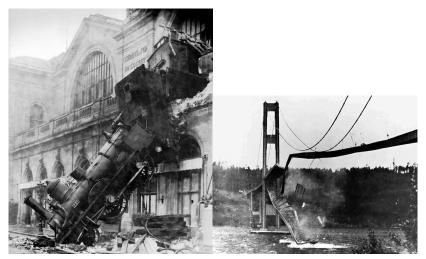
Uncertainty Quantification for Emulators http://arxiv.org/abs/1303.3079

Philip B. Stark and Jeffrey C. Regier

Department of Statistics University of California, Berkeley

Dipartimento di Fisica e Astronomia Università di Bologna Bologna, Italy 5 June 2013

Why Uncertainty Quantification Matters



James Bashford / AP

(日)、(四)、(E)、(E)、(E)

Why Uncertainty Quantification Matters

NASA

Reuters / Japan TSB

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Emulators, Surrogate functions, Metamodels

Try to approximate a function f from few samples when evaluating f expensive: computational cost or experiment.

Emulators are essentially interpolators/smoothers

- Kriging
- Gaussian process models (GP)
- Polynomial Chaos Expansions
- Multivariate Adaptive Regression Splines (MARS)
- Projection Pursuit Regression
- Neural networks

Noiseless non-parametric function estimation

Estimate f on domain dom(f) from $\{f(x_1), \ldots, f(x_n)\}$

- f infinite-dimensional. dom(f) typically high-dimensional.
- Observe only $f|_X$, where $X = \{x_1, \ldots, x_n\}$. No noise.
- Estimating *f* is grossly underdetermined problem (worse with noise).
- Usual context: question that requires knowing f(x) for $x \notin X$

Common context

Part of larger problem in uncertainty quantification (UQ)

- Real-world phenomenon
- Physics description of phenomenon
- Theoretical simplification/approximation of the physics
- Numerical solution of the approximation f
- Emulation of the numerical solution of the approximation \hat{f}

- Calibration to noisy data
- "Inference"

HEB: High dimensional domain, Expensive, Black-box

- Climate models (Covey et al. 2011: 21–28-dimensional domain 1154 simulations, Kriging and MARS)
- Car crashes (Aspenberg et al. 2012: 15-dimensional domain; 55 simulations; polynomial response surfaces, NN)
- Chemical reactions (Holena et al. 2011: 20–30-dimensional domain, boosted surrogate models; Shorter et al., 1999: 46-dimensional domain)
- Aircraft design (Srivastava et al. 2004: 25-dimensional domain, 500 simulations, response surfaces and Kriging; Koch et al. 1999: 22-dimensional domain, minutes per run, response surfaces and Kriging; Booker et al. 1999: 31-dimensional domain, minutes to days per run, Kriging)
- Electric circuits (Bates et al. 1996: 60-dimensional domain; 216 simulations; Kriging)

Emulator Accuracy Matters

- High-consequence decisions are made on the basis of emulators.
- How accurate are they in practice?
- How can the accuracy be estimated reliably, measured or bounded?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• How many training data are needed to ensure that an emulator is accurate?

Common strategies to estimate accuracy

Bayesian Emulators (GP, Kriging, ...)

- Use the posterior distribution (Tebaldi & Smith 2005)
- Posterior depends on prior and likelihood, but inputs are generally fixed parameters, not random.

Others

- Using holdout data (Fang et al. 2006)
- Relevant only if the error at the held-out data is representative of the error everywhere. Data not usually IID; values of f not IID.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Required conditions generally unverifiable or known to be false.

So, what to do?

 Standard methods can be misleading when the assumptions don't hold— and usually no reason for the assumptions to hold.

- Is there a more rigorous way to evaluate the accuracy?
- Is there a way that relies only on the observed data?

Constraints are mandatory

- Uncertainty estimates are driven by assumptions about f.
- Without constraints on *f*, no reliable way to extrapolate to values of *f* at unobserved inputs: completely uncertain.
- Stronger assumptions → smaller uncertainties.
- What's the most optimistic assumption the data justify?

(Best) Lipschitz constant

Given a metric d on dom(g), best Lipschitz constant K for g is

$$K(g) \equiv \sup \left\{ rac{g(v) - g(w)}{d(v, w)} : v, w \in \operatorname{dom}(g) \text{ and } v \neq w
ight\}.$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $f \notin C(\operatorname{dom}(f))$, then $K(f) \equiv \infty$.

What's the problem?

- If we knew f, we could emulate it perfectly—by f.
- Require emulator \hat{f} to be computable from the data, without relying on any other information about f.
- If we knew K(f), could guarantee *some* level of accuracy for \hat{f} .
- All else equal, the larger K(f) is, the harder to guarantee that \hat{f} is accurate.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

How bad *must* the uncertainty be?

- Data f|_X impose a lower bound on K(f) (but no upper bound): Data require some lack of regularity.
- Is there any f̂ guaranteed to be close to f—no matter what f is—provided f agrees with f|X and is not less regular than the data require?

Minimax formulation: Information-Based Complexity (IBC)

- potential error at w: minimax error of emulators f̂ over the set F of functions g that agree with data & have K(g) constant no greater than the lower bound, at w ∈ dom(f).
- maximum potential error: sup of potential error over w ∈ dom(f).
- For known K, finding potential error is standard IBC problem.

 But K(f) is unknown: Bound potential error using a lower bound for K(f) computed from data.

Sketch of results

- Lower bound on additional observations possibly necessary to estimate f w/i ϵ .
- Application to Community Atmosphere Model (CAM): required *n* could be ginormous.
- Lower bounds on the max potential error for approximating *f* from a fixed set of observations: empirical, and as a fraction of the unknown *K*.
- Conditions under which a constant emulator has smaller maximum potential error than best emulator trained on the actual observations. Conditions hold for the CAM simulations.
- Sampling to estimate quantiles and mean of the potential error over dom(*f*). For CAM, moderate quantiles are a large fraction of maximum.

Notation

f: fixed unknown real-valued function on $[0,1]^p$ $C[0,1]^p$: real-valued continuous functions on $[0,1]^p$ dom(g): domain of the function g $g|_D$: restriction of g to $D \subset \text{dom}(g)$ $f|_X$: f at the n points in X, the data \hat{f} : emulator based on $f|_X$, but no other information about f $\|h\|_{\infty} \equiv \sup_{w \in \operatorname{dom}(h)} |h(w)|$ d: a metric on dom(g)K(g): best Lipschitz constant for f (using metric d)

More notation

κ-smooth interpolant of g:

$$\mathcal{F}_\kappa(g)\equiv\{h\in\mathcal{C}[0,1]^p: K(h)\leq\kappa ext{ and } h|_{\mathsf{dom}(g)}=g\}.$$

 $\mathcal{F}_{\infty}(f|_X)$ is the space of functions in $\mathcal{C}[0,1]^p$ that fit the data. • potential error of $\hat{f} \in \mathcal{C}[0,1]^p$ over the set of functions \mathcal{F} :

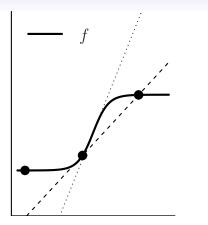
$$\mathcal{E}(w; \hat{f}, \mathcal{F}) \equiv \sup\left\{ |\hat{f}(w) - g(w)| : g \in \mathcal{F} \right\}.$$

maximum potential error of f̂ ∈ C[0, 1]^p over the set of functions F:

$$\mathcal{E}(\hat{f},\mathcal{F})\equiv \sup_{w\in [0,1]^p}\mathcal{E}(w;\hat{f},\mathcal{F})=\left\{\|\hat{f}-g\|_\infty:g\in\mathcal{F}
ight\}.$$

Maximum potential error

- Example of worst-case error in IBC.
- "Real" uncertainty of \hat{f} is $\mathcal{E}(\hat{f}, \mathcal{F}_{\infty}(f|_X))$.
- Presumes $f \in C[0,1]^p$.
- Maximum potential error is infinite unless *f* has more regularity than continuity.
- If $f \notin C[0,1]^p$, \hat{f} could differ from f by more.
- We lower-bound uncertainty of the *best possible* emulator of f, under optimistic assumption that $K = K(f) = \hat{K} \equiv K(f|_X) \leq K(f)$



Dotted line is tangent to f where f attains its Lipschitz constant: slope K = K(f). The dashed line is the steepest line that intersects any pair of observations: slope $\hat{K} = K(f|_X) \leq K$.

More notation

•
$$\mathcal{F}_{\kappa} \equiv \mathcal{F}_{\kappa}(f|_X)$$

•
$$\mathcal{E}_{\kappa}(\hat{f})\equiv \mathcal{E}(\hat{f},\mathcal{F}_{\kappa})$$

• radius of $\mathcal{F} \subset \mathcal{C}[0,1]^p$ is

$$r(\mathcal{F}) \equiv \frac{1}{2} \sup \left\{ \|g - h\|_{\infty} : g, h \in \mathcal{F} \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First result

$$\mathcal{E}_{\kappa}(\hat{f}) \ge r(\mathcal{F}_{\kappa}).$$
 (2)

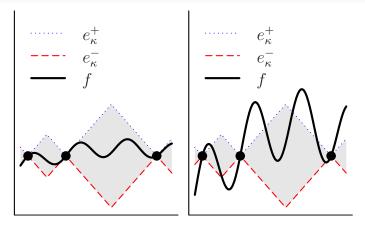
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Equality holds for the emulator that "splits the difference":

$$f^{\star}_{\kappa}(w) \equiv rac{1}{2} \left[\inf_{g \in \mathcal{F}_{\kappa}} g(w) + \sup_{g \in \mathcal{F}_{\kappa}} g(w)
ight]$$

For all emulators \hat{f} that agree with f on X,

$$\mathcal{E}_{\kappa}(\widehat{f}) \geq \mathcal{E}_{\kappa}(\widehat{f}^*_{\kappa}) \equiv \mathcal{E}^*_{\kappa}.$$



・ロト ・ 一日 ト ・ 日

Left panel: $\kappa = K$. Right panel: $\kappa < K$. If $\kappa \ge K$ then $e_{\kappa}^{-} \le f \le e_{\kappa}^{+}$, so $f \in \mathcal{F}_{\kappa}$.

Constructing e^- , e^+ , and e^*

Define

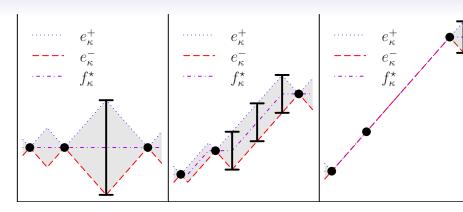
• $e_{\kappa}^+(w) \equiv \min_{x \in X} [f(x) + \kappa d(x, w)]$

•
$$e_{\kappa}^{-}(w) \equiv \max_{x \in X} [f(x) - \kappa d(x, w)]$$

•
$$e_{\kappa}^{\star}(w) \equiv \frac{1}{2} \left[e_{f,X,\kappa}^{+}(w) - e_{f,X,\kappa}^{-}(w) \right]$$

 $e_{\kappa}^{\star}(w)$ is minimax error at w: smallest (across emulators \hat{f}) maximum (across functions g) error at the point w

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



Black error bars are twice the maximum potential error over \mathcal{F}_{κ} . As the slope between observations approaches κ , $e^{\star}(w)$ approaches 0 for points w between observations, and the maximum potential error over \mathcal{F}_{κ} decreases.

Lower bounds on *n*

• Fix "tolerable error"
$$\epsilon > 0$$

- If $\|\hat{f}|_A g|_A\|_{\infty} \le \epsilon$, then $\hat{f} \epsilon$ -approximates g on A. If $A = \operatorname{dom}(g)$, then $\hat{f} \epsilon$ -approximates g.
- If *F* is a non-empty class of functions with common domain *D*, then *f ϵ*-approximates *F* on *A* ⊂ *D* if ∀*g* ∈ *F*, *f ϵ*-approximates *g* on *A*.
 If *A* = *D*, then *f ϵ*-approximates *F*.

$\epsilon\textsc{-approximates}$ and tolerable error

 $\hat{f} \epsilon$ -approximates \mathcal{F} if and only if the maximum potential error of \hat{f} on \mathcal{F} does not exceed ϵ .

Since \hat{K} is the observed variation of f on X, a useful value of ϵ would typically be much smaller than \hat{K} . (Otherwise, we might just as well take \hat{f} to be a constant.)

- 日本 - 1 日本 - 日本 - 日本

Minimum potential computational burden

- For fixed *e* > 0, and *Y* ⊂ dom(*f*), *Y* is *e*-adequate for *f* on *A* if *f*^{*}_K *e*-approximates *F*_K(*f*|_Y) on *A*. If *A* = dom(*f*), then *Y* is *e*-adequate for *f*.
- $B(x, \delta)$: open ball in \mathbb{R}^{p} centered at x with radius δ .

 $N_f \equiv \min\{\#Y : Y \text{ is } \epsilon \text{-adequate for } f\},\$

where #Y is the cardinality of Y.

• The minimum potential computational burden is

$$M \equiv \max\{N_g : g \in \mathcal{F}_K\}.$$

• Over all experimental designs Y, M is the smallest number of data for which the maximum error of the best emulator based on those data is guaranteed not to exceed ϵ .

Upper bound on N_f

- For each x ∈ X, f^{*}_K ε-approximates F_K(f|_K) on (at least) B(x, ε/K).
- Thus, f_{K}^{\star} ϵ -approximates \mathcal{F}_{K} on $\bigcup_{x \in X} B(x, \epsilon/K)$.
- Hence, the cardinality of any $Y \subset [0,1]^p$ for which

$$V \equiv \left\{ B\left(x, \frac{\epsilon}{K}\right) : x \in Y \right\} \supset [0, 1]^{p}$$

is an upper bound on N_f .

• In ℓ_{∞} , $[0,1]^p$ can be covered by $\left\lceil \frac{K}{2\epsilon} \right\rceil^p$ balls of radius ϵ/K .

Lower bound on N_f : Heuristics

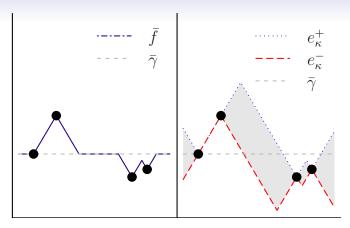
- Can happen that f^{*}_K ϵ-approximates F_K on regions of the domain not contained in ∪_{x∈X}B(x, ϵ/K).
- If f varies on X, then for a function g to agree with f at the observations requires g to vary too.
- Fitting the data "spends" some of g's Lipschitz constant: can't get as far away from f as it could if f_X were constant.

• Can quantify to find lower bounds for *M*.

Lower bound on N_f : Construction

Define

- $\bar{\gamma} \equiv \arg \min_{\gamma \in \mathbb{R}} \sum_{x \in X} |f(x) \gamma|^{p}$.
- $X^+ \equiv \{x \in X : f(x) \ge \overline{\gamma}\}$
- $X^- \equiv \{x \in X : f(x) < \overline{\gamma}\}.$
- $Q_+ \equiv \bigcup_{x \in X^+} \left\{ B\left(x, \frac{f(x) \bar{\gamma}}{\hat{\kappa}}\right) \cap [0, 1]^p \right\}$
- $Q_{-} \equiv \bigcup_{x \in X^{-}} \left\{ B\left(x, \frac{\bar{\gamma} f(x)}{\hat{\kappa}}\right) \cap [0, 1]^{p} \right\}$
- $\bar{Q} \equiv [0,1]^p \setminus (Q_+ \cup Q_-).$
- $\bar{f}(w) \equiv \{e^-_{\hat{K}}(w), w \in Q_+; e^+_{\hat{K}}(w), w \in Q_-; \bar{\gamma}, w \in \bar{Q}\}.$



 \bar{f} (left panel) is comprised of segments of $e_{\hat{K}}^+$, $e_{\hat{K}}^-$ and the constant $\bar{\gamma}$ (right panel). \bar{f} constant over roughly half of the domain. No function between $e_{\hat{K}}^-$ and $e_{\hat{K}}^+$ (inclusive) is constant over a larger fraction of the domain.

Potential computational burden: bounds for Lebesgue measure

• μ : Lebesgue measure.

$$\mu(ar{Q}) \geq 1 - \sum_{x \in X} \mu\left(B\left(x, |f(x) - ar{\gamma}| / \hat{K}
ight)
ight)$$

•
$$C_2\equiv rac{\pi^{p/2}}{\Gamma(p/2+1)}$$
 and $C_\infty\equiv 2^p$

• For $q \in \{2,\infty\}$,

$$\mu(\bar{Q}) \geq 1 - C_q \sum_{x \in X} \left(|f(x) - \bar{\gamma}| / \hat{K} \right)^p.$$

•
$$M \ge \left\lceil \frac{\mu(\bar{Q})}{\mu(B(0,\epsilon/\hat{K}))} \right\rceil \ge \left\lceil \epsilon^{-p} \left\lfloor \frac{\hat{K}^p}{C_q} - \sum_{x \in X} |f(x) - \bar{\gamma}|^p \right\rfloor \right\rceil$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Uncertainty Quantification Strategic Initiative-LLNL

- Uncertainty Quantification Strategic Initiative at LLNL: 1154 climate simulations using the Community Atmosphere Model (CAM).
- p = 21 parameters scaled so that [0, 1] has all plausible values.
- *f* is global average upwelling longwave flux (FLUT) approximately 50 years in the future.
- Each run took several days on a supercomputer.
- Several approaches to choose X ⊂ [0, 1]^p: Latin hypercube, one-at-a-time, and random-walk multiple-one-at-a-time.

• 1154 simulations total.

CAM calculations

• $\bar{\gamma} = 232.77$

• For
$$q = 2$$
, $\hat{K} = 14.20$:
 $M \ge \left\lceil \epsilon^{-21} \left[\frac{1.57 \times 10^{24}}{0.0038} - 6.81 \times 10^{24} \right] \right\rceil > \epsilon^{-21} \times 10^{26}$
If ϵ is 1% of \hat{K} , then $M \ge 10^{43}$.
Even if ϵ is 50% of \hat{K} , $M > 10^8$.

• For
$$q = \infty$$
, $\hat{K} = 34.68$:
 $M \ge \left[\epsilon^{-21} \left[\frac{2.19 \times 10^{32}}{2^{21}} - 6.81 \times 10^{25} \right] \right] > \epsilon^{-21} \times 10^{25}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Universal bound from the data

Theorem

$$\mathcal{E}_{\mathcal{K}}(\widehat{f}) \geq \sup e_{\widehat{\mathcal{K}}}^{\star}.$$

sup $e_{\hat{K}}^{\star}$, a statistic calculable from data $f|_X$, is a lower bound on the maximum potential error for any emulator \hat{f} based on the observations $f|_X$.

- ロ ト - 4 回 ト - 4 □ - 4

More isn't necessarily better

Theorem

If sup $e_{\hat{K}}^{\star} \geq \hat{K}/2$, then

$$\mathcal{E}_{\mathcal{K}}(\hat{f}) = \mathcal{E}_{\mathcal{K}}(\hat{f}, \mathcal{F}_{\mathcal{K}}(f|_X)) \geq rac{\mathcal{K}}{2} \geq \mathcal{E}_{\mathcal{K}}(\hat{g}, \mathcal{F}_{\mathcal{K}}(f|_{\{z\}})).$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

If sup $e_{\hat{K}}^* \geq \hat{K}/2$, no \hat{f} based on $f|_X$ has smaller maximum potential error than the constant emulator based on one observation at the centroid z of $[0, 1]^p$

Implications for CAM

- sup $e^{\star}_{\hat{K}} = 20.95 \ge 17.34 = \hat{K}/2$
- Hence, $\mathcal{E}_{\mathcal{K}}(\hat{f}) \geq \mathcal{K}/2$ for every emulator \hat{f} .
- Maximum potential error would have been no greater had we just observed f at z and emulated by f̂(w) = f(z) for all w ∈ [0, 1]^p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extensions

- Covered maximum uncertainty over all $w \in [0,1]^p$.
- Important in some applications; in others, maybe less interesting than the fraction of [0, 1]^p where uncertainty is large.
- Can estimate the fraction of $[0,1]^p$ for which $e^* \ge \epsilon > 0$ by sampling.
- Draw w ∈ [0,1]^p at random and evaluate e^{*} at each selected point.
- Yields binomial lower confidence bounds for the fraction of [0, 1]^p where uncertainty is large, and confidence bounds for quantiles of the potential error.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CAM: bounds on percentiles of error

	95% lower confidence bound			
norm	lower quartile	median	upper quartile	average
Euclidean	1.454	1.596	1.731	1.595
supremum	0.649	0.717	0.782	0.715

Error of minimax emulator $f_{\hat{K}}^{\star}$ of CAM model from 1154 LLNL observations. Column 1: metric *d* used to define the Lipschitz constant. Columns 2–4: Binomial lower confidence bounds for quartiles of the pointwise error. Column 5: 95% lower confidence bound for the integral of the pointwise error over the entire domain $[0, 1]^p$. Columns 2–5 are expressed as multiple of $\hat{K}/2$. Based on 10,000 random samples.

Conclusions

- In some problems, *every* emulator based on any tractable number of observations of f has large maximum potential error (and the potential error is large over much of the domain), even if f is no less regular than it is observed to be.
- Can find sufficient conditions under which all emulators are potentially substantially incorrect.
- Conditions depend only on the observed values of *f*; can be computed from the same observations used to train an emulator, at small incremental cost.
- Conditions are sufficient but not necessary: *f* could be less regular than any finite set of observations reveals it to be.
- It is not possible to give necessary conditions that depend only on the data.
- Conditions seem to hold for problems with large societal interest.

- Reducing the potential error of emulators in HEB problems requires either more information about *f* (knowledge, not merely assumptions), or changing the measure of uncertainty—changing the scientific question.
- Both tactics are application-specific: the underlying science dictates the conditions that actually hold for *f* and the senses in which it is useful to approximate *f*.
- Not clear that emulators help address the most important questions.
- Approximating *f* pointwise rarely ultimate goal; most properties of *f* are nuisance parameters.
- Important questions about f might be answered more directly.
- Some research questions cannot be answered through simulation at present.
- Employing complex emulators and massive computational may be a distraction.