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This article presents a Monte Carlo method for approximating the minimax expected size (MES) confidence set for a parameter known to
lie in a compact set. The algorithm is motivated by problems in the physical sciences in which parameters are unknown physical constants
related to the distribution of observable phenomena through complex numerical models. The method repeatedly draws parameters at random
from the parameter space and simulates data as if each of those values were the true value of the parameter. Each set of simulated data is
compared to the observed data using a likelihood ratio test. Inverting the likelihood ratio test minimizes the probability of including false
values in the confidence region, which in turn minimizes the expected size of the confidence region. We prove that as the size of the
simulations grows, this Monte Carlo confidence set estimator converges to the !-minimax procedure, where ! is a polytope of priors.
Fortran-90 implementations of the algorithm for both serial and parallel computers are available. We apply the method to an inference
problem in cosmology.
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1. INTRODUCTION

The relationship between hypothesis tests and confidence es-
timators can be exploited to construct confidence sets with de-
sirable properties. For a fixed confidence level, it is natural
to seek a confidence set that is as small as possible. Evans,
Hansen, and Stark (2005) (hereafter, EHS) showed that the
1 − α confidence set with smallest maximum expected mea-
sure can be found by inverting a family of level α tests of sim-
ple null hypotheses against a common simple alternative hy-
pothesis. This is the minimax expected size (MES) procedure.
This article gives a computationally efficient algorithm for ap-
proximating MES and other optimal confidence sets, including
the less conservative minimax regret (MR) procedure, when the
parameter—which can be multidimensional—is known to lie in
a compact set.

The method is well suited to scientific problems in which the
parameter satisfies a priori bounds and the distribution of the
observed data depends on the parameter in a complex way—
e.g., through a numerical model. For example, there are theo-
retical and observational constraints on cosmological parame-
ters such as Hubble’s constant and the age of the Universe.
Those parameters in turn affect the distribution of angular fluc-
tuations in the cosmic microwave background radiation (CMB).
The constraints can be combined with observations of the CMB
to sharpen inferences about the power spectrum of angular fluc-
tuations. In the following, we illustrate the method on a simpler,
but similar, problem: estimating cosmological parameters using
observations of Type Ia supernovae.

There have been several studies of loss functions for set esti-
mators. Cohen and Strawderman (1973b) considered loss func-
tions that are linear combinations of size of the region and an in-
dicator of whether the region covers the truth. Aitchison (1966),
Aitchison and Dunsmore (1968), and Winkler (1972) consid-
ered interval estimates of real-valued parameters using a loss

Chad M. Schafer is Assistant Professor, Department of Statistics, Carnegie
Mellon University, Pittsburgh, PA 15213 (E-mail: cschafer@stat.cmu.edu).
Philip B. Stark is Professor, Department of Statistics, University of California,
Berkeley, CA 94720 (E-mail: stark@stat.berkeley.edu). This work was sup-
ported by NSF Grants #9872979 and #0434343, and by the AX Division at
the Lawrence Livermore National Laboratory through the Department of En-
ergy under contract W-7405-Eng-48. The authors thank the referees for many
helpful comments.

function that combines distance from the truth to the lower end-
point of the interval, distance from the truth to the upper end-
point, and the length of the interval. Casella and Hwang (1991)
and Casella, Hwang, and Robert (1994) studied confidence sets
that are optimal with respect to such loss functions.

Here, we restrict attention to confidence sets with 1− α cov-
erage probability and use a loss function that depends only
on size. EHS, Hwang and Casella (1982), and Joshi (1969)
used the measure ν of the confidence set as loss. The expected
ν-measure of the confidence set is the “expected size.” The
MES procedure minimizes the maximum expected size of the
confidence set. Instead of using a single measure ν, Hooper
(1982) and Cohen and Strawderman (1973a) allowed the mea-
sure to vary with the true value θ of the parameter. The theory
presented here can be extended to that more general case; we
will present applications of the generalization in a sequel.

Typically the MES procedure cannot be found analytically;
we show here how to approximate it numerically. The approxi-
mation has several parts, including approximating the MES pro-
cedure by the !-minimax expected size (!-MES) confidence
procedure, where ! is a convex set of prior probability distri-
butions supported on a finite subset of %; and approximating
the !-MES procedure numerically by optimization and Monte
Carlo simulation. The support points of ! are spread through-
out % so that the !-minimax risk is close to the minimax risk.
Section 4.3 discusses how to use the results of the Monte Carlo
step to select good support points for !.

Constructing the !-MES procedure amounts to finding the
element of ! for which the Bayes risk is maximal: the !-least
favorable alternative (!-LFA). Finding the !-LFA is conceptu-
ally simple, but can be computationally intensive. Kempthorne
(1987) and Nelson (1966) gave algorithms to approximate the
least favorable prior distribution over compact parameter spaces
for general risk functions. Those algorithms require calculating
the Bayes risk for an arbitrary prior, which can be analytically
intractable. To overcome that problem, we approximate the risk
using a novel Monte Carlo algorithm. We show that the max-
imum expected size of the approximated confidence set con-
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verges to that of the !-MES procedure as the size of the Monte
Carlo simulations increases. The algorithm is implemented as a
Fortran-90 subroutine designed to run efficiently on distributed
computers.

This article is organized as follows. Section 2 gives notation,
assumptions, and theory. Section 3 derives a consistent esti-
mator for the Bayes risk. Section 4 shows how that estimator,
along with techniques from convex game theory, can be used to
approximate the !-LFA through Monte Carlo simulation. Sec-
tion 5 shows that the new approach can construct confidence
sets that minimize risk for a general class of loss functions in-
volving the measure of the confidence set, including one that
leads to the minimax regret procedure. Section 6 applies the
method to an inference problem in cosmology. Section 7 sum-
marizes the results, and proofs are in the Appendix.

2. PRELIMINARIES

We have a family of probability distributions indexed by θ :

P ≡ {Pθ : θ ∈%}.
The probability distributions are all defined on the same σ -field
B over the set X ; all are dominated by the measure µ. The den-
sity of Pθ with respect to µ is fθ . The set % is itself endowed
with σ -field A. Elements of A are possible confidence sets. We
assume that (θ, x) $→ fθ (x) is product measurable. The random
quantity X—which could be multivariate—has distribution Pθ0

for some unknown θ0 ∈%. The confidence region will be based
on one observation of X and an observation of U ∼ U [0,1],
a uniform random variable independent of X. We have a set D
of decision functions, measurable mappings from %× X into
[0,1]. Decision functions let us use X and U to make random
subsets of %:

Cd(X,U)≡ {η ∈% :d(η,X)≥U}. (1)

Such sets are candidate confidence sets for θ0. The chance
that Cd(X,U) covers the parameter value η ∈ % when in fact
X ∼ Pθ is

γd(θ,η) ≡ Pθ [Cd(X,U) ) η] = Pθ [d(η,X)≥U ]

=
∫

X
d(η, x)fθ (x)µ(dx). (2)

Decision rules that correspond to 1− α confidence sets are ele-
ments of

Dα ≡ {d ∈ D :γd(θ, θ)≥ 1− α a.e.(ν)}. (3)

Let ν be a measure on (%, A). We define the risk of a confi-
dence set to be its expected ν-measure:

R(θ, d)≡ Eθ

[
ν(Cd(X,U))

]
. (4)

Pratt (1961) showed that the expected measure of a confidence
set is the integral of its false coverage probability, the chance
that it incorrectly includes the parameter value η when the true
value is θ :

Eθ

[
ν(Cd(X,U))

]
=

∫

%
γd(θ,η)ν(dη). (5)

Let R%(d) denote the maximum risk of d over all θ ∈ %.
Since fθ (x) and d(η, x) are A × B-measurable,

R%(d)≡ sup
θ∈%

R(θ, d) = sup
π

∫

%
R(θ, d)π(dθ), (6)

where the supremum is over all probability distributions π on
(%, A). We will find a numerical approximation to the deci-
sion rule dR with minimax risk over a smaller class of distribu-
tions !:

R!(dR) = inf
d∈Dα

sup
π∈!

∫

%
R(θ, d)π(dθ). (7)

In applications, ! might be the polytope of probability distrib-
utions on p parameter values {θi}pi=1 spread evenly across %,
or chosen randomly if % is high-dimensional. This is an ad hoc
element in our approach, but in Section 4.3 we describe how to
choose {θi} so that R%(dR) is not much larger than

inf
d∈Dα

R%(d). (8)

Our numerical approximation produces a member of Dα , a
1 − α confidence procedure valid for all θ ∈ %, but its risk is
approximately !-minimax, rather than exactly !-minimax. The
algorithm estimates the critical values for the individual tests
by simulation, so the confidence level is approximately 1 − α
rather than exactly 1− α.

2.1 Bayes-Minimax Duality

For any probability distribution π on (%, A), define

rπ (η, x)≡
∫
% fθ (x)π(dθ)

fη(x)
. (9)

This is the ratio of the likelihood of observing data x under the
density mixed across values of θ according to the prior π to the
likelihood under parameter value η.

The Bayes risk of d for prior π is

Rπ (d) ≡
∫

%
R(θ, d)π(dθ)

=
∫

%

∫

%
γd(θ,η)ν(dη)π(dθ)

=
∫

%

∫

%

∫

X
d(η, x)fθ (x)µ(dx)ν(dη)π(dθ)

=
∫

%

∫

X
d(η, x)fη(x)rπ (η, x)µ(dx)ν(dη). (10)

The rule d is in Dα if
∫

X
d(η, x)fη(x)µ(dx)≥ 1− α a.e.(ν). (11)

The optimal decision rule dπ ∈ Dα for prior π minimizes (10)
subject to (11). The optimal rule can be found using the con-
struction in the Neyman–Pearson lemma:

Lemma 1.

inf
d∈Dα

Rπ (d) = Rπ (dπ ), (12)

where

dπ (η, x) =






1, rπ (η, x) < cη

bη, rπ (η, x) = cη

0, rπ (η, x) > cη,
(13)

with the constants bη ∈ [0,1] and cη chosen so that
∫

X
dπ (η, x)fη(x)µ(dx) = 1− α. (14)
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If ! is a collection of distributions on (%, A), then π0 ∈ !
is a !-least favorable alternative if Rπ0(dπ0)≥ Rπ (dπ ) for all
π ∈ !. The decision procedure d0 is !-minimax if

sup
π∈!

Rπ (d0) = inf
d∈Dα

sup
π∈!

Rπ (d)≡R!(dR). (15)

Theorem 1 establishes the Bayes-minimax duality.

Theorem 1 (EHS, Corollary 1). If ! is convex and π0 is
!-least favorable,

inf
d∈Dα

sup
π∈!

Rπ (d) = Rπ0

(
dπ0

)
.

2.2 More Assumptions

Theorem 1 requires ! to be convex. The following additional
assumptions suffice for the Monte Carlo algorithm presented in
Section 3 to converge to the correct value of the risk.

1. ν(%) <∞.
2. If Pθ += Pθ ′ , θ, θ ′ ∈%, there must be a measurable set A ∈

A for which θ ∈A, θ ′ ∈Ac, and 0 < ν(A)/ν(%) < 1.
3. The distributions {Pθ : θ ∈ %} all have the same support

a.e.(ν).
4. The convex collection of priors ! has a finite number of

vertices.

The method is not practical unless:

1. For any fixed point θ ∈%, it is computationally tractable
to simulate from Pθ .

2. For each vertex δv of !, it is computationally tractable to
calculate rδv (η, x) for fixed η and x.

3. ESTIMATING THE BAYES RISK

A single set of simulations can be used to estimate dπ and
Rπ (dπ ). We first show how to estimate Rπ (d). Let T ∈ % be
drawn at random from ν. Let X ∼ Pη conditional on T = η.
Recall from Lemma 1 that rπ (η,X) is the test statistic for a
test of the hypothesis θ0 = η. The test rejects the hypothesis for
data x if Pη[rπ (η,X)≥ rπ (η, x)]≤ α. For any d ∈ D,

E[rπ (T ,X)d(T ,X)]
= E

[
E[rπ (T ,X)d(T ,X)|T ]

]

=
∫

%

[∫

X
rπ (η, x)d(η, x)fη(x)µ(dx)

]
ν(dη)

= Rπ (d). (16)

Hence, for fixed π , the simulated distribution of rπ (T ,X) can
be used to estimate the threshold for the Bayes decision rule
and the Bayes risk of the Bayes decision.

We now show that the Monte Carlo estimate of the risk of the
estimated optimal rule converges almost surely to Rπ (dπ ), uni-
formly in π ∈ !. Fix two positive integers n and q . These define
the size of the Monte Carlo simulations; we consider later what
happens as they increase. Let T1, T2, . . . , Tq be iid (ν) and let

{Xjk : j = 1,2, . . . , q; k = 1,2, . . . , n} (17)

have distribution Pη conditional on Tj = η. Let {Xjk} be in-
dependent, conditional on all of the Tj . Define a Monte Carlo
estimate of Rπ (d):

R̂π (d)≡ 1
nq

∑

j

∑

k

rπ (Tj ,Xjk)d(Tj ,Xjk)Kj , (18)

with rπ as defined in Equation (9). Here,

Kj ≡
[

K ×
(

1
n

p∑

v=1

n∑

k=1

rδv (Tj ,Xjk)

)−1]

∧ 1, (19)

with K > p. The factor Kj makes R̂π (d) uniformly bounded
(in π ), a technical requirement to prove convergence; it
also limits the effect of simulation outliers. Although
E(rδv (Tj ,Xjk)) = 1, rδv (Tj ,Xjk) can be large. But because
d(Tj ,Xjk) = 0 when rδv (Tj ,Xjk) is large, such values do not
affect the estimated risk. Hence, we recommend choosing K

very large.
We next construct decision procedures supported on the sim-

ulated datasets {Xjk}. For each j , such a decision procedure is
a vector of length n with entries in [0,1]. Fix α and define D′

α

to be the class of decision procedures that satisfy
∑

k

d(Tj ,Xjk)≥ n(1− α) ∀j. (20)

Suppose d̂π minimizes R̂π (d) among all d ∈ D′
α . Recall that

dπ minimizes Rπ (d) over all d ∈ Dα .

Theorem 2. As n→∞ and q →∞,

R̂π (d̂π )
a.s.−→Rπ (dπ ) (21)

uniformly in π ∈ !.

Proof. See the Appendix.

Corollary 1. As n→∞ and q →∞,

sup
π∈!

R̂π (d̂π )
a.s.−→R!(dR). (22)

For a given set of simulations of the random quantities, a
member of ! that maximizes R̂π (d̂π ) can be found numeri-
cally. Corollary 1 shows that when n and q are large enough,
the Bayes risk of this supremal prior is close to the Bayes risk
of the !-least favorable prior.

4. IMPLEMENTING THE ALGORITHM

We seek the (in simulations) !-least favorable prior: the
π ∈ ! that maximizes R̂π (d̂π ). [Recall that d̂π is the decision
procedure d ∈ D′

α that minimizes R̂π (d).] Finding the !-least
favorable prior amounts to finding the optimal strategy in a con-
vex game, as we shall see. Theorem 2 shows that the value of
this convex game is an arbitrarily good approximation to the
!-minimax risk as the size of the simulations increases.

4.1 Matrix Games and Minimax Procedures

We cast Equation (18) in matrix form. Define the n by p

matrix Aj with elements

Aj kv = rδv (Tj ,Xjk)Kj . (23)

Let

A≡ 1
nq

[A1 A2 · · · Aq ]T . (24)

For a given decision rule d , let dj be the n-vector whose kth
entry is d(Tj ,Xjk). Define the nq-vector

d≡ [d1 d2 · · · dq ]T . (25)
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Any prior π ∈ ! can be written as a convex combination of the
vertices of !:

π =
p∑

v=1

wvδv, (26)

for some w = {wv}pv=1 with wv ≥ 0 and
∑

v wv = 1. The matrix
form of Equation (18) is

R̂π (d) = 1
nq

q∑

j=1

dT
j Aj w = dT Aw. (27)

4.1.1 Solving Matrix Games. A two-player convex game is
a triple (A, S1, S2) where A is an a by b matrix, S1 is a convex,
compact subset of Ra and S2 is a convex, compact subset of Rb .
Player 1 chooses a strategy, an element s1 of S1. Player 2 picks
a strategy s2 from S2. Player 1 pays Player 2 the amount sT

1 As2.

Theorem 3. There exists a pair of strategies (s1∗, s2∗) ∈ S1×
S2 such that for any (s1, s2) ∈ S1 × S2,

sT
1∗As2 ≤ sT

1∗As2∗ ≤ sT
1 As2∗. (28)

Proof. This is a direct consequence of the classic von Neu-
mann Minimax Theorem. See, for example, Berkovitz (2002,
theorem 5.2).

The pair (s1∗, s2∗) has a special optimality: By picking s1∗,
Player 1 minimizes his maximum loss. By picking s2∗, Player 2
maximizes his minimum gain. Solving the game is finding this
saddle point. The Brown–Robinson fictitious play algorithm
(Brown 1951; Robinson 1951) is a simple iterative approach
to solving the game.

The Brown–Robinson Algorithm. Fix a tolerance ε > 0 and
initial plays for each player: s1,0 ∈ S1, s2,0 ∈ S2. Set i = 1.
Then:

1. Player 1 finds the strategy s1 ∈ S1 that minimizes
v1,i ≡ sT

1 As2,i−1.
2. Player 2 finds the strategy s2 ∈ S2 that maximizes

v2,i ≡ sT
1,i−1As2.

3. If v2,i − v1,i ≤ ε, we are done. Otherwise, go to Step 4.
4. Set

s1,i ≡ (s1 + (i − 1)s1,i−1)/i (29)

and

s2,i ≡ (s2 + (i − 1)s2,i−1)/i. (30)

5. Increment i and return to Step 1.

Theorem 4 (Robinson 1951). For each iteration i in the
Brown–Robinson algorithm,

v1,i ≤ sT
1∗As2∗ ≤ v2,i (31)

and

lim
i→∞

(v2,i − v1,i ) = 0. (32)

Theorem 5. If Player 1 uses strategy s1,i , the amount Player 1
pays Player 2 is less than

sT
1∗As2∗ + v2,i+1 − v1,i+1 (33)

no matter what strategy Player 2 uses.

Proof. From Theorem 4, sT
1∗As2∗ − v1,i+1 ≥ 0, so

sT
1,iAs≤ v2,i+1 ≤ sT

1∗As2∗ + v2,i+1 − v1,i+1, (34)

where s is any strategy in S2.

Theorem 5 ensures that when the Brown–Robinson algo-
rithm terminates, Player 1 has a strategy that limits his maxi-
mum loss to at most ε more than the loss at the saddle point.
Although the maximum loss is close to optimal, the strategy s1i

need not be close to s1∗ in the norm.

4.1.2 Finding the Approximate !-LFA by Solving a Matrix
Game. We now show that the problem of finding the !-LFA
can be written as a (large) convex game. Player 1 is the sta-
tistician. He or she chooses the 100(1 − α)% confidence pro-
cedure d . Player 2 is the adversary (“Nature”). He or she
chooses w, specifying a distribution π over the possible val-
ues of θ0. Player 1’s set of possible strategies, S1, has a spe-
cial form. All elements of d must be between zero and one.
Each of the vectors dj that comprise d must sum to (1− α)n.
These restrictions on d make S1 is convex. The set S2 is
the p-dimensional simplex: all p-vectors w with wi ≥ 0 and∑

i wi = 1; this is also convex.
The statistician and Nature play the convex game (A, S1, S2).

The Brown–Robinson algorithm is well-suited to this problem,
because for any fixed strategy s2,i−1 Nature picks, it is straight-
forward to find the strategy in S1 that is best for the statistician.
Other algorithms for solving games (e.g., by linear program-
ming) might take fewer iterations, but are difficult to imple-
ment when S1 is complex. Recent work by Bryan, McMahan,
Schafer, and Schneider (2007) shows how to exploit sparsity of
the payoff matrix to solve this convex game more efficiently.

4.2 Algorithmic Implementation and Parallelization

The approach parallelizes naturally: different processors can
simulate independent samples of parameter values {Tj } and
data {Xjk}. Interprocessor communication is required only
to calculate the outer sum in Equation (18), which involves
{R̂δv (dπ )}pv=1.

A Fortran-90 implementation of the algorithm with doc-
umentation is available at http://www.stat.cmu.edu/~cschafer/
LFA_Search. The implementation is parallel and uses dynamic
memory allocation.

Table 1 shows the largest storage requirements. The algo-
rithm requires fast access to n × q × p values, the simulated
realizations of

{{
{rδv (Tj ,Xjk)}qj=1

}n

k=1

}p

v=1. (35)

Table 1. The primary storage requirements for the algorithm. The
dimension of the parameter space % is b. The number of randomly

chosen parameter points on each processor is q . The number of
datasets generated from each random parameter is n

Data Size Precision

Random likelihood ratios n× q × p single
Random parameter points q × b single
Thresholds q × 2 double
Confidence region q single
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One might instead store the simulated data; however, these
would be a [n × q × (dimension of X )] array, and then the
quantities {rδv }pv=1 would need to be calculated repeatedly. The
operation count for calculating R̂π (dπ ) is O(q × n2 × p), not
including calculating the likelihood fη(x) (the number of oper-
ations required to calculate the likelihood depends on details of
the problem).

4.3 Choosing the Vertices of !

Whatever the true value of the parameter θ ∈ %, the cover-
age probability of the procedure is approximately 1 − α, but
R(θ, dR) is guaranteed to be less than or equal to R!(dR), the
!-minimax expected size, only if ! includes a point mass at θ .
The following result (proved in Section A.2) can help select the
vertices {δv}.

Theorem 6. For θ ∈%, define

Z(θ) = inf
w∈W

sup
x∈X

[
fθ (x)

∑p
v=1 wvfδv (x)

]
,

where W denotes the p-dimensional regular simplex. Then
R(θ, d)≤ Z(θ)R!(d).

The theorem is useful in practice because the Monte Carlo
simulations give approximations of Z(θ) for each of the q ran-
domly chosen values of θ :

Ẑ(ηj ) =
(

max
w∈W

min Aj w
)−1

, (36)

where the minimum is over the entries of the vector. Typically
q 1 p, so the simulations approximate Z(θ) for many values
of θ . The estimates can be smoothed to reduce random variabil-
ity from the simulations. Points in % for which Z(θ) is large
can be added to the vertices of !.

5. GENERAL LOSS FUNCTIONS

The theory developed above also applies to loss functions of
the form ν(Cd(x,u))−,(θ), where , is any uniformly bounded
function on %. A particularly interesting choice of , is

,r (θ)≡ inf
d∈Dα

Eθ (Cd(X,U)).

The d ∈ D that minimizes the maximum expectation of this loss
is the minimax regret (MR) procedure. The regret at θ for us-
ing the decision function d (DeGroot 1988) is the difference
between the risk at θ of d and the infimal risk at θ over all de-
cision functions. In the present problem, the regret at θ of the
confidence procedure d is the difference between the expected
size of the confidence set using procedure d when the true para-
meter value is θ , and the expected size of the confidence set that
has smallest expected size when the true parameter value is θ . In
some inference problems, parameter values θ for which ,r (θ)

is relatively large can have a strong influence on the MES pro-
cedure: The least favorable alternative will place a lot of weight
on such θ , increasing the expected size under other parameter
values. Using MR can reduce this tradeoff.

Consider the following example (Schafer and Stark 2003;
EHS): Suppose X ∼N(θ,1) with θ ∈ [−3,3]. The LFA for the
minimax expected length 95% confidence interval assigns prob-
ability one to θ = 0. MES minimizes the expected length for

Figure 1. Expected lengths of 95% confidence intervals for a
bounded normal mean θ ∈ [−3,3] from the datum X ∼ N(θ,1), as
a function of θ .

θ = 0, effectively ignoring other values of θ . The MR procedure
provides a different tradeoff, as shown in Figure 1. The solid
line is ,r (θ). The dashed–dotted line is the expected length of
the MES interval. They are equal at θ = 0. The dashed line is
the expected length of the MR interval. The expected length
of MR is about 20% larger than that of MES near θ = 0,
but about 33% smaller when θ is far from zero. The dotted
line is the expected length of the truncated standard interval,
[X− 1.96,X + 1.96]∩ [−3,3].

The minimum risk at θ , ,r (θ), is a complicated function.
For fixed θ , ,r (θ) can be calculated using the Neyman–Pearson
Lemma. If the vertices of ! are point masses, the algorithm de-
scribed in Section 4 can approximate ,r (θ) by taking the prior
to be a point mass at θ . The subroutine LFA_Search mentioned
in Section 4.2 can approximate the minimax regret procedure.

6. EXAMPLE: EXPANSION OF THE UNIVERSE

MES and MR were developed to solve scientific problems:
find precise confidence sets for constrained physical parameters
using theory that relates the parameters to a probability distrib-
ution on data. In many interesting problems, there are relatively
few parameters (5–15); the constraints are nonlinear; and the
model is not given in closed form, but rather as a complex com-
puter simulation—a “black box” from the user’s perspective. As
a result, traditional methods for constructing confidence regions
can be inaccurate, inapplicable, or computationally infeasible.

In this section, we use observations of Type Ia supernovae
to compute MES and MR confidence sets for θ = (-m,H0),
where -m is the amount of matter in the Universe relative to
the “critical density” of matter required for the Universe to be
spatially flat, and H0 is the Hubble parameter, the current rate
of expansion of the Universe. (See, for instance, Riess et al.
2007; Wood-Vasey et al. 2007; Wright 2007.) The stochastic
model in this example is simple, which makes it possible to
compare MES and MR confidence regions with some standard
approaches; in more complicated problems, touchstone meth-
ods are rare.
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Figure 2. Supernovae data. The error bars represent ±1σ .

Type Ia supernovae are standard candles: two Type Ia super-
novae at the same distance from the observer have the same ap-
parent brightness. The difference between the apparent bright-
ness and the brightness at the source is the distance modulus.
The redshift of a supernova is the difference in wavelength of
light emitted by the supernova in the reference frame of the su-
pernova and in the reference frame of the observer. Figure 2
shows observations of redshift and distance modulus for 182
Type Ia supernovae, as reported by Riess et al. (2007). The er-
ror bars represent uncertainty in the distance modulus.

A standard theory relates redshift to distance modulus
through a function of θ = (-m,H0). Define

µ(z | θ)

= 5 log10

(
c(1 + z)

H0

∫ z

0

du
√

-m(1 + u)3 + (1−-m)

)
+ 25,

(37)

where c is the speed of light. According to the theory, the ob-
served pairs (zi, Yi) are realizations of Yi = µ(zi | θ) + σiεi ,
where the εi are iid standard normal. The standard deviations σi

are assumed to be known; in practice they are estimated from
properties of the observing instrument.

6.1 Other Methods

There are several standard approaches to constructing confi-
dence sets for θ in this problem. The confidence sets are derived
from pivots that have approximately or exactly chi-squared dis-
tributions.

The CSQ (chi-squared) confidence set is based on the fact
that

n∑

i=1

(
Yi −µ(zi | θ)

σi

)2

(38)

has the chi-squared distribution with n degrees of freedom if θ
is the true value of (-m,H0).

The MLE confidence set is based on the asymptotic distribu-
tion of the maximum likelihood estimator: If θ̂ is the maximum
likelihood estimator of θ and I(θ) is the information matrix
when θ is the truth, then

(θ̂ − θ)T I(θ)(θ̂ − θ) (39)

is approximately chi-squared distributed with two degrees of
freedom.

The score test (SCR) confidence set is based on the asymp-
totic distribution of Rao’s score test statistic (Lehmann and Ro-
mano 2005): Define

Sj = ∂

∂θj
logf (θ) (40)

and S = [S1 S2]T . Then

S T I−1(θ)S (41)

is approximately chi-squared distributed with two degrees of
freedom.

6.2 Results

Figure 3 shows confidence sets for θ based on the data in Fig-
ure 2 for the five methods (CSQ, MLE, SCR, MES, and MR).
The parameter vector θ was restricted to the compact set % with
60≤H0 ≤ 90 and 500≤-mH 2

0 ≤ 2500, which is displayed in
Figure 3 as the white area outlined in gray. [The quantity -mH 2

0
is constrained well by measurements of the cosmic microwave
background radiation: the WMAP experiment (Spergel et al.
2007) found -mH 2

0 to be 1277, with a standard error of 80.0.]
The MES region is the smallest. The SCR, MLE, and MR are
very similar. The CSQ region is much larger. The areas of the
sets are 2.86, 0.41, 0.40, 0.30, and 0.36 for CSQ, MLE, SCR,

Figure 3. Confidence regions given by five approaches applied to
the data shown in Figure 2. The smallest region (the hashed ellipse) is
MES. The MLE, SCR, and MR regions are nearly identical. The larger
truncated ellipse is the CSQ region. See text for descriptions of the
methods. The plus sign marks the maximum likelihood estimate.
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Figure 4. The q = 1000 hypothesized values of θ (circular dots)
and the p = 70 alternative values (squares). The ellipses are confidence
regions from five replications of the algorithm applied to the same data
to show the sampling variability from the Monte Carlo steps. The five
MES regions are the nearly overlapping dashed ellipses; the five MR
regions are the slightly larger solid ellipses.

MES, and MR, respectively. For these data, the MES confidence
set is smaller than standard confidence sets. Simulation results
given below show that in this problem the expected sizes of
MES, MR, MLE, and SCR sets are comparable, and CSQ is
substantially larger. This suggests that MES and MR will be
valuable in applications where the physical theory is complex,
because then MLE and SCR are not generally feasible—CSQ
is the only standard method available.

The MES and MR confidence regions were constructed five
times independently to assess the variability due to Monte Carlo
sampling. In each case, p = 70 alternatives were chosen from
a regular grid, q = 1000 values of θ were chosen via a quasi-
Monte Carlo scheme, and n = 200 datasets were simulated for
each value of θ . Figure 4 plots the null values of θ , the alterna-
tive values, and the five MES and five MR regions that resulted.
The variation across simulations is small.

On a desktop computer (3.80 GHz Pentium 4), the median
time for the five runs was 25.00 minutes to calculate the MES
region and 17.81 minutes to calculate the MR region.

Table 3. Fraction of “wins” of each of the five methods in simulations
from five models. A method “wins” for a particular realization if its

confidence region is the smallest among those that cover the true
value of the parameter. Each row represents 5,000 replications

Truth Proportion “won”

-m H0 CSQ MLE SCR MES MR

0.150 86.000 0.044 0.013 0.164 0.224 0.554
0.200 70.000 0.044 0.170 0.534 0.031 0.219
0.300 62.000 0.042 0.165 0.349 0.348 0.094
0.350 75.000 0.040 0.134 0.024 0.533 0.268
0.450 67.000 0.042 0.064 0.067 0.780 0.046

The size and coverage of the five methods were compared
using simulation. We simulated 5,000 error vectors {εi}182

i=1 and
added each to the predictions of five models. Using the same er-
ror vectors for five models helps isolate the effect of varying the
model from the variability due to noise. The five methods were
applied to each of the resulting 25,000 datasets. Table 2 lists
the average size of the regions for each method, along with the
empirical coverage of the true value of θ . Column “BND” gives
the theoretical minimum average size of a 1− α confidence set
for each model. Table 3 shows the “winning percentage” for
each method. For each simulated data set, a method “wins” if
its region is the smallest among those that cover the true value
of θ .

The results are qualitatively similar to the performance in the
bounded normal mean problem of Section 5: towards the center
of %, where the lower bound on expected size is largest, MES
performs best. But where the bound is smallest (when -mH 2

0 is
small), MR has smaller expected size. In this example, com-
paring “wins” is about the same as comparing average size:
controlling the expected size controlled the size in individual
realizations. The coverage of the MES and MR procedures is
close to the nominal confidence level (since these results are
based on 5,000 realizations, the standard error of the coverage
estimates is approximately 0.003). The SCR method performs
well, which is not surprising given that it is asymptotically op-
timal under certain conditions (see, e.g., Lehmann and Romano
2005, theorem 13.5.5).

7. CONCLUSION

Minimax expected size and minimax regret procedures are
theoretically attractive because they can exploit structural con-
straints. We show how to approximate minimax expected size
and minimax regret confidence sets numerically for real, com-
plex applications using Monte Carlo simulation. We establish

Table 2. Average sizes of confidence sets and their coverage in simulations from five models. Five thousand sets of 182 data were simulated
from each model. The column “BND” shows the lowest possible expected size for the corresponding parameter value

Truth Average size Coverage proportion

-m H0 BND CSQ MLE SCR MES MR CSQ MLE SCR MES MR

0.150 86.000 0.194 1.500 0.328 0.318 0.314 0.296 0.948 0.930 0.952 0.958 0.948
0.200 70.000 0.181 1.559 0.304 0.297 0.376 0.322 0.948 0.942 0.952 0.955 0.959
0.300 62.000 0.192 1.192 0.299 0.293 0.300 0.353 0.948 0.929 0.952 0.952 0.978
0.350 75.000 0.268 1.745 0.406 0.408 0.371 0.384 0.948 0.940 0.952 0.945 0.958
0.450 67.000 0.272 1.827 0.424 0.425 0.365 0.396 0.948 0.923 0.952 0.950 0.952



Schafer and Stark: Confidence Regions of Optimal Expected Size 1087

that the maximum risk of the numerical procedure converges
almost surely to the !-minimax risk as the size of the simula-
tions grows. In a two-dimensional application in cosmology, the
minimax expected size and minimax regret confidence proce-
dures give results comparable to classical confidence sets based
on the score test, and are much smaller than chi-squared con-
fidence regions. This suggests that MES and MR will be espe-
cially valuable in applications where the theory that links para-
meters and data is complex: in such problems, only chi-squared
regions have generally been considered to be computationally
tractable.

A parallel Fortran-90 implementation of the algorithm is
available at http://www.stat.cmu.edu/~cschafer/LFA_Search.

APPENDIX: PROOFS

A.1 Proof of Theorem 2

In this appendix, m indexes the Monte Carlo simulations: the num-
ber of simulated null values of θ at stage m is qm and the number of
datasets simulated from each θ is nm. We assume that nm and qm in-
crease with m; in fact, we take nm = m. We allow the level of the test
to depend on m. At stage m, the level is αm. We require αm → α.

Lemma 2 (van Zwet 1980). Suppose that J,J1, J2, . . . are uni-
formly bounded Lebesgue measurable functions from [0,1] into R,
such that for all t ∈ (0,1),

lim
m→∞

∫ t

0
Jm(u)du =

∫ t

0
J (u)du.

Let U1,U2, . . . be a sequence of independent U [0,1] random vari-
ables.

Define U1:m,U2:m, . . . ,Um:m to be U1,U2, . . . ,Um in increasing
order. Let g : [0,1] → R be a Borel measurable, integrable function
and define

gm(t)≡ g
(
U3mt4+1:m

)
.

Then,
∫ 1

0
Jm(u)gm(u)du

a.s.−→
∫ 1

0
J (u)g(u)du.

Lemma 3. Fix η ∈% and π . Define

K̄ ≡
[

K ×
(

1
m

p∑

v=1

∑

k

rδv (η,Xk)

)−1]

∧ 1. (A.1)

Then

Zm,π (η) ≡ inf
d∈D′

αm

1
m

m∑

k=1

rπ (η,Xk)d(η,Xk)K̄

a.s.−→ inf
d∈Dα

∫

%
γd (θ,η)π(dθ).

Proof. We will apply Lemma 2 with Jm(u) equal to one for
u ≤ 1 − αm and zero otherwise; J (u) is equal to one for u ≤ 1 − α

and zero otherwise. Let R denote the cdf of rπ (η,X) when X ∼ Pη ,
that is, R(t) = Pη(rπ (η,X) ≤ t). The function g(·) of Lemma 2 is
g(u) = inf{t :R(t)≥ u}. Thus, if U ∼U [0,1], g(U) is a random vari-
able with cdf R(·). We know g(·) is integrable since

∫ 1

0
|g(u)|du = E

(
|g(U)|

)
= Eη(rπ (η,X)) = 1.

Define u′ = inf{u :g(u) = g(1− α)}, a = g(1− α), and

c =






1− α − u′

Pη(rπ (η,X) = a)
, Pη(rπ (η,X) = a) > 0

0, otherwise.

Then
∫ 1

0
J (u)g(u)du =

∫ u′

0
g(u)du +

∫ 1−α

u′
g(u)du

= E
(
g(U)1{U<u′}

)
+ E

(
g(U)1{u′≤U≤1−α}

)

= E
(
g(U)1{g(U)<g(u′)}

)
+ a(1− α − u′) (A.2)

= E
(
g(U)1{g(U)<a}

)
+ a(1− α − u′)

= Eη
(
rπ (η,X)1{rπ (η,X)<a}

)

+ cEη
(
rπ (η,X)1{rπ (η,X)=a}

)

=
∫

X
rπ (η, x)d∗(η, x)Pη(dx)

= inf
d∈Dα

∫

X
rπ (η, x)d(η, x)Pη(dx) (A.3)

= inf
d∈Dα

∫

%
γd (θ,η)π(dθ), (A.4)

where

d∗(η, x) =
{1, rπ (η, x) < a

c, rπ (η, x) = a

0, otherwise.

Equation (A.2) holds because g(U) < g(u′) if and only if U < u′;
Equation (A.3) holds because d∗ ∈ Dα .

Consider the function U : X × [0,1]→ [0,1] defined by

U(x,w) = Pη(rπ (η,X) < rπ (η, x)) + wPη(rπ (η,X) = rπ (η, x)),

where X ∼ Pη . If {Wj }∞j=1 are independent U [0,1] random vari-
ables, {Xj }∞j=1 are independent random variables distributed as
Pη , and {Wj } and {Xj } are independent, then U1 ≡ U(X1,W1),

U2 ≡ U(X2,W2), . . . are independent U [0,1] random variables.
Moreover,

g(Ui) = inf {x :R(x)≥Ui}
= inf {x :R(x)≥U(Xi,Wi)}
= inf

{
x : Pη(rπ (η,X)≤ x)≥U(Xi,Wi)

}

= rπ (η,Xi).

Let X1:m,X2:m, . . . ,Xm:m denote X1,X2, . . . ,Xm ordered by the
(increasing) value of rπ (η,Xi), with ties broken arbitrarily. Like-
wise, let U1:m,U2:m, . . . ,Um:m denote U1,U2, . . . ,Um in increas-
ing order. Note that U(x1,w1) < U(x2,w2) if and only if either
rπ (η, x1) < rπ (η, x2) or rπ (η, x1) = rπ (η, x2) and w1 < w2. So,
g(Ui:m) = rπ (η,Xi:m).

Thus,
∫ 1

0
Jm(u)gm(u)du =

∫ 1−αm

0
gm(u)du

= 1
m

m∑

k=1

g(Uk:m)d∗(η, k)

= 1
m

m∑

k=1

rπ (η,Xk:m)d∗(η, k)

= inf
d∈D′

αm

1
m

m∑

k=1

rπ (η,Xk)d(η,Xk), (A.5)

where

d∗(η, k) =






1, k < k′
(1− αm)m− k′ + 1, k = k′
0, k > k′,
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and k′ = 5(1− αm)m6.
Lemma 2 together with Equations (A.4) and (A.5) show that

inf
d∈D′

αm

1
m

m∑

k=1

rπ (η,Xk)d(η,Xk)
a.s.−→ inf

d∈Dα

∫

%
γd (θ,η)π(dθ).

By the law of large numbers, K̄ → 1 almost surely since

E
[ p∑

v=1

rδv (η,Xk)

]

= p < K. (A.6)

Hence,

Zm,π (η) ≡ inf
d∈D′

αm

1
m

m∑

k=1

rπ (η,Xk)d(η,Xk)K̄

a.s.−→ inf
d∈Dα

∫

%
γd(θ,η)π(dθ). (A.7)

Lemma 4. As m→∞,

E[Zm,π (Tjm)]−→Rπ (dπ ). (A.8)

Proof. Apply the bounded convergence theorem twice to show that
for fixed η ∈%

E[Zm,π (η)]−→ inf
d∈Dα

∫

%
γd (θ,η)π(dθ) (A.9)

and that
∫

%
E[Zm,π (η)]ν(dη)−→

∫

%

[
inf

d∈Dα

∫

%
γd(θ,η)π(dθ)

]
ν(dη).

(A.10)

But
∫

%
E[Zm,π (η)]ν(dη) = E[Zm,π (Tjm)] (A.11)

and
∫

%

[
inf

d∈Dα

∫

%
γd(θ,η)π(dθ)

]
ν(dη)

= inf
d∈Dα

∫

%

∫

%
γd(θ,η)π(dθ)ν(dη)

= Rπ (dπ ).

The infimum and integral can be switched because, as established in
Lemma 1, the infimal d minimizes at each η.

Lemma 5. Suppose that {Um}∞m=1 is a sequence of random vari-
ables such that

Um = 1
qm

qm∑

j=1

Vjm, (A.12)

where

1. {Vjm}qm

j=1 are iid for each m and independent across m;
2. E[Vjm]≡ µm → µ;
3. {Vjm}qm

j=1 are nonnegative and uniformly bounded for all m; and
4. the sequence {qm}∞m=1 is strictly increasing.

Then Um
a.s.−→ µ.

Proof. Fix ε > 0. For m large enough that |µm −µ| < ε/2,

P[|Um −µ| > ε] ≤ P[|Um −µm| > ε/2]

≤
(

16
ε4

)
E[(Um −µm)4], (A.13)

by Markov’s inequality. Set Wjm ≡ Vjm −µm.

E[(Um −µm)4] = q−4
m E

[( qm∑

j=1

Wjm

)4]

= q−4
m

(
qmE[W4

1m] + 3qm(qm − 1)E[W2
1m]2

)

≤ cq−2
m ≤ cm−2,

where the constant c does not depend on m. See the proof of theo-
rem 6.1 in Billingsley (1995). Hence, by Borel–Cantelli,

P[|Um −µ| > ε i.o.] = 0. (A.14)

This implies that Um → µ almost surely.

These results in combination imply that as m→∞,

R̂π (dπ,m) = 1
qm

qm∑

j=1

Zm,π (Tjm)
a.s.−→Rπ (dπ ) (A.15)

for any probability distribution π on (%, A).

Lemma 6. Let π,π ′ ∈ ! such that π = ∑
v wvδv and

π ′ = ∑
v w′vδv . Then, for all m,

|R̂π (dπ,m)− R̂π ′(dπ ′,m)|≤K‖w−w′‖1. (A.16)

Proof. For fixed indices j and m, let d ′ be the decision procedure
d ∈ D′

αm
that minimizes the smaller of

∑

k

rπ (Tjm,Xjkm)d(Tjm,Xjkm) (A.17)

and

∑

k

rπ ′ (Tjm,Xjkm)d(Tjm,Xjkm). (A.18)

Then d ′ is either dπ,m or dπ ′,m. Thus,

|Zm,π (Tjm)−Zm,π ′(Tjm)|

≤
∑

v

|wv −w′v |
(

1
m

∑

k

rδv (Tjm,Xjkm)d ′(Tjm,Xjkm)Kjm

)

≤K

p∑

v=1

|wv −w′v |

= K‖w−w′‖1.

Since

R̂π (dπ,m) = 1
qm

qm∑

j=1

Zm,π (Tjm), (A.19)

we have the desired result.

Lemma 6 implies that {R̂π (dπ,m)}∞m=1 is an equicontinuous fam-
ily of functions of the weight vector w associated with π . The space
of possible weights is compact, so the pointwise convergence for
fixed π yields uniform convergence in π . (See Royden 1988, page 168,
lemma 39.) This completes the proof of Theorem 2.
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A.2 Proof of Theorem 6

It follows from the definition of Z(θ) that there exists some w ∈ W
such that for any ε > 0, fθ (x)≤ (Z(θ) + ε)(

∑p
v=1 wvfδv (x)) for all

x ∈ X . Hence,

R(θ, d) =
∫

%

∫

X
d(η, x)fθ (x)µ(dx)ν(dη)

≤
∫

%

∫

X
d(η, x)(Z(θ) + ε)

[ p∑

v=1

wvfδv (x)

]

µ(dx)ν(dη)

= (Z(θ) + ε)

p∑

v=1

wvRδv (d)

≤ (Z(θ) + ε)R!(d).

Since this is true for all ε, it follows that R(θ, d)≤ Z(θ)R!(d).
[Received August 2007. Revised September 2008.]
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