Mini-Minimax Uncertainty of Emulators http://arxiv.org/abs/1303.3079

Philip B. Stark and Jeffrey C. Regier

Department of Statistics University of California, Berkeley

Center for Security, Reliability, and Trust
University of Luxembourg
Luxembourg
9 July 2013

Why Uncertainty Quantification Matters

James Bashford / AP

Why Uncertainty Quantification Matters

[^0]
Emulators, Surrogate functions, Metamodels

Try to approximate a function f from few samples when evaluating f expensive: computational cost or experiment.

Emulators are essentially interpolators/smoothers

- Kriging
- Gaussian process models (GP)
- Polynomial Chaos Expansions
- Multivariate Adaptive Regression Splines (MARS)
- Projection Pursuit Regression
- Neural networks

Noiseless non-parametric function estimation

Estimate f on domain $\operatorname{dom}(f)$ from $\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}$

- f infinite-dimensional.
- $\operatorname{dom}(f)$ typically high-dimensional.
- Observe only $\left.f\right|_{X}$, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$. No noise.
- Estimating f is grossly underdetermined problem (worse with noise).
- Usual context: question that requires knowing $f(x)$ for $x \notin X$

Common context

Part of larger problem in uncertainty quantification (UQ)

- Real-world phenomenon
- Physics description of phenomenon
- Theoretical simplification/approximation of the physics
- Numerical solution of the approximation f
- Emulation of the numerical solution of the approximation \hat{f}
- Calibration to noisy data
- "Inference"

HEB: High dimensional domain, Expensive, Black-box

- Climate models (Covey et al. 2011: 21-28-dimensional domain 1154 simulations, Kriging and MARS)
- Car crashes (Aspenberg et al. 2012: 15-dimensional domain; 55 simulations; polynomial response surfaces, NN)
- Chemical reactions (Holena et al. 2011: 20-30-dimensional domain, boosted surrogate models; Shorter et al., 1999: 46-dimensional domain)
- Aircraft design (Srivastava et al. 2004: 25-dimensional domain, 500 simulations, response surfaces and Kriging; Koch et al. 1999: 22-dimensional domain, minutes per run, response surfaces and Kriging; Booker et al. 1999: 31-dimensional domain, minutes to days per run, Kriging)
- Electric circuits (Bates et al. 1996: 60-dimensional domain; 216 simulations; Kriging)

Emulator Accuracy Matters

- High-consequence decisions are made on the basis of emulators.
- How accurate are they in practice?
- How can the accuracy be estimated reliably, measured, or bounded?
- How many training data are needed to ensure that an emulator (the best possible) is accurate?

Common strategies to estimate accuracy

Bayesian Emulators (GP, Kriging, ...)

- Use the posterior distribution (Tebaldi \& Smith 2005)
- Posterior depends on prior and likelihood, but inputs are generally fixed parameters, not random.

Others

- Using holdout data (Fang et al. 2006)
- Relevant only if the error at the held-out data is representative of the error everywhere. Data not usually IID; values of f not IID.

Required conditions generally unverifiable or known to be false.

So, what to do?

- Standard methods can be misleading when the assumptions don't hold-and usually no reason for the assumptions to hold.
- Is there a more rigorous way to evaluate the accuracy?
- Is there a way that relies only on the observed data?

Constraints are mandatory

- Uncertainty estimates are driven by assumptions about f.
- Without constraints on f, no reliable way to extrapolate to values of f at unobserved inputs: completely uncertain.
- Stronger assumptions \rightarrow smaller uncertainties.
- What's the most optimistic assumption the data justify?

(Best) Lipschitz constant

Given a metric d on $\operatorname{dom}(g)$, best Lipschitz constant K for g is

$$
\begin{equation*}
K(g) \equiv \sup \left\{\frac{g(v)-g(w)}{d(v, w)}: v, w \in \operatorname{dom}(g) \text { and } v \neq w\right\} \tag{1}
\end{equation*}
$$

If $f \notin \mathcal{C}(\operatorname{dom}(f))$, then $K(f) \equiv \infty$.

What's the problem?

- If we knew f, we could emulate it perfectly—by f.
- Require emulator \hat{f} to be computable from the data, without relying on any other information about f.
- If we knew $K(f)$, could guarantee some level of accuracy for \hat{f}.
- All else equal, the larger $K(f)$ is, the harder to guarantee that \hat{f} is accurate.

How bad must the uncertainty be?

- Data $\left.f\right|_{X}$ impose a lower bound on $K(f)$ (but no upper bound): Data require some lack of regularity.
- Is there any \hat{f} guaranteed to be close to f-no matter what f is-provided f agrees with $\left.f\right|_{X}$ and is not less regular than the data require?

Minimax formulation: Information-Based Complexity (IBC)

- potential error at w : minimax error of emulators \hat{f} over the set \mathcal{F} of functions g that agree with data \& have $K(g)$ constant no greater than the lower bound, at $w \in \operatorname{dom}(f)$.
- maximum potential error: sup of potential error over $w \in \operatorname{dom}(f)$.
- For known K, finding potential error is standard IBC problem.
- But $K(f)$ is unknown: Bound potential error using a lower bound for $K(f)$ computed from data.

Sketch of results

- Lower bound on additional observations possibly necessary to estimate $f \mathrm{w} / \mathrm{i} \epsilon$.
- Application to Community Atmosphere Model (CAM): required n could be ginormous.
- Lower bounds on the max potential error for approximating f from a fixed set of observations: empirical, and as a fraction of the unknown K.
- Conditions under which a constant emulator has smaller maximum potential error than best emulator trained on the actual observations. Conditions hold for the CAM simulations.
- Sampling to estimate quantiles and mean of the potential error over $\operatorname{dom}(f)$. For CAM, moderate quantiles are a large fraction of maximum.

Notation

f : fixed unknown real-valued function on $[0,1]^{p}$
$\mathcal{C}[0,1]^{p}$: real-valued continuous functions on $[0,1]^{p}$
$\operatorname{dom}(g)$: domain of the function g
$\left.g\right|_{D}:$ restriction of g to $D \subset \operatorname{dom}(g)$
$\left.f\right|_{X}: f$ at the n points in X, the data
\hat{f} : emulator based on $\left.f\right|_{X}$, but no other information about f
$\|h\|_{\infty} \equiv \sup _{w \in \operatorname{dom}(h)}|h(w)|$
d : a metric on $\operatorname{dom}(g)$
$K(g)$: best Lipschitz constant for f (using metric d)

More notation

- κ-smooth interpolant of g :

$$
\mathcal{F}_{\kappa}(g) \equiv\left\{h \in \mathcal{C}[0,1]^{p}: K(h) \leq \kappa \text { and }\left.h\right|_{\operatorname{dom}(g)}=g\right\}
$$

$\mathcal{F}_{\infty}\left(\left.f\right|_{X}\right)$ is the space of functions in $\mathcal{C}[0,1]^{p}$ that fit the data.

- potential error of $\hat{f} \in \mathcal{C}[0,1]^{p}$ over the set of functions \mathcal{F} :

$$
\mathcal{E}(w ; \hat{f}, \mathcal{F}) \equiv \sup \{|\hat{f}(w)-g(w)|: g \in \mathcal{F}\} .
$$

- maximum potential error of $\hat{f} \in \mathcal{C}[0,1]^{p}$ over the set of functions \mathcal{F} :

$$
\mathcal{E}(\hat{f}, \mathcal{F}) \equiv \sup _{w \in[0,1]^{p}} \mathcal{E}(w ; \hat{f}, \mathcal{F})=\left\{\|\hat{f}-g\|_{\infty}: g \in \mathcal{F}\right\}
$$

Maximum potential error

- Example of worst-case error in IBC.
- "Real" uncertainty of \hat{f} is $\mathcal{E}\left(\hat{f}, \mathcal{F}_{\infty}\left(\left.f\right|_{X}\right)\right)$.
- Presumes $f \in \mathcal{C}[0,1]^{p}$.
- Maximum potential error is infinite unless f has more regularity than mere continuity.
- If $f \notin \mathcal{C}[0,1]^{p}, \hat{f}$ could differ from f by more.
- We lower-bound uncertainty of the best possible emulator of f, under optimistic assumption that $K=K(f)=\hat{K} \equiv K\left(\left.f\right|_{x}\right) \leq K(f)$

Dotted line is tangent to f where f attains its Lipschitz constant: slope $K=K(f)$. Dashed line is the steepest line that intersects any pair of observations: slope $\hat{K}=K\left(\left.f\right|_{X}\right) \leq K$.

More notation

- $\mathcal{F}_{\kappa} \equiv \mathcal{F}_{\kappa}\left(\left.f\right|_{X}\right)$
- $\mathcal{E}_{\kappa}(\hat{f}) \equiv \mathcal{E}\left(\hat{f}, \mathcal{F}_{\kappa}\right)$
- radius of $\mathcal{F} \subset \mathcal{C}[0,1]^{p}$ is

$$
r(\mathcal{F}) \equiv \frac{1}{2} \sup \left\{\|g-h\|_{\infty}: g, h \in \mathcal{F}\right\}
$$

First result

$$
\begin{equation*}
\mathcal{E}_{\kappa}(\hat{f}) \geq r\left(\mathcal{F}_{\kappa}\right) . \tag{2}
\end{equation*}
$$

Equality holds for the emulator that "splits the difference":

$$
f_{\kappa}^{\star}(w) \equiv \frac{1}{2}\left[\inf _{g \in \mathcal{F}_{\kappa}} g(w)+\sup _{g \in \mathcal{F}_{\kappa}} g(w)\right]
$$

For all emulators \hat{f} that agree with f on X,

$$
\mathcal{E}_{\kappa}(\hat{f}) \geq \mathcal{E}_{\kappa}\left(\hat{f}_{\kappa}^{*}\right) \equiv \mathcal{E}_{\kappa}^{*} .
$$

Left panel: $\kappa=K$. Right panel: $\kappa<K$. If $\kappa \geq K$ then $e_{\kappa}^{-} \leq f \leq e_{\kappa}^{+}$, so $f \in \mathcal{F}_{\kappa}$.

Constructing e^{-}, e^{+}, and e^{\star}

Define

- $e_{\kappa}^{+}(w) \equiv \min _{x \in X}[f(x)+\kappa d(x, w)]$
- $e_{\kappa}^{-}(w) \equiv \max _{x \in X}[f(x)-\kappa d(x, w)]$
- $e_{\kappa}^{\star}(w) \equiv \frac{1}{2}\left[e_{f, X, \kappa}^{+}(w)-e_{f, X, \kappa}^{-}(w)\right]$
$e_{\kappa}^{\star}(w)$ is minimax error at w :
smallest (across emulators \hat{f}) maximum (across functions g) error at the point w

Black error bars are twice the maximum potential error over \mathcal{F}_{κ}. As the slope between observations approaches $\kappa, e^{\star}(w)$ approaches 0 for points w between observations, and the maximum potential error over \mathcal{F}_{κ} decreases.

Lower bounds on n

- Fix "tolerable error" $\epsilon>0$
- If $\left\|\left.\hat{f}\right|_{A}-\left.g\right|_{A}\right\|_{\infty} \leq \epsilon$, then $\hat{f} \epsilon$-approximates g on A.

If $A=\operatorname{dom}(g)$, then $\hat{f} \epsilon$-approximates g.

- If \mathcal{F} is a non-empty class of functions with common domain D, then $\hat{f} \epsilon$-approximates \mathcal{F} on $A \subset D$ if $\forall g \in \mathcal{F}, \hat{f}$ ϵ-approximates g on A.
If $A=D$, then $\hat{f} \epsilon$-approximates \mathcal{F}.

ϵ-approximates and tolerable error

$\hat{f} \epsilon$-approximates \mathcal{F} if and only if the maximum potential error of \hat{f} on \mathcal{F} does not exceed ϵ.

Since \hat{K} is the observed variation of f on X, a useful value of ϵ would typically be much smaller than \hat{K}. (Otherwise, we might just as well take \hat{f} to be a constant.)

Minimum potential computational burden

- For fixed $\epsilon>0$, and $Y \subset \operatorname{dom}(f), Y$ is ϵ-adequate for f on A if $f_{K}^{\star} \epsilon$-approximates $\mathcal{F}_{K}\left(\left.f\right|_{Y}\right)$ on A. If $A=\operatorname{dom}(f)$, then Y is ϵ-adequate for f.
- $B(x, \delta)$: open ball in \mathbb{R}^{p} centered at x with radius δ.
- $N_{f} \equiv \min \{\# Y: Y$ is ϵ-adequate for $f\}$
- The minimum potential computational burden is

$$
M \equiv \max \left\{N_{g}: g \in \mathcal{F}_{K}\right\}
$$

- Over all experimental designs Y, M is the smallest number of data for which the maximum error of the best emulator based on those data is guaranteed not to exceed ϵ.

Upper bound on N_{f}

- For each $x \in X, f_{K}^{\star} \epsilon$-approximates $\mathcal{F}_{K}\left(\left.f\right|_{K}\right)$ on (at least) $B(x, \epsilon / K)$.
- Thus, $f_{K}^{\star} \epsilon$-approximates \mathcal{F}_{K} on $\bigcup_{x \in X} B(x, \epsilon / K)$.
- Hence, the cardinality of any $Y \subset[0,1]^{p}$ for which

$$
V \equiv\left\{B\left(x, \frac{\epsilon}{K}\right): x \in Y\right\} \supset[0,1]^{p}
$$

is an upper bound on N_{f}.

- In $\ell_{\infty},[0,1]^{p}$ can be covered by $\left\lceil\frac{K}{2 \epsilon}\right\rceil^{p}$ balls of radius ϵ / K.

Lower bound on N_{f} : Heuristics

- Can happen that $f_{\hat{K}}^{\star} \epsilon$-approximates \mathcal{F}_{K} on regions of the domain not contained in $\cup_{x \in X} B(x, \epsilon / K)$.
- If f varies on X, then if g agrees with f at the data, g must vary too.
- Fitting the data "spends" some of g 's Lipschitz constant: can't get as far away from f as it could if f_{X} were constant.
- Can quantify to find lower bounds for M.

Lower bound on N_{f} : Construction

Define

- $\bar{\gamma} \equiv \arg \min _{\gamma \in \mathbb{R}} \sum_{x \in X}|f(x)-\gamma|^{p}$.
- $X^{+} \equiv\{x \in X: f(x) \geq \bar{\gamma}\}$
- $X^{-} \equiv\{x \in X: f(x)<\bar{\gamma}\}$.
- $Q_{+} \equiv \bigcup_{x \in X^{+}}\left\{B\left(x, \frac{f(x)-\bar{\gamma}}{\hat{K}}\right) \cap[0,1]^{p}\right\}$
- $Q_{-} \equiv \bigcup_{x \in X^{-}}\left\{B\left(x, \frac{\bar{\gamma}-f(x)}{\hat{K}}\right) \cap[0,1]^{p}\right\}$
- $\bar{Q} \equiv[0,1]^{p} \backslash\left(Q_{+} \cup Q_{-}\right)$.
- $\bar{f}(w) \equiv\left\{e_{\hat{K}}^{-}(w), w \in Q_{+} ; e_{\hat{K}}^{+}(w), w \in Q_{-} ; \bar{\gamma}, w \in \bar{Q}\right\}$.

\bar{f} (left panel) is comprised of segments of $e_{\hat{\kappa}}^{+}, e_{\hat{\kappa}}^{-}$and the constant $\bar{\gamma}$ (right panel). \bar{f} constant over roughly half of the domain. No function between $e_{\hat{K}}^{-}$and $e_{\hat{K}}^{+}$(inclusive) is constant over a larger fraction of the domain.

Potential computational burden: bounds for Lebesgue measure

- μ : Lebesgue measure.

$$
\mu(\bar{Q}) \geq 1-\sum_{x \in X} \mu(B(x,|f(x)-\bar{\gamma}| / \hat{K}))
$$

- $C_{2} \equiv \frac{\pi^{p / 2}}{\Gamma(p / 2+1)}$ and $C_{\infty} \equiv 2^{p}$.
- For $q \in\{2, \infty\}$,

$$
\mu(\bar{Q}) \geq 1-C_{q} \sum_{x \in X}(|f(x)-\bar{\gamma}| / \hat{K})^{p}
$$

- $M \geq\left[\frac{\mu(\bar{Q})}{\mu(B(0, \epsilon / \hat{K}))}\right] \geq\left[\epsilon^{-p}\left[\frac{\hat{K}^{p}}{C_{q}}-\sum_{x \in X}|f(x)-\bar{\gamma}|^{p}\right]\right\rceil$

Uncertainty Quantification Strategic Initiative-LLNL

- Uncertainty Quantification Strategic Initiative at LLNL: 1154 climate simulations using the Community Atmosphere Model (CAM).
- $p=21$ parameters scaled so that $[0,1]$ has all plausible values.
- f is global average upwelling longwave flux (FLUT) approximately 50 years in the future.
- Each run took several days on a supercomputer.
- Several approaches to choose $X \subset[0,1]^{p}$: Latin hypercube, one-at-a-time, and random-walk multiple-one-at-a-time.
- 1154 simulations total.

CAM calculations

- $\bar{\gamma}=232.77$
- For $q=2, \hat{K}=14.20$:
$M \geq\left\lceil\epsilon^{-21}\left[\frac{1.57 \times 10^{24}}{0.0038}-6.81 \times 10^{24}\right]\right]>\epsilon^{-21} \times 10^{26}$
If ϵ is 1% of \hat{K}, then $M \geq 10^{43}$.
Even if ϵ is 50% of $\hat{K}, M>10^{8}$.
- For $q=\infty, \hat{K}=34.68$:
$M \geq\left\lceil\epsilon^{-21}\left[\frac{2.19 \times 10^{32}}{2^{21}}-6.81 \times 10^{25}\right]\right\rceil>\epsilon^{-21} \times 10^{25}$

Universal bound from the data

Theorem

$$
\mathcal{E}_{K}(\hat{f}) \geq \sup e_{\hat{K}}^{\star}
$$

$\sup e_{\hat{K}}^{\star}$, a statistic calculable from data $\left.f\right|_{x}$, is a lower bound on the maximum potential error for any emulator \hat{f} based on the observations $\left.f\right|_{X}$.

More isn't necessarily better

Theorem

If sup $e_{\hat{K}}^{\star} \geq \hat{K} / 2$, then

$$
\mathcal{E}_{K}(\hat{f})=\mathcal{E}_{K}\left(\hat{f}, \mathcal{F}_{K}\left(\left.f\right|_{X}\right)\right) \geq \frac{K}{2} \geq \mathcal{E}_{K}\left(\hat{g}, \mathcal{F}_{K}\left(\left.f\right|_{\{z\}}\right)\right)
$$

If sup $e_{\hat{K}}^{\star} \geq \hat{K} / 2$, no \hat{f} based on $\left.f\right|_{X}$ has smaller maximum potential error than the constant emulator based on one observation at the centroid z of $[0,1]^{p}$

Implications for CAM

- $\sup e_{\hat{K}}^{\star}=20.95 \geq 17.34=\hat{K} / 2$
- Hence, $\mathcal{E}_{K}(\hat{f}) \geq K / 2$ for every emulator \hat{f}.
- Maximum potential error would have been no greater had we just observed f at z and emulated by $\hat{f}(w)=f(z)$ for all $w \in[0,1]^{p}$.

Extensions

- Covered maximum uncertainty over all $w \in[0,1]^{p}$: crucial for some applications.
- In others, maybe interesting to know fraction of $[0,1]^{p}$ where uncertainty is large.
- Can estimate the fraction of $[0,1]^{p}$ for which $e^{*} \geq \epsilon>0$ by sampling.
- Draw points $w \in[0,1]^{p}$ at random; evaluate e^{*} at each w.
- Yields binomial lower confidence bounds for the fraction of $[0,1]^{p}$ where uncertainty is large, and confidence bounds for quantiles of the potential error.
- Another issue: take ϵ as fraction of "typical value" rather than fraction of K or \hat{K}
- But why? Not same as estimating \bar{f}, which is easier.

CAM: bounds on percentiles of error

norm	units	95\% lower confidence bound			
		lower quartile	median	upper quartile	average
Euclidean	$\hat{K} / 2$	1.462	1.599	1.732	1.599
supremum	$\hat{K} / 2$	0.648	0.716	0.781	0.715
Euclidean	$\hat{\gamma}$	0.044	0.049	0.053	0.049
supremum	γ	0.048	0.053	0.058	0.053

Error of minimax emulator $f_{\hat{K}}^{\star}$ of CAM model from 1154 LLNL observations. Col 1: metric d used to define K. Cols 3-5:
binomial lower confidence bounds for quartiles of the pointwise error, obtained by inverting binomial tests.
Col 6: 95% lower confidence bound for integral of the pointwise error over $[0,1]^{p}$, based on inverting a z-test.
Cols 3-6 are expressed as a fraction of the quantity in col 2 . Based on 10,000 random samples.

Computational Burden for "typical value"

norm	ϵ	lower bound on M
Euclidean	$0.02 \hat{\gamma}$	3.6×10^{12}
	$0.04 \hat{\gamma}$	$1,720,354$
	$0.06 \hat{\gamma}$	345
	$0.08 \hat{\gamma}$	1
supremum	$0.02 \hat{\gamma}$	8.6×10^{10}
	$0.04 \hat{\gamma}$	413,595
	$0.06 \hat{\gamma}$	83
	$0.08 \hat{\gamma}$	1

Conclusions

- In some problems, every emulator based on any tractable number of observations of f has large maximum potential error (and the potential error is large over much of the domain), even if f is no less regular than it is observed to be.
- Can find sufficient conditions under which all emulators are potentially substantially incorrect.
- Conditions depend only on the observed values of f; can be computed from the same observations used to train an emulator, at small incremental cost.
- Conditions are sufficient but not necessary: f could be less regular than any finite set of observations reveals it to be.
- It is not possible to give necessary conditions that depend only on the data.
- Conditions seem to hold for problems with large societal interest.

Directions

- Reducing the potential error in HEB problems requires more information about f (knowledge, not assumptions), or changing the measure of uncertainty-changing the question.
- Both tactics are application-specific: the science dictates the conditions that actually hold for f and the senses in which it is useful to approximate f.
- Not clear that simulation and emulators help address the most important questions.
- Approximating f pointwise rarely ultimate goal; most properties of f are nuisance parameters.
- Important questions about f might be answered more directly.
- Heroic simulations and emulators may be distractions.

[^0]:

