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Abstract

Uncertainty quantification (UQ) estimates the uncertainty in models of

physical systems calibrated to noisy data. Uncertainty quantification qual-

ification (UQQ) is needed. What sources of uncertainty does a UQ anal-

ysis take into account? What does it ignore? How ignorable are the

ignored sources of uncertainty? What assumptions does the UQ esti-

mate depend on? What evidence supports those assumptions? Are the

assumptions testable? What happens if the assumptions are false?

The 2009 NAS report, Evaluation of Quantification of Margins and Un-

certainties Methodology for Assessing and Certifying the Reliability of the

Nuclear Stockpile (EQMU), has some good advice. But M/U has little

connection to “confidence.” EQMU is inconsistent and confuses absence

of evidence with evidence of absence. Probabilistic Risk Assessment as

proposed is not a serious solution. “UQ by committee” has difficulties

evident in the USGS earthquake forecast for the Bay Area.
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Outline

• 2009 NAS Report (EQMU): digs, cream, margins, uncer-

tainties, confidence, howlers, constraints versus priors.

• Earthquake probabilities: The USGS forecast for the SF

Bay Area.

• History lessons: EOS/helioseismology; solar free oscilla-

tions.

• A (partial) catalog of sources of uncertainty.
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Present company excluded, of course!

Axiom 1: Anything that comes up in a physics problem is
physics.

Axiom 2: Nobody knows more about physics than physicists.∗

Theorem: There’s no reason for physicists to talk to anybody
else to solve physics problems.

Practical consequence: Physicists often re-invent the

wheel. It is not always as good as the wheel a mechanic

would build.

Some “unsolved” problems–according to EQMU—are solved.
But not by physicists.

Who was on the NAS panel?
∗Special case of the general axiom: Nobody knows more about anything
than physicists, and physicists are smarter than everybody else.
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What is UQ?

UQ = inverse problems + approximate forward model.

Lots of work on this, including approximate forward model.
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Cream of EQMU (p. 25)

Assessment of the accuracy of a computational prediction de-
pends on assessment of model error, which is the difference
between the laws of nature and the mathematical equations
that are used to model them. Comparison against experi-
ment is the only way to quantify model error and is the only
connection between a simulation and reality. . . .

Even if model error can be quantified for a given set of exper-
imental measurements, it is difficult to draw justifiable broad
conclusions from the comparison of a finite set of simulations
and measurements. . . . it is not clear how to estimate the ac-
curacy of a simulated quantity of interest for an experiment
that has not yet been done. . . . In the end there are inherent
limits [which] might arise from the paucity of underground
nuclear data and the circularity of doing sensitivity studies
using the same codes that are to be improved in ways guided
by the sensitivity studies.
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Example from EQMU (pp. 9–11, 25–6; notation changed)

Device needs voltage VT to detonate. Detonator applies VA.
“Boom” if VA ≥ VT .

VT estimated as V̂T = 100V , with uncertainty UT = 5V .

VA estimated as V̂A = 150V , with uncertainty UA = 10V .

Margin M = 150V − 100V = 50V .

Total uncertainty U = UA + UT = 10V + 5V = 15V .

“Confidence ratio” M/U = 50/15 = 31
3.

Magic ratio M/U = 3. (EQMU, p. 46)

“If M/U >> 1, the degree of confidence that the system will
perform as expected should be high. If M/U is not signifi-
cantly greater than 1, the system needs careful examination.”
(EQMU, p. 14)
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Scratching the veneer.

Are VA and/or VT random? Or simply unknown?

Are V̂A and V̂T design parameters? Estimates from data?

Why should UA and UT add to give total uncertainty U?

How well are UA and UT known?

If U is a bound on the possible error, then have complete

confidence if M > U : ratio doesn’t matter.

If U isn’t a bound, what does U mean?
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EQMU says:

“Generally [uncertainties] are described by probability distri-

bution functions, not by a simple band of values.”

(EQMU, p. 13)

“An important aspect of [UQ] is to calculate the (output)

probability distribution of a given metric and from that dis-

tribution to estimate the uncertainty of that metric. The

meaning of the confidence ratio (M/U) depends significantly

on this definition . . . ”

(EQMU, p. 15)
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Vision 1: Us are error bars

Suppose VA and VT are independent random variables∗ with

known means V̂A and V̂T , respectively.

Suppose IP{V̂A − VA ≤ UA} = 90% and IP{VT − V̂T ≤ UT} =

90%.

What’s IP{VA − VT ≥ 0}? Can’t say, but . . .

Bonferroni’s inequality:

IP{V̂A − VA ≤ UA and VT − V̂T ≤ UT} ≥ 80%.

That’s a conservative bound. What’s the right answer?

∗Are they random variables? If so, why not dependent?
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Vision 2: Us are (multiples of) SDs

“. . . if one knows the type of distribution, it could be very

helpful to quantify uncertainties in terms of standard de-

viations. This approach facilitates meaningful quantitative

statements about the likelihood of successful functioning.”

(EQMU, p. 27)

Does one ever know the type of distribution? Is the SD

known to be finite? Can very long tails be ruled out?

Even if so, that’s not enough: what’s the joint distribution

of VA and VT?

If VA and VT were independent with means V̂A and V̂T and

SDs UA and UT , the SD of VA− VT would be
√

U2
A + U2

T , not

UA + UT .
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If Us are multiples of SDs, what’s the confidence?

Suppose U = SD(VA − VT ).

What does M/U = k imply about IP{VA > VT}?

Chebychev’s inequality:

IP
{
|VA − VB − (V̂A − V̂B)| ≤ kU

}
≥ 1−

1

k2
.

E.g., k = 3 gives “confidence” 1− 1/9 = 88.9%.

C.f. typical Gaussian assumption: k = 3 gives “confidence”

IP

{
VA − VB − (V̂A − V̂B)

σ(VA − VT )
≥ 3

}
≈ 99.9%.

88.9% < 99.9% < 100%.
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Vision 3: one of each

From the description, makes sense that VT is an unknown

parameter, V̂T is an already-computed estimate of VT from

data, V̂A is a design parameter, and VA is a random variable

that will be “realized” when the button is pushed.

If so, makes sense that UT is an “error bar” computed from

data.

Either VT−V̂T ≤ UT or not: no probability left, only ignorance.

Whether V̂A − VA ≤ UA is still a random event; depends on

what happens when the button is pushed.

EQMU is careless about what is known, what is estimated,

what is uncertain, what is random, etc.

The “toy” lead example is problematic.
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Historical error bars

How to make sense of error bars on historical data? Crucial!

Seldom know how the bars were constructed or what they

were intended to represent.

Variability in repeated experiments?

Spatial variability (e.g., across-channel variation) within a sin-

gle experiment?

Instrumental limitation or measurement error?

Hunch? Wish? Prayer? Knee-jerk “it’s 10%?”

Measuring apparatus retired along with institutional memory.

Can’t repeat experiments.
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Good quote (EQMU, p. 27, fn 5)

“To the extent (which is considerable) that input uncertain-

ties are epistemic and that probability distribution functions

(PDFs) cannot be applied to them, uncertainties in out-

put/integral parameters cannot be described by PDFs.”

And then gibberish ensues.
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Bad quotes (EQMU, p. 21)

“Given sufficient computational resources, the labs can sam-

ple from input-parameter distributions to create output-quantity

distributions that quantify code sensitivity to input varia-

tions.”

“Sampling from the actual high-dimensional input space is

not a solved problem.”

“ . . . the machinery does not exist to propagate [discretiza-

tion errors] and estimate the uncertainties that they generate

in output quantities.”
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Fallacy (EQMU, p. 23)

“Analysis shows that 90 percent of the realistic input space

(describing possible values of nature’s constants) maps to ac-

ceptable performance, while 10 percent maps to failure. This

90 percent is a confidence number . . . we have a 90 percent

confidence that all devices will meet requirements and a 10

percent confidence that all will fail to meet requirements.”

Laplace’s principle of insufficient reason: if there’s no reason

to think possibilities have different probabilities, assume that

the probabilities are equal.

No evidence of difference 6= evidence of no difference.
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Example: Gas thermodynamics

Gas of of n non-interacting particles. Each can be in any of

r quantum states; possible values of “state vector” equally

likely.

1. Maxwell-Boltzman. State vector gives the quantum state

of each particle: rn possible values.

2. Bose-Einstein. State vector gives # particles in each

quantum state:
(
n+r−1

n

)
possible values.

3. Fermi-Dirac. State vector gives the # particles in each

quantum state, but no two particles can be in the same state:(
r
n

)
possible values.

18



Gas thermodynamics, contd.

Maxwell-Boltzman common in probability theory (e.g., “coin

gas”), but but describe no known gas.

Bose-Einstein describes bosons, e.g., photons and He4 atoms.

Fermi-Dirac describes fermions, e.g., electrons and He3 atoms.

Outcomes can be defined or parametrized in many ways. Not

clear which–if any–give equal probabilities.

Principle of Insufficient Reason is insufficient for physics.
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Constraints versus prior probabilities

Bayesian machinery (LANL approach) is appealing but can

be misleading.

Capturing constraints using priors adds “information” not

present in the constraints.

• Why a particular form?

• Why particular values of the parameters?

• What’s the relation between the “error bars” the prior

represents and specific choices?
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Distributions on states of nature

Bayes’ Rule: IP(B|A) = IP(A|B)IP(B)/IP(A).

“Just math.”

To have posterior IP(B|A), need prior IP(B).

The prior matters. Where does it come from?

Misinterpretation of LLNL “ensemble of models” approach

to UQ: no prior.
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Conservation of Rabbits

Freedman’s Principle of Conservation of Rabbits:

To pull a rabbit from a hat, a rabbit must first be placed

in the hat.

The prior puts the rabbit in the hat.

PRA puts many rabbits in the hat.

Bayes/minimax duality: minimax uncertainty is Bayes uncer-

tainty for least favorable prior.∗

∗Least favorable 6= “uninformative.”
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Bounded normal mean

Know that θ ∈ [−τ, τ ].

Observe Y = θ + Z.

Z ∼ N(0,1).

Want to estimate θ.

Bayes: capture constraint using prior, e.g., θ ∼ U [−τ, τ ].

Credible region: 95% posterior probability.

Confidence interval: 95% chance before data are collected.
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95% Confidence sets vs. credible regions
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Coverage of 95% credible regions
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Expected size of credible regions and confidence intervals
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Interpreting earthquake predictions (joint with D.A. Freed-

man)

Globally, on the order of 1 magnitude 8 earthquake per year.

Locally, recurrence times for big events O(100 y).

Big quakes deadly and expensive.

Much funding and glory in promise of prediction.

Would be nice if prediction worked.
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Some stochastic models for seismicity:

• Poisson (spatially heterogeneous; temporally homogeneous;

marked?)

• Gamma renewal processes

• Weibull, lognormal, normal, double exponential, . . .

• ETAS

• Brownian passage time
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Coin Tosses. What does P (heads) = 1/2 mean?

• Equally likely outcomes: Nature indifferent; principle of
insufficient reason

• Frequency theory: long-term limiting relative frequency

• Subjective theory: strength of belief

• Probability models: property of math model; testable pre-
dictions

Math coins 6= real coins.

Weather predictions: look at sets of assignments. Scoring
rules.
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USGS 1999 Forecast

P (M≥6.7 event by 2030) = 0.7± 0.1

What does this mean?

Where does the number come from?

Two big stages.
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Stage 1

1. Determine regional constraints on aggregate fault motions from geodetic mea-
surements.

2. Map faults and fault segments; identify segments with slip ≥ 1 mm/y. Estimate
the slip on each fault segment principally from paleoseismic data, occasionally
augmented by geodetic and other data. Determine (by expert opinion) for each
segment a ‘slip factor,’ the extent to which long-term slip on the segment is ac-
commodated aseismically. Represent uncertainty in fault segment lengths, widths,
and slip factors as independent Gaussian random variables with mean 0. Draw a
set of fault segment dimensions and slip factors at random from that probability
distribution.

3. Identify (by expert opinion) ways segments of each fault can rupture separately
and together. Each combination of segments is a ‘seismic source.’

4. Determine (by expert opinion) extent that long-term fault slip is accommodated
by rupture of each combination of segments for each fault.

5. Choose at random (with probabilities of 0.2, 0.2, and 0.6) 1 of 3 generic rela-
tionships between fault area and moment release to characterize magnitudes of
events that each combination of fault segments supports. Represent the uncer-
tainty in generic relationship as Gaussian with zero mean and standard deviation
0.12, independent of fault area.

6. Using the chosen relationship and the assumed probability distribution for its pa-
rameters, determine a mean event magnitude for each seismic source by Monte
Carlo.
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7. Combine seismic sources along each fault ‘to honor their relative likelihood as
specified by the expert groups;’ adjust relative frequencies of events on each source
so every fault segment matches its estimated slip rate. Discard combinations of
sources that violate a regional slip constraint.

8. Repeat until 2,000 regional models meet the slip constraint. Treat the 2,000
models as equally likely for estimating magnitudes, rates, and uncertainties.

9. Estimate background rate of seismicity: Use an (unspecified) Bayesian procedure
to categorize historical events from three catalogs either as associated or not
associated with the seven fault systems. Fit generic Gutenberg-Richter magnitude-
frequency relation N(M) = 10a−bM to events deemed not to be associated with the
seven fault systems. Model background seismicity as a marked Poisson process.
Extrapolate Poisson model to M ≥ 6.7, which gives a probability of 0.09 of at
least one event.



Stage 1: Generate 2,000 models; estimate long-term seismicity rates

as a function of magnitude for each seismic source.

Stage 2:

1. Fit 3 stochastic models for earthquake recurrence—Poisson, Brow-
nian passage time and ‘time-predictable’—to long-term seismicity
rates estimated in stage 1.

2. Combine stochastic models to estimate chance of a large earthquake.

Poisson and Brownian passage time models used to estimate the proba-
bility an earthquake will rupture each fault segment.

Some parameters fitted to data; some set more arbitrarily. Aperiodicity
(standard deviation of recurrence time, divided by expected recurrence
time) set to three different values, 0.3, 0.5, and 0.7. Method needs
estimated date of last rupture of each segment.

Model redistribution of stress by earthquakes; predictions made w/ &
w/o adjustments for stress redistribution.

Predictions for segments combined into predictions for each fault using

expert opinion about the relative likelihoods of different rupture sources.
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‘Time-predictable model’ (stress from tectonic loading needs to reach
the level at which the segment ruptured in the previous event for the
segment to initiate a new event) used to estimate the probability that an
earthquake will originate on each fault segment. Estimating the state of
stress before the last event requires date of the last event and slip during
the last event. Those data are available only for the 1906 earthquake
on the San Andreas Fault and the 1868 earthquake on the southern
segment of the Hayward Fault. Time-predictable model could not be
used for many Bay Area fault segments.

Need to know loading of the fault over time; relies on viscoelastic models
of regional geological structure. Stress drops and loading rates modeled
probabilistically; the form of the probability models not given. Loading of
San Andreas fault by the 1989 Loma Prieta earthquake and the loading
of Hayward fault by the 1906 earthquake were modeled.

Probabilities estimated using time-predictable model were converted into
forecasts using expert opinion for relative likelihoods that an event initi-
ating on one segment will stop or will propagate to other segments.

The outputs of the 3 types of stochastic models for each segment

weighted using opinions of a panel of 15 experts. When results from

the time-predictable model were not available, the weights on its output

were 0.
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So, what does it mean?

Dunno. No standard interpretation of probability applies.

Aspects of Fisher’s fiducial inference, frequency theory, prob-
ability models, subjective probability.

Frequencies equated to probabilities; outcomes assumed to
be equally likely; subjective probabilities used in ways that
violate Bayes’ Rule.

Calibrated using incommensurable data–global, extrapolated
across magnitude ranges using ‘empirical’ scaling laws.

PRA is very similar—made-up models for various risks, hand
enumeration of possibilities. Lots of “expert judgment” turned
into the appearance of precise quantification.

UQ for RRW similar to EQ prediction: can’t do relevant
experiments to calibrate the models, lots of judgment needed.
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History lessons

Helioseismology discovered errors in the EOS for hydrogenic

approximation for the bound state of Fe.

Hessian-based error bars for normal mode frequencies: “sta-

tistical” versus algorithmic uncertainties—what uncertainties

are included in the error bars?
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Abridged catalog of sources of uncertainty
Broad categories: issues with the calibration data, issues with the theoretical approxima-
tion to the physical system, issues with the numerical approximation of the theoretical
approximation in the simulator, issues with the interpolation of the simulated results,
and issues with the sampling and testing of candidate models, coding errors

1. error in the calibration data, including noise and systematic error

2. approximations in the physics, including the choice of parametrization

3. numerical approximations to the approximate physics embodied in the simulator

4. algorithmic errors in the numerical approximation, tuning parameters in the simu-
lations

5. sampling variability in stochastic algorithms and simulations

6. choices of the training points for the interpolator

7. choices of the interpolator: functional form, tuning parameters, fitting algorithm

8. choice of the measure of agreement between observation and prediction—the
tester

9. choices in the sampler, including the probability distribution used and the number
of samples drawn.

10. bugs
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Conclusions

UQ is hard. Most UQ analyses ignore sources of uncertainty
that could contribute more to the overall uncertainty than
the sources they include. Some of those sources can be ap-
praised. Errors and error bars for the original measurements
are poorly understood; that might be insurmountable.

Bayesian methods make very strong assumptions about the
probability distribution of data errors, models and output.
Those assumptions are implausible and produce the illusion
that the uncertainty is smaller than it really is.

Extrapolating complex simulations requires refusing to con-
template violations of assumptions that cannot be tested us-
ing the calibration data alone. If there is no way to design
and carry out real-world experiments (not just numerical ex-
periments), a potentially large source of uncertainty remains
unquantified.
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