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Abstract

The goal of uncertainty quantication (UQ) is to estimate the uncertainty of models of physical systems calibrated to noisy data

(and of predictions from those models), including the contributions of systematic and stochastic measurement error;

ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations of the

accuracy and reliability of computations, approximations, and algorithms; and human error (including software bugs). A large

portion of UQ research has focused on developing efficient numerical approximations (emulators) of expensive numerical

models. In some circles, UQ is nearly synonymous with the study of emulators. I find this unfortunate.

Uncertainty quantication qualication (UQQ) is needed. What sources of uncertainty does a UQ analysis take into account?

What does it ignore? How ignorable are the ignored sources? What assumptions were made? What evidence supports those

assumptions? Are the assumptions testable? What happens if the assumptions are false? I will sketch a potentially helpful

embedding of UQ within the theory of statistical estimation and inverse problems. I will point to a few examples of work that

quantifies uncertainty from systematic measurement error and discretization error. Time permitting, I will whine about the 2009

NAS report, “Evaluation of Quantication of Margins and Uncertainties Methodology for Assessing and Certifying the Reliability

of the Nuclear Stockpile,” and about the misinterpretation of Gaussian process emulators: Both are examples of “unclear

proliferation.”



Wisdom that I’ll ignore
H.L. Menken
Never argue with a man whose job depends on not being convinced.

Upton Sinclair

It is difficult to get a man to understand something when his salary
depends upon his not understanding it.

Unfortunate generalization

It is difficult to get a man to understand something if he thinks his
salary depends upon his not understanding it.

I hope to convince you that some of the most important issues in UQ
are getting the least attention, and that paying attention to them won’t
hurt your salary.

Of course, I could be wrong on both counts.



What is UQ?

UQ = inverse problems + approximate forward model.



What are inverse problems?

statistics

(so saith Lucien LeCam.)



What is the effect of an approximate forward model,
discretization, etc.?

additional systematic measurement errors



How can we deal with systematic measurement errors?

statistics



UQ, again
So, UQ = statistics

(not that I’m chauvinistic; moreover, good applied statistics requires
substantive knowledge of the application)

What makes UQ special?

• the particular sources of systematic error

• poorly understood/characterized measurement error

• poorly understood/characterized properties of the underlying
“model”

• heavy computational burden (in some applications)

• big data (in some applications)

• heterogeneous and legacy data (in some applications)

• need for speed (in some applications)

• societal consequences (in some applications)



Abstract mumbo-jumbo
How can we embed UQ in the framework of statistics?1

Statistical decision theory.
Ingredients:

• The the state of the world θ. Math object that represents the
physical system.

• Set of possible states of the world Θ. Know a priori that θ ∈ Θ.

• Observations Y . Sample space of possible observations Y .

• measurement model that relates the probability distribution of Y
to θ. If η is state of the world, then Y ∼ IPη. Incorporates the
forward model.

• one or more parameters of interest, λ = λ[θ]

• an estimator λ̂(Y ) of the parameter (might be set-valued)

• a risk function that measures the expected loss from estimating
λ[η] by λ̂(Y )

1Moreover, does it help?



How does UQ fit into this framework?

What’s IPθ?

Can think of systematic errors as additional parameters; need
bounds on them or can’t say much.

Augment θ, Θ to include the systematic errors as parameters.

They are nuisance parameters: the distribution of the data depends
on them, but they are not of interest.



What’s missing?

• Given η, do we actually know (or can we simulate from) IPη?
That is, do we know the mapping η → IPη?
If not, more unknowns to take into account.

• Usefully constrained sets Θ of possible models.

• Ways of quantifying/bounding the systematic error.

• Ways of assessing the stochastic errors.

• Estimators λ̂ for λ[θ] in light of the stochastic and systematic
errors, Θ, η → IPη.



Back to basics: Data quality

Tendency to gloss over data uncertainties:

• ignore systematic errors

• treat all error bars as if they were SDs

• treat all measurement error as Normal (maybe Poisson)

• treat measurement errors as independent

• ignore data reduction steps, normalization, calibration
background fits, etc.

• treat inverse of final Hessian of nonlinear LS as if it
characterizes the uncertainty.



Data quality: It ain’t what we pretend it is
My first eye-opener: helioseismology. Nominal uncertainties didn’t
even account for numerical instability in the data reduction.
Cold water on beautiful theoretical approaches.

More: Post-Enumeration Survey data from the U.S. Census; online
behavior monitoring that has a huge impact on, e.g., Google and
Yahoo!’s stock prices.

Most salient: historical nuclear test data used to calibrate numerical
models for “Reliable Replacement Warhead.”
Instruments gone, people who recorded the data retired,
transformations & data reduction mysterious, lots of ±10%:
suspicious. What does ±10% mean?

Can’t get off the ground

How can you know how well the model should fit the data, if you don’t
understand the nature and probable/possible/plausible size of the er-
rors in the data?



Theory and Practice

Jan L.A. van de Snepscheut

In theory, there’s no difference between theory and practice. But in
practice, there is.

Qualitatively quantified version – unknown UQ master

The difference between theory and practice is smaller in theory than
it is in practice.



Grappling with Data Quality isn’t Sexy

Academics are rewarded for proving hard theorems, doing heroic
numerical work (speed or size), making splashy images that get on
the cover of Nature, being “first.”

Moreover, we fall in love with technology, models, technique, tools.

Digging into data quality, systematic errors, etc., is hard, crucial,
unglamorous, and unrewarded.
(OK, so maybe I’m wrong that paying attention won’t hurt your
salary.)

No UQ in a vacuum!
Can’t Q the U without knowing the limitations of the data.



Bad incentives

Gary Larson

Another case of too many scientists and not enough hunchbacks.

John W. Gardner
The society which scorns excellence in plumbing as a humble activity
and tolerates shoddiness in philosophy because it is an exalted ac-
tivity will have neither good plumbing nor good philosophy: neither its
pipes nor its theories will hold water.



Emulators and Emulator Errors

Splines, MARS, GP, kriging, etc. Generically, interpolation.

Exacerbate systematic differences between numerical approximation
of forward model and true forward model.

Internal measures of accuracy (e.g., cross-validation error, posterior
distributions) can be arbitrarily misleading unless there are strong
physical constraints on the regularity of the forward model.

Interesting questions:

• What would need to be true for the internal accuracy measure to
be accurate?

• How bad could the internal accuracy measure be, given what
we really know about the forward model?



How many points does it take to “train” an emulator?

Can lower-bound the number of function evaluations required to
ensure that the emulator agrees with the numerical model within ε
throughout the domain. (Joint work with Jeff Regier.)

Basic idea: can lower-bound the global, isotropic Lipschitz constant
by the Lipschitz constant attained by the data used to train the
emulator.
Radius of information argument.

To do better than this lower bound, need to know more about the true
and numerical forward models.

A priori regularity from the underlying physics?
A posteriori error estimates for numerical PDE?



Sources of randomness in applied statistics
GP emulators treat the forward model as if it is random. Where does
the probability come from?

Four main ways probability arises in applications:

• Physics is itself random: thermodynamics, quantum mechanics,
big bang

• Experiments in which assignment to treatment is random
• Hypothetical counterfactuals, e.g., p-values for comparing two

populations when neither is a random sample
• Pure invention, e.g., GP models for deterministic systems.

In the last two, gotta remember that the probability isn’t real—it’s
supposed.
If the real situation had come from the assumed distribution, stuff
follows.
If not , it’s just made up numbers.

Misleading to treat it as if it necessarily means anything about the
actual situation.



What does the analysis tell us?

If UQ gives neither an upper bound nor a lower bound on a sensibly
defined measure of uncertainty, what have we learned?

At the very least, need to list what we have and have not taken into
account.



Abridged catalog of sources of uncertainty

Broad categories: calibration data, theoretical approximation to the system, numerical approximation of the theoretical
approximation in the simulator, interpolation of the simulated results, sampling and testing candidate models, coding errors,
inferential techniques

1. error in the calibration data, including noise and systematic error, and assumptions about these

2. approximations in the model, including physics and parametrization

3. finite-precision arithmetic

4. numerical approximations to the approximate physics embodied in the simulator

5. algorithmic errors in the numerical approximation, tuning parameters in the simulations

6. sampling variability in stochastic algorithms and simulations

7. choices of the training points for the interpolator/emulator

8. choices of the interpolator: functional form, tuning parameters, fitting algorithm

9. choice of the measure of agreement between observation and prediction

10. technique actually used to draw conclusions from the emulated output

11. bugs, data transcription errors, faulty proofs, . . .



Examples with inaccurately known forward models and
discretization error

Stark (1992) treats a problem in helioseismology in which the forward
model is known only approximately; bounds the systematic error that
introduces and takes it into account to find confidence sets for a fully
infinite-dimensional model; also gives a general framework.

Evans & Stark (2002) give a more general framework.

Stark (2008) discusses generalizing “resolution” to nonlinear
problems and problems with systematic errors.

Gagnon-Bartsch & Stark (2012) treat a problem in gravimetry in
which the domain is discretized; bound the systematic error that the
discretization introduces and take it into account to find confidence
sets for a fully infinite-dimensional model.



Intermission

Evaluation Of Quantification Of Margins And Uncertainties
Methodology For Assessing And Certifying The Reliability Of The
Nuclear Stockpile (EQMU)

Committee on the Evaluation of Quantification of Margins and
Uncertainties Methodology for Assessing and Certifying the
Reliability of the Nuclear Stockpile, 2009.

http:

//www.nap.edu/openbook.php?record_id=12531&page=R1

Prepare for a rant . . .

http://www.nap.edu/openbook.php?record_id=12531&page=R1
http://www.nap.edu/openbook.php?record_id=12531&page=R1


Present company excluded
Fundamental Theorem of Physics

Axiom: Anything that comes up in a physics problem is physics.
Lemma: Nobody knows more about physics than physicists.a

Theorem: There’s no reason for physicists to talk to anybody else to
solve physics problems.

aFollows from the axiom: Nobody knows more about anything than physicists.

Practical consequence

Physicists often re-invent the wheel. It is not always as good as the
wheel a mechanic would build.

Some “unsolved” problems–according to EQMU—are solved. But not
by physicists.

Who was on the NAS panel?
(Physicists, nuclear physicists, nuclear engineer, shock physicist,
senior manager, probabilistic risk assessor, . . . , and one statistician)



Cream of EQMU (p. 25)

Assessment of the accuracy of a computational prediction depends
on assessment of model error, which is the difference between the
laws of nature and the mathematical equations that are used to
model them. Comparison against experiment is the only way to
quantify model error and is the only connection between a simulation
and reality. . . .

Even if model error can be quantified for a given set of experimental
measurements, it is difficult to draw justifiable broad conclusions
from the comparison of a finite set of simulations and measurements.
. . . it is not clear how to estimate the accuracy of a simulated quantity
of interest for an experiment that has not yet been done. . . . In the
end there are inherent limits [which] might arise from the paucity of
underground nuclear data and the circularity of doing sensitivity
studies using the same codes that are to be improved in ways guided
by the sensitivity studies.



Example from EQMU (pp. 9–11, 25–6; notation changed)

Device needs voltage VT to detonate. Detonator applies VA. “Boom”
if VA ≥ VT .

VT estimated as V̂T = 100V , with uncertainty UT = 5V .

VA estimated as V̂A = 150V , with uncertainty UA = 10V .

Margin M = 150V − 100V = 50V .

Total uncertainty U = UA + UT = 10V + 5V = 15V .

“Confidence ratio” M/U = 50/15 = 31
3 .

Magic ratio M/U = 3. (EQMU, p. 46)

“If M/U >> 1, the degree of confidence that the system will perform
as expected should be high. If M/U is not significantly greater than
1, the system needs careful examination.” (EQMU, p. 14)



Scratching the veneer.

Are VA and/or VT random? Or simply unknown?

Are V̂A and V̂T design parameters? Estimates from data?

Why should UA and UT add to give total uncertainty U?

How well are UA and UT known?

If U is a bound on the possible error, then have complete confidence
if M > U: ratio doesn’t matter.

If U isn’t a bound, what does U mean?



EQMU says:

“Generally [uncertainties] are described by probability distribution
functions, not by a simple band of values.”
(EQMU, p. 13)

“An important aspect of [UQ] is to calculate the (output) probability
distribution of a given metric and from that distribution to estimate the
uncertainty of that metric. The meaning of the confidence ratio
(M/U) depends significantly on this definition . . . ”
(EQMU, p. 15)



Vision 1: Us are error bars

Suppose VA and VT are independent random variables2 with known
means V̂A and V̂T , respectively.

Suppose IP{V̂A − VA ≤ UA} = 90% and IP{VT − V̂T ≤ UT} = 90%.

What’s IP{VA − VT ≥ 0}? Can’t say, but . . .

Bonferroni’s inequality:

IP{V̂A − VA ≤ UA and VT − V̂T ≤ UT} ≥ 80%.

That’s a conservative bound. What’s the right answer?

2Are they random variables? If so, why not dependent?



Vision 2: Us are (multiples of) SDs

“. . . if one knows the type of distribution, it could be very helpful to
quantify uncertainties in terms of standard deviations. This approach
facilitates meaningful quantitative statements about the likelihood of
successful functioning.” (EQMU, p. 27)

Does one ever know the type of distribution? Is the SD known to be
finite? Can very long tails be ruled out?

Even if so, that’s not enough: what’s the joint distribution of VA and
VT ?

If VA and VT were independent with means V̂A and V̂T and SDs UA

and UT , the SD of VA − VT would be
√

U2
A + U2

T , not UA + UT .

If they are correlated, SD would be
√

U2
A + U2

T + 2UAUT



If Us are multiples of SDs, what’s the confidence?

Suppose U = SD(VA − VT ).
What does M/U = k imply about IP{VA > VT}?
Chebychev’s inequality:

IP
{
|VA − VB − (V̂A − V̂B)| ≤ kU

}
≥ 1− 1

k2 .

E.g., k = 3 gives “confidence” 1− 1/9 = 88.9%.

C.f. typical Gaussian assumption: k = 3 gives “confidence”

IP

{
VA − VB − (V̂A − V̂B)

σ(VA − VT )
≥ 3

}
≈ 99.9%.

88.9% < 99.9% < 100%.



Vision 3: one of each

From the description, makes sense that VT is an unknown
parameter, V̂T is an already-computed estimate of VT from data, V̂A

is a design parameter, and VA is a random variable that will be
“realized” when the button is pushed.

If so, makes sense that UT is an “error bar” computed from data.

Either VT − V̂T ≤ UT or not: no probability left, only ignorance.

Whether V̂A − VA ≤ UA is still a random event; depends on what
happens when the button is pushed.

EQMU is careless about what is known, what is estimated, what is
uncertain, what is random, etc.
The “toy” lead example is problematic.



Historical error bars

How to make sense of error bars on historical data? Crucial!

Seldom know how the bars were constructed or what they were
intended to represent.

Variability in repeated experiments?

Spatial variability (e.g., across-channel variation) within a single
experiment?

Instrumental limitation or measurement error?

Hunch? Wish? Prayer? Knee-jerk “it’s 10%?”

Measuring apparatus retired along with institutional memory. Can’t
repeat experiments.



Good quote

(EQMU, p. 27, fn 5)

“To the extent (which is considerable) that input uncertainties are
epistemic and that probability distribution functions (PDFs) cannot be
applied to them, uncertainties in output/integral parameters cannot
be described by PDFs.”

And then gibberish ensues.



Bad quotes

(EQMU, p. 21)

“Given sufficient computational resources, the labs can sample from
input-parameter distributions to create output-quantity distributions
that quantify code sensitivity to input variations.”

“Sampling from the actual high-dimensional input space is not a
solved problem.”

“ . . . the machinery does not exist to propagate [discretization errors]
and estimate the uncertainties that they generate in output
quantities.”



Fallacy

(EQMU, p. 23)

“Analysis shows that 90 percent of the realistic input space
(describing possible values of nature’s constants) maps to
acceptable performance, while 10 percent maps to failure. This 90
percent is a confidence number . . . we have a 90 percent confidence
that all devices will meet requirements and a 10 percent confidence
that all will fail to meet requirements.”

Laplace’s principle of insufficient reason: if there’s no reason to think
possibilities have different probabilities, assume that the probabilities
are equal.

No evidence of difference 6= evidence of no difference.



Example: Gas thermodynamics

Gas of of n non-interacting particles. Each can be in any of r
quantum states; possible values of “state vector” equally likely.

1. Maxwell-Boltzman. State vector gives the quantum state of each
particle: rn possible values.

2. Bose-Einstein. State vector gives # particles in each quantum
state:

(n+r−1
n

)
possible values.

3. Fermi-Dirac. State vector gives the # particles in each quantum
state, but no two particles can be in the same state:

(r
n

)
possible

values.



Gas thermodynamics, contd.

Maxwell-Boltzman common in probability theory (e.g., “coin gas”),
but but describe no known gas.

Bose-Einstein describes bosons, e.g., photons and He4 atoms.

Fermi-Dirac describes fermions, e.g., electrons and He3 atoms.

Outcomes can be defined or parametrized in many ways. Not clear
which–if any–give equal probabilities.

Principle of Insufficient Reason is insufficient for physics.



Constraints versus prior probabilities

Bayesian machinery (LANL approach) is appealing but can be
misleading.

Capturing constraints using priors adds “information” not present in
the constraints.

• Why a particular form?

• Why particular values of the parameters?

• What’s the relation between the “error bars” the prior represents
and specific choices?



Distributions on states of nature

Bayes’ Rule: IP(B|A) = IP(A|B)IP(B)/IP(A).

“Just math.”

To have posterior IP(B|A), need prior IP(B).

The prior matters. Where does it come from?

Misinterpretation of LLNL “ensemble of models” approach to UQ: no
prior.



Conservation of Rabbits

Freedman’s Principle of Conservation of Rabbits

To pull a rabbit from a hat, a rabbit must first be placed in the hat.

The prior puts the rabbit in the hat.

PRA puts many rabbits in the hat.

Bayes/minimax duality: minimax uncertainty is Bayes uncertainty for
least favorable prior.3

3Least favorable 6= “uninformative.”



Bounded normal mean

Know that θ ∈ [−τ, τ ].

Observe Y = θ + Z .

Z ∼ N(0, 1).

Want to estimate θ.

Bayes: capture constraint using prior, e.g., θ ∼ U[−τ, τ ].

Credible region: 95% posterior probability.
Confidence interval: 95% chance before data are collected.



95% Confidence sets vs. credible regions
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Coverage of 95% credible regions
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Expected size of credible regions and confidence intervals
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