Uncertainty Quantification for Emulators http://arxiv.org/abs/1303.3079

Philip B. Stark and Jeffrey C. Regier

Department of Statistics University of California, Berkeley

> Department of Statistics UCLA Los Angeles, CA 11 April 2013

Emulators, Surrogate functions, Metamodels

Common to approximate "expensive" functions from few values.

Expense computational or real (e.g., experiment).

- Kriging
- Multivariate Adaptive Regression Splines (MARS)
- Projection Pursuit Regression
- Polynomial Chaos Expansions
- Gaussian process models (GP)
- Neural networks
- etc.

Noiseless non-parametric function estimation

- True *f* infinite-dimensional, on possibly high-dimensional domain.
- Observe only n samples from f.
- \bullet Estimating f is grossly underdetermined problem.
- Usual context is scientific problem involving values of *f* where it was not observed.

Common context

Part of larger problem in uncertainty quantification (UQ):

- Real-world phenomenon
- Physics description of phenomenon
- Theoretical simplification/approximation of the physics
- Numerical solution of the approximation f
- Emulation of the numerical solution of the approximation \hat{f}
- Calibration to noisy data
- "Inference"

HEB Models

High dimensional domain, Expensive, Black-box.

- Climate models (Covey et al., 2011: 21–28-dimensional domain 1154 simulations, Kriging and MARS)
- Car crashes (Aspenberg et al., 2012: 15-dimensional domain; 55 simulations; polynomial response surfaces and neural networks).
- Chemical reactions (Holena et al., 2011: 20–30-dimensional domain, boosted surrogate models; Shorter et al., 1999: 46-dimensional domain)
- Aircraft design (Srivastava et al., 2004: 25-dimensional domain, 500 simulations, response surfaces and Kriging; Koch et al., 1999: 22-dimensional domain, minutes per run, response surfaces and Kriging; Booker et al., 1999: 31-dimensional domain, minutes to days per run, Kriging).
- Electric circuits (Bates et al., 1996: 60-dimensional domain; 216 simulations; Kriging).

How accurate are emulators?

- High-consequence decisions are made on the basis of emulators.
- How accurate are they in practice?
- How can the accuracy be estimated reliably, measured or bounded?
- How many training data are needed to ensure that an emulator is accurate?

Common strategies

- For Bayesian emulators, common to use the posterior distribution to measure uncertainty (Tebaldi & Smith, 2005)
- Also common to measure error using observations not used to train the emulator (Fang et al., 2006)
- Required conditions generally cannot be verified or known to be false.
- Posterior depends on prior and likelihood, but inputs are generally fixed parameters, not random.
- Validation on hold-out observations relevant if the error at the held-out observations is representative of the error everywhere. Observations not usually IID; values of f not IID.

Constraints are key

- Without constraints on f, no reliable way to extrapolate to values of f at unobserved inputs: completely indeterminate.
- Need f to have some kind of regularity; does not typically come from the problem.
- Uncertainty estimates are driven by assumptions about f.
- Stronger assumptions \rightarrow smaller uncertainties.
- What do the data justify?
- How can we avoid foolhardy optimism?

Lipschitz bound

Use absolute condition number aka Lipschitz constant:

Given a metric d on dom(g), best Lipschitz constant K for g is

$$K(g) \equiv \sup \left\{ \frac{g(v) - g(w)}{d(v, w)} : v, w \in \text{dom}(g) \text{ and } v \neq w \right\}. \quad (1)$$

If $f \notin \mathcal{C}[0,1]^p$, then $K(f) \equiv \infty$.

What's the problem?

- If we knew f, we could emulate it perfectly—by f.
- Require emulator \hat{f} ito be computable from the observations, without relying on any other information about f.
- If we knew that thee Lipschitz constant of f is K, could guarantee of some level of accuracy.
- All else equal, the larger K is, the more difficult it is to guarantee that an approximation of f is accurate.

What do we know about K?

Observations $f|_X$ impose a lower bound on K (but no upper bound).

 \exists \hat{f} , computable from the data f|X, guaranteed to be accurate throughout the domain of f—no matter what f is—provided f agrees with the observations $f|_X$ and has a Lipschitz constant not greater than the observed lower bound on K?

Minimax formulation: Information-Based Complexity

- potential error: minimax error of emulators over the set \mathcal{F} of functions that agree with data & have Lipschitz constant no greater than the lower bound, as function over $\mathsf{dom}(f)$
- maximum potential error: supremum of potential error over dom(f)
- For known K, finding potential error is standard problem in information-based complexity.
- K is unknown since f is only partially observed. We bound potential error using a lower bound for K computed from data.

Sketch of results

- Lower bound on number of additional observations possibly necessary to "learn" f w/i ϵ .
- Application to Community Atmosphere Model: *n* required could be astronomical.
- Two lower bounds on the maximum potential error for approximating f from a fixed set of observations: empirical, and as a fraction of the unknown K.
- Conditions under which a constant emulator has smaller maximum potential error than best emulator trained on the actual observations. Conditions hold for the CAM simulations.
- Use sampling to estimate quantiles and mean of the potential error across the domain. For CAM, moderate quantiles are a large fraction of maximum.

Notation and problem formulation

```
f: fixed unknown real-valued function on [0,1]^p C[0,1]^p: real-valued continuous functions on [0,1]^p dom(g): domain of function g g|_D: restriction of g to D \subset \text{dom}(g) f|_X: data, observations of f on X \hat{f}: emulator based on f|_X, but no other information about f ||h||_{\infty} \equiv \sup_{w \in \text{dom}(h)} |h(w)| d: a metric on \text{dom}(g) K(g): best Lipschitz constant for f
```

$$\mathcal{F}_{\kappa}(g) \equiv \{h \in \mathcal{C}[0,1]^p : \mathcal{K}(h) \leq \kappa \text{ and } h|_{\mathsf{dom}(g)} = g\}.$$

 $\mathcal{F}_{\infty}(f|_X)$ is the space of functions in $\mathcal{C}[0,1]^p$ that fit the data. potential error of $\hat{f} \in \mathcal{C}[0,1]^p$ over the set of functions \mathcal{F} :

$$\mathcal{E}(w; \hat{f}, \mathcal{F}) \equiv \sup \left\{ |\hat{f}(w) - g(w)| : g \in \mathcal{F} \right\}.$$

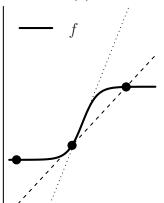
maximum potential error of $\hat{f} \in \mathcal{C}[0,1]^p$ over the set of functions \mathcal{F} :

$$\mathcal{E}(\hat{f},\mathcal{F}) \equiv \sup_{w \in [0,1]^p} \mathcal{E}(w;\hat{f},\mathcal{F}) = \left\{ \|\hat{f} - g\|_{\infty} : g \in \mathcal{F} \right\}.$$

Maximum potential error

- Example of worst-case error in IBC.
- The uncertainty \hat{f} is $\mathcal{E}(\hat{f}, \mathcal{F}_{\infty}(f|_{X}))$.
- Presumes $f \in \mathcal{C}[0,1]^p$.
- If $f \notin C[0,1]^p$, \hat{f} could differ from f by more.
- We lower-bound uncertainty of the best possible emulator of f, under optimistic assumptions about the regularity of f.
- maximum potential error is infinite unless f has more regularity than continuity.

Let $K \equiv K(f)$ and $\hat{K} \equiv K(f|_X)$. Because $X \subset [0,1]^p$, $\hat{K} \leq K$.



Dotted line is tangent to f where f attains its Lipschitz constant: slope K. The dashed line is the steepest line that intersects any pair of observations: slope $\hat{K} \leq K$.

More notation

$$\mathcal{F}_{\kappa} \equiv \mathcal{F}_{\kappa}(f|_{X})$$

and

$$\mathcal{E}_{\kappa}(\hat{f}) \equiv \mathcal{E}(\hat{f}, \mathcal{F}_{\kappa}).$$

radius of $\mathcal{F} \subset \mathcal{C}[0,1]^p$ is

$$r(\mathcal{F}) \equiv \frac{1}{2} \sup \{ \|g - h\|_{\infty} : g, h \in \mathcal{F} \}.$$

$$\mathcal{E}_{\kappa}(\hat{f}) \ge r(\mathcal{F}_{\kappa}).$$
 (2)

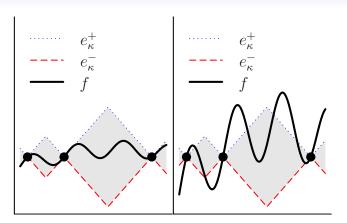
Equality holds for the emulator that "splits the difference":

$$f_{\kappa}^{\star}(w) \equiv \frac{1}{2} \left[\inf_{g \in \mathcal{F}_{\kappa}} g(w) + \sup_{g \in \mathcal{F}_{\kappa}} g(w) \right]$$

That is, for all emulators \hat{f} that agree with f on X,

$$\mathcal{E}_{\kappa}(\hat{f}) \geq \mathcal{E}_{\kappa}(\hat{f}_{\kappa}^*) \equiv \mathcal{E}_{\kappa}^*$$
:

 f_{κ}^{\star} is a minimax (over $f \in \mathcal{F}_{\kappa}$) for infinity-norm error.



 $\hat{K} = 0$; optimal interpolant f_{κ}^{\star} is constant. Left panel: $\kappa = K$. Right panel: $\kappa < K$. If $\kappa \geq K$ then $e_{\kappa}^{-} \leq f \leq e_{\kappa}^{+}$, and, equivalently, $f \in \mathcal{F}_{\kappa}$.

Define

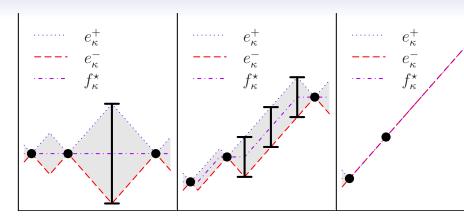
$$e_{\kappa}^{+}(w) \equiv e_{f,X,\kappa}^{+}(w) \equiv \min_{x \in X} [f(x) + \kappa d(x,w)],$$

$$e_{\kappa}^{-}(w) \equiv e_{f,X,\kappa}^{-}(w) \equiv \max_{x \in X} [f(x) - \kappa d(x,w)],$$

and

$$e_{\kappa}^{\star}(w) \equiv e_{f,X,\kappa}^{\star}(w) \equiv \frac{1}{2} \left[e_{f,X,\kappa}^{+}(w) - e_{f,X,\kappa}^{-}(w) \right].$$

 $e_{\kappa}^{\star}(w)$ is minimax error at w: smallest (across emulators \hat{f}) maximum (across functions g) error at the point $w \in [0,1]^p$ is $e_{\kappa}^{\star}(w)$.



Black error bars are twice the maximum potential error over \mathcal{F}_{κ} . The succession of panels shows that as the slope between observations approaches κ , $e^{\star}(w)$ approaches 0 for points w between observations, and the maximum potential error over \mathcal{F}_{κ} decreases.

Bounds on the number of observations

Fix "tolerable error" $\epsilon > 0$ If $\|\hat{f}|_A - g|_A\|_{\infty} \le \epsilon$, then \hat{f} ϵ -approximates g on A. If $A = \mathsf{dom}(g)$, then \hat{f} ϵ -approximates g.

If \mathcal{F} is a non-empty class of functions with common domain D, then \hat{f} ϵ -approximates \mathcal{F} on $A \subset D$ if $\forall g \in \mathcal{F}$, \hat{f} ϵ -approximates g on A. If A = D, then \hat{f} ϵ -approximates \mathcal{F} .

ϵ -approximates

 \hat{f} ϵ -approximates \mathcal{F} if and only if the maximum potential error of \hat{f} on \mathcal{F} does not exceed ϵ .

Since \hat{K} is the observed variation of f on X, a useful value of ϵ would typically be much smaller than \hat{K} . (Otherwise, we might just as well take \hat{f} to be a constant.)

For fixed $\epsilon > 0$, and $Y \subset \mathsf{dom}(f)$, Y is ϵ -adequate for f on A if f_K^* ϵ -approximates $\mathcal{F}_K(f|_Y)$ on A. If $A = \mathsf{dom}(f)$, then Y is ϵ -adequate for f.

 $B(x, \delta)$: open ball in \mathbb{R}^p centered at x with radius δ .

$$N_f \equiv \min\{\#Y : Y \text{ is } \epsilon\text{-adequate for } f\},$$

where #Y is the cardinality of Y.

The minimum potential computational burden is

$$M \equiv \max\{N_g : g \in \mathcal{F}_K\}.$$

Over all experimental designs Y, M is the smallest number of data to guarantee that maximum error of the best emulator based on those data is not larger than ϵ .

Upper bound on N_f

For each $x \in X$, f_K^* ϵ -approximates $\mathcal{F}_K(f|_K)$ on (at least) $B(x, \epsilon/K)$. Thus, f_K^* ϵ -approximates \mathcal{F}_K on $\bigcup_{x \in X} B(x, \epsilon/K)$. Hence, the cardinality of any $Y \subset [0, 1]^p$ for which

$$V \equiv \left\{ B\left(x, \frac{\epsilon}{K}\right) : x \in Y \right\} \supset [0, 1]^p$$

is an upper bound on N_f .

In ℓ_{∞} , $[0,1]^p$ can be covered by $\left\lceil \frac{K^+}{2\epsilon} \right\rceil^p$ balls of radius ϵ/K^+ .

Lower bound on N_f

- Can happen that $f_{\hat{K}}^{\star}$ ϵ -approximates \mathcal{F}_{K} on regions of the domain not contained in $\bigcup_{x \in X} B(x, \epsilon/K)$.
- If f varies on X, then for a function g to agree with f at the observations requires g to vary too.
- Fitting the data "spends" some of g's Lipschitz constant: can't get as far away from f as it could if f_X were constant.
- Can quantify to find lower bounds for M.

Define $\bar{\gamma} \equiv \arg\min_{\gamma \in \mathbb{R}} \sum_{x \in X} |f(x) - \gamma|^p$.

Let $X^+ \equiv \{x \in X : f(x) \geq \bar{\gamma}\}$ and let $X^- \equiv \{x \in X : f(x) < \bar{\gamma}\}.$

$$Q_{+} \equiv \bigcup_{\mathbf{x} \in \mathbf{X}^{+}} \left\{ B\left(\mathbf{x}, \frac{f(\mathbf{x}) - \bar{\gamma}}{\hat{K}}\right) \bigcap [0, 1]^{p} \right\}$$

and

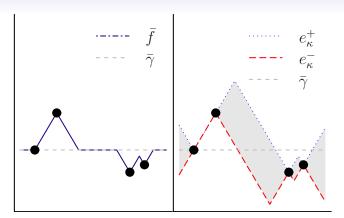
Let

$$Q_{-} \equiv \bigcup_{\mathbf{x} \in \mathbf{X}^{-}} \left\{ B\left(\mathbf{x}, \frac{\bar{\gamma} - f(\mathbf{x})}{\hat{K}}\right) \bigcap [0, 1]^{p} \right\}.$$

Then $Q_+ \cap Q_- = \emptyset$

Define

$$ar{f}:[0,1]^p
ightarrow\mathbb{R} \ w\mapsto \left\{egin{array}{ll} e^-_{\hat{K}}(w), & w\in Q_+\ e^+_{\hat{K}}(w), & w\in Q_-\ ar{\gamma}, & ext{otherwise}. \end{array}
ight.$$



 \bar{f} (left panel) is comprised of segments of $e_{\hat{K}}^+$, $e_{\hat{K}}^-$ and the constant $\bar{\gamma}$ (right panel). \bar{f} constant over roughly half of the domain. No function between $e_{\hat{K}}^-$ and $e_{\hat{K}}^+$ (inclusive) is constant over a larger fraction of the domain.

Result 1

 μ : Lebesgue measure. $\bar{Q} \equiv [0,1]^p \setminus (Q_+ \cup Q_-)$.

$$\mu(\bar{Q}) \ge 1 - \sum_{x \in X} \mu\left(B\left(x, |f(x) - \bar{\gamma}|/\hat{K}\right)\right).$$

 $C_2 \equiv \frac{\pi^{p/2}}{\Gamma(p/2+1)}$ and $C_\infty \equiv 2^p$. For $q \in \{2, \infty\}$,

$$\mu(\bar{Q}) \geq 1 - C_q \sum_{x \in X} \left(|f(x) - \bar{\gamma}| / \hat{K} \right)^p.$$

If $\exists x \in X$ for which $\{x\}$ is ϵ -adequate for f on $A \subset \bar{Q}$, then $\mu(A) \leq \mu(B(0, \epsilon/\hat{K}))$.

$$M \ge \left\lceil \frac{\mu(\bar{Q})}{\mu(B(0, \epsilon/\hat{K}))} \right\rceil \ge \left\lceil \epsilon^{-p} \left\lceil \frac{\hat{K}^p}{C_q} - \sum_{x \in X} |f(x) - \bar{\gamma}|^p \right\rceil \right\rceil. \quad (3)$$

PCMDI

- Program for Climate Model Diagnosis & Intercomparison (PCMDI) at LLNL: 1154 climate simulations using the Community Atmosphere Model (CAM).
- p = 21 parameters scaled so that [0, 1] has all plausible values.
- f is global average upwelling longwave flux (FLUT) approximately 50 years in the future.
- Each run took several days on a supercomputer.
- PCDMI used several approaches to choose $X \subset [0,1]^p$: Latin hypercube, one-at-a-time, and random-walk multiple-one-at-a-time.
- 1154 simulations total.

$$\bar{\gamma} = 232.77; \; \hat{K} = 14.20 \text{ for } q = 2:$$

$$M \ge \left\lceil \epsilon^{-21} \left[\frac{1.57 \times 10^{24}}{0.0038} - 6.81 \times 10^{24} \right] \right\rceil > \epsilon^{-21} \times 10^{26}.$$

If ϵ is 1% of \hat{K} , then $M \ge 10^{43}$.

Even if ϵ is 50% of \hat{K} , $M > 10^8$. For $q = \infty$, $\hat{K} = 34.68$; in that case

$$M \ge \left[\epsilon^{-21} \left[\frac{2.19 \times 10^{32}}{2^{21}} - 6.81 \times 10^{25} \right] \right] > \epsilon^{-21} \times 10^{25}.$$

Lower bounds on maximum potential error

- Two lower bounds on the maximum potential error \mathcal{E}_K^* for fixed X: absolute, and as a fraction of unknown K.
- Bound as fraction of K shows that when a statistic—calculable from the observations—exceeds a calculable threshold, the maximum potential error is no less than the maximum potential error from one observation at the centroid.
- Observing f for all $x \in X$ was wasteful: one observation would have been better.
- For LLNL CAM runs, both bounds are large.

Result 2

Theorem

$$\mathcal{E}_{\mathcal{K}}(\hat{f}) \geq \sup e_{\hat{\mathcal{K}}}^{\star}.$$

 $\sup e_{\hat{K}}^{\star}$, a statistic calculable from data $f|_{X}$, is a lower bound on the maximum potential error for any emulator \hat{f} based on the observations $f|_{X}$.

Result 3: Scaling Lemma

Lemma

For any λ , if $\sup e_{\hat{K}}^{\star} \geq \lambda \hat{K}$, then $\mathcal{E}_{K}(\hat{f}) \geq \lambda K$.

Maximum potential error from 1 observation

Work in ℓ_{∞} : $d(v, w) = ||v - w||_{\infty}$.

 $z \equiv (1/2, \dots, 1/2)$, the centroid of $[0, 1]^p$.

 $\hat{g} \in \mathcal{F}_{\infty}(f|_{\{z\}}) \text{ is constant function } \hat{g}(w) \equiv f(z), \, \forall w \in [0,1]^p.$

 ℓ_{∞} distance from z to any boundary point of $[0,1]^p$ is 1/2, so

$$\mathcal{E}_K(\hat{g},\mathcal{F}_K(f|_{\{z\}}))=\frac{K}{2}.$$

Result 4

Let $W \subset [0,1]^p$ be finite and $c \in \mathbb{R}$. Suppose $f|_W = c$. Let $\hat{h} \in \mathcal{F}_{\infty}(f|_W)$. By examining the corners of the domain, it follows that if $|W| < 2^p$,

$$\mathcal{E}_{K}(\hat{h},\mathcal{F}_{K}(f|_{W}))\geq \frac{K}{2}.$$

If f is constant on W, any emulator based on fewer than 2^p observations of f will have at least K/2 maximum potential error.

Making 2^p observations of f is intractable for CAM and many other applications.

Result 5

Theorem

If sup $e_{\hat{K}}^{\star} \geq \hat{K}/2$, then

$$\mathcal{E}_{\mathcal{K}}(\hat{f}) = \mathcal{E}_{\mathcal{K}}(\hat{f}, \mathcal{F}_{\mathcal{K}}(f|_{X})) \geq \frac{\mathcal{K}}{2} \geq \mathcal{E}_{\mathcal{K}}(\hat{g}, \mathcal{F}_{\mathcal{K}}(f|_{\{z\}})).$$

If $\sup e_{\hat{K}}^* \geq \hat{K}/2$, no \hat{f} based on $f|_X$ has smaller maximum potential error than the constant emulator based on one observation.

CAM: Upper bound from non-adjacent corners in ℓ_{∞} .

Theorem

$$\sup e_{\hat{K}}^{\star} \leq \frac{1}{2} \left\{ \min_{x \in X} \left[f(x) + \hat{K}\tilde{d}(x) \right] - \max_{x \in X} \left[f(x) - \hat{K}\tilde{d}(x) \right] \right\}.$$

 $\sup e_{\hat{k}}^{\star} \leq 20.95$ for the CAM dataset.

CAM: Lower bounds from corners in ℓ_{∞} .

Clearly

$$\sup e_{\hat{\mathcal{K}}}^{\star} \geq \max \left\{ e_{\hat{\mathcal{K}}}^{\star}(w) : orall w \in \{0,1\}^p
ight\}.$$

Essentially sharp for the CAM dataset.

Divide $[0,1]^p$ into 2^p hypercubes $\{R_i\}_{i=1}^{2^p}$ with edge-length 1/2, disjoint interiors, each containing a different corner of $[0,1]^p$

Because X contains only 1154 points, most R_i do not contain any $x \in X$.

The bounds are tight for CAM

For the CAM dataset, one corner r_j attains $e_{\hat{K}}^{\star}(r_j) = 20.95$.

So, $e_{\hat{K}}^{\star}$ attains the upper bound established in the previous section, and $\sup e_{\hat{K}}^{\star} = 20.95$.

Implications for CAM

Because $\sup e_{\hat{K}}^* = 20.95 \ge 17.34 = \hat{K}/2$, $\mathcal{E}_{K}(\hat{f}) \ge K/2$ for any interpolation \hat{f} .

Maximum potential error would have been no greater had we just observed f once, at z, and predicted $\hat{f}(w) = f(z)$ for all $w \in [0,1]^p$.

Extensions

- Looked at maximum uncertainty over all $w \in [0,1]^p$.
- Important in some applications; in others, maybe less interesting than the fraction of $[0,1]^p$ where uncertainty is large.
- Can estimate the fraction of $[0,1]^p$ for which $e^* \ge \epsilon > 0$ by sampling.
- Draw $w \in [0,1]^p$ at random and evaluate e^* at each selected point.
- Yields binomial lower confidence bounds for the fraction of $[0,1]^p$ where uncertainty is large, and confidence bounds for quantiles of the potential error.

CAM: bounds on percentiles of error

	95% lower confidence bound			
norm	lower quartile	median	upper quartile	average
Euclidean	1.454	1.596	1.731	1.595
supremum	0.649	0.717	0.782	0.715

Error of minimax emulator $f_{\hat{K}}^{\star}$ of CAM model from 1154 LLNL observations. Column 1: metric d used to define the Lipschitz constant. Columns 2–4: Binomial lower confidence bounds for quartiles of the pointwise error. Column 5: 95% lower confidence bound for the integral of the pointwise error over the entire domain $[0,1]^p$. Columns 2–5 are expressed as multiple of $\hat{K}/2$. Based on 10,000 random samples.

Conclusions

- In some problems, every emulator based on any tractable number of observations of f has large maximum potential error (and the potential error is large over much of the domain), even if f is no less regular than it is observed to be.
- Can find sufficient conditions under which all emulators are potentially substantially incorrect.
- Conditions depend only on the observed values of f; can be computed from the same observations used to train an emulator, at small incremental cost.
- Conditions are sufficient but not necessary: f could be less regular than any finite set of observations reveals it to be.
- It is not possible to give necessary conditions that depend only on the data.
- Conditions seem to hold for problems with large societal interest.

- Reducing the potential error of emulators in HEB problems requires either more information about f (knowledge, not merely assumptions), or changing the measure of uncertainty—changing the scientific question.
- Both tactics are application-specific: the underlying science dictates the conditions that actually hold for f and the senses in which it is useful to approximate f.
- Not clear that emulators help address the most important questions.
- Approximating f pointwise rarely ultimate goal; most properties of f are nuisance parameters.
- Important questions about f might be answered more directly.
- Some research questions cannot be answered through simulation at present.
- Employing complex emulators and massive computational is a distraction.

