass as possible to the left: Define

F̃n,α(x) ≡ 1 ∧

F̂n(x) +

√
−

lnα

2n

 .

Then IPF

{∫∞
0 xdF̃n,α(x) ≤ IEX

}
≥ 1− α.

∫ ∞
0

xdF̃n,α(x)

is a 1−α lower confidence bound for IEX. Easy to compute.
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Martingale: X1, X2, . . . such that IE|Xj| <∞ and

IE(Xj+1|X1, . . . , Xj) = Xj (a.s.).

If X1, X2, . . . is a Martingale and x > 0,

IP

(
max
1≤j≤k

Xj > x

)
≤ IE|Xk|/x.
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IID rvs to martingales

Suppose {Yj} iid, IP{Yj ≥ 0} = 1; IEYj = IE|Yj| = µ <∞.

Let

Xj ≡
∏
i≤j

Yi/µ.

Note Xj+1 = Xj · Yj+1/µ, IEXj = 1, and

IE(Xj+1|X1, . . . , Xj) = XjIEYj+1/µ = Xj.

So, X1, X2, . . . is a Martingale.
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Kaplan-Markov Martingale P -value & Bound

Substitute definition of Xj and set x = 1/P :

IP

 max
1≤j≤k

j∏
i=1

Yj/µ > 1/P

 ≤ P

Lower 1− α confidence bounds for IEX from {Xk}.
1-permutation bound:

max
`=1,...,n

α
∏̀
i=1

Xi

1/`

all-permutation bound:

max
`=1,...,n

α
∏`

k=1 X(n−k+1)(
n
`

)
1/`

,

where X(k) is the kth order statistic of {Xj}.
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Method Observed Taints
clean 0.01 0.01 0.02 0.01 -0.05 ×5

0.01 0.03 0.05 ×5
n = 10, U = 5

Bin, t = 0.01 0.119 0.119 0.119 0.401 0.401 0.995
Bin, t = 0.02 0.131 0.131 0.131 0.131 0.427 0.996
Markov-max 0.107 0.119 0.119 0.131 0.146 0.179
MDKW 0.449 0.453 0.457 0.457 0.464 0.484
KM 0.107 0.108 0.110 0.110 0.112 0.109

n = 20, U = 5
Bin, t = 0.01 0.014 0.014 0.014 0.081 0.081 0.830
Bin, t = 0.02 0.017 0.017 0.017 0.017 0.095 0.854
Markov-max 0.012 0.014 0.014 0.017 0.021 0.032
MDKW 0.202 0.204 0.205 0.205 0.208 0.234
KM 0.012 0.012 0.012 0.012 0.012 0.012

n = 30, U = 10
Bin, t = 0.01 0.057 0.057 0.057 0.229 0.229 0.950
Bin, t = 0.02 0.078 0.078 0.078 0.078 0.285 0.968
Markov-max 0.042 0.057 0.057 0.078 0.106 0.198
KM 0.042 0.043 0.043 0.043 0.044 0.043

n = 40, U = 15
Bin, t = 0.01 0.095 0.095 0.095 0.324 0.324 0.975
Bin, t = 0.02 0.142 0.142 0.142 0.142 0.426 0.989
Markov-max 0.063 0.095 0.095 0.142 0.214 0.493
KM 0.063 0.064 0.065 0.065 0.066 0.064
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Sequential risk-limiting test

0. Calculate error bounds {up}, U . Set n = 1. Pick α ∈ (0,1)
and M > 0.

1. Draw a batch using PPEB. Audit it if not audited previ-
ously.

2. Find Tn ≡ tp ≡ ep/up, taint of the batch p just drawn.

3. Compute

Pn ≡
n∏

j=1

1− 1/U

1− Tj
.

4. If Pn < α, stop; report apparent outcome. If n = M , audit
remaining batches. If all batches have been audited, stop;
report known outcome. Else, n← n + 1 and go to 1.
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This sequential procedure is risk-limiting

If outcome is wrong,

IP{stop without auditing every batch} < α.

Chance ≥ 1− α of fixing wrong outcome by full hand count.

Remarkably efficient (in simulations).
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Pilot Audits in California

Marin County 2/08 (first ever); 11/08

Santa Cruz County 11/08

Yolo County 11/08, 11/09 (2, incl. 1st single-ballot audit)

Measures requiring super-majority, simple measures, multi-

candidate contests, vote-for-n contests.

Contests ranged from about 200 ballots to 121,000 ballots.

Counting burden ranged from 32 ballots to 7,000 ballots.

Cost per audited ballot ranged from nil to about $0.55.
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Yolo County Measure P, November 2009

Reg. voters ballots precincts batches yes no
38,247 12,675 31 62 3,201 9,465

VBM and in-person ballots were tabulated separately (62 batches).

For risk-limit 10%, initial sample size 6 batches; gave 4 dis-

tinct batches, 1,437 ballots.
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Single-ballot auditing would save lots of work

Can determine the initial sample size for a Kaplan-Markov

single-ballot audit even though the cast vote records (CVRs)

were not available.

For risk-limit 10% would need to look at CVRs for 6 ballots.

For risk-limit 1%, 12 ballots.

Cf., 1,437 ballots for actual batch sizes.
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Estimating Damages in a Labor Dispute

Class-action suit over involuntarily missed rest breaks and

meal breaks. Drivers entitled to a rest break every 4 hours,

meal break every 5 hours.

If break is taken, time is unpaid. If missed voluntarily, get

overtime payment.

If missed involuntarily, damages based on number of involun-

tarily missed breaks of each kind.
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Transform to problem of estimating mean of bounded r.v.

For each class member j, upper bound uj on total hours

worked, from driver logs, time sheets, payroll records, pension

records.

mj ≡#(meal break entitlements for member j) ≤ uj/5

rj ≡#(rest break entitlements for member j) ≤ uj/4.

U ≡
∑N

j=1 uj: upper bound on the total hours worked by all

members.

m ≡
∑N

j=1 mj ≤ U/5.

r ≡
∑N

j=1 rj ≤ U/4.
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Probability-proportional-to-size sampling

µj ≡ mj/(uj/5) and ρj ≡ rj/(uj/4). Then

µj ∈ [0,1] and ρj ∈ [0,1].

Draw class members independently with replacement, prob-

ability of drawing member j is πj ≡ uj/U in every draw.

Members who worked more hours more likely to be sampled:

Effort where the money is.

Expected distinct members in n draws:

N∑
j=1

(
1−

(
1−

uj

U

)n)
.

The more the bounds {uj} are skewed to the right, the smaller

the expected number of distinct class members in the sample.
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Taint

Let Mk and Rk be the values of µj and ρj, respectively, for

the class member drawn on the kth draw, k = 1, . . . , n. Now

{Mk}nk=1 are iid random variables on [0,1], as are {Rk}nk=1.

However, Mk and Rk are dependent and not identically dis-

tributed.

Note that

IEMk =
∑
j

µjπj =
∑
j

µj
uj

U
=
∑
j

mj

uj/5

uj

U
=

5

U
m.

(U/5)Mk is unbiased for m.

(U/4)Rk is unbiased for r.
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What does the judge need to do?

Determine sample size (ruled n = 45).

Determine confidence level to use, select method.

Determine, for each class member in the sample, the ac-

tual number of break entitlements missed involuntarily, not

the fraction of break entitlements missed involuntarily. The

bound on the number of entitlements for each class member

was be determined from payroll and other records before the

sample was drawn.

n = 45 draws gave 40 distinct class members.

Depositions underway.
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Estimation and confidence intervals

Burden of proof is on plaintiffs: primary goal is to find lower

confidence bounds for m and r, rather than unbiased estima-

tors of m and r.

Nonparametric lower confidence bounds for the expected value

of nonnegative random variables from iid samples can be ap-

plied to {Mk} and {Rk}.

Scale those confidence bounds by U/5 and U/4 to get lower

confidence bounds for m and r.

Same problem as in election auditing.
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Discount from Sample Mean
Sample Kaplan

p λ ν Mean n MDKW 1-perm all-perm
0.1 0.05 0.9 0.815 30 27.4% 21.6% 26.9%

50 21.2% 17.6% 23.2%
100 15.0% 14.4% 20.3%
200 10.6% 12.8% 18.8%

0.5 0.05 0.9 0.475 30 47.0% 49.8% 57.9%
50 36.4% 47.0% 55.4%

100 25.7% 44.8% 53.7%
200 18.2% 43.7% 53.0%

0.9 0.05 0.9 0.135 30 72.1% 51.6% 56.3%
50 70.1% 48.6% 54.1%

100 68.0% 46.2% 52.3%
200 66.5% 44.9% 51.5%

0.9 0.01 0.5 0.059 30 87.3% 72.5% 77.8%
50 86.3% 70.5% 76.7%

100 85.4% 69.0% 72.2%
200 84.7% 68.3% 69.3%

0.9 0 0.05 0.005 30 100.0% 96.6% 81.7%
50 100.0% 96.4% 74.0%

100 100.0% 96.2% 67.2%
200 100.0% 96.2% 63.7%

“Discounts” from sample mean for lower 97.5% confidence intervals for

hypothetical data. Of n draws, np give data λ and n(1 − p) give data

ν. Sample mean is unbiased for the fraction of the upper bound that is

attained for the population. Column 7 is average over 100,000 permuta-

tions.
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Average Discount from True Mean
True Kaplan

Distribution Mean n MDKW 1-perm all-perm
U [0,1] 0.5 30 42.9% 27.9% 33.1%

50 34.4% 24.3% 30.4%
100 25.2% 21.5% 28.4%
150 20.9% 20.6% 27.7%
200 18.2% 20.1% 27.4%
250 16.4% 19.8% 27.2%

(N(0.5,0.25) ∧ 1) ∨ 0 0.5 30 39.8% 30.6% 27.0%
50 32.2% 28.7% 24.3%

100 23.9% 28.2% 22.3%
150 20.0% 28.1% 21.8%
200 17.6% 28.0% 21.5%
250 16.0% 28.0% 21.4%

Mean percentage discount from the population mean to obtain 97.5%

lower confidence bounds n independent draws. In the first population,

{Xj} are iid U [0,1]. In the second population, {Xj} are iid truncated

normals: Xj ∼ (Z ∧ 1) ∨ 0, where Z ∼ N(0.5,0.25). True population

mean is 0.5. The average amount by which the lower confidence bound

is below the population mean for each of the three lower confidence

bounds is given in columns 4–6. 100,000 replications.
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Why not use the Normal Approximation?

# Small Sample Size
Values 30 50 100 150 200 250

1 7.8% 13.0% 23.7% 33.2% 41.8% 49.1%
2 15.1% 23.7% 41.5% 55.7% 66.3% 74.5%
3 21.8% 33.5% 55.8% 70.7% 80.5% 87.1%
4 28.0% 42.0% 66.1% 80.4% 88.8% 93.4%
5 33.7% 49.3% 74.4% 87.0% 93.4% 85.4%

10 56.2% 74.7% 93.7% 91.7% 90.8% 90.8%
15 70.8% 87.5% 91.7% 94.5% 91.1% 94.3%
20 81.0% 93.7% 91.0% 91.4% 91.9% 92.5%
25 87.7% 85.8% 91.1% 94.4% 92.9% 95.5%

Approximate coverage probability of nominal 97.5% lower confidence

bounds based on the normal approximation for a population with two

distinct values. 370 items in the population. Draws with replacement

with equal probability. The population contains two distinct values, v1

and v2, with v1 < v2. Column 1: number in the population equal to v1,

the smaller value. Columns 2–7: empirical percentage of intervals that

cover in 100,000 replications.
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# Each of Two Sample Size
Smaller Values 30 50 100 150 200 250

1 15.1% 23.8% 41.8% 55.9% 66.0% 74.1%
2 27.9% 41.7% 66.3% 80.4% 76.3% 84.4%
3 39.0% 55.9% 80.4% 80.9% 84.6% 88.0%
4 48.2% 66.6% 76.6% 84.6% 87.6% 90.0%
5 55.7% 74.4% 84.5% 87.9% 89.8% 92.7%

10 81.2% 84.8% 90.3% 93.2% 93.3% 93.6%
15 81.4% 88.6% 93.3% 94.2% 94.4% 94.9%
20 85.8% 90.8% 93.8% 94.5% 94.9% 95.5%
25 92.3% 93.5% 94.3% 95.0% 95.3% 95.7%

Approximate coverage probability of nominal 97.5% lower confidence

bounds based on the normal approximation, for a population with three

equispaced values. 370 items in the population. Draws with replacement

with equal probability. The population contains three distinct equally-

spaced values, v1, v2 and v3, where v1 < v2 < v3 and v2 − v1 = v3 − v2.

Column 1: number in the population equal to each of the two smaller

values. v1 and v2. Columns 2–7: empirical percentage of intervals that

cover in 100,000 replications.
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Scale Sample Size
Factor 30 50 100 150 200 250

1 27.8% 35.1% 55.8% 59.4% 68.0% 74.9%
5 62.9% 74.0% 84.8% 88.4% 90.3% 91.4%

10 78.1% 85.2% 90.7% 92.5% 93.3% 94.0%

Approximate coverage probability of nominal 97.5% lower confidence

bounds based on the normal approximation, for a population with lo-

gistic values. 370 items in the population. Draws are with replacement

with equal probability. The values in the population follow a logistic

curve: The kth member of the population has value (1 + exp(−k/s))−1

for a fixed scale factor s. Column 1: scale factor s. Columns 2–7: empir-

ical percentage of intervals that cover in 100,000 replications of drawing

samples of size 30–250.
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Novato Sanitary District Director, Contested Election, 2009

Vote for 3 candidates; 30 precincts, 10,945 ballots cast (35.63%

turnout, 72.9% VBM) Undervote rate > 13%.

DENNIS J. WELSH 5844 20.47%
MICHAEL DI GIORGIO 4621 16.19%
BILL LONG 4338 15.20%
BILL SCOTT 4323 15.14%
ARTHUR T. KNUTSON 3726 13.05%
DENNIS FISHWICK 3506 12.28%
E.A. SAM RENATI 2161 7.57%
Write-in Votes 29 0.10%
Total Votes 28548

15-vote margin for Long over Scott.
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Election was audited; outcome confirmed to the satisfaction

of Scott.

Later discovered that as many as 67 voters didn’t get the

right ballot, owing to clerical errors in tax offices, etc. (not

Registrar of Voters).

Of the 67, only 28–33 voted in election.

Strict reading of California Law Governing Election Contests:

Must show convincing evidence that voters tried to vote but

were denied the right, and that those denied would have

changed the outcome.

Contestants presented no evidence that outcome would be

different.
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1. Only know of 2–4 who attempted and were denied the

opportunity to vote: one voted provisionally, one tried to.

Could not change the outcome.

2. The 28–33 voters who didn’t get the right ballot all VBM.

Margin for Long ≈ 20× for VBM voters than on the

whole. (1.16% versus 0.06%).

3. If 33 were a precinct, would require 60% larger margin in

favor of Scott (45.45%) than any of the 30 real precincts

had (28.18%).

4. If 33 were random sample and outcome really was a tie or

a win for Scott, IP(15-vote margin hidden among 33) <

0.68%. (values -1, 0, 1. Condition on nonzero; max over

conditional probabilities.)
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P (X ≥ 15) = P (X ≥ 15|no 0s)P (no 0s) +

+P (X ≥ 15|1 0)P (one 0) + · · ·
+P (X ≥ 15|18 0s)P (18 0s)

≤
18

max
j=0

P (X ≥ 15|j 0s)P (j 0s). (1)

5. Map of wrong ballots shows no pattern. No evidence

presented that voters who got got wrong ballot would

vote as bloc.

6. Survey: no surprising pattern of votes for Scott ver-

sus Long. Results for 6 of the 33 (4 Long, 3 Scott).

IP(16-vote margin hidden among 27) < 0.12%.



How many would it take to make it plausible that outcome

would be different?

Absent evidence that the 33 would have voted differently

from the rest, need ≈1000–2300 to have gotten wrong ballots

to have moderate chance they would change outcome.

Arguments: sampling calculation, median margin.
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