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Model Linear Inverse Problem

Seek to recover a model x, an element of a subset C of the Hilbert

space X , from data � linearly related to x, but contaminated by

observational noise �:

�n = Knx + �n 2 Rn;

x 2 C � X ; a Hilbert space,
Knx = (h k1 j x i; h k2 jx i; : : : ; h kn j x i); fkjgnj=1 � X

f�jgnj=1 iid N(0; 1):

h � j � i is the inner product on X ; and kyk =
r
h y j y i:

knkp;n = usual n-dimensional `p-norm:

For in�nite-dimensional , kkp;n = knkp;n.

Assume C has at least 2 elements (otherwise, we know x already).

For any subset S of a metric space, if ju�vj is the distance between
u and v,

diam(S) = sup
u;v2S

ju� vj;
diam(;) = 0:
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�p;n;� is 1� � quantile of p-norm of n iid N(0; 1) variables:

Prfk�nkp;n � �p;n;�g = 1� �:

Dn = Dp;n;� � fy 2 X : kKny � �nkp;n � �p;n;�g
Pr
x
fDp;n;� 3 xg � 1� �:

Since x 2 C, PrxfC \ Dn 3 xg � 1� �.

Many \inversion" techniques use Dn and C \ Dn.

Example. Minimum-norm estimate (MNE) of x:

x̂(�n) = arg min
y2C\Dn

kyk; whenever C \ Dn 6= ;:
This is a common regularization scheme in geophysics, sometimes

called \Occam's Inversion."

Corresponds to a particular choice of regularization parameter in

Tichonov regularization.
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Since PrfC \ Dn 3 xg � 1 � �, inequalities satis�ed by all y 2
C \ Dn are satis�ed by x, with con�dence � 1� �.

De�ne

F� � inf
y2C\Dn

F [y]

and

F+ � sup
y2C\Dn

F [y]:

[F�; F+] is a 1� � con�dence interval for F [x].

The con�dence level is simultaneous for arbitrarily many F .
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Heuristic Problem

�p;n;�
n1=2

= O(1):

Allowable mis�t grows as
p
n. Unless data image Knx of x grows

even faster with n, with high probability the set Dn of models that

�t the data adequately will eventually contain 0.

The MNE will then be zero, so the error of the MNE will be kxk.
We might as well not have collected the data.

Need kKnk to grow faster than n1=2.

If the components of Kn are orthonormal, kKnk ! 1.
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Consistency

An estimator T (�n) is consistent over C if for every y 2 C and

8 > 0,

lim
n!1

Pr
y
fjT (�n)� yj > g = 0:

I(�n) is a 1 � � con�dence interval (CI) for F [x] if 8y 2 C and

8n,
Pr
y
fI(�n) 3 F [y]g � 1� �:

I is consistent over C if, in addition, 8 > 0,

lim
n!1

Pr
y
fdiam(I(�n)) > g = 0:

G(�n) is a 1� � con�dence set (CS) for x if 8y 2 C and 8n,
Pr
y
fG(�n) 3 yg � 1� �:

G is consistent if, in addition, 8 > 0,

lim
n!1

Pr
y
fdiam(G(�n)) > g = 0:

.
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Consistency is a reasonable minimal requirement: estimate should

improve (con�dence set should shrink) as n ".

Main Results

� unless the data are highly redundant relative to C, in a precise

sense, no estimator or CS can be consistent

� in some additional cases, C \ Dn is an inconsistent CS and the

MNE over C \ Dn is an inconsistent estimator

� CI for F [x] derived by minimizing and maximizing F [y] over

C \ Dn can be inconsistent

� in some problems in which a nontrivial constraint set C for the

unknown function x is available, using a chi-squared measure of

mis�t to selected averages of the data yields consistent CS, CI, and

MNE

� when some of the conditions required for the previous result fail,

it can still happen that using a chi-squared measure of mis�t to

selected averages of the data yields consistent MNE and CI for

�nite collections of linear functionals of x.

Apology: lots of de�nitions, some results obvious.

10



Inconsistency in Problems with Direct Data

Seek to estimate an n-vector of parameters �n from observations �n

corrupted by a vector �n of iid standard Gaussian errors:

�n = �n + �n:

First n components of the in�nite-dimensional vectors �, �, and �.

Study the problem as n!1.

Suppose a priori that � 2 C � R1.

Prototype for some inverse problems, but we directly observe noisy

samples of what we want to know.
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Theorem 1 Suppose C contains an element  6= � such that

k � �k2 < 1, and let p � 1. No estimator of � is consistent

over C in `p norm, and no 1 � � CS for x is consistent in `p

norm.

For there to be a possibility of estimating � consistently in `p norm,

C must either contain only � (which we have assumed is false), or

be very strange.

E.g., if X is `2, there is no consistent estimator or con�dence set

for �.
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Estimating from Noisy Generalized Fourier Coe�cients

Suppose fkjg1j=1 are the elements of an orthonormal basis for X .

The jth datum is

�j = h kj jx i + �j;

where f�jg1j=1 are iid N(0; 1).

Want to recover x from these noisy, generalized Fourier coe�cients.

Since fkjg are orthonormal, by Parseval,

kyk =
vuuuut
1X
j=1

h kj j y i2:

Identify �j = h kj j x i: two-norms in data space and in model space

are identical

kyk = k�k2 = lim
n!1

k�k2;n:
Estimating x is equivalent to estimating Kx.

Theorem 1 thus yields

Corollary 2 There is neither a consistent CS for x nor a con-

sistent estimator of x. In particular, C \ Dn is inconsistent,

and MNE over C \ Dn is inconsistent in the L2 norm on X .
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Theorem 3 Suppose w 2 X . As n ! 1, the length of the

CI for hw jx i derived by minimizing and maximizing hw j y i
over y 2 C \ Dn has a non-zero probability of being equal to

the diameter of the one-dimensional projection of C onto the

subspace spanned by w. In particular, if

C = fy 2 X : kyk � Cg;
the probability that the length of the CI is 2Ckwk converges to

a positive value.

Asymptotically, using the data in this way may tell us nothing more

than we knew a priori.
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Linear Inverse Problems in Separable Hilbert Spaces

As before, but data mapping functionals fkjg are bounded and

linearly independent, not necessarily orthogonal.

Linear independence implies that each observation contains at least

some new information about x, so we do not get repeated observa-

tions of exactly the same properties of x.

Corollary 4 Suppose fkjg is a linearly independent bounded

subset of X . If C contains y 6= x s.t. kK(x � y)k < 1, no

estimator or CS is consistent over C.
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Theorem 5 If C contains 0 and x 6= 0, and fkjg is a linearly

independent, bounded subset of X s.t.

lim sup
n!1

1p
n
kKnxk22;n = 0; then

A. The CS C \ Dn is inconsistent.

B. If w 2 X , the CI

[ inf
y2C\Dn

hw j y i; sup
y2C\Dn

hw j y i ] (1)

for hw jx i is inconsistent.

C. The MNE of x over Dn is inconsistent in the norm of X .

If fkjg is a generalized Fourier basis and the constraint set C is a

norm ball with positive radius in the model space X , the conditions

are met: the norm in condition (5) must be �nite; after dividing it

by
p
n it must converge to zero.

Condition (5) limits the redundancy in the measurements. Two

stronger conditions that imply (5) are

(i) lim supn!1 n�1=2 kKnzk22;n = 0 for all z 2 C, and

(ii) lim supn!1 n�1=2 kKnk2 = 0, where kKnk is the operator norm
of the data mapping at stage n.
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Consistency of the CS C \ Dn depends on the prior information.

Can make a much more general statement about the behavior of

C \Dn when C has non-empty interior in the topology of the model

space X .

Theorem 6 Suppose C has non-empty interior in the topology

of X . Then the CS C \ Dn is inconsistent whenever x lies in

the interior of C.

This does not imply that MNE is necessarily inconsistent.

Similarly, projection of x onto �nite-dimensional subspaces (�nite

sets of linear functionals of x) still might be estimated consistently.

17



Averaging the data

� diam(Dn) does not shrink because each new datum has a new

error: must increase allowable mis�t to maintain 1� � con�dence.

� Had the noise variance �2, the radius of the `p mis�t ball would

be multiplied by �.

� Can simulate a decreasing noise level by averaging large groups

of data as n ".

� In many problems, averaging entails irrevocable loss of informa-

tion about x.

� If many data are essentially redundant given that x 2 C, can
average without losing information.

Similar approaches long used in probability density estimation and

spectrum estimation.
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In kernel density estimates, to attain consistency, the width of the

kernel must decrease as n increases, but su�ciently slowly that an

increasing number of points contribute signi�cantly to the estimate

at any point where the density does not vanish.

Raw periodogram estimate of spectral density is inconsistent, but if

the periodogram is averaged in bins in such a way that the number

of points in each bin goes to in�nity, but the width of each bin

shrinks to zero, the resulting estimate is consistent.

Tradeo� between bias and variance: making the kernel or bins wider

increases the number of data contributing to the estimate at each

point, which decreases the variance of the estimate, but a wider ker-

nel or bin involves more of the function, and averaging neighboring

values together biases the estimate.

Both the bias and the variance must go to zero to get consistency,

so the bins must get narrower and narrower, but must still contain

more and more observations.
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Similar ideas show that basing estimates or CS on suitable data

averages can yield consistency. Need to average larger and larger

groups of observations, but each group must measure increasingly

similar properties of the model or bias won't go away.

In spectrum estimation and probability density estimation, there is

a natural order to the data: sensible to average neighbors.

In more general problems, replace idea of neighboring points by a

more abstract notion of continguity: how much the functionals can

di�er when applied to distinct elements of C.

If they cannot di�er much, averaging them introduces only a small

bias.

Must ensure that can choose subsets of the data to average so as

to lose no information essential to identifying which element of the

constraint set C the true model x is.

Requires the data to be highly redundant relative to C: essentially
every property that di�ers among elements of C must be measured

in�nitely many times.

This is not met in the generalized Fourier reconstruction prob-

lem. Any averaging at all prevents us from being able to identify
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x uniquely. Can get consistent estimates in those cases in which

averaging does not cost us too much information about x.
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Example to hold in mind: estimating a bandlimited function x from

its convolution with an analytic kernel, sampled at a set of points

that grow increasingly dense as n!1, with noise added.

If we knew the convolution on an open set, could deconvolve and

reconstruct x everywhere. If two bandlimited functions have the

same convolution at any dense set of points, they are identical|

the measurements separate the set of bandlimited functions. Don't

need observations to grow increasingly dense everywhere, just on

some open set. Isolated observations in some places are not essential

to reconstructing x.

As in spectrum estimation, averaging neighboring observations is

attractive, because they sample approximately the same part of x.

Need bins to shrink so that the bias vanishes, but shrink su�ciently

slowly that the number of observations in each bin grows, so the

variance vanishes too.
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Asymptotic modulus of continuity of the problem (K; C):
!C(�) = sup

8<
:ky � zk : y; z 2 C ; lim sup

n
jKn(y � z)jn � �

9=
; :

Measures how well fkjgnj=1 constrain objects in C as more and more

of them are observed.

fkjgnj=1 has the asymptotic separation property over C if !C(�)!
0 as � ! 0.

C-distance between two linear functionals ki and kj:

jki � kjjC � sup
y;z2C

jh ki j y � z i � h kj j y � z ij:

Replaces our intuitive notion of the neighborhood of a point in more

abstract problems.

A point kj 2 fkjg is densely covered if every C-neighborhood of kj

contains at least one other member of fkjg; i.e., for every  > 0,

#fi 6= j : jkj � kijC < g � 1:

Let fkjgd be the set of densely covered elements of fkjg.

If some element of fkjg that is not densely covered is essential to

recovering x, cannot take smaller and smaller neighborhoods and

still have more and more data in each neighborhood as n grows, so

can't drive the bias to zero.
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fkjg has the �nite coverage property if for all � > 0, there is an

n0 such that for all n � n0 and for all k 2 fkjgd

inf
1�j�n

jkj � kjC � �:

For the deconvolution problem, this is equivalent to requiring that

for any � > 0, there is some �nite stage n by which time we have

measurements within a distance � of every measurement we will

ever get. Satis�ed, e.g., if data taken on a dyadic grid in a bounded

interval.

Finite coverage is regular if there exists � > 0 such that for all

� > 0, whenever we choose an n0 as above,

lim sup
n�n0

max1�j�n0 #f1 � i � n : jkj � kijC � �g
min1�j�n0 #f1 � i � n : jkj � kijC � �g � �:

Intuitively, rates at which we visit the C-neighborhood of each data

functional kj are comparable.

For the deconvolution problem, says that the order in which we

get the data allows us to have samples that grow closer together

at about the same pace, they don't \pile up" in some places and

remain sparse in others.

(K; C) has the asymptotic intersection property if for all y 2 C,
lim inf PryfC \ Dn 6= ;g = 1. Ensures that MNE is almost-surely

de�ned when n is large.
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Theorem 7 If there is a non-empty A � fkjgd s.t. A has

the asymptotic separation and regular �nite coverage properties

over C, then there is a way to average subsets of the obser-

vations so that using the chi-squared measure of mis�t to the

data averages yields consistent CS. Furthermore, if (K; C) has
the asymptotic intersection property, MNE over those CS will

be consistent.

Spirit of the theorem is that if the data mapping asymptotically

distinguishes among members of C, and enough data measure es-

sentially the same property of x, can average ever groups of ob-

servations (driving the noise level down faster than the number of

degrees of freedom goes up) without losing information.

When the asymptotic intersection property does not hold, the de�-

nition of MNE and its performance depend explicitly on more subtle

properties of C.
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Useful to consider what happens when these conditions don't hold.

Let S be a closed subspace of X , and let S? be its orthogonal

complement.

Let PS be the orthogonal projection operator onto S , let and PS? =

I � PS be the projection operator onto S?.

If F and G are subsets of X , let F �G denote the set fy� z : y 2
F ; z 2 Gg.

Suppose An = fajgnj=1 is the set containing the �rst n elements of

the sequence (aj)
1
j=1 of members of X .

If F and G are any two subsets of X , F and G are asymptotically

orthogonal with respect to A, (written F ?A G), if for every

y 2 F and z 2 G,
lim sup

n
n�1

�������
nX

j=1
h aj j y ih aj j z i

������� = 0:

When A = fkjg, write F ?K G.
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When the data mappings don't asymptotically separate points of

C, the averaging still yields consistent estimates and CS for the

projections of x onto appropriate subspaces of X :

Corollary 8 If there is a non-empty A � fkjgd such that A
has the regular �nite coverage property over C, then averaging

subsets of the observations as in Theorem 7 and using the chi-

squared measure of mis�t to those averages yields consistent

CS for PSx for any closed subspace S of X such that A has the

asymptotic separation property over PSC, and (PSC �PSC) ?A

(PS?C � PS?C).

Moreover, if the asymptotic intersection property holds for

(K; C), then the projection of the MNE, PSx̂, is consistent for

PSx.

If the e�ects of elements of a subspace S on the data are asymp-

totically orthogonal to the e�ects of elements of S? on the data,

averaging allows us to recover PSx consistently, even when we can-

not recover the entire object.
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If the asymptotic orthogonality does not hold, there are unresolvable

tradeo�s with parts of the model we cannot estimate accurately.

Simple example: suppose C = X and that kj = k1, j = 1; 2; � � �.
Impossible to determine x by measuring only one of its components,

no matter how often, but it is clearly possible to estimate h k1 j x i,
the component of x in the subspace S spanned by k1, arbitrarily

well.
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Application to Geomagnetism

Idealized problem of estimating the scalar potential 	 of Earth's

main magnetic �eld B(r) on the sphere r = a (idealization of the

core-mantle boundary, CMB) from satellite observations of B on

the surface of the sphere r = c, c > a.

Magnetic �eld outside CMB from currents in the core is the gradient

of a scalar �eld 	:

B = �r	;

where 	 has the spherical harmonic expansion

	(r) = a
1X
l=1

(a=r)l+1
lX

m=�l
xlm(a)Ylm(r̂):

r is the position vector with origin at Earth's center, r = jrj is the
Euclidean length of r, r̂ = r=jrj, and Ylm are spherical harmonics.
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Prior information: rest mass of the energy of B is less than Earth's

mass.

C = f� = a
1X
l=1

(a=r)l+1
lX

m=�l
ylmYlm(r̂) :

1X
l=1

lX
m=�l

q(l)jylmj2 � 1g;
with

ql = (2l + 1)(l + 1)�1=(2� 1033nT2);

when the units of xlm are nanoTesla (nT).

X is the Hilbert space of potentials whose sequences of spherical

harmonic coe�cients (xlm) are square-summable w.r.t. (ql).

Pretend density of satellite samples asymptotically uniform on r =

c.

Take n = 3i; the n data at a given stage are the three components

of B(r) at i = n=3 points on r = c.

Let Kn be the mapping from the space of potentials of �nite-energy

�elds to the three components of B at n=3 approximately equally

spaced points on r = c.
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B(rj), rj = c, is related to the spherical harmonic expansion of the

potential with coe�cients (ylm) on r = a via

By(rj) =
1X
l=1

(a=c)l+2
lX

m=�l
ylmr[r�l�1Ylm(r̂j)]r=1:

� consists of

� random measurement errors from instrument noise and uncer-

tainties in satellite orientation

� magnetic �elds from all sources exterior to the core

Pretend these combine to yield i.i.d. N(0; �2) errors, � known.

Largest error in this approximation is the spatial correlation of the

crustal �eld as observed at satellite altitudes.
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� C is a norm-ball in X , so it has nonempty interior; cannot get

consistent CS for 	 using `p mis�t balls.

� The MNE of 	 over Dn is also inconsistent.

� fkjg does not asymptotically separate points of C, so Theorem

doesn't say we can recover x using averaged data.

Data averaging does give consistent con�dence sets for the projec-

tion of 	 onto the span of any �nite number of spherical harmonics:

S = spanfYlmg0�l�lmax;�l�m�l.
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Asymptotic Separation of C by fkjg

Need to show !PSC(�)! 0 as � ! 0, where

!PSC(�) = supfky � zk : y; z 2 PSC; lim sup
n

jKn(y � z)jn � �g:
C is symmetric, so fy � z : y; z 2 Cg = 2C, and

!PSC(�) � supfkyk : y 2 2PSC and lim sup
n

jKnyjn � �g:

Asymptotically equivalent to a linear program.

1 � (1)lmax

j=1 ; 0 � (0)lmax

j=1 ;

q0 � (q0l)
lmax

l=1 ; w � (wl)
lmax

l=1 ;

where wl =
1
3(a=c)

2(l+2)(l + 1).

!2
PSC

(�) = supf1 � p : p � 0 and w � p � �2 and q0 � p � 4g:
As � ! 0, constraint 0 � pl � 3�2(a=c)�2(l+2)(l+1)�1 is eventually

stronger in every component than the constraint q0 � p � 4.
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Only one constraint, so by fundamental theorem of LP, optimal

solution has only one nonzero element, plmax
, and

!PSC(�)! �(a=c)�lmax�2(lmax + 1)�1=2 ! 0 as � ! 0:

Thus fkjg asymptotically separates elements of PSC.

Regular Finite Coverage

Follows from sampling scheme.

Asymptotic orthogonality of PSC and PS?C relative to K

Follows from orthonormality of spherical harmonics and asymptotic

eigenstructure of Kn.

fkjg is densely covered

The potential is an harmonic function; away from r = a, it is

analytic, and therefore on r = c, it is continuously di�erentiable.

The derivative is uniformly continuous on the compact set r = c,

and because the data sampling points on r = c grow uniformly

closer as n ! 1, for any kj and any  > 0, there is at least one

functional ki 6= kj whose C-distance from kj is less than .
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Conclusions

�When the measurements in an inverse problem are not su�ciently

redundant, there is neither a consistent CS for the model nor a

consistent estimator.

� In a slightly larger class of problems, CS and MNE estimates

based on chi-squared mis�t to the data are statistically inconsis-

tent. For example, in linear inverse problems in Hilbert spaces with

bounded data functionals, the CS are inconsistent whenever the

prior constraint set has nonempty interior.

� Consistent CS and MNE based on the `p measure of mis�t to

suitable averages of the data are possible when the observations are

su�ciently redundant, given that x 2 C.

�Data reduction by �tting to averages of the data can yield substan-
tial computational economies, since the dimension of the problems

one needs to solve is much smaller than it would be for the original

data set: fractional powers are typical.
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Open Questions

� When is the MNE or CS based on `p mis�t consistent over a

nontrivial set C without data averaging?

� In situations in which consistency is possible, how should the data

be averaged to yield the best rate of convergence?

�When is the best rate of convergence obtainable by data averaging

the optimal rate? (Works for nonparametric regression of Lipschitz

functions.)

� For what n does data averaging improve upon �tting to the orig-

inal data?

� How to characterize the conditions in ways that are easier to

verify?

These questions appear to require very speci�c information about

the prior constraint C and the data mapping K
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