ro D C 00 000000 Decluster

Temporal 0 0000 Spatiotempora 000 000

Discussion 00

Earthquake Clustering and Declustering

Philip B. Stark Department of Statistics, UC Berkeley joint with (separately) Peter Shearer, SIO/IGPP, UCSD Brad Luen

4 October 2011 Institut de Physique du Globe de Paris

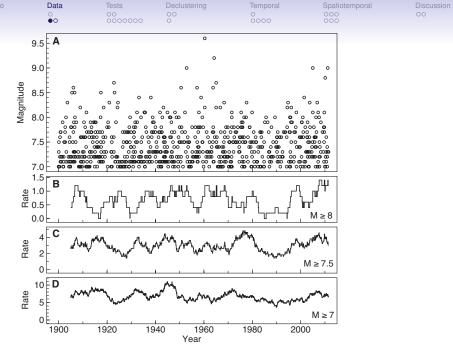
Intro Data Tests Declustering Temporal Spatiotemporal Dis 0 00 00 0 000 000 000 000 000 000 000 000 000 000 0000 000</

Quake Physics versus Quake Statistics

- Distribution in space, clustering in time, distribution of sizes (Gutenberg-Richter law: $N \propto 10^{a-bM}$)
- Foreshocks, aftershocks, swarms—no physics-based definitions
- Clustering makes *some* prediction easy: If there's a big quake, predict that there will be another, close and soon. Not very useful. Cf., today's NY Times http://www.nytimes.com/2011/10/04/science/ 04quake.html?_r=1&nl=todaysheadlines&emc=tha210
- Physics hard: Quakes are gnat's whiskers on Earth's tectonic energy budget
- Spatiotemporal Poisson model doesn't fit at regional scales
- More complex models "motivated by physics"

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussion
	0 00	00 0000000	00	0000	000	00

Has the global risk of large events recently increased?


- 2011*M* 9.0 Tohoku-Oki, Japan
- 2010 M 8.8 Maule, Chile,
- 2004 M 9.0 Sumatra-Andaman
- does this reflects change in the underlying process?
- if regional-scale clusters (aftershocks) are removed, are remaining large events noticeably different from a homogeneous Poisson process?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Intro	Data ● ○○	Tests 00 0000000	Declustering 00 0	Temporal O OOOO	Spatiotemporal 000 000	Discussion 00
			Dat	a		

- Moment magnitudes (*Mw*) and times, $M \ge 7$ events
 - PAGER-CAT catalog 1900-6/30/2008 (40,767 days)
 - PDE and PDE-W catalogs, 7/1/2008-8/13/2011
 - remove events preceded by larger events w/i 3 years & 1000 km.

(日)

◆□▶★御▶★臣▶★臣▶ □臣○丞

) 4 (

Anomalies

- Many *M* ≥ 8.5 events, 1950–1965
- Few in 1966–2003
- Elevated rate of M ≥ 8 earthquakes 2004–, but not of smaller?
- Bufe & Perkins (2011), Perkins (2011), Brodsky (2009): global swarms

• Michael (2011) less impressed

Monte Carlo Tests

- If seismicity is spatially heterogeneous temporally homogeneous Poisson process, conditional marginal distribution of times, given the number of events is iid uniform.
- Estimates based on 100,000 random catalogs with iid uniform times on [0, 40,767], number of events equal to observed.
- Sampling error in estimated *P*-values on the order of 0.16%.
- Look at specific anomalies and at standard statistical tests of the Poisson hypothesis.

Chance of specific anomalies for iid times

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 *M* ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No M ≥ 8.5 events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- \approx 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussio
	000	00 0000000	00	0000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 *M* ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No M ≥ 8.5 events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- \approx 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussi
	000	00	00	0000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 M ≥ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 *M* ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No M ≥ 8.5 events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- \approx 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discuss
	000	00	00	00000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 *M* ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No M ≥ 8.5 events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- ≈ 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discuss
	000	00	00	00000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 M ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No M ≥ 8.5 events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- ≈ 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discuss
	000	00	00	00000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 M ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No M ≥ 8.5 events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- \approx 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discuss
	000	00	00	00000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- $\approx 85\%$ chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 *M* ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No $M \ge 8.5$ events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- ≈ 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussi
	000	00	00	0000	000	00

- 9 of 75 M ≥ 8 events in 2,269 days between 12/23/2004 M 8.1 Macquarie and 3/11/2011 M 9.0 Tohoku-Oki.
- \approx 85% chance that at least 9 of 75 events occur within 2,269 days of each other
- 3 of 16 $M \ge$ 8.5 events earthquakes in 2,266 days between 12/26/2004 M 9.0 Sumatra and Tohoku-Oki.
- \approx 97% chance that at least 3 of 16 events occur within 2,266 days of each other.
- 3 of 6 *M* ≥ 8.8 events occur in 2,266-days.
- pprox 14% chance.
- No $M \ge 8.5$ events in the ~40 years between 2/4/1965 and 12/26/2004 is more anomalous than the recent elevated rate.
- ≈ 1.3% chance of such a long gap—but feature chosen in retrospect. There's always something anomalous.

Poisson dispersion test

- Divide time [0, 40,767] into $N_w = 100$ intervals.
- Times are conditionally IID, so events are independent "trials" with 100 possible outcomes.
- Chance event falls in each interval is equal
- Joint distribution of counts in intervals multinomial.
- Expected number in each interval is *n*/100.
- Chi-square statistic proportional to sample variance of counts.
- Calibrate by simulation rather than chi-square approximation

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussion
	0 00	00 000000	00	00000	000	00

Multinomial chi-square test

- Divide time [0, 40, 767] into $N_w = 100$ intervals.
- In each interval, count of events unconditionally Poisson.
- Estimate rate λ of Poisson from observed total but pretend rate known a priori

$$K^{-} \equiv \min\left\{k: N_{w}e^{-\lambda}\sum_{j=0}^{k}\lambda^{j}/j! \ge 5\right\}.$$
$$K^{+} \equiv \max\left\{k: N_{w}\left(1-e^{-\lambda}\sum_{j=0}^{k-1}\lambda^{j}/j!\right) \ge 5\right\}.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 1 and 7 for the 330 *M* ≥ 7.5 events 0 and 2 for 75 *M* ≥ 8.0 events.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussion
	000	00 000000	00	0000	000	00

Multinomial chi-square, continued

Define

$$E_{k} \equiv \begin{cases} N_{w}e^{-\lambda}\sum_{j=0}^{K^{-}}\lambda^{j}/j!, & k = K^{-} \\ N_{w}e^{-\lambda}\lambda^{k}/k!, & k = K^{-} + 1, \dots, K^{+} - 1 \\ N_{w}(1 - e^{-\lambda}\sum_{j=0}^{K^{+}-1}\lambda^{j}/j!), & k = K^{+}. \end{cases}$$

$$X_{k} \equiv \begin{cases} \text{ # intervals with } \leq K^{-} \text{ events, } k = K^{-} \\ \text{ # intervals with } k \text{ events, } k = K^{-} + 1, \dots, K^{+} - 1 \\ \text{ # intervals with } \geq K^{+} \text{ events, } k = K^{+}. \end{cases}$$

э.

Test statistic

$$\chi^2 \equiv \sum_{k=K^-}^{K^+} (X_k - E_k)^2 / E_k.$$

Calibrate by simulation rather than chi-square approximation.

• Relies on approximation that can be poor.

- Ignores ignores spatial distribution.
- Ignores order of the K intervals: invariant under permutations.
- For instance, the chi-square statistic would have the same value for counts $(N_k) = (3, 1, 0, 2, 0, 4, 1, 0)$ as for counts $(N_k) = (0, 0, 0, 1, 1, 2, 3, 4)$. The latter hardly looks Poisson.

- Relies on approximation that can be poor.
- Ignores ignores spatial distribution.
- Ignores order of the K intervals: invariant under permutations.
- For instance, the chi-square statistic would have the same value for counts $(N_k) = (3, 1, 0, 2, 0, 4, 1, 0)$ as for counts $(N_k) = (0, 0, 0, 1, 1, 2, 3, 4)$. The latter hardly looks Poisson.

- Relies on approximation that can be poor.
- Ignores ignores spatial distribution.
- Ignores order of the K intervals: invariant under permutations.
- For instance, the chi-square statistic would have the same value for counts $(N_k) = (3, 1, 0, 2, 0, 4, 1, 0)$ as for counts $(N_k) = (0, 0, 0, 1, 1, 2, 3, 4)$. The latter hardly looks Poisson.

- Relies on approximation that can be poor.
- Ignores ignores spatial distribution.
- Ignores order of the K intervals: invariant under permutations.
- For instance, the chi-square statistic would have the same value for counts $(N_k) = (3, 1, 0, 2, 0, 4, 1, 0)$ as for counts $(N_k) = (0, 0, 0, 1, 1, 2, 3, 4)$. The latter hardly looks Poisson.

Kolmogorov-Smirnov Test

 Test whether, conditional on the number of events, re-scaled times are iid U[0, 1].

KS statistic (
$$U[0,1]$$
 null): $D_n = \sup_t \left| \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i \leq t) - t \right|.$

• Doesn't require estimating parameters or ad hoc *Nw*, K^- , K^+ , $\hat{\lambda}$.

Kolmogorov-Smirnov Test

 Test whether, conditional on the number of events, re-scaled times are iid U[0, 1].

KS statistic (
$$U[0,1]$$
 null): $D_n = \sup_t \left| \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i \leq t) - t \right|.$

• Doesn't require estimating parameters or ad hoc *Nw*, K^- , K^+ , $\hat{\lambda}$.

Power against alternatives

- KS: long-term rate variations
- Poisson dispersion test (conditional chi-square): heterogeneity across intervals
- Multinomial chi-square: departure from Poisson distribution across intervals
- Poisson dispersion and Multinomial chi-square insensitive to the order of the intervals: rearrangements don't matter
- KS and Poisson dispersion would not reject for equispaced events; Multinomial would, with enough data: under-dispersed.

Intro	Data o oo	Tests ○○ ○○○○○○●	Declustering 00 0	Temporal O OOOO	Spatiotemporal 000 000	Discussion 00
-------	-----------------	------------------------	-------------------------	-----------------------	------------------------------	------------------

magnitude	removed	events	<i>p</i> -value		
threshold			KS	PD	MC
7.5	none	444	22.9%	24.1%	62.0%
	AS	330	94.0%	88.8%	10.0%
	AS, FS	268	82.3%	95.1%	56.3%
8.0	none	82	33.8%	79.1%	25.7%
	AS	75	60.3%	89.4%	22.3%
	AS, FS	72	49.0%	89.8%	34.4%

Estimated *p*-values from 100,000 random catalogs. SE \approx 0.16%.

No statistical evidence for clustering and no physical theory that would lead to clustering on global scales.

Conclusion: risk not elevated.

Online FAQ for USGS Earthquake Probability Mapping Application:

Q: "Ok, so why do you decluster the catalog?"

- A: "to get the best possible estimate for the rate of mainshocks"
 "the methodology requires a catalog of independent events (Poisson model), and declustering helps to achieve independence."
 - What's a mainshock?
 - Aren't foreshocks and aftershocks potentially destructive?

Online FAQ for USGS Earthquake Probability Mapping Application:

- Q: "Ok, so why do you decluster the catalog?"
- A: "to get the best possible estimate for the rate of mainshocks"
 "the methodology requires a catalog of independent events (Poisson model), and declustering helps to achieve independence."
 - What's a mainshock?
 - Aren't foreshocks and aftershocks potentially destructive?

Online FAQ for USGS Earthquake Probability Mapping Application:

- Q: "Ok, so why do you decluster the catalog?"
- A: "to get the best possible estimate for the rate of mainshocks"
 "the methodology requires a catalog of independent events (Poisson model), and declustering helps to achieve independence."
 - What's a mainshock?
 - Aren't foreshocks and aftershocks potentially destructive?

Online FAQ for USGS Earthquake Probability Mapping Application:

- Q: "Ok, so why do you decluster the catalog?"
- A: "to get the best possible estimate for the rate of mainshocks"
 "the methodology requires a catalog of independent events (Poisson model), and declustering helps to achieve independence."
 - What's a mainshock?
 - Aren't foreshocks and aftershocks potentially destructive?

"Main events," "foreshocks," and "aftershocks"

- An event that the declustering method does not remove is a main shock.
- An event that the declustering method removes is a foreshock or an aftershock.

- ... profound shrug ...
- Where's the physics?

Declustering Methods

- Window-based methods
 - Main-shock window: punch hole in catalog near each "main shock"
 - Linked window: every event has a window.
 Clusters are maximal sets of events such that each is in the window of some other event in the group.
 Replace cluster by single event: first, largest, "equivalent"

Generally, larger events have larger space-time windows

Stochastic methods: use chance to decide which events to keep

- Other methods (e.g., waveform similarity)
- Straw man: deTest.

Declustering Methods

- Window-based methods
 - Main-shock window: punch hole in catalog near each "main shock"
 - Linked window: every event has a window.
 Clusters are maximal sets of events such that each is in the window of some other event in the group.
 Replace cluster by single event: first, largest, "equivalent"

Generally, larger events have larger space-time windows

Stochastic methods: use chance to decide which events to keep

- Other methods (e.g., waveform similarity)
- Straw man: deTest.

Declustering Methods

- Window-based methods
 - Main-shock window: punch hole in catalog near each "main shock"
 - Linked window: every event has a window.
 Clusters are maximal sets of events such that each is in the window of some other event in the group.
 Replace cluster by single event: first, largest, "equivalent"

Generally, larger events have larger space-time windows

• Stochastic methods: use chance to decide which events to keep

- Other methods (e.g., waveform similarity)
- Straw man: deTest.

Are "main events" Poisson in time?

Gardner & Knopoff, 1974:

"Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?"

Abstract: "Yes."

Statistical test: multinomial chi-square

Easy to make declustered catalogs indistinguishable from Poisson by deleting enough shocks—or by using a weak test. Shrug.

Multinomial chi-square test on a number of declustered catalogs, including a catalog of 1,751 $M \ge 3.8$ events in Southern California, 1932–1971.

Close to SCEC catalog for 1932–1971, not exact (1,556 $M \ge 3.8$ events)

Declustered: 503 events. 10-day intervals. d = 2 degrees of freedom. Don't give *B*; don't explain how λ estimated.

Are "main events" Poisson in time?

Gardner & Knopoff, 1974:

"Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?"

Abstract: "Yes."

Statistical test: multinomial chi-square

Easy to make declustered catalogs indistinguishable from Poisson by deleting enough shocks—or by using a weak test. Shrug.

Multinomial chi-square test on a number of declustered catalogs, including a catalog of 1,751 $M \ge 3.8$ events in Southern California, 1932–1971.

Close to SCEC catalog for 1932–1971, not exact (1,556 $M \ge 3.8$ events)

Declustered: 503 events. 10-day intervals. d = 2 degrees of freedom. Don't give *B*; don't explain how λ estimated.

Data	Tests	Declustering	Temporal	Spatiotemporal
000	00 0000000	00	0000	000

Are "main events" Poisson in time?

Gardner & Knopoff, 1974:

"Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?"

Abstract: "Yes."

Statistical test: multinomial chi-square

Easy to make declustered catalogs indistinguishable from Poisson by deleting enough shocks—or by using a weak test. Shrug.

Multinomial chi-square test on a number of declustered catalogs, including a catalog of 1,751 $M \ge 3.8$ events in Southern California, 1932–1971.

Close to SCEC catalog for 1932–1971, not exact (1,556 $M \ge 3.8$ events)

Declustered: 503 events. 10-day intervals. d = 2 degrees of freedom. Don't give *B*; don't explain how λ estimated.

Are "main events" Poisson in time?

Gardner & Knopoff, 1974:

"Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?"

Abstract: "Yes."

Statistical test: multinomial chi-square

Easy to make declustered catalogs indistinguishable from Poisson by deleting enough shocks—or by using a weak test. Shrug.

Multinomial chi-square test on a number of declustered catalogs, including a catalog of 1,751 $M \ge 3.8$ events in Southern California, 1932–1971.

Close to SCEC catalog for 1932–1971, not exact (1,556 $M \ge 3.8$ events)

Declustered: 503 events. 10-day intervals. d = 2 degrees of freedom. Don't give *B*; don't explain how λ estimated.

Are "main events" Poisson in time?

Gardner & Knopoff, 1974:

"Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?"

Abstract: "Yes."

Statistical test: multinomial chi-square

Easy to make declustered catalogs indistinguishable from Poisson by deleting enough shocks—or by using a weak test. Shrug.

Multinomial chi-square test on a number of declustered catalogs, including a catalog of 1,751 $M \ge 3.8$ events in Southern California, 1932–1971.

Close to SCEC catalog for 1932–1971, not exact (1,556 $M \ge 3.8$ events)

Declustered: 503 events. 10-day intervals. d = 2 degrees of freedom. Don't give *B*; don't explain how λ estimated.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussion
	0	00	00	 ●000	000	00
	00	0000000	0	0000	000	

Tests on simulated data

Process	KS power	mult. chi-square test power
Heterogeneous Poisson	1	0.1658
Gamma renewal	0.0009	1

Estimated power of level-0.05 tests of homogeneous Poisson null hypothesis from 10,000 simulations. Multinomial chi-square test uses 10-day intervals, 4 categories, and d = 2 degrees of freedom. "Heterogeneous Poisson": rate 0.25 per ten days for 20 years, then at rate 0.5 per ten days for 20 years. "Gamma renewal": inter-event times iid gamma with shape 2 and rate 1.

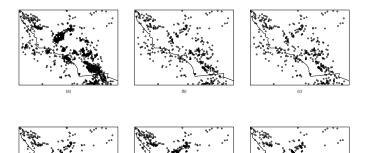
< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Methods tested on SCEC data

- GKI: Remove every event in the window of some other event.
- GKlb: Divide the catalog into clusters: include an event in a cluster if and only if it occurred within the window of at least one other event in the cluster. In every cluster, remove all events except the largest.
- Method GKm: Consider the events in chronological order. If the *i*th event falls within the window of a preceding larger shock that has not already been deleted, delete it. If a larger shock falls within the window of the *i*th event, delete the *i*th event. Otherwise, retain the *i*th event.
- RI: Reasenberg's (1985) method
- dT: deTest—remove events deliberately to make the result pass the multinomial chi-square and KS tests. ad hoc; not optimal.

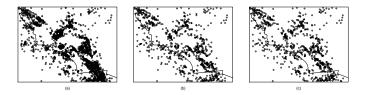
- GKI: Remove every event in the window of some other event.
- GKlb: Divide the catalog into clusters: include an event in a cluster if and only if it occurred within the window of at least one other event in the cluster. In every cluster, remove all events except the largest.
- Method GKm: Consider the events in chronological order. If the *i*th event falls within the window of a preceding larger shock that has not already been deleted, delete it. If a larger shock falls within the window of the *i*th event, delete the *i*th event. Otherwise, retain the *i*th event.
- RI: Reasenberg's (1985) method
- dT: deTest—remove events deliberately to make the result pass the multinomial chi-square and KS tests. ad hoc; not optimal.

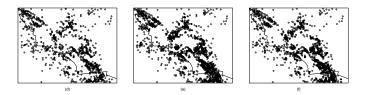
- GKI: Remove every event in the window of some other event.
- GKlb: Divide the catalog into clusters: include an event in a cluster if and only if it occurred within the window of at least one other event in the cluster. In every cluster, remove all events except the largest.
- Method GKm: Consider the events in chronological order. If the *i*th event falls within the window of a preceding larger shock that has not already been deleted, delete it. If a larger shock falls within the window of the *i*th event, delete the *i*th event. Otherwise, retain the *i*th event.
- RI: Reasenberg's (1985) method
- dT: deTest—remove events deliberately to make the result pass the multinomial chi-square and KS tests. ad hoc; not optimal.


- GKI: Remove every event in the window of some other event.
- GKlb: Divide the catalog into clusters: include an event in a cluster if and only if it occurred within the window of at least one other event in the cluster. In every cluster, remove all events except the largest.
- Method GKm: Consider the events in chronological order. If the *i*th event falls within the window of a preceding larger shock that has not already been deleted, delete it. If a larger shock falls within the window of the *i*th event, delete the *i*th event. Otherwise, retain the *i*th event.
- RI: Reasenberg's (1985) method
- dT: deTest—remove events deliberately to make the result pass the multinomial chi-square and KS tests. ad hoc; not optimal.

- GKI: Remove every event in the window of some other event.
- GKlb: Divide the catalog into clusters: include an event in a cluster if and only if it occurred within the window of at least one other event in the cluster. In every cluster, remove all events except the largest.
- Method GKm: Consider the events in chronological order. If the *i*th event falls within the window of a preceding larger shock that has not already been deleted, delete it. If a larger shock falls within the window of the *i*th event, delete the *i*th event. Otherwise, retain the *i*th event.
- RI: Reasenberg's (1985) method
- dT: deTest—remove events deliberately to make the result pass the multinomial chi-square and KS tests. ad hoc; not optimal.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussion
	000	00 0000000	00	0000	000	00


SCEC *M* ≥ 3.8, 1932–1971



(a) 1,556 events; (b): The 437 GKI; (c): 424 GKIb. (d): 544 GKm. (e): 985 RI. (f): 608 dT.

Intro	Data	Tests	Declustering	Temporal	Spatiotemporal	Discussion
	000	00 0000000	00	0000	000	00

SCEC *M* ≥ 3.8, 1932–2010

(a): 3,368 events; (b): 913 GKI; (c): 892 GKlb; (d): 1,120 GKm; (e): 2,046 RI; (f): 1,615 dT.

Exchangeability of times

- For SITHP, marginal distribution of times is Poisson, so when temporal test rejects, implicitly rejects SITHP.
- For SITHPs, two events can be arbitrarily close. Window declustering imposes minimum spacing, so can't be SITHP.
- For SITHPs, conditional on the number of events, the events are iid with probability density proportional to the space-time rate. Conditional on the locations, the marginal distribution of times is iid, hence exchangeable.

Exchangeability of times

- For SITHP, marginal distribution of times is Poisson, so when temporal test rejects, implicitly rejects SITHP.
- For SITHPs, two events can be arbitrarily close. Window declustering imposes minimum spacing, so can't be SITHP.
- For SITHPs, conditional on the number of events, the events are iid with probability density proportional to the space-time rate. Conditional on the locations, the marginal distribution of times is iid, hence exchangeable.

Exchangeability of times

- For SITHP, marginal distribution of times is Poisson, so when temporal test rejects, implicitly rejects SITHP.
- For SITHPs, two events can be arbitrarily close. Window declustering imposes minimum spacing, so can't be SITHP.
- For SITHPs, conditional on the number of events, the events are iid with probability density proportional to the space-time rate. Conditional on the locations, the marginal distribution of times is iid, hence exchangeable.

Location of the *i*th event is (x_i, y_i) , i = 1, ..., n. x_i is longitude, y_i is latitude.

 T_i : Time of the event at (x_i, y_i) .

 Π : Set of all n! permutations of $\{1, \ldots, n\}$.

Process has exchangeable times if, conditional on the locations,

$$\{T_1,\ldots,T_n\}\stackrel{d}{=}\{T_{\pi(1)},\ldots,T_{\pi(n)}\}$$

Location of the *i*th event is (x_i, y_i) , i = 1, ..., n. x_i is longitude, y_i is latitude.

T_i : Time of the event at (x_i, y_i) .

Π: Set of all n! permutations of $\{1, \ldots, n\}$.

Process has exchangeable times if, conditional on the locations,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$\{T_1,\ldots,T_n\} \stackrel{d}{=} \{T_{\pi(1)},\ldots,T_{\pi(n)}\}$$

Location of the *i*th event is (x_i, y_i) , i = 1, ..., n. x_i is longitude, y_i is latitude.

- T_i : Time of the event at (x_i, y_i) .
- Π : Set of all *n*! permutations of $\{1, \ldots, n\}$.

Process has exchangeable times if, conditional on the locations,

$$\{T_1,\ldots,T_n\} \stackrel{d}{=} \{T_{\pi(1)},\ldots,T_{\pi(n)}\}$$

Location of the *i*th event is (x_i, y_i) , i = 1, ..., n. x_i is longitude, y_i is latitude.

- T_i : Time of the event at (x_i, y_i) .
- Π : Set of all *n*! permutations of $\{1, \ldots, n\}$.

Process has exchangeable times if, conditional on the locations,

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

$$\{T_1,\ldots,T_n\} \stackrel{d}{=} \{T_{\pi(1)},\ldots,T_{\pi(n)}\}$$

• SITHP has exchangeable times.

- If events close in space tend to be close in time—the kind of clustering real seismicity exhibits—times not exchangeable.
- If events close in space tend to be distant in time—e.g., from window methods for declustering—times not exchangeable.

- SITHP has exchangeable times.
- If events close in space tend to be close in time—the kind of clustering real seismicity exhibits—times not exchangeable.
- If events close in space tend to be distant in time—e.g., from window methods for declustering—times not exchangeable.

- SITHP has exchangeable times.
- If events close in space tend to be close in time—the kind of clustering real seismicity exhibits—times not exchangeable.
- If events close in space tend to be distant in time—e.g., from window methods for declustering—times not exchangeable.

- *P_n*: empirical distribution of the times and locations of the *n* observed events.
- τ(P̂_n): projection of P̂_n onto the set of distributions with exchangeable times
 τ puts equal mass at every element of the orbit of data under the permutation group on times.
- $V \subset R^3$ is a lower-left quadrant if:

 $V\{x = (x, y, t) \in \mathbb{R}^3 : x \le x_0 \text{ and } y \le y_0 \text{ and } t \le t_0\}.$

- *P_n*: empirical distribution of the times and locations of the *n* observed events.
- τ(P̂_n): projection of P̂_n onto the set of distributions with exchangeable times
 τ puts equal mass at every element of the orbit of data under the permutation group on times.
- $V \subset R^3$ is a lower-left quadrant if:

 $V\{x = (x, y, t) \in \mathbb{R}^3 : x \le x_0 \text{ and } y \le y_0 \text{ and } t \le t_0\}.$

- *P_n*: empirical distribution of the times and locations of the *n* observed events.
- τ(P̂_n): projection of P̂_n onto the set of distributions with exchangeable times
 τ puts equal mass at every element of the orbit of data under the permutation group on times.
- $V \subset R^3$ is a lower-left quadrant if:

$$V\{x = (x, y, t) \in \mathbb{R}^3 : x \leq x_0 \text{ and } y \leq y_0 \text{ and } t \leq t_0\}.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- *P_n*: empirical distribution of the times and locations of the *n* observed events.
- τ(P̂_n): projection of P̂_n onto the set of distributions with exchangeable times
 τ puts equal mass at every element of the orbit of data under the permutation group on times.
- $V \subset R^3$ is a lower-left quadrant if:

$$V\{x = (x, y, t) \in \mathbb{R}^3 : x \leq x_0 \text{ and } y \leq y_0 \text{ and } t \leq t_0\}.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Test statistic

$$\sup_{V\in \mathbf{V}} |\hat{P}_n(V) - \tau(\hat{P}_n)(V)|$$

Generalization of the KS statistic to three dimensions.

- Suffices to search a finite subset of V.
 Can sample at random from that finite subset for efficiency.
- Calibrate by simulating from $\tau(\hat{P}_n)$ —permuting the times (Romano)

Test statistic

$$\sup_{V\in\mathbf{V}}|\hat{P}_n(V)-\tau(\hat{P}_n)(V)|$$

- Generalization of the KS statistic to three dimensions.
- Suffices to search a finite subset of V.
 Can sample at random from that finite subset for efficiency.
- Calibrate by simulating from $\tau(\hat{P}_n)$ —permuting the times (Romano)

Test statistic

$$\sup_{V\in\mathbf{V}}|\hat{P}_n(V)-\tau(\hat{P}_n)(V)|$$

- Generalization of the KS statistic to three dimensions.
- Suffices to search a finite subset of V.
 Can sample at random from that finite subset for efficiency.
- Calibrate by simulating from $\tau(\hat{P}_n)$ —permuting the times (Romano)

Intro	Data		Tests	Dec	clustering		emporal		Spatiotempora	al	Discussion
	ŏo		00000			Č	0000		000		
Years	Mag	Meth	n	Multino	mial χ^2	cc	BZ	KS	Romano		Reject?
	(events)			χ^2	Sim				Р	Time	Space-time
		GKI	437	0.087	0.089	0.069	0.096	0.011	0.005	Yes	Yes
		GKlb	424	0.636	0.656	0.064	0.108	0.006	0.000	Yes	Yes
	3.8	GKm	544	0	0	0	0	0.021	0.069	Yes	No
	(1,556)	RI	985	0	0	0	0	0.003	0	Yes	Yes
32-71		dT	608	0.351	0.353	0.482	0.618	0.054	0.001	No	Yes
32-71		GKI	296	0.809	0.824	0.304	0.344	0.562	0.348	No	No
		GKlb	286	0.903	0.927	0.364	0.385	0.470	0.452	No	No
	4.0	GKm	369	< 0.001	< 0.001	0	0	0.540	0.504	Yes	No
	(1,047)	RI	659	0	0	0	0	0.001	0	Yes	Yes
		dT	417	0.138	0.134	0.248	0.402	0.051	0	No	Yes
		GKI	913	0.815	0.817	0.080	0.197	0.011	0.214	Yes	No
		GKlb	892	0.855	0.855	0.141	0.204	0.005	0.256	Yes	No
	3.8	GKm	1120	0	0	0	0	0.032	0.006	Yes	Yes
	(3,368)	RI	2046	0	0	0	0	0	0	Yes	Yes
32-10		dT	1615	0.999	1.000	0.463	0.466	0.439	0	No	Yes
32-10		GKI	606	0.419	0.421	0.347	0.529	0.138	0.247	No	No
		GKlb	592	0.758	0.768	0.442	0.500	0.137	0.251	No	No
	4.0	GKm	739	0	0	0	0	0.252	0.023	Yes	Yes
	(2,169)	RI	1333	0	0	0	0	0	0	Yes	Yes
		dT	1049	0.995	0.999	0.463	0.465	0.340	0	No	Yes

- Regional declustered catalogs generally don't look Poisson in time.
- Window-declustered catalogs can't be Poisson in space-time.
- Window-declustered catalogs generally don't seem to have exchangeable times, necessary condition for Poisson.
- No clear definition of foreshock, main shock, aftershock.
- All big shocks can cause damage and death. Physics doesn't distinguish main shocks from others. So why decluster?

- Regional declustered catalogs generally don't look Poisson in time.
- Window-declustered catalogs can't be Poisson in space-time.
- Window-declustered catalogs generally don't seem to have exchangeable times, necessary condition for Poisson.
- No clear definition of foreshock, main shock, aftershock.
- All big shocks can cause damage and death. Physics doesn't distinguish main shocks from others. So why decluster?

- Regional declustered catalogs generally don't look Poisson in time.
- Window-declustered catalogs can't be Poisson in space-time.
- Window-declustered catalogs generally don't seem to have exchangeable times, necessary condition for Poisson.
- No clear definition of foreshock, main shock, aftershock.
- All big shocks can cause damage and death. Physics doesn't distinguish main shocks from others. So why decluster?

- Regional declustered catalogs generally don't look Poisson in time.
- Window-declustered catalogs can't be Poisson in space-time.
- Window-declustered catalogs generally don't seem to have exchangeable times, necessary condition for Poisson.
- No clear definition of foreshock, main shock, aftershock.
- All big shocks can cause damage and death. Physics doesn't distinguish main shocks from others. So why decluster?

- Regional declustered catalogs generally don't look Poisson in time.
- Window-declustered catalogs can't be Poisson in space-time.
- Window-declustered catalogs generally don't seem to have exchangeable times, necessary condition for Poisson.
- No clear definition of foreshock, main shock, aftershock.
- All big shocks can cause damage and death. Physics doesn't distinguish main shocks from others. So why decluster?

Intro	Data o oo	Tests 00 0000000	Declustering 00 0	Temporal O OOOO	Spatiotemporal 000 000	Discussion ⊙●
-------	-----------------	-------------------------------	-------------------------	-----------------------	------------------------------	------------------

• The test matters. What's the scientific question?

- Novel test for exchangeability of times given locations and times.
- Power of tests varies dramatically
- Trivial to make declustering method pass test if you try. deTest is a straw man.

Intro	Data o oo	Tests 00 0000000	Declustering 00 0	Temporal O OOOO	Spatiotemporal 000 000	Discussion ⊙●
-------	-----------------	-------------------------------	-------------------------	-----------------------	------------------------------	------------------

- The test matters. What's the scientific question?
- Novel test for exchangeability of times given locations and times.
- Power of tests varies dramatically
- Trivial to make declustering method pass test if you try. deTest is a straw man.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Intro	Data o oo	Tests 00 0000000	Declustering 00 0	Temporal 0 0000	Spatiotemporal 000 000	Discussion ⊙●
-------	-----------------	-------------------------------	-------------------------	-----------------------	------------------------------	------------------

- The test matters. What's the scientific question?
- Novel test for exchangeability of times given locations and times.
- Power of tests varies dramatically
- Trivial to make declustering method pass test if you try. deTest is a straw man.

Intro	Data O OO	Tests 00 0000000	Declustering 00 0	Temporal O OOOO	Spatiotemporal 000 000	Discussion O●
-------	-----------------	------------------------	-------------------------	-----------------------	------------------------------	------------------

- The test matters. What's the scientific question?
- Novel test for exchangeability of times given locations and times.
- Power of tests varies dramatically
- Trivial to make declustering method pass test if you try. deTest is a straw man.