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Abstract

Simultaneous risk-limiting audits of a collection of con-
tests have a known minimum chance of leading to a full
hand count if the outcome of any of those contests is
wrong. Risk-limiting audits are generally performed in
stages. Each stage involves drawing a sample of bal-
lots, comparing a hand count of the votes on those bal-
lots with the original count, and assessing the evidence
that the original outcomes agree with the outcomes that
a full hand count would show. If the evidence is suffi-
ciently strong, the audit can stop; if not, more ballots are
counted by hand and the new evidence is assessed. This
paper derives simple rules to determine how many ballots
must be audited to allow a simultaneous risk-limiting au-
dit to stop at the first stage if the error rate in the sample
is sufficiently low. The rules are of the form “audit at
least ρ/µ ballots selected at random.” The value of ρ de-
pends on the simultaneous risk limit and the amount of
error to be tolerated in the first stage without expanding
the audit. It can be calculated once and for all without
knowing anything about the contests. The number µ is
the “diluted margin”: the smallest margin of victory in
votes among the contests, divided by the total number
of ballots cast across all the contests. The initial sam-
ple size does not depend on any details of the contests,
just the diluted margin. This is far simpler than previous
methods.

For instance, suppose we are auditing a collection of
contests at simultaneous risk limit 10%. In all, N bal-
lots were cast in those contests. The smallest margin is
V votes: The diluted margin is µ = V/N . We want
the audit to stop at the first stage provided the fraction of
ballots in the sample that overstated the margin of some
winner over some loser by one vote is no more than µ/2
and no ballot overstates any margin by two votes. Then
an initial sample of 15.2/µ ballots suffices. If the sample
shows any two-vote overstatements or more than 7 bal-
lots with one-vote overstatements, more sampling might

be required, depending on which margins have errors.
If so, simple rules that involving only addition, subtrac-
tion, multiplication, and division can be used to deter-
mine when to stop.

1 Introduction

This paper presents some extremely simple methods for
conducting the first stage of risk-limiting audits of a col-
lection of contests. The methods allow most contests in
an election to be confirmed with a single audit sample
of fewer than 1,000 ballots, at a low risk that any of the
apparent outcomes differs from the outcome a full hand
count would show—unless the audit finds many errors
that caused an apparent margin to appear larger than a
hand-count margin.

The outcome of a contest is the set of winners, not the
exact vote totals. The outcome of a collection of contests
is the set of winners of all the contests. The machine-
count outcome or apparent outcome is the outcome that
will become officially final unless an audit or other ac-
tion intervenes. The hand-count outcome or true out-
come is the outcome that a full manual tally of the audit
trail would show. Generally, as a matter of legal defi-
nition, the hand-count outcome is correct—even though
hand counting is not perfect, and even though the audit
trail might not be complete and accurate, so the outcome
a hand count shows might not reflect the will of the vot-
ers.

A risk-limiting audit has a guaranteed minimum
chance of progressing to a full hand count if the appar-
ent outcome is incorrect [7, 8, 10, 12, 9, 11, 6], thereby
correcting the apparent outcome. The risk is the max-
imum chance that the audit fails to correct an appar-
ent outcome that is incorrect, no matter what caused the
outcome to be incorrect. Risk-limiting audits generally
count votes by hand until there is strong evidence that
the reported outcome is correct, or until all the votes have
been counted by hand and the correct outcome is known.



Risk-limiting audits have been endorsed by the Ameri-
can Statistical Association [14] and a number of election
integrity groups [4].

A simultaneous risk-limiting audit of a collection of
contests has a guaranteed minimum chance of progress-
ing to a full hand count of all of the contests that have
incorrect apparent outcomes. [9, 11]. The simultaneous
risk of a simultaneous risk-limiting audit is the maximum
chance that the audit will fail to correct one or more of
the apparent outcomes that are incorrect, no matter what
caused them to be incorrect.

A risk-measuring audit is one that reports the strength
of the evidence that the outcome is correct, but does not
necessarily continue to count votes until that evidence is
strong or all votes have been counted by hand. In sta-
tistical language, the measured risk is the P -value of the
hypothesis that the outcome is incorrect, given the data
collected by the audit [12].

Stark and his collaborators have developed several
methods for risk-limiting and risk-measuring audits and
applied those methods to audit six election contests in
California [3, 5, 7, 8, 9, 10, 11, 12]. This paper devel-
ops a special case of methods in [12, 9, 11] to give ex-
tremely simple rules to calculate how large a sample to
draw initially so that the audit can stop without additional
counting provided the number of ballots in the sample
with errors that overstate a margin by one vote is not too
large, and no ballot in the sample overstates any margin
by two votes. If there are too many errors in the sam-
ple, to control the simultaneous risk will require expand-
ing the sample, possibly to a full hand count; formulae
in [9, 11] (reproduced below) determine when sampling
can stop.

Among the benefits of the method presented here are:

1. The entire collection of contests is audited at once,
rather than having to draw separate samples for each
contest under audit. This decreases logistical com-
plexity. Moreover, the simultaneous risk is limited
for the set of contests.

2. If a ballot is selected for audit, every contest on
that ballot is audited. This decreases the number
of pieces of paper that must be handled.

3. The rule for selecting the initial sample size is ex-
tremely simple: divide a constant by the “diluted
margin.” Computing the constant involves taking
logarithms, but it only needs to be computed once.
It does not depend on the particulars of the contests,
their margins, or the audit results.

4. The conditions under which the audit progresses be-
yond the first stage are simple and make sense intu-
itively: too many ballots with errors that overstate a

margin by one vote, or any ballots that overstate a
margin by two votes.

5. If the audit does have to progress beyond the first
stage, the calculations to determine when to stop are
simple.

6. The audit really limits the simultaneous risk: The
chance of a full hand count if any of the outcomes
is wrong is guaranteed to be at least as high as
claimed.

The methods presented here trade simplicity for effi-
ciency: There are methods that can limit risk by count-
ing fewer ballots when the apparent outcomes are cor-
rect (e.g., [9, 11, 2]), but the calculations are more com-
plicated. The methods presented here are derived from
more efficient methods by applying a series of sim-
plifying approximations that guarantee that there is a
known large chance of correcting any incorrect apparent
outcomes—the approximations are conservative.

Despite the inefficiency, very few ballots need to be
audited to limit the simultaneous risk when the apparent
outcome is in fact correct. (When one or more appar-
ent outcomes are incorrect, the goal is to count all the
ballots in those contests by hand to correct the apparent
outcomes.) That is because the audit sample is a sim-
ple random sample of ballots, rather than a sample of
precincts, for instance. For a heuristic explanation of the
statistical advantage of sampling individual ballots rather
than clusters of ballots, see [13].

The approach taken here involves comparing the ma-
chine interpretation of an individual ballot (cast vote
record, CVR) with a human interpretation of the same
ballot, for a random sample of individual ballots. Current
federally certified vote tabulation systems do not make it
easy to see how the machine interpreted any particular
cast ballot, but this sort of “single-ballot auditing” has
been performed in a small contest [11]. There are bal-
lot scanning and vote tabulation systems offered by the
Humboldt Transparency Project, Clear Ballot Group, and
TrueBallot that make it easy to associate CVRs with in-
dividual physical ballots. The next generation of official
vote tabulation systems could be designed to make such
single-ballot auditing trivial.

2 Terminology and Conventions

When the CVR and human reading of a ballot differ, by
definition, the human reading is correct, even if the dif-
ference results from voter error. For instance, a voter
might use an inappropriate pen, make an inadequate
mark, mark outside the target area, or mark the ballot
for a listed candidate and also vote for that candidate as
a write-in.
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An apparent winner of a contest is a candidate who
won according to the apparent outcome. The other can-
didates are apparent losers. (To keep the language sim-
ple, a position on a measure, such as “yes” or “no,” will
be called a candidate and referred to as if it were a per-
son. The math is the same, but the margin needs to be
computed differently for measures that require a super-
majority. See [7]. We do not consider instant-runoff vot-
ing (IRV) or other preference voting schemes.) A true
winner is a candidate who would be declared a winner
on the basis of a full hand count of the audit trail, if
there were a full hand count. The other candidates are
true losers. Within each contest, the machine count of
the votes for each apparent winner is greater than the
machine count for each apparent loser, by the appar-
ent margin between those two candidates. Errors do not
necessarily affect any margin. For instance, if there are
two light marks in a vote-for-one contest, the CVR might
show that as an undervote while a human might see it as
an overvote. The interpretations differ, but the difference
does not change any of the margins, so it cannot cause
the apparent outcome to differ from the true outcome.

An error that increases an apparent margin is an over-
statement. For instance, if a mark that the machine
counted as an undervote is interpreted by a human as
a vote for an apparent loser, that is an overstatement of
one vote. Similarly, if the machine interprets a hesita-
tion mark as an overvote and a human reader interprets
it as a vote for an apparent loser, that is a one-vote over-
statement. An error that decreases an apparent margin is
an understatement (or a negative overstatement). If the
CVR shows an overvote where a human would see a vote
for an apparent winner, that is a one-vote understatement.

A single ballot can understate or overstate one or more
margins by up to two votes in each contest. For instance,
if the CVR shows a vote for an apparent winner while a
human would see a vote for an apparent loser, that is a
two-vote overstatement. Such errors are expected to be
quite rare. Generally, a two-vote overstatement indicates
a programming error (such as a ballot definition error),
fraud, or other serious problem. If the audit finds a two-
vote overstatement, additional hand counting might well
be justified even if Statistics does not require it.

The apparent outcome of a given contest is correct if,
for all contests, a hand count would show that every ap-
parent winner of that contest got more votes than every
apparent loser of that contest. If, for some apparent win-
ner and some apparent loser, the apparent margin is less
than the overstatement errors minus the understatement
errors, summed over all the ballots in the contest, the ap-
parent outcome of that contest is wrong. Conversely, if,
for every winner and loser, the overstatement errors mi-
nus the understatement errors amount to less than 100%
of the margin between that pair of candidates, all the ap-

parent outcomes are correct.
The MACRO (maximum across-race relative over-

statement) [9, 11] combines the overstatement errors
within contests and across different contests into a sin-
gle summary. To compute the MACRO for a single bal-
lot, first divide each overstatement error on the ballot by
the reported margin (in votes) that it affects. That gives
a number no bigger than 100% for each margin—each
(winner, loser) pair in each contest on the ballot. The
MACRO is the largest of those numbers. Only the largest
number counts, even if more than one contest or more
than one margin in a contest has an error. If the sum
of the MACRO over all the ballots in all the contests is
less than 100%, the apparent outcomes of all the contests
must be correct.

The methods presented here use a simplified version
of MACRO: Instead of dividing each overstatement er-
ror on the ballot by the margin it affects, it divides each
overstatement error by the smallest of the margins in any
of the contests. That amounts to pretending that every
margin is equal to the smallest margin, which errs on the
side of safety. It makes the true simultaneous risk smaller
than the nominal simultaneous risk limit.

To make the MACRO concrete, suppose that there are
five contests under audit. Not all ballots contain all five
contests—some of the contests are jurisdiction-wide and
some are smaller. We consider two hypothetical ballots.
The first ballot, summarized in table 1, includes three of
those contests. The CVR for that ballot shows an under-
vote for the first contest, a vote for one of the apparent
winners of the second contest, and a vote for one of the
apparent losers of the third contest. A human interprets
the marks as a vote for one of the apparent losers of the
first contest, a vote for one of the apparent losers of the
second contest, and a vote for one of the apparent win-
ners of the third contest. Then there was a one-vote over-
statement in the first contest, a two-vote overstatement in
the second contest, and a two-vote understatement in the
third contest. There are three errors, but the maximum
overstatement is two votes.

The second ballot, described in table 2, includes four
of those contests. The CVR for that ballot shows an un-
dervote for the first contest, a vote for one of the apparent
winners of the second contest, a vote for one of the ap-
parent losers of the third contest, and a vote for one of
the apparent winners of the fourth contest. A human in-
terprets the marks as a vote for one of the apparent losers
of the first contest, an overvote in the second contest, a
vote for the same apparent loser of the third contest as
the CVR, and a vote for the same apparent winner of the
fourth contest as the CVR. Then there was a one-vote
overstatement in the first contest, a one-vote overstate-
ment in the second contest, and a zero-vote overstate-
ment in the third and fourth contests. There are two er-
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contest
1 2 3 4 5

CVR undervote winner loser not on ballot not on ballot
Hand loser loser winner not on ballot not on ballot
overstatement 1 2 -2 0 0

Table 1: Hypothetical CVR and hand interpretation of a ballot that contains three of five contests under audit.

“Winner” and “loser” denote an apparent winner and an apparent loser, respectively. The maximum overstatement is
two votes.

rors of a single vote: the maximum overstatement is one
vote.

The diluted margin µ is the smallest margin in votes
among the contests under audit, divided by the total num-
ber of ballots cast across all the contests under audit. So,
for example, if we are auditing five contests in a jurisdic-
tion where 100,000 ballots were cast in all, and the small-
est margin among those five contests is 2,000 votes, the
diluted margin is µ = (2, 000/100, 000)×100% = 2%.1

The diluted margin plays an important role in the new
procedure: The sample size for the first stage is inversely
proportional to the diluted margin.

One version of the super-simple simultaneous audit
works as follows. It requires picking three numbers:
the simultaneous risk limit α, the “error inflation factor”
γ ≥ 100%, and the “error tolerance” λ < 100%, all of
which are described below. The simultaneous risk limit
α might be set in legislation. The values of γ and λ are
operational choices that affect efficiency but not risk.

1. Pick the simultaneous risk limit α, e.g., 10%. This
is the largest chance that an incorrect outcome will
not be corrected by the audit.

2. Pick an error inflation factor γ ≥ 100%. Any value
of γ greater than or equal to 100% works, but γ con-
trols a tradeoff between initial sample size and the
amount of additional counting required when the
sample finds too many overstatements, especially
two-vote overstatements. If γ = 100%, a two-
vote overstatement may trigger a full hand count
(depending on which margin is overstated by two
votes). If γ > 100%, a two-vote overstatement in
the sample generally will require more hand count-
ing, but not necessarily a full hand count. The larger
γ is, the larger the initial sample needs to be, but the
less additional counting will be required if the sam-
ple finds a two-vote overstatement or a large num-
ber of one-vote maximum overstatements. For con-
creteness, take γ = 110%.

3. Pick a tolerance λ < 100% for one-vote maximum
overstatements in the initial sample as a percentage
of the diluted margin µ. If the percentage of ballots

in the sample with of one-vote maximum overstate-
ments is no more than λµ and no ballot in the sam-
ple has a two-vote overstatement, the audit can stop.
For instance, if we take λ = 50% and the diluted
margin is 2%, the audit will be able to stop at the
first stage if, in the initial sample, the percentage of
ballots that have one-vote maximum overstatements
is not more than λµ = 50% × 2% = 1%, and no
ballots in the sample have two-vote overstatements.
The larger λ is, the larger the initial sample size will
have to be to give high confidence that even though
the error rate in the sample is a large fraction of the
diluted margin, the error rate for the contests as a
whole still is less than the diluted margin.

4. Calculate the sample-size multiplier ρ, which de-
pends on α, γ, and λ through the formula

ρ =
− logα

1
2γ + λ log(1− 1

2γ )
.

For α = 10%, γ = 110% and λ = 50%, the value
of ρ is 15.2. However they are set, the values of α, γ
and λ, determine ρ once and for all, so even though
the formula for ρ looks complicated and involves
logarithms, it only needs to be computed once, be-
fore the audit starts. It does not depend on the mar-
gins, the number or sizes of the individual contests,
or on the audit data.

5. Find the diluted margin µ.

6. Draw at least ρ/µ ballots at random and audit them.
If the percentage of ballots in the sample with one-
vote maximum overstatements is not more than λµ
and no ballot in the sample has a two-vote overstate-
ment, the audit can stop: All contests are confirmed
at simultaneous risk no greater than α. In the exam-
ple, the diluted margin is 2% and ρ = 15.2, so we
would audit a random sample of 15.2/2% = 760
ballots. If fewer than 8 of those (λµ = 1%; 1%
of 760 is 7.6) have a maximum one-vote overstate-
ment and none has a two-vote overstatement, we
can stop. Otherwise, the sample might need to be
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contest
1 2 3 4 5

CVR undervote winner loser winner not on ballot
Hand loser overvote loser winner not on ballot
overstatement 1 1 0 0 0

Table 2: Hypothetical CVR and hand interpretation of a ballot that contains four of five contests under audit.

“Winner” and “loser” denote an apparent winner and an apparent loser, respectively. In contest 3, the CVR and hand
count found votes for one and the same apparent loser, and in contest 4, the CVR and hand count found votes for one
and the same apparent winner. There are two overstatement errors, but the maximum overstatement is one vote.

expanded, potentially to a full hand count. The
methods in [9, 11] determine how much additional
auditing is required; simple formulae are given be-
low in equations 9 and 10.

3 The Math

We combine the Kaplan-Markov method and the
MACRO test statistic of [9, 11, 12] with worst-case up-
per bounds on the effect that error in the interpretation
of any individual ballot can have on any of the reported
margins.

We generally follow the notation of [12, 9, 11]. There
are C contests under audit; N ballots were cast in all.
There might not be any contest that appears on all N
ballots. Contest c appears on Nc of the N cast ballots.
The numbersN and {Nc}Cc=1 are known. LetWc denote
the set of reported winners of contest c and let Lc denote
the set of reported losers of contest c. Let vpi ∈ {0, 1}
denote the reported votes for candidate i on ballot p, and
let api ∈ {0, 1} denote the actual votes for candidate i
on ballot p, that is, the vote as a human auditor would
interpret the ballot. If contest c does not appear on ballot
p then vpi = api = 0.

The reported margin of reported winner w ∈ Wc over
reported loser ` ∈ Lc in contest c is

Vw` ≡
N∑
p=1

(vpw − vp`) > 0. (1)

Let V be the smallest reported margin among all C con-
tests:

V ≡ min
c

min
w∈Wc,`∈Lc

Vw`. (2)

The actual margin of reported winner w ∈ Wc over re-
ported loser ` ∈ Lc in contest c is

Aw` ≡
N∑
p=1

(apw − ap`). (3)

The reported winners of allC contests are the actual win-
ners of those contests if

min
c

min
w∈Wc,`∈Lc

Aw` > 0. (4)

Otherwise, at least one reported electoral outcome is
wrong.

Risk-limiting audits generally do not test directly
whether inequality 4 holds. Instead, they test a condi-
tion that is sufficient but not necessary for inequality 4
to hold. The reduction to a sufficient condition pro-
duces a computationally simple test that is still conserva-
tive; i.e., the simultaneous risk remains below its nominal
limit. One such reduction relies on the maximum across-
contest relative overstatement (MACRO [9, 11]). The
MACRO for ballot p is the largest percentage by which
difference between the CVR and hand interpretation of
that ballot resulted in overstating any margin in any of
the c contests:

ep ≡ max
c

max
w∈Wc`∈Lc

(vpw−apw−vp`+ap`)/Vw`. (5)

The outcomes of all the contests must be correct if E ≡∑N
p=1 ep < 1. Thus a risk-limiting audit can rely on

testing whether E ≥ 1.
Testing whether E ≥ 1 would always require a very

large sample if we knew nothing at all about ep without
auditing ballot p. Fortunately, there is an a priori upper
bound for ep. At worst, the CVR for ballot p shows a vote
for the “least-winning” apparent winner of the contest
with the smallest margin, but a hand interpretation shows
a vote for the runner-up in that contest:

ũp ≡ max
c

max
w∈Wc`∈Lc

(vpw − vp` + 1)/Vw`

≤ max
c

max
w∈Wc`∈Lc

2/Vw`

≤ 2/V. (6)

Knowing that ep ≤ ũp can make it possible to conclude
reliably that E < 1 by examining only a small fraction
of the ballots—depending on the values {ũp}Np=1 and on
the values of ep for the audited ballots.
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The Kaplan-Markov method [12, 9, 11]—applied to
sampling individual ballots—will not stop short of a full
hand count if the ratio of ep to its upper bound is equal to
1 for any ballot in the sample, no matter how many other
ballots show no error or understatement errors. The need
for a full hand count can sometimes be avoided by in-
creasing the upper bound so that the bound cannot be at-
tained, for instance, by inflating it by a small percentage.
The simultaneous risk remains strictly controlled.

To that end, we take the error bound for each ballot to
be

up ≡ γ2/V > ũp (7)

where the “inflator” γ > 1. That ensures that ep/up
cannot be larger than 1/γ < 1. The cost of inflating
the upper bound in this way is that a larger sample will
be needed than if {ũp} were used as the bounds and
the sample did not happen to include any ballots with
ep equal to ũp. On the other hand, inflating the error
bounds can help avoid a full count when that full count
would merely confirm that all the apparent outcomes are
correct. The larger the value of γ, the larger the initial
sample needs to be to allow the audit to stop if at most a
given number of ballots overstated one or more margins
by one vote, but the less the sample will need to be ex-
panded if ballots in the sample overstate any margin by
two votes–unless a full hand count is required.

With up defined by equation 7, the total error bound
across all N ballots is

U ≡ 2γN/V = 2γ/µ, (8)

where µ is the diluted margin V/N . The diluted margin
plays an important role in determining the sample size:
The initial sample size is 1/µ multiplied by a constant
that depends on the desired simultaneous risk limit, the
number of errors to be tolerated without expanding the
audit, and the inflator γ. Note that U > 2γ > 2.

Suppose that n of the N ballots are drawn with re-
placement with equal probability. Let er be the value of
the error ep as defined in equation 5 for the rth randomly
selected ballot. The Kaplan-Markov MACRO P -value
is [9, 11]

PKM =

n∏
r=1

1− 1/U

1− er
2γ/V

. (9)

An audit with simultaneous risk limit α can be conducted
by continuing to hand count the votes on ballots selected
at random until PKM ≤ α or until the votes on all the
ballots have been counted by hand; see [11].

The Kaplan-Markov P -value depends on which mar-
gins in which contests are affected by error. But PKM
can be bounded in a simple way that depends only on
the number of ballots in the sample that overstate one or
more margins by one vote but no margin by two votes,

and the number of ballots in the sample that overstate
one or more margins by two votes. This is the main con-
tribution of this paper.

Suppose that of the n ballots in the sample, the audit
finds that n1 ballots overstate at least one margin by one
vote but none by two votes, and that n2 ballots overstate
at least one margin by two votes. The remaining n −
n1−n2 ballots in the sample do not overstate any margin.
Then

PKM ≤ P (n, n1, n2;U, γ)

≡ [1− 1/U ]
n−n1−n2 ×

[
1− 1/U

1− 1/(2γ)

]n1

×

×
[

1− 1/U

1− 2/(2γ)

]n2

= [1− 1/U ]
n × [1− 1/(2γ)]

−n1 ×
× [1− 1/γ]

−n2 . (10)

4 Special cases

Table 3 shows some special cases of the P -value bound
P (n, n1, n2;U, γ) of equation 10 for margins of 2%, 1%,
and 0.5%; γ = 101% and γ = 110%; sample sizes be-
tween 500 and 2000 ballots; and 0–5 ballots showing er-
rors that overstated at least one margin by one vote or by
two votes.

The next two subsections develop rules of thumb for
computing initial sample sizes. The rules ensure that if
those samples have sufficiently few ballots that overstate
one or more margins by one vote and no ballots that over-
state any margin by two votes, all the contests can be cer-
tified at simultaneous risk limit α without counting any
more ballots. If there are too many ballots with errors in
the initial sample, the sample might need to be enlarged
to limit the simultaneous risk; the Kaplan-Markov P -
value of equation 9 or the upper bound P (n, n1, n2;U, γ)
of equation 10 can be used to determine when counting
can stop.

4.1 Sample finds no more than k ballots
that overstate any margin by 1 vote and
no ballot that overstates any margin by
2 votes

Suppose we would like to be able to stop the audit at the
first stage provided no more than k ballots in the sample
overstate any margin by one one vote and no ballot in
the sample overstates any margin by two votes. That is,
we would like to find the smallest sample size n so that
P (n, k, 0;U, γ) ≤ α. Note that

x

1 + x
≤ log(1 + x) ≤ x, x > −1. (11)
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diluted P (n, n1, n2;U, γ)
margin ballots w/ inflator γ = 101% inflator γ = 110%

µ draws errors 1-vote errors 2-vote errors 1-vote errors 2-vote errors
2% 500 0 0.7% 0.7% 1.0% 1.0%

1 1.4% 69.8% 1.9% 11.4%
2 2.7% 100.0% 3.5% 100.0%
3 5.4% 100.0% 6.4% 100.0%

750 0 0.1% 0.1% 0.1% 0.1%
1 0.1% 5.8% 0.2% 1.2%
2 0.2% 100.0% 0.4% 12.8%
3 0.4% 100.0% 0.7% 100.0%
4 0.9% 100.0% 1.2% 100.0%
5 1.7% 100.0% 2.2% 100.0

1% 750 0 2.4% 2.4% 3.3% 3.3%
1 4.8% 100.0% 6.0% 36.1%
2 9.5% 100.0% 11.0% 100.0%

1000 0 0.7% 0.7% 1.1% 1.1%
1 1.4% 70.6% 1.9% 11.6%
2 2.7% 100.0% 3.5% 100.0%
3 5.4% 100.0% 6.5% 100.0%

0.5% 1000 0 8.4% 8.4% 10.3% 10.3%
1250 0 4.5% 4.5% 5.8% 5.8%

1 8.9% 100.0% 10.7% 64.0%
1500 0 2.4% 2.4% 3.3% 3.3%

1 4.8% 100.0% 6.0% 36.2%
2 9.5% 100.0% 11.1% 100.0%

2000 0 0.7% 0.7% 1.1% 1.1%
1 1.4% 71.1% 1.9% 11.6%
2 2.8% 100.0% 3.5% 100.0%
3 5.5% 100.0% 6.5% 100.0%

Table 3: Upper bounds P (n, n1, n2;U, γ) on the Kaplan-Markov P -value for various margins and sample sizes for a
random sample of individual ballots.

Column 1: diluted margin µ. Column 2: sample size n. Column 3: number of ballots that show one or more errors
that overstated a margin. Column 4: Bound on the P -value if those errors overstated margins by at most one vote, for
error bound inflator γ = 101%. Column 5: Bound on the P -value if error overstated at least one margin by two votes
on each ballot with an error, for error bound inflator γ = 101%. Columns 6, 7: same as columns 4, 5, but for error
bound inflator γ = 110%.
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Since U > 2, it follows that −1/U > −1/2 > −1,
and 11 implies that

−1
U − 1

≤ log(1− 1/U) ≤ −1/U. (12)

Take the logarithm of both sides of equation 10:

logP = n log(1− 1/U)− n1 log(1− 1/(2γ))−
−n2 log(1− 1/γ) (13)

If P ≤ α then PKM ≤ α, so we seek the smallest sample
size n such that

n log(1− 1/U)− k log
(
1− 1

2γ

)
≤ α. (14)

I.e.,

logα+ k log

(
1− 1

2γ

)
≥ n log(1− 1/U). (15)

By applying 12, we can see that it suffices to take

logα+ k log

(
1− 1

2γ

)
> −n/U = − n

2γ/µ
. (16)

Thus we can stop the audit and confirm the outcomes of
all the contests at simultaneous risk limit α if a random
sample of size

n ≥ −2γ
(
logα+ k log

(
1− 1

2γ

))
· 1
µ

(17)

ballots contains at most k ballots that overstate one or
more margins by one vote and no ballots that overstate
any margin by two votes.

This initial sample size n is a constant that depends on
α, k, and γ, divided by the diluted margin µ: The ini-
tial sample size is inversely proportional to the diluted
margin. This sort of simplicity seems desirable, even at
the expense of a bit of extra counting. The extreme ef-
ficiency of single-ballot auditing keeps the burden man-
ageable, despite the slack in the inequalities.

For γ = 110%, k = 3 and α = 10%, inequality 17
says that if the sample size n is at least 9.06 divided by
the diluted margin µ = V/N , we can stop the audit if
n1 ≤ 3 and n2 = 0. If n1 > 3 or n2 > 0, we can
use the Kaplan-Markov P -value in equation 9 to decide
whether to count more votes by hand and to determine
when the audit can stop: We continue to sample until
PKM ≤ α. Calculating PKM requires nothing more
complicated than arithmetic.

4.2 Sample percentage of ballots that over-
state one or more margins by one vote
is no more than a fraction λ of the di-
luted margin µ and no sampled ballot
overstates any margin by two votes

Suppose we would like to be able to stop the audit at the
first stage provided the sample percentage of ballots that
overstate a margin by one vote is no more than than a
fraction λ of the diluted margin µ = V/N and no bal-
lot in the sample shows an overstatement of two votes.
Then the initial sample size n must be large enough that
P (n, bnµλc, 0;U, γ) ≤ α:

logα ≥ n log(1−1/U)−bnµλc log
(
1− 1

2γ

)
. (18)

Now nµλ ≥ bnµλc and log
(
1− 1

2γ

)
< 0, so

− nµλ log
(
1− 1

2γ

)
≥ −bnµλc log

(
1− 1

2γ

)
.

(19)
Hence, if n is large enough that

logα ≥ n log(1− 1/U)− nµλ log
(
1− 1

2γ

)
= n

[
log(1− 1/U)− µλ log

(
1− 1

2γ

)]
(20)

then inequality 18 must also hold. This leads us to the
condition

n ≥ logα

log(1− 1/U)− µλ log
(
1− 1

2γ

) . (21)

By 12, it is enough to take

n ≥ − logα

1
U−1 + µλ log

(
1− 1

2γ

) . (22)

The term U − 1 in the denominator can be replaced with
U to simplify the approximation even more conserva-
tively; substituting U = 2γ/µ then shows that

n ≥ 1

µ
· − logα

1
2γ + λ log

(
1− 1

2γ

) (23)

suffices. Let

ρ = ρ(α, γ, λ) ≡ − logα

1
2γ + λ log

(
1− 1

2γ

) . (24)
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The constant ρ is the “sample-size multiplier”: Given the
values of of α, γ and λ, we can calculate ρ once and for
all. We can take the initial sample size to be n = ρ/µ,
where µ is the diluted margin, and stop the audit pro-
vided no more than nλµ of the ballots in the sample
have one-vote maximum overstatements and none has
a two-vote overstatement. As before, the initial sam-
ple size n is inversely proportional to the diluted margin,
and the diluted margin is the only property of the collec-
tion of contests that enters the sample-size calculation.
This makes calculating an adequate initial sample size
extremely simple.

As a special case of inequality 23, consider a simulta-
neous risk limit α = 10%, an inflator γ = 110%, and
λ = 10%; i.e., we want to be able to stop the audit at
stage 1 if no more than a fraction λµ of the ballots in the
sample have errors that overstate the margin of one or
more contests by one vote, but we are willing to expand
the sample if more ballots than that overstate a margin
by one vote or if any ballot overstates a margin by two
votes. We calculate ρ(10%, 110%, 10%) = 5.85, so a
sample of size 5.85/µ suffices to confirm all the contest
outcomes at simultaneous risk limit 10%, provided the
percentage of ballots with 1-vote overstatements is not
more than 10% of the diluted margin and there are no
ballots with 2-vote overstatements of any margin. In par-
ticular, if the diluted margin is µ = 2%, a sample of 293
ballots suffices. (Note that λµ = 0.2% in that case, and
that b0.2% × 293c = 0, so if the sample had any over-
statements at all, the audit might have to progress to the
second stage.)

If λ = 50% but the other numbers in the previous
example stay the same, we find ρ(10%, 110%, 50%) =
15.2, so we would need an initial sample of 15.2/µ =
761 ballots, but we could stop the audit at the first stage
provided no more than 7 of the ballots in the sample over-
state one or more margins by at most one vote, and none
overstates any margin by two votes. If any ballot in the
sample overstates one margin by two votes, or more than
7 ballots in the sample overstate a margin by one vote, it
might be necessary to expand the audit to limit the simul-
taneous risk to α = 10%: The audit should continue until
either the actual Kaplan-Markov P -value in equation 9
(or its upper-bound P (n, n1, n2;U, γ) of inequality 10)
is less than α = 10%, or until all ballots have been tal-
lied by hand and the correct outcomes of the contests are
known.

Table 4 gives exemplar initial sample sizes for simul-
taneous risk limits α of 10%, 5% and 1% and diluted
margins µ of 5%, 2%, 1%, and 0.5% and error fraction
tolerances λ of 50% and 20%. The multiplier ρ grows
as the risk limit α shrinks, because it takes a larger sam-
ple to have higher “confidence” that E < 1. Similarly, ρ
grows as λ grows: The larger λ is, the more error we are

tolerating in the sample; to ensure that E < 1, we need
to know that E is not much larger than the sample error
rate. But to estimate E more precisely requires a larger
sample.

Setting λ large demands quite a bit of the sample: We
are asking to be able to conclude that the total error is
less than the diluted margin when the error in the sample
is a substantial fraction of the diluted margin. That can
lead to extremely large initial samples; combined with
the slack in the inequalities, ρ can be infinite. This is
readily avoided by choosing a more reasonable value of
λ, such as 50%.

It is hard to give universal guidelines for selecting
λ and γ. There are tradeoffs that will vary with the
machine-counting technology used to count votes, the
length of the canvass or the time allowed to complete
the audit, the amount of public notice required, the dif-
ficulty of retrieving individual ballots, the cost of labor,
and so on. If λµ is less than the “benign” error rate of
the machine-counting technology (in my experience, on
the order of a tenth of a percent for central-count optical
scan, primarily because of voter error), it is likely that
the audit will progress beyond the first stage.

Both contests with extremely small margins and con-
tests with larger margins that appear on only a small frac-
tion of ballots can cause µ to be small. Separating them
from the rest could reduce the overall workload, espe-
cially if including them would cause λµ to be below
the benign error rate of the machine-counting technol-
ogy. This suggests a three-tier strategy: Collect all con-
tests that, as a group, have λµ rather larger than the be-
nign error rate of the vote tabulation technology and au-
dit them simultaneously. Audit contests with very small
margins individually, or count them by hand entirely if
their margins are on the order of the natural error rate of
the machine-counting technology. Audit the remaining
small contests with larger margins in groups that keep
λµ reasonably large for each group.

5 Conclusions

The MACRO method [9, 11] applied to single ballot au-
dits can yield simple, conservative rules for determining
the initial sample size of simultaneous risk-limiting au-
dits. For a given desired simultaneous risk limit α and
tolerance for the percentage of ballots that overstate one
or more margins by one vote, the initial sample size is
a constant divided by the “diluted margin,” the smallest
margin in votes divided by the total number of ballots
cast in all the contests. The constant depends on α and
the error tolerance, but not on anything to do with the
contests, so the constant can be computed once and for
all. The initial sample size depends on the details of the
contests only through the diluted margin.
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λ = 50% λ = 20%
diluted risk limit α risk limit α

margin µ 10% 5% 1% 10% 5% 1%
5% 305 396 609 139 180 277
2% 761 989 1521 346 450 691
1% 1521 1978 3041 691 899 1382

0.5% 3041 3956 6081 1382 1798 2764
multiplier ρ 15.20 19.78 30.40 6.91 8.99 13.82

Table 4: Initial sample sizes n and sample-size multipliers ρ for various simultaneous risk limits and tolerances for
the percentage of ballots that overstate one or more margins by one vote, inflator γ = 110%.

Column 1: diluted margin of victory µ. Columns 2–4: initial sample sizes n for various simultaneous risk limits if
the audit is to stop when the percentage of ballots in the sample that overstate a margin by one vote is not more than
50% of the diluted margin. Columns 5–7: initial sample sizes n for various simultaneous risk limits if audit is to stop
when the percentage of ballots in the sample that overstate a margin by one vote is not more than 20% of the diluted
margin. Last row: In columns 2–7, the sample sizes n are equal to these “multipliers” divided by the diluted margins
µ. The values of n are computed using inequality 23. The values of the simultaneous risk bound P (n, n1, n2;U, γ)
are generally on the order of 2/3 of the nominal values in the column headings.

If any ballot in the initial sample overstates some mar-
gin by two votes, or if more than the tolerated number
of ballots overstate one or more margins by one vote, the
sample might need to be expanded, potentially progress-
ing to a full hand count. When the sample has more error
than the tolerance the design contemplated, either the ex-
act Kaplan-Markov MACRO P -value or a simple upper
bound on that P -value can be used to determine when to
stop counting more ballots by hand. The stopping rule
involves only simple arithmetic: addition, subtraction,
multiplication, and division.

The method presented here has the advantage of sim-
plicity. The cost of its extreme simplicity is some statisti-
cal inefficiency: More ballots have to be counted by hand
than if sharper bounds were used. However, single-ballot
audits are so efficient that this additional cost might eas-
ily be worthwhile. Unfortunately, to implement single-
ballot audits on a wide scale may require changes to
vote tabulation systems, because it is necessary to asso-
ciate individual cast vote records (CVRs) with individual
physical ballots. To my knowledge, no federally certi-
fied vote tabulation system makes that association possi-
ble. Most do not even store CVRs. Auditing by using
an unofficial vote tabulation system that does produce
CVRs—such as those of Clear Ballot Group, the Hum-
boldt Transparency Project, or TrueBallot—and confirm-
ing transitively that the system of record is correct, might
be the best interim option [1].

Another advantage of the method presented here is
that the CVRs are not needed to determine the sampling
probabilities: The same upper bound on error, and hence
the same sampling probability, is used for every ballot,
regardless of which contests appear on the ballot and re-

gardless of how the vote-tabulation system interpreted
the ballot. However, once the sample is drawn, it is nec-
essary to determine how the voting system interpreted
the ballots in the sample. This is essentially how the first
single-ballot risk-limiting audit was performed, in Yolo
County, CA, in November 2009 [11].
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