Biometrika (2011), **xx**, x, pp. 1–18 © 2007 Biometrika Trust Printed in Great Britain

Simultaneous Confidence Intervals with more Power to Determine Signs

BY YOAV BENJAMINI

Department of Statistics and Operations Research The Sackler School of Mathematical Sciences Tel-Aviv University, Israel

VERED MADAR

Department of Biostatistics University of North Carolina, Chapel Hill

PHILIP B. STARK

Department of Statistics University of California, Berkeley

SUMMARY

Many medical studies draw inferences about multiple endpoints, but ignore the statistical implications of multiplicity. Effects inferred to be positive when there is no adjustment for multiplicity can lose their statistical significance when multiplicity is taken into account—perhaps explaining why such adjustments are so often omitted. We develop new simultaneous confidence intervals that mitigate this problem. They determine the signs of parameters more frequently than standard simultaneous confidence intervals: The set of data values for which each interval includes parameter values with only one sign is larger. When one or more parameter estimates are small, the new intervals sacrifice some length to avoid crossing zero. But when all the parameter estimates are large, the new intervals coincide with standard simultaneous confidence intervals, so there is no sacrifice of precision. The improved ability to determine signs is remarkable. For example, if four Normal means are to be estimated at 95% confidence and the intervals are allowed to be about 45% longer standard simultaneous intervals, when only one estimate is small, the new procedure determines the sign of the corresponding parameter essentially as well as a one-sided test that ignores multiplicity and has a pre-specified direction. The intervals are constructed by inverting level- α tests to form a $1 - \alpha$ confidence set, then projecting that set onto the coordinate axes to get confidence intervals. The tests have hyperrectangular acceptance regions that minimize the maximum amount by which the acceptance region protrudes from the orthant that contains the hypothesized parameter value, subject to a constraint on the maximum side length of the hyperrectangle. R and SAS implementations are available online.

Key Words: Multiplicity, non-equivariant hypothesis test, one-sided test

1. INTRODUCTION

Standard simultaneous confidence intervals for the components of a multivariate mean serve at least two purposes: They express the joint uncertainty in estimates of the components and they

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43 44 45

46 47

classify the sign of each component as positive, negative, or indeterminate. For the first purpose,
 shorter intervals are preferable and standard procedures perform well. For the second, length is
 less important than whether the intervals include values of only one sign. One-sided confidence
 intervals classify signs well, but have infinite length—and the direction of the interval (upper or
 lower) must be pre-specified.

54 Effects inferred to be positive when there is no adjustment for multiplicity can lose their statistical significance when multiplicity is taken into account. The Women's Health Initiative 55 56 (WHI) randomized controlled clinical trial of Estrogen plus Progestin hormone therapy for postmenopausal women (Rossouw et al., 2002) illustrates this problem. The study reported simul-57 58 taneous confidence intervals and individual confidence intervals that were not adjusted for mul-59 tiplicity, for three primary endpoints. Implications differed: The unadjusted intervals showed harm for two of three endpoints. The simultaneous intervals showed increase only for a com-60 bined endpoint measuring global health. The clinical recommendations of the study were based 61 on the unadjusted confidence intervals. 62

Ignoring the statistical implications of multiplicity in medical research (research that is not 63 conducted for regulatory purposes) seems to be the rule rather than the exception. In an editorial 64 discussing WHI, Fletcher & Colditz (2001) write: "The authors present both nominal and rarely 65 used adjusted CIs to take into account multiple testing, thus widening the CIs. Whether such 66 adjustment should be used has been questioned ..." Benjamini (2010) finds that failure to adjust 67 for multiplicity is endemic in medical research: He estimates that less than 25% of the studies 68 reported in the New England Journal of Medicine that involve multiple testing took any account 69 70 of multiplicity.

71 Multiplicity should be taken into account, as is required in regulatory studies. But the tendency of standard techniques for dealing with multiplicity to weaken clinical conclusions can be miti-72 73 gated. For instance, in some cases the goal of testing can be relaxed to control the false discovery rate rather than the familywise error rate (Benjamini & Yekutieli, 2005). Here we take a different 74 approach that still controls the familywise error rate: We develop simultaneous confidence inter-75 76 vals that adaptively trade length for the ability to classify the sign as nonnegative or nonpositive more frequently than standard intervals do, without pre-specifying a direction, while maintain-77 78 ing simultaneous coverage probability. Where the data make it easy to draw conclusions about the signs of the parameters, the new intervals are identical to conventional intervals. But where 79 80 conventional intervals cannot determine the sign of one or more parameters, the new intervals sometimes can, at the cost of some length. 81

The new intervals work surprisingly well: Suppose that four Normal means are to be estimated 82 at confidence level 95% and the intervals are allowed to be 45% longer than conventional simul-83 taneous intervals. When only one observation is small, the new intervals determine the sign of 84 the corresponding mean essentially as well as a one-sided test that ignores multiplicity and has 85 a pre-specified direction. When all four estimates are small, the new intervals still determine the 86 sign almost as well as two-sided tests that ignore multiplicity. Since many medical studies-for 87 ethical and cost reasons—operate near the boundary of statistical significance, the new intervals 88 89 help exactly where it matters.

The new intervals extend work by Benjamini et al. (1998), Benjamini & Stark (1996), and Madar (2001). Benjamini et al. (1998) construct a $1 - \alpha$ two-sided univariate confidence interval with nearly the same power to determine the sign of the parameter as $1 - \alpha$ one-sided confidence intervals, without pre-specifying whether to use an upper or a lower one-sided interval. Benjamini & Stark (1996) develop a simultaneous confidence procedure with more power than conventional intervals to determine the signs of the components of an *n*-dimensional location parameter.

Here, we introduce a family $\{A_{\theta}\}_{\theta \in \Re^n}$ of acceptance regions that leads to simultaneous confi-dence intervals more directly analogous to the individual confidence intervals of Benjamini et al. (1998): These acceptance regions, called quasi-conventional, protrude as little as possible from the orthant that contains the hypothesized parameter value, subject to a constraint on the level of the test and on the side lengths of the hyperrectangle. The quasi-conventional confidence inter-vals that result from inverting the tests are not centered at the unbiased estimate when one or more components of that estimate is small. Allowing asymmetry-which biases the tests-increases the power to determine the signs of the components of the mean.

105Quasi-conventional acceptance regions are equivariant under permutations and reflections of106the coordinates but not under translation. The same is true of the hyperrectangular acceptance107regions considered by Benjamini & Stark (1996), but those hyperrectangles have fixed aspect108ratios and are centered at the hypothesized parameter value; only the orientation of the hyper-109rectangle varies with the parameter. Those regions yield unbiased tests. Allowing bias, as we do110here, increases the power to determine the signs of the components.

 Section 2 reviews the duality between confidence intervals and tests. The quasi-conventional family of acceptance regions is presented in Section 3. Quasi-conventional confidence intervals are presented in Section 4. Section 5 presents some bivariate illustrations; a comparison with one-sided, unadjusted, and conventional intervals in four dimensions; a trivariate example from the Women's Health Initiative study of Hormone Replacement Therapy; and a 10-dimensional example from a study on coffee and mortality. Section 6 discusses further properties and possible generalizations of quasi-conventional intervals. Appendix 7 contains technical details and proofs, including an explicit characterization of the extreme points of the quasi-conventional confidence set, which determine the endpoints of the confidence intervals.

2. TESTS AND CONFIDENCE SETS

We seek simultaneous confidence intervals for the components of $\mu = (\mu_j)_{j=1}^n$ from the *n*dimensional datum $\mathbf{X} = (X_j)_{j=1}^n$, where $\{X_j - \mu_j\}_{j=1}^n$ are iid with cdf *F*, and *F* has a symmetric, continuous, unimodal density f(x) that is strictly decreasing for $x \ge 0$ in the support of *f*. Each X_j might be an unbiased estimator of μ_j computed from more than one raw observation. Estimating μ from independent Gaussian observations $\mathbf{X} \sim \mathcal{N}(\mu, \sigma^2 I)$ is an example. Section 6 discusses joint confidence intervals when the components of **X** are correlated and gives some simulation results for correlated Gaussian estimators of $\{\mu_i\}$.

We want the confidence intervals with simultaneous coverage probability $1 - \alpha > 1/2$; i.e., the chance that all *n* intervals cover their parameters should be at least $1 - \alpha$. We want the intervals to determine the signs of $\{\mu_j\}$; that is, for the confidence interval for μ_j to contain values of only one sign. And we want the intervals to be short.

Suppose that for each $\theta \in \Re^n$, A_θ is the acceptance region for a level- α test of the hypothesis that $\mu = \theta$ using the datum $\mathbf{X} = (X_j)_{j=1}^n$. Then

$$S_A(\mathbf{X}) \equiv \{ \boldsymbol{\theta} \in \mathfrak{R}^n : \mathbf{X} \in A_{\boldsymbol{\theta}} \}$$
(1)

140 is a $1 - \alpha$ simultaneous confidence set for μ (Lehmann, 1986, pp. 89–90). Simultaneous confi-141 dence intervals for the components of μ can be constructed by projecting $S_A(\mathbf{X})$ onto the coor-142 dinate axes: For j = 1, ..., n, define

$$\mathscr{I}_{j}(\mathbf{X}) \equiv [\inf\{\boldsymbol{\theta}_{j} : \boldsymbol{\theta} \in S_{A}(\mathbf{X})\}, \, \sup\{\boldsymbol{\theta}_{j} : \boldsymbol{\theta} \in S_{A}(\mathbf{X})\}].$$
(2)

145 Then 146

147 148

152 153

154 155

160

161

162 163 164

165

166

167

175 176

177 178 179

180

181 182

$$\Pr_{\boldsymbol{\mu}}\left\{\bigcap_{j=1}^{n}\left\{\mathscr{I}_{j}(\mathbf{X})\ni\boldsymbol{\mu}_{j}\right\}\right\}\geq1-\boldsymbol{\alpha}.$$
(3)

149 Hence, the intervals $\{\mathscr{I}_j\}$ are simultaneous $1 - \alpha$ confidence intervals for $\{\mu_j\}$. Below, we tailor 150 the family $\{A_\theta\}$ so that \mathscr{I}_j determines the sign of μ_j more often than conventional simultaneous 151 intervals do.

3. ACCEPTANCE REGIONS

The conventional choice of α -level acceptance regions is a set of hypercubes centered at the hypothesized parameter values. The conventional acceptance region for the hypothesis $\mu = \theta$ is

$$B_{\theta} \equiv \mathop{\times}_{j=1}^{n} [\theta_j - c_{\alpha}, \theta_j + c_{\alpha}], \tag{4}$$

where $c_{\alpha} \equiv F_{(1+(1-\alpha)^{1/n})/2}$ is the *p*th quantile of *F*. This family of acceptance regions is equivariant under permutations of the coordinates, reflections around the coordinate axes, and translations. The corresponding conventional confidence intervals are

$$\mathscr{I}_{j}^{B}(X) \equiv [X_{j} - c_{\alpha}, X_{j} + c_{\alpha}].$$
(5)

We shall see that inverting a family of tests that is not equivariant under translations produces simultaneous confidence intervals that determine the signs of the components of μ more frequently than conventional intervals do.

168 Suppose θ_0 and θ_1 differ in the sign of their *j*th component. The confidence set $S_A(\mathbf{X})$ does 169 not determine the sign of the *j*th component of μ if $\mathbf{X} \in A_{\theta_0} \cap A_{\theta_1}$. Hence, if we wish to deter-170 mine the signs of the components as frequently as possible, the acceptance region A_{θ} should be 171 confined as nearly as possible to the orthant in which θ lies. We consider only hyperrectangu-172 lar acceptance regions, which correspond to conventional confidence sets when the regions are 173 hypercubes centered at the parameter. Šidák (1967) discusses of the merits of hyperrectangular 174 acceptance regions.

Let $\mathscr{A}(\theta)$ denote the set of all hyperrectangles $H = \underset{j=1}{\overset{n}{\times}} [\theta_j - \ell_j(\theta), \theta_j + u_j(\theta)]$ that satisfy the significance-level constraint

$$\Pr_{\theta}\{\mathbf{X} \notin H\} \le \alpha \tag{6}$$

and a side-length constraint

$$\ell_j(\boldsymbol{\theta}) + u_j(\boldsymbol{\theta}) \le C, \ j = 1, \dots, n.$$
(7)

We will drop the argument θ when that does not introduce ambiguity. Limiting the maximum side length to *C* limits the length of the confidence intervals that result from inverting the family of tests to at most $3C/2 - \lambda_1$, where $\lambda_1 > 0$, defined in equation [12], depends on the distribution *F* and the dimension *n*.

187 Let $\mathscr{Z}(\theta) \equiv \{j : \theta_j = 0\}$ and $\mathscr{N}(\theta) \equiv \{j : \theta_j \neq 0\}$. (The mnemonic is that \mathscr{Z} stands for 188 the zero components and \mathscr{N} for the non-zero components.) We define the quasi-conventional 189 acceptance region A_{θ} for $\theta \ge 0$ as follows:

191 1. If there exist hyperrectangles $H \in \mathscr{A}(\theta)$ for which $\ell_j = u_j = c_{\alpha}, j \in \mathscr{Z}(\theta)$, and $\theta_j - \ell_j \ge 0$, 192 $j \in \mathscr{N}(\theta)$, then A_{θ} is the one with the smallest maximum side length. 2. Otherwise, A_{θ} is the hyperrectangle $H \in \mathscr{A}(\theta)$ with $\ell_j = u_j = c_{\alpha}$, $j \in \mathscr{Z}(\theta)$, for which $\min_{j \in \mathscr{N}(\theta)}(\theta_j - \ell_j)$ is largest.

Thus, A_{θ} is the conventional hypercube centered at θ whenever the smallest nonzero component of θ is c_{α} or larger. When some component of θ is less than c_{α} , A_{θ} is a hyperrectangle that contains only positive values of components $j \in \mathcal{N}(\theta)$ and has maximum side length not exceeding C, if such a hyperrectangle can satisfy the significance-level constraint. When that is impossible, A_{θ} is the hyperrectangle with side length not exceeding C that protrudes as little as possible into other orthants for $j \in \mathcal{N}(\theta)$. The protrusion of the acceptance region into orthants other than the one θ belongs to can be reduced or eliminated by lengthening the sides of the acceptance region for large components of θ and by allowing A_{θ} to be centered at a point other than θ . This is the key to the new method.

When θ is not in the positive orthant, the quasi-conventional acceptance region A_{θ} is defined by reflecting the negative components about their coordinate axes. So, for example,

$$\ell_j((\theta_1,\ldots,-\theta_j,\ldots,\theta_n)) = -u_j((\theta_1,\ldots,\theta_j,\ldots,\theta_n)).$$
(8)

The quasi-conventional acceptance regions are equivariant under reflections about the axes and permutations of the coordinates: If π is a permutation of (1, ..., n), then

$$\ell_j((\boldsymbol{\theta}_{\pi(i)})_{i=1}^n) = \ell_{\pi(j)}(\boldsymbol{\theta}) \tag{9}$$

and

$$u_{j}((\theta_{\pi(i)})_{i=1}^{n}) = u_{\pi(j)}(\theta).$$
(10)

Appendix 7.1 characterizes these acceptance regions precisely. Figure 1 shows exemplar bivariate quasi-conventional acceptance regions, which can be squares centered at θ , squares centered at a point other than θ , or rectangles, depending on the magnitudes of the components of θ .

4. CONFIDENCE SETS

The confidence set for μ is $S(\mathbf{X}) = \{\theta \in \Re^n : \mathbf{X} \in A_\theta\}$. The simultaneous confidence intervals for $\{\mu_j\}_{i=1}^n$ are, for each j,

$$\mathscr{I}_{j}(X) \equiv [\inf\{\theta_{j} : \theta \in S(\mathbf{X})\}, \sup\{\theta_{j} : \theta \in S(\mathbf{X})\}]$$
$$= [\inf\{\theta_{j} : \mathbf{X} \in A_{\theta}\}, \sup\{\theta_{j} : \mathbf{X} \in A_{\theta}\}].$$
(11)

This amounts to projecting the convex hull of $S(\mathbf{X})$ onto the coordinate axes. The endpoints of the intervals for different components might be attained by different parameter vectors, so the intervals can be jointly conservative. The set $S(\mathbf{X})$ is hard to report, to interpret, and to use directly. The *n* confidence intervals, one for each component of the parameter, are more useful.

Since the acceptance regions are equivariant under reflection, the confidence intervals are too. We therefore focus on the case $\mathbf{X} \ge 0$; other cases are constructed by reflecting the confidence set about the coordinate axes of those components of \mathbf{X} that are negative. Treating the vector \mathbf{X} as fixed, we denote the confidence interval for μ_j by (L_j, U_j) , j = 1, ..., n. The confidence intervals depend on \mathbf{X} in a surprisingly simple way, described below. Define

238 E

$$\lambda_k \equiv \min\{x : (2F(C/2) - 1)^{n-k} \times (F(x) + F(C - x) - 1)^k \ge 1 - \alpha\},\tag{12}$$

Fig. 1. Bivariate quasi-conventional acceptance regions

(a) Squares with side length c_{α} centered at θ when $\min(|\theta_1|, |\theta_2|) \ge c_{\alpha}$ or $\theta = 0$; (b) Squares with side length *C* that are centered at θ in one coordinate when $\min\{|\theta_1|, |\theta_2|\} < c_{\alpha}$ and $||\theta_2| - |\theta_1|| \ge C/2 - \lambda_1$ (top left and bottom); Squares with side length *C* that are not centered at θ in either coordinates when $\min\{|\theta_1|, |\theta_2|\} < c_{\alpha}$ and $||\theta_2| - |\theta_1|| < C/2 - \lambda(\theta) \le C/2 - \lambda_1$ (top right). (c) Rectangles when one component of θ is zero.

$$\mathscr{C} \equiv \{j : X_j \le C\},\tag{13}$$

$$\mathscr{C}(j) \equiv \{i \neq j : C - X_i \ge X_j\},\tag{14}$$

and

$$\kappa(j) \equiv \#\{i \neq j : C - X_i \ge X_j\} = \#\mathscr{C}(j). \tag{15}$$

These functions allow us to bracket the endpoints of the interval well *a priori*. In the most complex case, the lower endpoint can be found exactly by solving an optimization problem with one variable:

$$h_k(x) \equiv x - \max_{y} \{ y : [2F(C/2) - 1]^{n-k-1} \times [F(C-x) - F(-x)]^k \times [F(C-y) - F(-y)] \ge 1 - \alpha \}.$$
(16)

The upper confidence bound U_j for θ_j is never larger than $X_j + C/2$, since no acceptance region extends below θ_j by more than C/2. The lower confidence bound L_j for θ_j is never below $X_j - (C - \lambda_1)$, since no acceptance region contains values of a component that are larger than from the corresponding component of θ by more than $C - \lambda_1$. Hence, the length of any confidence interval is at most $3C/2 - \lambda_1$.

Theorem. Upper Confidence Bounds

- 284 1. If #C = 0, $U_j = X_j + c_\alpha$ for all *j*.
 - 2. If $\#\mathscr{C} = 1$, $U_j = X_j + c_\alpha$ for $j \in \mathscr{C}$ and $U_j = X_j + C/2$ for $j \notin \mathscr{C}$.
- 2. If # $\mathscr{C} = 1, U_j = X_j + C_{\alpha}$ for $j \in \mathscr{C}$ 3. If # $\mathscr{C} > 1, U_j = X_j + C/2$ for all j.

Theorem. Lower Confidence Bounds

289	1. If $X_j > C$ and $\# \mathscr{C} = 0$, $L_j = X_j - c_\alpha$.
290	2. If $X_j > C$ and $\# \mathscr{C} > 0$, $L_j = X_j - C/2$.
291	3. If $\lambda_{\kappa(j)+1} < X_j \le C, L_j = (X_j - (C - \lambda_1))_+.$
292	4. If $\lambda_{\kappa(j)} < X_j \leq \lambda_{\kappa(j)+1}, L_j = h_{\kappa(j)}(X_j).$
293	5. If $0 < X_j \leq \lambda_{\kappa(j)}$ then $L_j = X_j - C/2$.
294	6. If $X_j = 0$ and $\# \mathscr{C} = 1, L_j = 0 - c_{\alpha}$.
295	
296	Proofs of both theorems are in the appendix 7. R and SAS code for computing quasi-
297	conventional intervals is available at the URL www.math.tau.ac.il/~ybenja.

300

301 302

303

304

321

322

323 324

325

326

5. EXAMPLES AND ILLUSTRATIONS

5.1. Bivariate Normal Confidence Regions and Intervals

Figure 2 shows quasi-conventional bivariate 95% confidence sets and simultaneous confidence intervals for a Normal mean, for representative values of **X**. The intervals are sometimes of the form $X_i \pm c_{\alpha}$, but not when any component of **X** is close to zero.

Figure 3 contrasts the values of **X** for which conventional simultaneous intervals determine the 305 306 signs of the components of μ with the set for which quasi-conventional intervals determine those signs. The set of data values for which quasi-conventional confidence intervals determine the sign 307 of at least one component of μ strictly includes the set for which conventional intervals do, so the 308 quasi-conventional intervals indeed determine the sign more frequently. The values themselves 309 310 seem almost too good to be true. For instance, suppose that the quasi-conventional acceptance regions have $C/2 = 1.8c_{\alpha}$. The conventional simultaneous intervals have length $2c_{\alpha} = 4.78$, 311 312 while the quasi-conventional intervals have maximum length $3C/2 - \lambda_1 = 10.445$, no more than 313 21/3 times as long as the conventional intervals in the worst case. Then if one component of **X** 314 is large, the sign of both parameters is determined when the smaller component of X is larger 315 in magnitude than $\lambda_1 = 1.65$. This is comparable to 1.645, the threshold to determine sign of 316 a component using a one-sided regular interval—with a pre-determined direction. The signs of 317 both components of the parameter are determined when both components of the datum are larger 318 than $\lambda_2 = 1.95$. This is smaller than 1.965, the threshold to infer the signs of the components separately, not simultaneously. Quasi-conventional intervals have remarkable power to determine 319 320 signs.

5.2. Example: Four-dimensional sign determinations

This section compares quasi-conventional sign determinations with those of one- and twosided unadjusted confidence intervals and conventional simultaneous confidence intervals in 4dimensional Normal examples, at 95% confidence level. We vary X_1 from 1 to 3 in increments of 0.05 and find the lower endpoints of 95% confidence intervals for μ_1 .

To examine the effect of the number of small and large observations, we set some of the values of X_2 , X_3 , and X_4 to 10 and the rest to 0.5. Figure 4 plots the lower endpoints for $C/2 = 1.2c_{\alpha}$ (the upper row of subplots) and $C/2 = 1.8c_{\alpha}$ (the lower row). In the first panel in each row, all three of $\{X_2, X_3, X_4\}$ are equal to 0.5 and none is equal to 10. In the subsequent panels in each row, the number observations equal to 10 increases from 0 to 3.

The result is striking: Even when all three other components of **X** are small (0.5), the quasiconventional intervals determine the sign of μ_1 for values of X_1 roughly midway between those for which unadjusted two-sided intervals and conventional simultaneous intervals do. When only two are small, the sign of μ_1 is determined for values of X_1 nearly as small as unadjusted twosided intervals require. When the other three components of **X** are large, the quasi-conventional

382 maximum length of the quasi-conventional confidence intervals is $3C/2 - \lambda_1 = 7.251$, about 383 45% longer than the standard simultaneous confidence interval, which has length 4.989. The 384 incremental improvement in sign determinations by allowing the acceptance regions to be 80%

Left panel: Data values for which 95% quasi-conventional intervals determine the sign of one or both components of μ . Right panel: Data values for which 95% conventional intervals determine the sign of one or both components of μ . The white regions are data values for which both components of μ are determined to be nonnegative, the light gray regions are data values for which one component is determined to be nonnegative, and the dark gray regions are data values for which neither component is determined to be nonnegative.

longer than standard hypercube acceptance regions, leading to a maximum confidence interval length about 137% longer than the standard simultaneous confidence interval, is small. Of course, this depends on the dimension of the problem and on that fact that the estimators are Gaussian in this example.

The quasi-conventional lower endpoint as a function of X_1 is step-like: When X_1 is too small to allow the sign of μ_1 to be determined, the lower endpoint is below even the lower endpoint of the conventional simultaneous interval. But as X_1 becomes large enough to allow μ_1 to be determined to be nonnegative, the lower endpoint abruptly rises to zero. It is equal to zero for a range of X_1 , rather than crossing zero at a single point. (It eventually rises, but for larger values of X_1 than these plots show.) A cost of the improved ability to determine signs is that the lower endpoint of the confidence interval for μ_1 is equal to zero for values of X_1 for which the lower endpoint of a conventional simultaneous interval is strictly positive. And quasi-conventional confidence intervals are generally longer than conventional simultaneous intervals when one or more components of X are small. Quasi-conventional intervals are not a free lunch: They just let you start dinner early.

Fig. 4. Lower endpoints of 95% confidence intervals for the first component μ_1 of a 4-dimensional Normal mean μ as a function of X_1 , the estimated value of μ_1 .

Unadjusted one-sided lower confidence bounds (small dashes), unadjusted two-sided (large dashes), conventional two-sided simultaneous (alternating dashes and dots), and quasi-conventional simultaneous (solid lines). In the top row, $C/2 = 1.2c_{\alpha}$, which constrains the length of the quasi-conventional confidence interval to be at most 45% longer than standard simultane-ous intervals. In the bottom row, $C/2 = 1.8c_{\alpha}$, which constrains the quasi-conventional intervals to be at most 137% longer than standard simultaneous intervals. In each row, the number of other estimates (X_2, X_3, X_4) that are "large" increases from 0 to 3. Estimates that are "large" are set to 10; the rest are set to 0.5.

5.3. Women's Health Initiative Trial of Hormone Replacement Therapy

The results of the Women's Health Initiative (WHI) randomized controlled clinical trial of Estrogen plus Progestin hormone therapy for postmenopausal women are reported in Rossouw et al. (2002). The primary endpoint for success of the therapy was a decrease in Coronary Heart Disease (CHD); the primary adverse endpoint was Invasive Breast Cancer (IBC); and there was a combined endpoint called "Global Health Index" (GHI), which combined risks and benefits. Larger values of the three parameters indicate worse health. The trial was stopped early because

Endpoint	HR	Unadjusted	Conventional	$QC (C/2 = 1.2c_{\alpha})$	QC ($C/2 = 1.8c_{\alpha}$)
IBC	1.26	[1.00, 1.59]	[0.95, 1.67]	[0.90, 1.77]	[0.76, 2.1]
CHD	1.29	[1.02, 1.63]	[0.97, 1.72]	[1.00, 1.82]	[1.00, 2.16]
GHI	1.15	[1.03, 1.28]	[1.01, 1.31]	(1.00, 1.35]	(1.00, 1.45]

Table 1. Estimated hazard rates, unadjusted (non-simultaneous) 95% confidence intervals, conventional simultaneous, and quasi-conventional (QC) simultaneous 95% confidence intervals for the three endpoints in the Estrogen + Progestin Women's Health Initiative study of hormone-replacement therapy. The intervals are based on the normal approximation to the log odds ratio.

treatment unexpectedly increased CHD and increased IBC beyond a predetermined threshold. The GHI indicated that, overall, risk outweighed benefit.

As mentioned in the introduction, the study reported simultaneous confidence intervals and intervals that were not adjusted for multiplicity, and the two sets of intervals supported different conclusions: The unadjusted intervals showed increases in GHI and the risk of IBC and CHD, while the simultaneous intervals were consistent with no increase in risk of IBC and CHD.

Table 1 shows the estimated hazard ratio (HR) for the three endpoints, unadjusted confidence intervals, conventional simultaneous confidence intervals, and quasi-conventional simultaneous confidence intervals for two choices of *C*. (All are based on the normal approximation to the log odds ratio.) Computing the quasi-conventional intervals is described in appendix 8. The quasi-conventional 95% simultaneous confidence intervals showed increase in CHD, the primary endpoint, as well as for GHI, and hence support the clinical recommendations of the study while maintaining simultaneous confidence. Note that in this case, CHD is an efficacy endpoint that became an adverse endpoint: The fact that quasi-conventional intervals have essentially the same power as a one-sided test—but without the need to pre-specify the direction—is crucial.

5.4. Coffee and Mortality

Lopez-Garcia et al. (2008) report an observational study of the association between coffee consumption and mortality from cardiovascular disease, cancer, and all causes. The study included 18 years follow-up in 41,736 men and 24 years in 41,736 men and 86,214 women. The raw results show a positive association of coffee intake and mortality from all causes. However, after adjustments for age, smoking status, alcohol consumption, and BMI, a Cox proportional hazard model shows weak negative association of relative risk of mortality from all causes with increasing coffee consumption—but only for women. The study reports confidence intervals for relative risk; those intervals do not appear to take multiplicity into account, even though there were inferences for three endpoints, two genders, and five consumption groups within each gender.

Table 2 shows the estimated relative risks, the reported (unadjusted) 95% confidence intervals, conventional simultaneous 95% confidence intervals, and quasi-conventional simultaneous 95% confidence intervals using $C/2 = 1.8c_{\alpha}$. The simultaneous intervals are for the single endpoint of mortality from all causes, but are simultaneous for the 10 gender-by-consumption groups. The unadjusted intervals are consistent with an increased risk of mortality for men for all consumption groups, but the relative risk of mortality is inferred to be less than one for women who drink 5 or more cups per week, four of the five consumption groups.

526 The conventional simultaneous intervals are consistent with an increase in mortality for 527 women who drink 5–7 cups per week or more than 6 cups per day, two of the groups for which 528 unadjusted confidence intervals show a decrease in mortality. The quasi-conventional intervals

Consumption	1c/mo-4c/week	5–7c/week	2–3c/day	4–5c/day	\geq 6c/day	
Men						
Estimated RR	1.07	1.02	0.97	0.93	0.80	
Unadjusted	[0.99, 1.16]	[0.95, 1.11]	[0.89, 1.05]	[0.81, 1.07]	[0.62, 1.04]	
Conventional	[0.95, 1.21]	[0.90, 1.16]	[0.86, 1.09]	[0.76, 1.14]	[0.54, 1.17]	
QC	[0.86, 1.32]	[0.82, 1.27]	[0.79, 1.19]	[0.64, 1.34]	[0.40, 1.58]	
Women						
Estimated RR	0.98	0.93	0.82	0.74	0.83	
Unadjusted	[0.91, 1.05]	[0.87, 0.98]	[0.77, 0.87]	[0.68, 0.81]	[0.73, 0.95]	
Conventional	[0.88, 1.09]	[0.86, 1.01]	[0.75, 0.90]	[0.65, 0.85]	[0.64, 1.01]	
QC	[0.82, 1.18]	[0.81, 1.00]	[0.70, 1.00]	[0.58, 1.00]	[0.58, 1.00]	

546

553 554

555

Table 2. Estimated relative risk, unadjusted confidence intervals, conventional simultaneous confidence intervals, and quasi-conventional (QC) simultaneous confidence intervals for risk of mortality from all causes. Reference group: < 1 c/month. 95% Confidence intervals. The quasiconventional intervals use $C/2 = 1.8c_{\alpha}$.

support (essentially) the same conclusions as the unadjusted intervals: Women in the four groups
who drink more than 5 cups per week do not have an elevated risk of mortality relative to the
control group, which consumed less than 1 cup per month. Notice that the quasi-conventional
intervals are rather longer for men and for the group of women who consumed 1 cup per month
to 4 cups per week, groups for which even the unadjusted intervals did not permit an inference
about whether the relative risk exceeds 1.

6. DISCUSSION

556 Quasi-conventional simultaneous confidence intervals determine the signs of the components 557 of a multidimensional location parameter μ more often than conventional simultaneous confi-558 dence intervals do. Quasi-conventional intervals are based on a family of hypothesis tests with 559 non-equivariant hyperrectangular acceptance regions that exploit asymmetry (which entails bias) 560 to reduce the the amount by which the acceptance region for θ protrudes from the orthant that 561 contains θ . Inverting these tests and projecting the convex hull of the resulting confidence set 562 onto the coordinate axes yields quasi-conventional simultaneous confidence intervals.

563 When all components of the datum **X** are all large, quasi-conventional intervals are identical 564 to conventional simultaneous confidence intervals. But when any component of **X** is small, the 565 quasi-conventional intervals determine the signs of components of μ more often, power pur-566 chased by an increase in length compared with conventional intervals. The increase in length is 567 controlled by a parameter *C*: The maximum length is $3C/2 - \lambda_1$, where $c_{\alpha} \ge \lambda_1 > 0$.

The quasi-conventional intervals include parameter values of only one sign for some values 568 of $|X_i| < c_{\alpha}$. When C is not much larger than $2c_{\alpha}$ (the length of conventional simultaneous 569 570 intervals), quasi-conventional intervals determine signs better than conventional two-sided in-571 tervals that ignore multiplicity. They do not exclude 0 until $|X_i| \ge c_{\alpha}$. Madar (2008) defines quasi-conventional acceptance regions differently for components of μ that are equal to zero, 572 573 resulting in intervals that are open at 0 for some data for which the quasi-conventional inter-574 vals presented here are closed. Since it is implausible that the point null hypothesis $\mu = 0$ is 575 exactly true, whether the intervals are open or closed at zero has little effect on their utility, so 576 in the present paper we simplified the definition for clarity of exposition. The software available

577 at www.math.tau.ac.il/~ybenja. for computing quasi-conventional intervals uses the more 578 complicated definition.

579 Quasi-conventional confidence intervals have simultaneous confidence level $1 - \alpha$ if the estimators of the components of μ are independent. If the estimators are dependent but the ac-580 ceptance regions have probability at least $1 - \alpha$ under that dependence, quasi-conventional con-581 fidence intervals still attain their nominal level. Some quasi-conventional hyperrectangles cali-582 brated for independent, jointly Gaussian estimators can have probability less than $1 - \alpha$ under 583 dependence, but simulations show that the resulting intervals remain nearly conservative (Madar, 584 2008). For example, for bivariate Gaussian estimators with $C/2 = 1.8c_{\alpha}$ and $\alpha = 0.05$, quasi-585 conventional confidence intervals designed to have 95% confidence when the components of the 586 data are independent have estimated simultaneous coverage above 94.94% (s.e. 0.005%) for all 587 588 values of the correlation coefficient. Probability inequalities for hyperrectangular regions for dependent Gaussian and other elliptically contoured densities explain this empirical finding (Šidák, 589 1967, 1971; Das Gupta et al., 1972; Madar, 2008). 590

Joint confidence sets can be tailored for inferences about scale rather than location, following the strategy outlined in Benjamini & Stark (1996). Constructing confidence sets to attain other goals can be useful too. For instance Berger & Hsu (1996), Brown et al. (1995), **?**, and Hsu et al. (1994) address confidence sets for bioequivalence, and Zhong & Prentice (2008) and Benjamini & Weinstein (2010) address inference conditional on the event that the estimator exceeds a threshold. We see the present work as a contribution in the larger context of optimizing confidence sets for specific scientific applications.

598

599

600

601

602

603

604

605

606

607

608

609 610

611 612

613 614

615

616 617

618

619

Quasi-conventional methods guarantee simultaneous coverage, but not all inference problems with multiple parameters require simultaneity: It is often enough to adjust for selection effects by controlling the False Coverage Statement Rate (FCR) (Benjamini & Yekutieli, 2005). Combining FCR with the univariate confidence intervals of Benjamini et al. (1998), yields more powerful selection-adjusted sign determinations.

In the two examples in section 5.3 and 5.4, quasi-conventional simultaneous confidence intervals allow the same clinical conclusions as unadjusted confidence intervals, while conventional simultaneous confidence intervals do not. Of course, quasi-conventional intervals will not always make the same sign determinations as unadjusted intervals. The cases where they differ are where adjusting for simultaneity protects against selection bias. The cost of the improved ability to determine the signs of parameters compared with conventional simultaneous confidence intervals are wider: Estimating effect sign comes at the expense of estimating effect size.

7. DERIVATIONS AND PROOFS

This section characterizes quasi-conventional acceptance regions in a way that helps find the extreme points of the confidence sets and shows how to project the confidence sets to find simultaneous confidence intervals.

7.1. *Characterizing* A_{θ}

Assume without loss of generality that $\theta \ge 0$. As noted above, acceptance regions for θ in other orthants are obtained by reflection.

620 The significance-level constraint, together with symmetry and unimodality of f, requires $C \ge 2c_{\alpha}$. 621 Setting $C = 2c_{\alpha}$ reproduces the conventional confidence intervals, so the interesting case is $C > 2c_{\alpha}$. For 622 technical reasons, we require the support of f to contain the interval [-C, C]; otherwise, we might as well 623 decrease C, because an acceptance region satisfying the side-length constraint could have significance 624 level $\alpha = 0$.

It follows from properties 1 and 2 and inequality 7 (see section 3) that for $\theta \ge 0$,

$$\ell_j \le u_j,\tag{A1}$$

$$\ell_i + u_i \le C,\tag{A2}$$

and hence

$$\ell_j \le C/2. \tag{A3}$$

Define

$$p(c) \equiv F(c) - F(-c),$$

$$t = t(\theta) \equiv \min_{j \in \mathcal{N}(\theta)} \theta_j,$$

$$z = z(\theta) \equiv \# \mathscr{Z}(\theta).$$

The acceptance region A_{θ} can be characterized using two functions. The first is $C(\theta)$, the smallest possible maximum side length of a hyperrectangular acceptance region that gives a test with the significance level α , has sides $[-c_{\alpha}, c_{\alpha}]$ for $j \in \mathscr{Z}(\theta)$, and contains only nonnegative values for the components $j \in \mathscr{N}(\theta)$:

$$C(\boldsymbol{\theta}) \equiv \inf \left\{ x : [p(c_{\alpha})]^{\mathbb{Z}} \times \prod_{j \in \mathscr{N}(\boldsymbol{\theta})} [F(\min(\boldsymbol{\theta}_j, x/2)) + F(x - (\min(\boldsymbol{\theta}_j, x/2))) - 1] \ge 1 - \alpha \right\}.$$
(A4)

Note that $C(\theta) \ge 2c_{\alpha}$. (It can be infinite—we define the infimum over the empty set to be infinity.) If $C(\theta) \leq C$, there is a hyperrectangular acceptance region for a level α test of the hypothesis $\mu = \theta$ that has side lengths no larger than C and is entirely confined to the positive orthant. If $C(\theta) > C$, A_{θ} crosses at least one axis.

The second function is $\lambda(\theta)$, the value of ℓ_i for the smallest nonzero θ_i ; the acceptance region protrudes from the positive orthant by $(\lambda(\theta) - t(\theta))_+$:

$$\lambda(\theta) \equiv \inf\{ x : [p(c_{\alpha})]^{z} \times [p(C/2)]^{\#\{j \in \mathcal{N}(\theta) : \theta_{j} \ge C/2 + t(\theta) - x\}} \times \\ \times \prod_{j \in \mathcal{N}(\theta) : \theta_{j} < C/2 + t(\theta) - x} [F(\theta_{j} + x - t(\theta)) + F(C - (\theta_{j} + x - t(\theta))) - 1] \\ \ge 1 - \alpha \\ \}.$$
(A5)

If $C(\theta) > C$, then A_{θ} contains $\mathbf{x} \in \Re^n$ with $x_j = t(\theta) - \lambda(\theta) < 0$ for some $j \in \mathcal{N}(\theta)$. If $C(\theta) \leq C$, then $\lambda(\theta) - t(\theta) < 0.$

Recall that $\ell_j = u_j = c_\alpha$ for $j \in \mathscr{Z}(\theta)$. The values of ℓ_j and u_j for $j \in \mathscr{N}(\theta)$ can be characterized using $C(\theta)$:

• If $C(\theta) = 2c_{\alpha}$, then $\ell_j = u_j = c_{\alpha}$, $j \in \mathcal{N}(\theta)$.

$$\ell_{j} = \begin{cases} C/2, & \theta_{j} \ge C/2 - (\lambda(\theta) - t(\theta)) \\ \theta_{j} + (\lambda(\theta) - t(\theta)), & \text{otherwise.} \end{cases}$$
(A6)

In the first case, A_{θ} is the conventional hypercube acceptance region. In the second case, the sides of A_{θ} have equal length for $j \in \mathcal{N}(\theta)$, A_{θ} contains only positive values for the components $j \in \mathcal{N}(\theta)$, and A_{θ} is not centered at θ . In the third case, the sides of A_{θ} have equal length C for $j \in \mathcal{N}(\theta)$, A_{θ} contains negative values for some components $j \in \mathcal{N}(\theta)$, and A_{θ} is not centered at θ .

Any particular hyperrectangle H with side lengths no less than $2c_{\alpha}$ and no greater than C is the ac-ceptance region for at most one θ unless H crosses two or more coordinate axes equally. On the other hand, if (i) H crosses two or more coordinate axes equally, (ii) the side lengths of H are equal to C for $j \in \mathcal{N}$, and (iii) *H* does not protrude too far from the positive orthant, then there can be a manifold of values of θ that have *H* as their acceptance region. For instance, in dimension n = 2, the hyperrectangle $H = [0, C] \times [0, C]$ is the acceptance region for $\theta = (\lambda_1, C/2)$, $\theta = (C/2, \lambda_1)$, $\theta = (\lambda_2, \lambda_2)$, and infinitely many other values of θ . (Note that *H* gives a biased test for all these parameters: The chance of rejecting the null is larger than it is for $\theta = (C/2, C/2)$, which has a different acceptance region, $[C/2 - c_{\alpha}, C/2 + c_{\alpha}] \times [C/2 - c_{\alpha}, C/2 + c_{\alpha}]$.) The manifold $\Theta(H)$ of values of θ that have a given acceptance region *H* plays an important role in inverting the tests to form confidence intervals.

7.2. Inverting and Projecting A_{θ}

Proof of theorem 1 Upper Confidence Bounds.

Recall that $X \ge 0$ is fixed. Note that X is always in the acceptance region for $\theta = X$. The proof below follows the numbered assertions in the theorem.

- 1. Any parameter θ with one or more components close enough to zero to cause $C(\theta)$ to be larger than c_{α} is so close to zero that A_{θ} cannot include **X**.
- 2. Observe that θ cannot be close enough to the axes in components $k \notin C$ to cause u_j to be larger than c_{α} . Now consider $j \notin C$. Starting with $\theta = \mathbf{X}$, decrease the component θ_k , $k \in C$, until $C(\theta) = C$, which is obviously possible. Then the component θ_j can be increased to $X_j + C/2$; the resulting A_{θ} includes \mathbf{X} . Since $\ell_j \leq C/2$, this construction is extremal.
- 3. Starting with $\theta = \mathbf{X}$, decrease any component θ_k , $k \in \mathcal{C}$, $k \neq j$, until $C(\theta) = C$, which again is possible. Then increase θ_j to $X_j + C/2$; the resulting $A_\theta \ni \mathbf{X}$. Since $\ell_j \leq C/2$, this construction is extremal.

Proof of theorem 2 Lower Confidence Bounds.

The proof of (1) is immediate. To show (2), note that $\eta_j = X_j - C/2$ is feasible since there is another $i \in \mathcal{C}$, $i \neq j$, for which η_i can be reduced towards 0 until all other sides of the acceptance region have length *C* and are centered. If $\eta_j < X_j - C/2$, the acceptance region for η cannot cross 0 while having *j*th sidelength no larger than *C*. Therefore, what matters for the lower confidence bound is the upper extent of the acceptance region, ℓ_j , but $\ell_j \leq C/2$.

The other parts of Theorem 2 follow from a series of lemmas, starting with two utility lemmas.

Lemma. Suppose $\mathbf{X} \in A_{\theta}$ and $C(\theta) \in (c_{\alpha}, C)$. Then there exists $\eta \in \mathfrak{R}^n$ such that $\mathbf{X} \in A_{\eta}$, $C(\eta) = C$ and $|\eta_i| \leq |\theta_i|$, and $\operatorname{sgn}(\eta_i) = \operatorname{sgn}(\theta_i)$, i = 1, ..., n.

Proof. Suppose $C(\theta) \in (c_{\alpha}, C)$ with $\theta \ge 0$. We have $X_i \in [\theta_i - \ell_i, \theta_i + u_i]$, i = 1, ..., n, with $\ell_i = u_i = c_{\alpha}$, $i \in \mathscr{X}$ and $\ell_i + u_i = C(\theta)$, $i \in \mathscr{N}$. For some $k, 0 < |\theta_k| < c_{\alpha} \le C$ (or else $C(\theta) = 2c_{\alpha}$). For that $k, |X_k| < C$ and $\operatorname{sgn}(X_k) = \operatorname{sgn}(\theta_k)$, or else $\mathbf{X} \notin A_{\theta}$. Define

$$\gamma_k(\theta) \equiv \arg\inf\{a\theta_k : a \in [0,1], \ \beta \in \Re^n, \ \beta_i = \theta_i, \ i \neq k, \ \text{and} \ \beta_k = a\theta_k \text{ and } C(\beta) \le C\}.$$
(A7)

Let $\eta_i = \theta_i$, $i \neq k$, and let $\eta_k = \gamma_k(\theta)$. Then

1. $C(\eta) = C$

2. $|\eta_i| \leq |\theta_i|$ and $\operatorname{sgn}(\eta_i) = \operatorname{sgn}(\theta_i), i = 1, \dots, n$

3. For $i \neq k$, $\ell_i(\eta) \geq \ell_i(\theta)$ and $u_i(\eta) \geq u_i(\theta)$, so $[\eta_i - \ell_i(\eta), \eta_i + u_i(\eta)] \supset [\theta_i - \ell_i(\theta), \theta_i + u_i(\theta)] \ni X_i$

4. If
$$\theta_k \ge 0$$
, $[\eta_k - \ell_k(\eta), \eta_k + u_k(\eta)] = [0, C] \ni X_k$, and if $\theta_k < 0$, $[\eta_k - \ell_k(\eta), \eta_k + u_k(\eta)] = [-C, 0] \ni X_k$.

Lemma. Suppose $\mathbf{X} \in A\eta$ where $\eta_j < 0$ and $\eta_i > 0$, $\forall i \neq j$. Suppose $\eta_k > |\eta_j|$ for some $k \in \mathcal{C}(j)$. Define η' such that $\eta'_i = \eta_i$, $i \neq k$, and $\eta'_k = -\eta_j$. Then:

718
719 1.
$$\mathbf{X} \in A_{\boldsymbol{\eta}'}$$

720 2.
$$\ell_j(\eta') \geq \ell_j(\eta)$$
.

Proof. Since A_{η} crosses orthants, $\ell_i(\theta) + u_i(\theta) = C$, $\forall i \in \mathcal{N}$. Suppose $X_i \leq C - X_j$. If we set $\eta'_i = -\eta_j < \eta_i$, then $\ell_j(\eta') \geq \ell_j(\eta)$ and $\ell_j(\eta') = \ell_i(\eta')$. Since $A_{\eta} \ni \mathbf{X}$,

$$\eta_j + \ell_j(\eta) \ge X_j, \tag{A8}$$

and since $\ell_i(\eta') \ge \ell_i(\eta)$,

$$\eta_j + \ell_j(\eta') \ge X_j. \tag{A9}$$

 Theorem 2 follows from the previous two lemmas and a few more specific results:

Lemma. If $\lambda_{\kappa(i)+1} < X_i, L_i \geq 0$.

Proof. The acceptance regions are equivariant under reflections around the axes, so it suffices to consider $\theta \ge 0$ and imagine varying the signs of some components of the datum.

Suppose that the maximum protrusion of $A\eta$ from the positive orthant is at least X_j , so that there is a datum with *j*th component $-X_j$ that is in the acceptance region for η . That is, suppose that $(\lambda(\eta) - t(\eta))_+ \ge X_j$. The acceptance region $A\eta$ is always centered in every coordinate in which it does not cross an axis by at least X_j : The *i*th side is $[\eta_i - C/2, \eta_i + C/2]$ unless $C/2 - \eta_i \ge X_j$. (Otherwise, the maximum protrusion could be reduced by making $A\eta$ more nearly symmetric in the *i*th direction.) It follows that if $A\eta$ crosses any axis, it is symmetric in every direction that does not cross maximally.

By the definition of λ_k , for $A\eta$ to protrude from the positive orthant by $x > \lambda_{k-1}$, it must protrude by xfrom the positive orthant in at least k components. (If it protruded in fewer components than that, it would be symmetric in enough components to allow greater asymmetry in those components that cross axes, and hence would protrude less than x.)

The acceptance region for η cannot protrude across an axis by more than x and also include a value on the same side of that axis that is above C - x, because the side lengths of the acceptance region cannot exceed C.

Combining these three facts shows that if $X_j > \lambda_{k-1}$ and there are not at least k-1 other components *i* for which $C - X_i \ge X_j$, there is no $\eta \ge 0$ with an acceptance region that includes the value $-X_j$ in the *j*th coordinate.

Lemma. If
$$\lambda_{\kappa(i)} < X_i \leq \lambda_{\kappa(i)+1}$$
, then $L_i = h_{\kappa(i)}(X_i)$.

Proof. Define $\eta_i = X_i + C/2$ for $i \notin \mathcal{C}(j)$, $i \neq j$. Define $\eta_i = \lambda_{\kappa(j)+1} - X_j$ otherwise. Since $\lambda_{\kappa(j)} < X_j \le \lambda_{\kappa(j)+1}$, $\eta \ge 0$. Then η has exactly $\kappa(j) + 1$ equal coordinates, so $A\eta$ protrudes from the positive orthant at most by $\lambda_{\kappa(j)+1}$. Hence for i = j and for $i \in \mathcal{C}(j)$, $\eta_i - \lambda_{\kappa(j)+1} = \lambda_{\kappa(j)+1} - X_j - \lambda_{\kappa(j)+1} = -X_j$. For $i \in \mathcal{C}(j)$, $-X_j + C \ge X_i$, and for $i = j, X_j < C/2$ implies that $-X_j + C \ge X_j$. Construct η' so that

For $i \in \mathcal{C}(j)$, $-X_j + C \ge X_i$, and for $i = j, X_j < C/2$ implies that $-X_j + C \ge X_j$. Construct η' so that $\eta'_j = -\eta_j$ and $\eta'_i = \eta_i$ for $i \ne j$. Then $\mathbf{X} \in A_{\eta'}$. There is a manifold of parameter values sharing this acceptance region: $\Theta \equiv \{\theta : A_\theta = A_{\eta'}\}$. The lower confidence bound for θ_j is no larger than

$$-\max_{\theta\in\Theta}\{\theta_j: \theta_i \le X_j - \lambda_{\kappa(j)+1} \text{ for } i \in \mathscr{C}(j)\},\tag{A10}$$

which is the maximization problem solved by $h_{\kappa(j)}(X_j)$ if θ_i is set to 0 for all $i \in \mathscr{C}(j)$.

Lemma. If
$$X_j \leq \lambda_{\kappa(j)}, L_j = X_j - C/2.$$

Proof. Define $\eta_j = C/2 - X_j$, and for $i \neq j$ define $\eta_i = \lambda_{\kappa(j)} - X_j$ if $i \in \mathscr{C}(j)$ and $\eta_i = X_i + C/2$ for $i \notin \mathscr{C}(j)$. Since $t(\eta) = \lambda_{\kappa(j)} - X_j$, and $\lambda(\eta) = \lambda_{\kappa(j)}$,

$$\eta_j = C/2 - X_j = C/2 - (\lambda_{\kappa(j)} - (\lambda_{\kappa(j)} - X_j)) = C/2 - (\lambda(\eta) - t(\eta)),$$
(A11)

767 The condition in equation (A6) (case 3) in the definition of the acceptance region is satisfied, and hence 768 $\ell_j = C/2$. Therefore, $\eta_j - C/2 = (C/2 - X_j) - C/2 = -X_j$ is the lower edge of the acceptance region

772

773 774

775

776

777

778

783

784

785

786

787

788

789

790

791

792

793 794 795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

770 771

Lemma. If
$$X_j = 0$$
 and $\#\mathscr{C} = 1$, then $L_j = -c_{\alpha}$.

 $X_j - C/2$, and $\eta'_i = \eta_i$ for $i \neq j$.

Proof. Consider $\eta_i = X_i - c_\alpha$ for all *i*, so that $\eta_j = -c_\alpha$. This acceptance region for this parameter value contains **X**, as shown above. For an acceptance region for a parameter with *j*th component less than $-c_\alpha$ to include **X** would require that for some $i \neq j$, $u_i + \ell_i > 2c_\alpha$. But this is impossible because $|X_i| \leq C$, $\forall i \neq j$.

in direction j: The region includes $-X_i$. By reflection, **X** is in the acceptance region for η' , where $\eta'_i =$

These completes the proof of the six cases of theorem 2.

8. CALCULATING NEW CONFIDENCE INTERVALS FOR WHI

We rely on the fact that the hazard ratio estimates, transformed to log-odds ratios, are approximately Gaussian distributed. We infer standard errors from the widths of the unadjusted 95% confidence intervals reported in the study.

The transformed, studentized datum is $\mathbf{X} = (1.947, 2.134, 2.558)$. For $\alpha = 0.05$ and $C/2 = 1.2c_{\alpha}$ we compute: $\lambda_1 = 1.728, \lambda_2 = 1.992, \lambda_3 = 2.125$, and C/2 = 2.865 (taking $C/2 = 1.8c_{\alpha}$ yields $\lambda_1 = 1.645, \lambda_2 = 1.955, \lambda_3 = 2.121$, and C/2 = 4.298).

To apply the results from section 7.2, first note that $X_2 + X_3 \leq C$, so $\kappa(j) = 3$, $\forall j$. From $X_1 < \lambda_2$ it follows that the confidence interval for IBC is $\mathscr{I}_1(\mathbf{X}) = [X_1 - C/2, X_1 + C/2]$.

Next, $\mathscr{I}_2(\mathbf{X}) = [0, X_2 + C/2]$, since $c_{\alpha} > X_2 > \lambda_3$, and $\mathscr{I}_3(\mathbf{X}) = (0, X_3 + C/2]$ because $C > X_3 > c_{\alpha}$. Transforming back into confidence intervals for the hazard ratio on the original scale produces the simultaneous 95% intervals in Table 1.

REFERENCES

- BENJAMINI, Y. (2010). Simultaneous and selective inference: Current successes and future challenges. *Biometrical Journal* **52**, 708721. DOI: 10.1002/bimj.200900299.
- BENJAMINI, Y., HOCHBERG, Y. & STARK, P. (1998). Confidence intervals with more power to determine the sign: Two ends constrain the means. J. Am. Stat. Assoc. 93, 309–317.
- BENJAMINI, Y. & STARK, P. (1996). Non-equivariant simultaneous confidence intervals less likely to contain zero. J. Am. Stat. Assoc. 91, 329–337.
- BENJAMINI, Y. & WEINSTEIN, A. (2010). Selection adjusted confidence intervals with more power to determine the sign. J. Am. Stat. Assoc. submitted.
- BENJAMINI, Y. & YEKUTIELI, Y. (2005). False discovery rate controlling confidence intervals for selected parameters. J. Am. Stat. Assoc. 100, 71–80.
- BERGER, R. & HSU, J. (1996). Bioequivalence trials, intersection-union tests and equivalence confidence sets. *Statist. Sci.* **11**, 283–319.
- BROWN, L., CASELLA, G. & HWANG, J. (1995). Optimal confidence sets, bioequivalence, and the limacon of Pascal. J. Am. Stat. Assoc. 90, 880–889.
- DAS GUPTA, S., EATON, M., OLKIN, I., PERLMAN, M., SAVAGE, L. & SOBEL, M. (1972). Inequalities on the probability context of convex regions for elliptically contoured distributions. In Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 2. Univ. California Press.
- FLETCHER, S. & COLDITZ, G. (2001). Failure of estrogen plus progestin therapy for prevention. J. Amer. Med. Assoc. 288, 366369.
- HSU, J., HWANG, J., LIU, H. & RUBERG, S. (1994). Confidence intervals associated with tests for bioequivalence. *Biometrika* 81, 103–114.
- 813 LEHMANN, E. (1986). *Testing Statistical Hypotheses*. New York: John Wiley and Sons, 2nd ed.
- 814 LOPEZ-GARCIA, E., VAN DAM, R., LI, T., RODRIGUEZ-ARTALEJO, F. & HU, F. (2008). The relationship of coffee consumption with mortality. *Ann. Internal Medicine* **148**, 904–914.
- 815 MADAR, V. (2001). Non equivariant confidence intervals less likely to contain zero. Master's thesis, Tel-Aviv Univ.
- 816 MADAR, V. (2008). Simultaneous confidence intervals for sign determination. Ph.D. thesis, Tel-Aviv Univ.

817	ROSSOUW, J., ANDERSON, G., PRENTICE, R. & LACROIX, A. (2002). Risks and benefits of estrogen plus progestin
818	in healthy postmenopausal women: principal results from the women's health initiative randomized controlled trial.
010	J. Amer. Med. Assoc. 288, 321–333.

- ŠIDÁK, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62, 626–633.
- ŠIDÁK, Z. (1971). On probabilities of rectangles in multivariate student distributions: their dependence on correlations confidence regions for the means of multivariate normal distributions. *Ann. Math. Statist.* 42, 169–175.
- ZHONG, H. & PRENTICE, R. (2008). Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics 9, 621-634.