SticiGui, Onsophic, and Statistics W21

Philip B. Stark

Department of Statistics University of California, Berkeley

> 31 July 2011 JSM Miami, FL

Statistics W21

- First online course taught at Berkeley, in any subject.
- Primary audience: intended Business & Economics majors.
- Enrollment 300–425, many timezones, including Asia.
- Hybrid 1997–2006; online 2007–present
- Mastery-based: \leq 5 submissions, \geq 80% or no credit.
- In-person final (\approx 50 students take proctored off-campus).
- Typically 7 GSIs holding \approx 140 office hours per week.
- "Learning preparedness assessment" by phone $\approx\!\!1$ month before class.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Milestones

- Most of text online in 1997, including applets for key concepts, glossary.
- Online, machine-graded assignments from 1998.
- Dynamic examples, exercises, individualized homework from 2000.
- Added topics continually. Now have reasoning, set theory, logic, ...
- "Functional grading" from 2003.
- Online office hours with whiteboard, 2-way audio/video, etc. from 2007

- Online lectures from 2009.
- Deep anchors and thorough analytics from 2011.

SticiGui

- 222 XHTML files, 140,384 lines
- 63 Java classes, 15,385 lines
- 28 JavaScript libraries, 15,418 lines
- 4 CSS files, 2,201 lines
- 37 data files, 10,733 records

Close to 8000 hours of work.

Onsophic

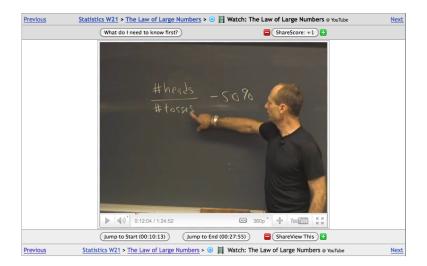
• Platform for discovery of course materials, course assembly, course delivery, analytics.

- Built on Sakai.
- Customization for W21: SMS for office hours, heat map granularity, etc.

Analytics

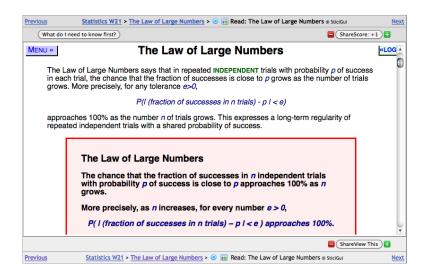
- · Viewing sections of book, lecture, or podcast
- Viewport events
- Viewing footnotes
- Attempting practice problems
- Submitting homework

Number of activities, time on task, scores.

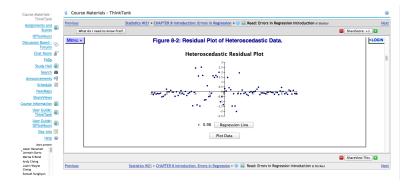

Screenshots: Daily Assignments

Less Unknown Incomplete In Progress All Statistics W21							
Thursday, July 14, 2011	Friday, July 15, 2011	Monday, July 18, 2011					
Using the Binomial Distribution	Random Variables	▲ Calculating Binomial, Geometric, Hypergeometric, and Negative Binomial Probabilities					
<u>Continuation of the Let's Make a Deal</u> <u>Problem</u>	A Sampling from 0-1 Boxes	Discrete Distributions					
A CHAPTER 16 Summary: Probability Meets Data	A Geometric Distribution	A Case Study: Trade Secret Litigation					
Assignment: The sample sum and the Binomial distribution	A The Negative Binomial Distribution	CHAPTER 17 Summary: Random Variables and Discrete Distributions					
A CHAPTER 17 Introduction: Random Variables and Discrete Distributions	A The Hypergeometric Distribution	* 🔆 Assignment: Random variables and discrete distributions					
Random Variables	▲ Calculating Binomial, Geometric, Hypergeometric, and Negative Binomial Probabilities	CHAPTER 18 Introduction: The Long Run and the Expected Value					
Less		More					

Screenshots: Module Overview


Previous	Statistics W21 > Sample Data Sets		Next
Sections		Open Date	Close Date
Intro thru Demo			
	= 1		
Image: Read: Trade Secret Data @ SticiGui	= 1		
Image: Watch: Trade Secret Data	= 1		
	= 1		
Practice			
Practice: Exercise 3.2 @ SticiGui	= 1		
Practice: Exercise 3-3 @ SticiGui	= 1		
Practice: Exercise 3-4 @ SticiGui	= 1		
Practice: Exercise 3-5 SticiGui	= 1		
Intro thru Demo			
Read: Gravity Data	= 1		
I Watch: Gravity data	= 1		
I Listen: Gravity data ⊗ webcast.berkeley	= 1		
Previous	Statistics W21 > Sample Data Sets		Next

Screenshots: Online Lecture


◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへ()・

Screenshots: SticiGui reading

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ(?)

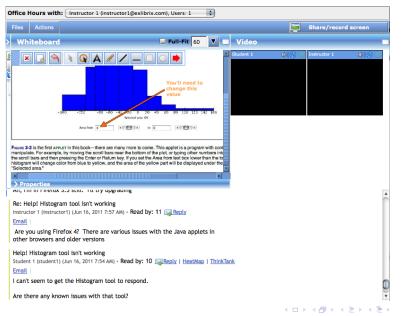
Screenshots: SticiGui reading

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Screenshots: HeatMap of Modules

HeatMaps @								
Less Au	xes: Modules	🗘 Stud	dent: Module: More					
								\$
Submit								
Dependence of the	The Binomial	CHAPTER 14		Argument 4	Using the	Continuatio	in of CHA	PTER 16
Logical Operations				Random	Assumptions and	d Argument	:1 Arg	ument 2
	The Axioms of Bayes'	Bayes' Rule		Logic and Set	Argument 3	CHAPTER 14	CHAPTER	CHAPTER
CHAPTER 11 Summary:	The Complement	CHAPTER 16		Conditioning	Logical	Evaluating	Valid	The
	"Let's Make a Deal" Bounds on CHAI						HAPTER 13	
The "Let's Make a Deal"		CHAPTER Activity Count: 100% Activity Score: -63% Activity Time: -98% Activity Type Count: 0%			Commine		HAPTEInder CHCHCH HA CoTh	

Screenshots: HeatMap for Student Activities


4	HeatMaps					(2)
Les	<u>s</u>	Axes: Modules	Student	: Student 1	Dodule:	More
						\$
				Submit		
					Activity Type Count	
		Activity Count	The Correlation	Coofficient /		
			Activity Count:			
			Activition Visite	ed: 9 unique, 58 total		
				Correlation Coefficient		
			Practice Exer	cise 6-1		
			Practice Exer			
				xample of Exercise 6-3		
			Listen An E Practice Exer	xample of Exercise 6-3		
			Practice Exer			
				Correlation Coefficient	Activity Score	Act
			Listen The	Correlation Coefficient	Activity Score	Act
				_		

・ロト・日本・モト・モー シックの

Screenshots: HeatMap for Student 1

Screenshots: Office

э.

Research Questions Analytics Can Answer

- Do students who read footnotes do better than those who don't?
- Do students who do more self-test exercises do better than those who do fewer?
- Do students who spend the majority of their time watching online lectures do better than those who spend the majority of their time reading the book?
- What features of students' use of the materials predict mastery of the material?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Do interventions to promote such use increase mastery?

Example: Time Versus Assessment Score, Spearman test

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Histograms and data taxonomy: $p \approx 0.8$
- Counting (combinatorics): $p \approx 0.03$