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SUMMARY

Many medical studies draw inferences about multiple endpoints, but ignore the statistical im-
plications of multiplicity. Effects inferred to be positive when there is no adjustment for mul-
tiplicity can lose their statistical significance when multiplicity is taken into account—perhaps
explaining why such adjustments are so often omitted. We develop new simultaneous confidence
intervals that mitigate this problem. They determine the signs of parameters more frequently
than standard simultaneous confidence intervals: The set of data values for which each interval
includes parameter values with only one sign is larger. When one or more parameter estimates
are small, the new intervals sacrifice some length to avoid crossing zero. But when all the pa-
rameter estimates are large, the new intervals coincide with standard simultaneous confidence
intervals, so there is no sacrifice of precision. The improved ability to determine signs is remark-
able. For example, if four Normal means are to be estimated at 95% confidence and the intervals
are allowed to be about 45% longer standard simultaneous intervals, when only one estimate is
small, the new procedure determines the sign of the corresponding parameter essentially as well
as a one-sided test that ignores multiplicity and has a pre-specified direction. The intervals are
constructed by inverting level-α tests to form a 1−α confidence set, then projecting that set
onto the coordinate axes to get confidence intervals. The tests have hyperrectangular acceptance
regions that minimize the maximum amount by which the acceptance region protrudes from the
orthant that contains the hypothesized parameter value, subject to a constraint on the maximum
side length of the hyperrectangle. R and SAS implementations are available online.

Key Words: Multiplicity, non-equivariant hypothesis test, one-sided test

1. INTRODUCTION

Standard simultaneous confidence intervals for the components of a multivariate mean serve
at least two purposes: They express the joint uncertainty in estimates of the components and they
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classify the sign of each component as positive, negative, or indeterminate. For the first purpose,
shorter intervals are preferable and standard procedures perform well. For the second, length is
less important than whether the intervals include values of only one sign. One-sided confidence
intervals classify signs well, but have infinite length—and the direction of the interval (upper or
lower) must be pre-specified.

Effects inferred to be positive when there is no adjustment for multiplicity can lose their
statistical significance when multiplicity is taken into account. The Women’s Health Initiative
(WHI) randomized controlled clinical trial of Estrogen plus Progestin hormone therapy for post-
menopausal women (Rossouw et al., 2002) illustrates this problem. The study reported simul-
taneous confidence intervals and individual confidence intervals that were not adjusted for mul-
tiplicity, for three primary endpoints. Implications differed: The unadjusted intervals showed
harm for two of three endpoints. The simultaneous intervals showed increase only for a com-
bined endpoint measuring global health. The clinical recommendations of the study were based
on the unadjusted confidence intervals.

Ignoring the statistical implications of multiplicity in medical research (research that is not
conducted for regulatory purposes) seems to be the rule rather than the exception. In an editorial
discussing WHI, Fletcher & Colditz (2001) write: “The authors present both nominal and rarely
used adjusted CIs to take into account multiple testing, thus widening the CIs. Whether such
adjustment should be used has been questioned . . . ” Benjamini (2010) finds that failure to adjust
for multiplicity is endemic in medical research: He estimates that less than 25% of the studies
reported in the New England Journal of Medicine that involve multiple testing took any account
of multiplicity.

Multiplicity should be taken into account, as is required in regulatory studies. But the tendency
of standard techniques for dealing with multiplicity to weaken clinical conclusions can be miti-
gated. For instance, in some cases the goal of testing can be relaxed to control the false discovery
rate rather than the familywise error rate (Benjamini & Yekutieli, 2005). Here we take a different
approach that still controls the familywise error rate: We develop simultaneous confidence inter-
vals that adaptively trade length for the ability to classify the sign as nonnegative or nonpositive
more frequently than standard intervals do, without pre-specifying a direction, while maintain-
ing simultaneous coverage probability. Where the data make it easy to draw conclusions about
the signs of the parameters, the new intervals are identical to conventional intervals. But where
conventional intervals cannot determine the sign of one or more parameters, the new intervals
sometimes can, at the cost of some length.

The new intervals work surprisingly well: Suppose that four Normal means are to be estimated
at confidence level 95% and the intervals are allowed to be 45% longer than conventional simul-
taneous intervals. When only one observation is small, the new intervals determine the sign of
the corresponding mean essentially as well as a one-sided test that ignores multiplicity and has
a pre-specified direction. When all four estimates are small, the new intervals still determine the
sign almost as well as two-sided tests that ignore multiplicity. Since many medical studies—for
ethical and cost reasons—operate near the boundary of statistical significance, the new intervals
help exactly where it matters.

The new intervals extend work by Benjamini et al. (1998), Benjamini & Stark (1996), and
Madar (2001). Benjamini et al. (1998) construct a 1−α two-sided univariate confidence interval
with nearly the same power to determine the sign of the parameter as 1−α one-sided confi-
dence intervals, without pre-specifying whether to use an upper or a lower one-sided interval.
Benjamini & Stark (1996) develop a simultaneous confidence procedure with more power than
conventional intervals to determine the signs of the components of an n-dimensional location
parameter.



97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

3

Here, we introduce a family {Aθ}θ∈ℜn of acceptance regions that leads to simultaneous confi-
dence intervals more directly analogous to the individual confidence intervals of Benjamini et al.
(1998): These acceptance regions, called quasi-conventional, protrude as little as possible from
the orthant that contains the hypothesized parameter value, subject to a constraint on the level of
the test and on the side lengths of the hyperrectangle. The quasi-conventional confidence inter-
vals that result from inverting the tests are not centered at the unbiased estimate when one or more
components of that estimate is small. Allowing asymmetry—which biases the tests—increases
the power to determine the signs of the components of the mean.

Quasi-conventional acceptance regions are equivariant under permutations and reflections of
the coordinates but not under translation. The same is true of the hyperrectangular acceptance
regions considered by Benjamini & Stark (1996), but those hyperrectangles have fixed aspect
ratios and are centered at the hypothesized parameter value; only the orientation of the hyper-
rectangle varies with the parameter. Those regions yield unbiased tests. Allowing bias, as we do
here, increases the power to determine the signs of the components.

Section 2 reviews the duality between confidence intervals and tests. The quasi-conventional
family of acceptance regions is presented in Section 3. Quasi-conventional confidence intervals
are presented in Section 4. Section 5 presents some bivariate illustrations; a comparison with
one-sided, unadjusted, and conventional intervals in four dimensions; a trivariate example from
the Women’s Health Initiative study of Hormone Replacement Therapy; and a 10-dimensional
example from a study on coffee and mortality. Section 6 discusses further properties and possible
generalizations of quasi-conventional intervals. Appendix 7 contains technical details and proofs,
including an explicit characterization of the extreme points of the quasi-conventional confidence
set, which determine the endpoints of the confidence intervals.

2. TESTS AND CONFIDENCE SETS

We seek simultaneous confidence intervals for the components of µ = (µ j)
n
j=1 from the n-

dimensional datum X = (X j)
n
j=1, where {X j−µ j}n

j=1 are iid with cdf F , and F has a symmetric,
continuous, unimodal density f (x) that is strictly decreasing for x≥ 0 in the support of f . Each X j
might be an unbiased estimator of µ j computed from more than one raw observation. Estimating
µ from independent Gaussian observations X ∼N (µ,σ2I) is an example. Section 6 discusses
joint confidence intervals when the components of X are correlated and gives some simulation
results for correlated Gaussian estimators of {µ j}.

We want the confidence intervals with simultaneous coverage probability 1−α > 1/2; i.e., the
chance that all n intervals cover their parameters should be at least 1−α . We want the intervals
to determine the signs of {µ j}; that is, for the confidence interval for µ j to contain values of only
one sign. And we want the intervals to be short.

Suppose that for each θ ∈ℜn, Aθ is the acceptance region for a level–α test of the hypothesis
that µ = θ using the datum X = (X j)

n
j=1. Then

SA(X)≡ {θ ∈ℜn : X ∈ Aθ} (1)

is a 1−α simultaneous confidence set for µ (Lehmann, 1986, pp. 89–90). Simultaneous confi-
dence intervals for the components of µ can be constructed by projecting SA(X) onto the coor-
dinate axes: For j = 1, . . . ,n, define

I j(X)≡ [inf{θ j : θ ∈ SA(X)}, sup{θ j : θ ∈ SA(X)}] . (2)
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Then

Pr
µ

{
n
∩

j=1
{I j(X) 3 µ j}

}
≥ 1−α. (3)

Hence, the intervals {I j} are simultaneous 1−α confidence intervals for {µ j}. Below, we tailor
the family {Aθ} so that I j determines the sign of µ j more often than conventional simultaneous
intervals do.

3. ACCEPTANCE REGIONS

The conventional choice of α-level acceptance regions is a set of hypercubes centered at the
hypothesized parameter values. The conventional acceptance region for the hypothesis µ = θ is

Bθ ≡
n
×
j=1

[θ j− cα ,θ j + cα ], (4)

where cα ≡ F(1+(1−α)1/n)/2 is the pth quantile of F . This family of acceptance regions is equiv-
ariant under permutations of the coordinates, reflections around the coordinate axes, and transla-
tions. The corresponding conventional confidence intervals are

I B
j (X)≡ [X j− cα ,X j + cα ]. (5)

We shall see that inverting a family of tests that is not equivariant under translations pro-
duces simultaneous confidence intervals that determine the signs of the components of µ more
frequently than conventional intervals do.

Suppose θ0 and θ1 differ in the sign of their jth component. The confidence set SA(X) does
not determine the sign of the jth component of µ if X ∈ Aθ0 ∩Aθ1 . Hence, if we wish to deter-
mine the signs of the components as frequently as possible, the acceptance region Aθ should be
confined as nearly as possible to the orthant in which θ lies. We consider only hyperrectangu-
lar acceptance regions, which correspond to conventional confidence sets when the regions are
hypercubes centered at the parameter. Šidák (1967) discusses of the merits of hyperrectangular
acceptance regions.

Let A (θ) denote the set of all hyperrectangles H =
n
×
j=1

[θ j−` j(θ),θ j +u j(θ)] that satisfy the

significance-level constraint

Pr
θ
{X /∈ H} ≤ α (6)

and a side-length constraint

` j(θ)+u j(θ)≤C, j = 1, . . . ,n. (7)

We will drop the argument θ when that does not introduce ambiguity. Limiting the maximum
side length to C limits the length of the confidence intervals that result from inverting the family
of tests to at most 3C/2−λ1, where λ1 > 0, defined in equation [12], depends on the distribution
F and the dimension n.

Let Z (θ) ≡ { j : θ j = 0} and N (θ) ≡ { j : θ j 6= 0}. (The mnemonic is that Z stands for
the zero components and N for the non-zero components.) We define the quasi-conventional
acceptance region Aθ for θ ≥ 0 as follows:

1. If there exist hyperrectangles H ∈A (θ) for which ` j = u j = cα , j ∈Z (θ), and θ j− ` j ≥ 0,
j ∈N (θ), then Aθ is the one with the smallest maximum side length.



193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

5

2. Otherwise, Aθ is the hyperrectangle H ∈ A (θ) with ` j = u j = cα , j ∈ Z (θ), for which
min j∈N (θ)(θ j− ` j) is largest.

Thus, Aθ is the conventional hypercube centered at θ whenever the smallest nonzero component
of θ is cα or larger. When some component of θ is less than cα , Aθ is a hyperrectangle that con-
tains only positive values of components j ∈N (θ) and has maximum side length not exceeding
C, if such a hyperrectangle can satisfy the significance-level constraint. When that is impossible,
Aθ is the hyperrectangle with side length not exceeding C that protrudes as little as possible into
other orthants for j ∈N (θ). The protrusion of the acceptance region into orthants other than the
one θ belongs to can be reduced or eliminated by lengthening the sides of the acceptance region
for large components of θ and by allowing Aθ to be centered at a point other than θ . This is the
key to the new method.

When θ is not in the positive orthant, the quasi-conventional acceptance region Aθ is defined
by reflecting the negative components about their coordinate axes. So, for example,

` j((θ1, . . . ,−θ j, . . . ,θn)) =−u j((θ1, . . . ,θ j, . . . ,θn)). (8)

The quasi-conventional acceptance regions are equivariant under reflections about the axes and
permutations of the coordinates: If π is a permutation of (1, . . . ,n), then

` j((θπ(i))
n
i=1) = `π( j)(θ) (9)

and

u j((θπ(i))
n
i=1) = uπ( j)(θ). (10)

Appendix 7·1 characterizes these acceptance regions precisely. Figure 1 shows exemplar bi-
variate quasi-conventional acceptance regions, which can be squares centered at θ , squares cen-
tered at a point other than θ , or rectangles, depending on the magnitudes of the components of
θ .

4. CONFIDENCE SETS

The confidence set for µ is S(X) = {θ ∈ℜn : X ∈ Aθ}. The simultaneous confidence intervals
for {µ j}n

j=1 are, for each j,

I j(X) ≡ [inf{θ j : θ ∈ S(X)}, sup{θ j : θ ∈ S(X)}]
= [inf{θ j : X ∈ Aθ}, sup{θ j : X ∈ Aθ}] . (11)

This amounts to projecting the convex hull of S(X) onto the coordinate axes. The endpoints
of the intervals for different components might be attained by different parameter vectors, so
the intervals can be jointly conservative. The set S(X) is hard to report, to interpret, and to use
directly. The n confidence intervals, one for each component of the parameter, are more useful.

Since the acceptance regions are equivariant under reflection, the confidence intervals are too.
We therefore focus on the case X≥ 0; other cases are constructed by reflecting the confidence set
about the coordinate axes of those components of X that are negative. Treating the vector X as
fixed, we denote the confidence interval for µ j by (L j,U j), j = 1, . . . ,n. The confidence intervals
depend on X in a surprisingly simple way, described below.

Define

λk ≡min{x : (2F(C/2)−1)n−k× (F(x)+F(C− x)−1)k ≥ 1−α}, (12)
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Fig. 1. Bivariate quasi-conventional acceptance regions

(a) Squares with side length cα centered at θ when min(|θ1|, |θ2|) ≥ cα or θ = 0; (b) Squares
with side length C that are centered at θ in one coordinate when min{|θ1|, |θ2|}< cα and

∣∣∣|θ2|−

|θ1|
∣∣∣ ≥C/2−λ1 (top left and bottom); Squares with side length C that are not centered at θ in

either coordinates when min{|θ1|, |θ2|} < cα and
∣∣∣|θ2| − |θ1|

∣∣∣ < C/2− λ (θ) ≤ C/2− λ1 (top
right). (c) Rectangles when one component of θ is zero.

C ≡ { j : X j ≤C}, (13)

C ( j)≡ {i 6= j : C−Xi ≥ X j}, (14)

and

κ( j)≡ #{i 6= j : C−Xi ≥ X j}= #C ( j). (15)

These functions allow us to bracket the endpoints of the interval well a priori. In the most com-
plex case, the lower endpoint can be found exactly by solving an optimization problem with one
variable:

hk(x)≡ x−max
y
{y : [2F(C/2)−1]n−k−1× [F(C−x)−F(−x)]k× [F(C−y)−F(−y)]≥ 1−α}.

(16)
The upper confidence bound U j for θ j is never larger than X j +C/2, since no acceptance region
extends below θ j by more than C/2. The lower confidence bound L j for θ j is never below X j−
(C−λ1), since no acceptance region contains values of a component that are larger than from
the corresponding component of θ by more than C− λ1. Hence, the length of any confidence
interval is at most 3C/2−λ1.

Theorem. Upper Confidence Bounds

1. If #C = 0, U j = X j + cα for all j.
2. If #C = 1, U j = X j + cα for j ∈ C and U j = X j +C/2 for j /∈ C .
3. If #C > 1, U j = X j +C/2 for all j.

Theorem. Lower Confidence Bounds
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1. If X j >C and #C = 0, L j = X j− cα .
2. If X j >C and #C > 0, L j = X j−C/2.
3. If λκ( j)+1 < X j ≤C, L j = (X j− (C−λ1))+.
4. If λκ( j) < X j ≤ λκ( j)+1, L j = hκ( j)(X j).
5. If 0 < X j ≤ λκ( j) then L j = X j−C/2.
6. If X j = 0 and #C = 1, L j = 0− cα . �

Proofs of both theorems are in the appendix 7. R and SAS code for computing quasi-
conventional intervals is available at the URL www.math.tau.ac.il/~ybenja.

5. EXAMPLES AND ILLUSTRATIONS

5·1. Bivariate Normal Confidence Regions and Intervals
Figure 2 shows quasi-conventional bivariate 95% confidence sets and simultaneous confidence

intervals for a Normal mean, for representative values of X. The intervals are sometimes of the
form X j± cα , but not when any component of X is close to zero.

Figure 3 contrasts the values of X for which conventional simultaneous intervals determine the
signs of the components of µ with the set for which quasi-conventional intervals determine those
signs. The set of data values for which quasi-conventional confidence intervals determine the sign
of at least one component of µ strictly includes the set for which conventional intervals do, so the
quasi-conventional intervals indeed determine the sign more frequently. The values themselves
seem almost too good to be true. For instance, suppose that the quasi-conventional acceptance
regions have C/2 = 1.8cα . The conventional simultaneous intervals have length 2cα = 4.78,
while the quasi-conventional intervals have maximum length 3C/2−λ1 = 10.445, no more than
21/3 times as long as the conventional intervals in the worst case. Then if one component of X
is large, the sign of both parameters is determined when the smaller component of X is larger
in magnitude than λ1 = 1.65. This is comparable to 1.645, the threshold to determine sign of
a component using a one-sided regular interval—with a pre-determined direction. The signs of
both components of the parameter are determined when both components of the datum are larger
than λ2 = 1.95. This is smaller than 1.965, the threshold to infer the signs of the components
separately, not simultaneously. Quasi-conventional intervals have remarkable power to determine
signs.

5·2. Example: Four-dimensional sign determinations
This section compares quasi-conventional sign determinations with those of one- and two-

sided unadjusted confidence intervals and conventional simultaneous confidence intervals in 4-
dimensional Normal examples, at 95% confidence level. We vary X1 from 1 to 3 in increments
of 0.05 and find the lower endpoints of 95% confidence intervals for µ1.

To examine the effect of the number of small and large observations, we set some of the values
of X2, X3, and X4 to 10 and the rest to 0.5. Figure 4 plots the lower endpoints for C/2 = 1.2cα

(the upper row of subplots) and C/2 = 1.8cα (the lower row). In the first panel in each row, all
three of {X2,X3,X4} are equal to 0.5 and none is equal to 10. In the subsequent panels in each
row, the number observations equal to 10 increases from 0 to 3.

The result is striking: Even when all three other components of X are small (0.5), the quasi-
conventional intervals determine the sign of µ1 for values of X1 roughly midway between those
for which unadjusted two-sided intervals and conventional simultaneous intervals do. When only
two are small, the sign of µ1 is determined for values of X1 nearly as small as unadjusted two-
sided intervals require. When the other three components of X are large, the quasi-conventional

www.math.tau.ac.il/~ybenja
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Fig. 2. Bivariate quasi-conventional confidence sets and
confidence intervals for a bivariate Normal mean, C/2 =

1.8cα

Let LXU denote the 95% confidence interval around the estimator X . (a) I1 = −19.02−15−10.98
and I2 = −4.43−2.20.00 (b) I1 = −9.23−7−0.60 and I2 = 10.971519.03 (c) I1 = 0.001.986.01 and
I2 = 0.0048.03 (d) I1 = 12.761517.24 and I2 = −14.23−12−9.77.

intervals determine the sign of µ1 essentially as well as unadjusted one-sided intervals with pre-
specified direction. That is, the quasi-conventional interval then allows µ1 to be inferred to be
nonnegative for values of X1 very close to z1−α .

Most of the benefit of quasi-conventional is evident even when C/2 = 1.2cα , for which the
maximum length of the quasi-conventional confidence intervals is 3C/2− λ1 = 7.251, about
45% longer than the the standard simultaneous confidence interval, which has length 4.989. The
incremental improvement in sign determinations by allowing the acceptance regions to be 80%
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Fig. 3. Sign determinations by quasi-conventional and
conventional simultaneous confidence intervals, C/2 =

1.8cα .

Left panel: Data values for which 95% quasi-conventional intervals determine the sign of one or
both components of µ . Right panel: Data values for which 95% conventional intervals determine
the sign of one or both components of µ . The white regions are data values for which both
components of µ are determined to be nonnegative, the light gray regions are data values for
which one component is determined to be nonnegative, and the dark gray regions are data values
for which neither component is determined to be nonnegative.

longer than standard hypercube acceptance regions, leading to a maximum confidence interval
length about 137% longer than the standard simultaneous confidence interval, is small. Of course,
this depends on the dimension of the problem and on that fact that the estimators are Gaussian in
this example.

The quasi-conventional lower endpoint as a function of X1 is step-like: When X1 is too small
to allow the sign of µ1 to be determined, the lower endpoint is below even the lower endpoint
of the conventional simultaneous interval. But as X1 becomes large enough to allow µ1 to be
determined to be nonnegative, the lower endpoint abruptly rises to zero. It is equal to zero for a
range of X1, rather than crossing zero at a single point. (It eventually rises, but for larger values
of X1 than these plots show.) A cost of the improved ability to determine signs is that the lower
endpoint of the confidence interval for µ1 is equal to zero for values of X1 for which the lower
endpoint of a conventional simultaneous interval is strictly positive. And quasi-conventional con-
fidence intervals are generally longer than conventional simultaneous intervals when one or more
components of X are small. Quasi-conventional intervals are not a free lunch: They just let you
start dinner early.
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Fig. 4. Lower endpoints of 95% confidence intervals for
the first component µ1 of a 4-dimensional Normal mean µ

as a function of X1, the estimated value of µ1.

Unadjusted one-sided lower confidence bounds (small dashes), unadjusted two-sided (large
dashes), conventional two-sided simultaneous (alternating dashes and dots), and quasi-
conventional simultaneous (solid lines). In the top row, C/2 = 1.2cα , which constrains the length
of the quasi-conventional confidence interval to be at most 45% longer than standard simultane-
ous intervals. In the bottom row, C/2 = 1.8cα , which constrains the quasi-conventional intervals
to be at most 137% longer than standard simultaneous intervals. In each row, the number of other
estimates (X2,X3,X4) that are “large” increases from 0 to 3. Estimates that are “large” are set to
10; the rest are set to 0.5.

5·3. Women’s Health Initiative Trial of Hormone Replacement Therapy
The results of the Women’s Health Initiative (WHI) randomized controlled clinical trial of

Estrogen plus Progestin hormone therapy for postmenopausal women are reported in Rossouw
et al. (2002). The primary endpoint for success of the therapy was a decrease in Coronary Heart
Disease (CHD); the primary adverse endpoint was Invasive Breast Cancer (IBC); and there was
a combined endpoint called “Global Health Index” (GHI), which combined risks and benefits.
Larger values of the three parameters indicate worse health. The trial was stopped early because
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Endpoint HR Unadjusted Conventional QC (C/2 = 1.2cα ) QC (C/2 = 1.8cα )
IBC 1.26 [1.00,1.59] [0.95,1.67] [0.90,1.77] [0.76,2.1]
CHD 1.29 [1.02,1.63] [0.97,1.72] [1.00,1.82] [1.00,2.16]
GHI 1.15 [1.03,1.28] [1.01,1.31] (1.00,1.35] (1.00,1.45]

Table 1. Estimated hazard rates, unadjusted (non-simultaneous) 95% confidence intervals, con-
ventional simultaneous, and quasi-conventional (QC) simultaneous 95% confidence intervals
for the three endpoints in the Estrogen + Progestin Women’s Health Initiative study of hormone-
replacement therapy. The intervals are based on the normal approximation to the log odds ratio.

treatment unexpectedly increased CHD and increased IBC beyond a predetermined threshold.
The GHI indicated that, overall, risk outweighed benefit.

As mentioned in the introduction, the study reported simultaneous confidence intervals and
intervals that were not adjusted for multiplicity, and the two sets of intervals supported different
conclusions: The unadjusted intervals showed increases in GHI and the risk of IBC and CHD,
while the simultaneous intervals were consistent with no increase in risk of IBC and CHD.

Table 1 shows the estimated hazard ratio (HR) for the three endpoints, unadjusted confidence
intervals, conventional simultaneous confidence intervals, and quasi-conventional simultaneous
confidence intervals for two choices of C. (All are based on the normal approximation to the log
odds ratio.) Computing the quasi-conventional intervals is described in appendix 8. The quasi-
conventional 95% simultaneous confidence intervals showed increase in CHD, the primary end-
point, as well as for GHI, and hence support the clinical recommendations of the study while
maintaining simultaneous confidence. Note that in this case, CHD is an efficacy endpoint that
became an adverse endpoint: The fact that quasi-conventional intervals have essentially the same
power as a one-sided test—but without the need to pre-specify the direction—is crucial.

5·4. Coffee and Mortality
Lopez-Garcia et al. (2008) report an observational study of the association between coffee

consumption and mortality from cardiovascular disease, cancer, and all causes. The study in-
cluded 18 years follow-up in 41,736 men and 24 years in 41,736 men and 86,214 women. The
raw results show a positive association of coffee intake and mortality from all causes. However,
after adjustments for age, smoking status, alcohol consumption, and BMI, a Cox proportional
hazard model shows weak negative association of relative risk of mortality from all causes with
increasing coffee consumption—but only for women. The study reports confidence intervals for
relative risk; those intervals do not appear to take multiplicity into account, even though there
were inferences for three endpoints, two genders, and five consumption groups within each gen-
der.

Table 2 shows the estimated relative risks, the reported (unadjusted) 95% confidence intervals,
conventional simultaneous 95% confidence intervals, and quasi-conventional simultaneous 95%
confidence intervals using C/2 = 1.8cα . The simultaneous intervals are for the single endpoint
of mortality from all causes, but are simultaneous for the 10 gender-by-consumption groups. The
unadjusted intervals are consistent with an increased risk of mortality for men for all consumption
groups, but the relative risk of mortality is inferred to be less than one for women who drink 5 or
more cups per week, four of the five consumption groups.

The conventional simultaneous intervals are consistent with an increase in mortality for
women who drink 5–7 cups per week or more than 6 cups per day, two of the groups for which
unadjusted confidence intervals show a decrease in mortality. The quasi-conventional intervals
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Consumption 1c/mo–4c/week 5–7c/week 2–3c/day 4–5c/day ≥ 6c/day
Men

Estimated RR 1.07 1.02 0.97 0.93 0.80
Unadjusted [0.99, 1.16] [0.95, 1.11] [0.89, 1.05] [0.81, 1.07] [0.62, 1.04]
Conventional [0.95, 1.21] [0.90, 1.16] [0.86, 1.09] [0.76, 1.14] [0.54, 1.17]
QC [0.86, 1.32] [0.82, 1.27] [0.79, 1.19] [0.64, 1.34] [0.40, 1.58]

Women
Estimated RR 0.98 0.93 0.82 0.74 0.83
Unadjusted [0.91, 1.05] [0.87, 0.98] [0.77, 0.87] [0.68, 0.81] [0.73, 0.95]
Conventional [0.88, 1.09] [0.86, 1.01] [0.75, 0.90] [0.65, 0.85] [0.64, 1.01]
QC [0.82, 1.18] [0.81, 1.00] [0.70, 1.00] [0.58, 1.00] [0.58, 1.00]

Table 2. Estimated relative risk, unadjusted confidence intervals, conventional simultaneous
confidence intervals, and quasi-conventional (QC) simultaneous confidence intervals for risk of
mortality from all causes. Reference group: < 1 c/month. 95% Confidence intervals. The quasi-
conventional intervals use C/2 = 1.8cα .

support (essentially) the same conclusions as the unadjusted intervals: Women in the four groups
who drink more than 5 cups per week do not have an elevated risk of mortality relative to the
control group, which consumed less than 1 cup per month. Notice that the quasi-conventional
intervals are rather longer for men and for the group of women who consumed 1 cup per month
to 4 cups per week, groups for which even the unadjusted intervals did not permit an inference
about whether the relative risk exceeds 1.

6. DISCUSSION

Quasi-conventional simultaneous confidence intervals determine the signs of the components
of a multidimensional location parameter µ more often than conventional simultaneous confi-
dence intervals do. Quasi-conventional intervals are based on a family of hypothesis tests with
non-equivariant hyperrectangular acceptance regions that exploit asymmetry (which entails bias)
to reduce the the amount by which the acceptance region for θ protrudes from the orthant that
contains θ . Inverting these tests and projecting the convex hull of the resulting confidence set
onto the coordinate axes yields quasi-conventional simultaneous confidence intervals.

When all components of the datum X are all large, quasi-conventional intervals are identical
to conventional simultaneous confidence intervals. But when any component of X is small, the
quasi-conventional intervals determine the signs of components of µ more often, power pur-
chased by an increase in length compared with conventional intervals. The increase in length is
controlled by a parameter C: The maximum length is 3C/2−λ1, where cα ≥ λ1 > 0.

The quasi-conventional intervals include parameter values of only one sign for some values
of |Xi| < cα . When C is not much larger than 2cα (the length of conventional simultaneous
intervals), quasi-conventional intervals determine signs better than conventional two-sided in-
tervals that ignore multiplicity. They do not exclude 0 until |Xi| ≥ cα . Madar (2008) defines
quasi-conventional acceptance regions differently for components of µ that are equal to zero,
resulting in intervals that are open at 0 for some data for which the quasi-conventional inter-
vals presented here are closed. Since it is implausible that the point null hypothesis µ = 0 is
exactly true, whether the intervals are open or closed at zero has little effect on their utility, so
in the present paper we simplified the definition for clarity of exposition. The software available
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at www.math.tau.ac.il/~ybenja. for computing quasi-conventional intervals uses the more
complicated definition.

Quasi-conventional confidence intervals have simultaneous confidence level 1−α if the es-
timators of the components of µ are independent. If the estimators are dependent but the ac-
ceptance regions have probability at least 1−α under that dependence, quasi-conventional con-
fidence intervals still attain their nominal level. Some quasi-conventional hyperrectangles cali-
brated for independent, jointly Gaussian estimators can have probability less than 1−α under
dependence, but simulations show that the resulting intervals remain nearly conservative (Madar,
2008). For example, for bivariate Gaussian estimators with C/2 = 1.8cα and α = 0.05, quasi-
conventional confidence intervals designed to have 95% confidence when the components of the
data are independent have estimated simultaneous coverage above 94.94% (s.e. 0.005%) for all
values of the correlation coefficient. Probability inequalities for hyperrectangular regions for de-
pendent Gaussian and other elliptically contoured densities explain this empirical finding (Šidák,
1967, 1971; Das Gupta et al., 1972; Madar, 2008).

Joint confidence sets can be tailored for inferences about scale rather than location, follow-
ing the strategy outlined in Benjamini & Stark (1996). Constructing confidence sets to attain
other goals can be useful too. For instance Berger & Hsu (1996), Brown et al. (1995), ?, and
Hsu et al. (1994) address confidence sets for bioequivalence, and Zhong & Prentice (2008) and
Benjamini & Weinstein (2010) address inference conditional on the event that the estimator ex-
ceeds a threshold. We see the present work as a contribution in the larger context of optimizing
confidence sets for specific scientific applications.

Quasi-conventional methods guarantee simultaneous coverage, but not all inference problems
with multiple parameters require simultaneity: It is often enough to adjust for selection effects by
controlling the False Coverage Statement Rate (FCR) (Benjamini & Yekutieli, 2005). Combining
FCR with the univariate confidence intervals of Benjamini et al. (1998), yields more powerful
selection-adjusted sign determinations.

In the two examples in section 5·3 and 5·4, quasi-conventional simultaneous confidence inter-
vals allow the same clinical conclusions as unadjusted confidence intervals, while conventional
simultaneous confidence intervals do not. Of course, quasi-conventional intervals will not al-
ways make the same sign determinations as unadjusted intervals. The cases where they differ are
where adjusting for simultaneity protects against selection bias. The cost of the improved ability
to determine the signs of parameters compared with conventional simultaneous confidence in-
tervals is that the intervals are wider: Estimating effect sign comes at the expense of estimating
effect size.

7. DERIVATIONS AND PROOFS

This section characterizes quasi-conventional acceptance regions in a way that helps find the extreme
points of the confidence sets and shows how to project the confidence sets to find simultaneous confidence
intervals.

7·1. Characterizing Aθ

Assume without loss of generality that θ ≥ 0. As noted above, acceptance regions for θ in other orthants
are obtained by reflection.

The significance-level constraint, together with symmetry and unimodality of f , requires C ≥ 2cα .
Setting C = 2cα reproduces the conventional confidence intervals, so the interesting case is C > 2cα . For
technical reasons, we require the support of f to contain the interval [−C,C]; otherwise, we might as well
decrease C, because an acceptance region satisfying the side-length constraint could have significance
level α = 0.

www.math.tau.ac.il/~ybenja
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It follows from properties 1 and 2 and inequality 7 (see section 3) that for θ ≥ 0,

` j ≤ u j, (A1)

` j +u j ≤C, (A2)

and hence

` j ≤C/2. (A3)

Define

p(c) ≡ F(c)−F(−c),

t = t(θ)≡ min
j∈N (θ)

θ j,

z = z(θ)≡ #Z (θ).

The acceptance region Aθ can be characterized using two functions. The first is C(θ), the smallest possible
maximum side length of a hyperrectangular acceptance region that gives a test with the significance level
α , has sides [−cα ,cα ] for j ∈Z (θ), and contains only nonnegative values for the components j ∈N (θ):

C(θ)≡ inf

{
x : [p(cα)]

z× ∏
j∈N (θ)

[F(min(θ j,x/2))+F(x− (min(θ j,x/2)))−1]≥ 1−α

}
. (A4)

Note that C(θ) ≥ 2cα . (It can be infinite—we define the infimum over the empty set to be infinity.) If
C(θ) ≤ C, there is a hyperrectangular acceptance region for a level α test of the hypothesis µ = θ that
has side lengths no larger than C and is entirely confined to the positive orthant. If C(θ)>C, Aθ crosses
at least one axis.

The second function is λ (θ), the value of ` j for the smallest nonzero θ j; the acceptance region protrudes
from the positive orthant by (λ (θ)− t(θ))+:

λ (θ)≡ inf{ x : [p(cα)]
z× [p(C/2)]#{ j∈N (θ):θ j≥C/2+t(θ)−x}×

× ∏
j∈N (θ):θ j<C/2+t(θ)−x

[F(θ j + x− t(θ))+F(C− (θ j + x− t(θ)))−1]

≥ 1−α

} . (A5)

If C(θ)>C, then Aθ contains x ∈ℜn with x j = t(θ)−λ (θ)< 0 for some j ∈N (θ). If C(θ)≤C, then
λ (θ)− t(θ)≤ 0.

Recall that ` j = u j = cα for j ∈ Z (θ). The values of ` j and u j for j ∈N (θ) can be characterized
using C(θ):

• If C(θ) = 2cα , then ` j = u j = cα , j ∈N (θ).
• If 2cα <C(θ)≤C, then ` j(θ) = min(θ j,C(θ)/2) and u j =C(θ)− ` j(θ), j ∈N (θ).
• If C(θ)>C, then for j ∈N (θ), u j =C− ` j and

` j =

{
C/2, θ j ≥C/2− (λ (θ)− t(θ))
θ j +(λ (θ)− t(θ)), otherwise. (A6)

In the first case, Aθ is the conventional hypercube acceptance region. In the second case, the sides of Aθ

have equal length for j ∈N (θ), Aθ contains only positive values for the components j ∈N (θ), and
Aθ is not centered at θ . In the third case, the sides of Aθ have equal length C for j ∈N (θ), Aθ contains
negative values for some components j ∈N (θ), and Aθ is not centered at θ .

Any particular hyperrectangle H with side lengths no less than 2cα and no greater than C is the ac-
ceptance region for at most one θ unless H crosses two or more coordinate axes equally. On the other
hand, if (i) H crosses two or more coordinate axes equally, (ii) the side lengths of H are equal to C for
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j ∈ N , and (iii) H does not protrude too far from the positive orthant, then there can be a manifold
of values of θ that have H as their acceptance region. For instance, in dimension n = 2, the hyperrect-
angle H = [0,C]× [0,C] is the acceptance region for θ = (λ1,C/2), θ = (C/2,λ1), θ = (λ2,λ2), and
infinitely many other values of θ . (Note that H gives a biased test for all these parameters: The chance
of rejecting the null is larger than it is for θ = (C/2,C/2), which has a different acceptance region,
[C/2−cα ,C/2+cα ]× [C/2−cα ,C/2+cα ].) The manifold Θ(H) of values of θ that have a given accep-
tance region H plays an important role in inverting the tests to form confidence intervals.

7·2. Inverting and Projecting Aθ

Proof of theorem 1 Upper Confidence Bounds.
Recall that X≥ 0 is fixed. Note that X is always in the acceptance region for θ = X. The proof below

follows the numbered assertions in the theorem.

1. Any parameter θ with one or more components close enough to zero to cause C(θ) to be larger than
cα is so close to zero that Aθ cannot include X.

2. Observe that θ cannot be close enough to the axes in components k /∈ C to cause u j to be larger than
cα . Now consider j /∈ C . Starting with θ = X, decrease the component θk, k ∈ C , until C(θ) = C,
which is obviously possible. Then the component θ j can be increased to X j +C/2; the resulting Aθ

includes X. Since ` j ≤C/2, this construction is extremal.
3. Starting with θ =X, decrease any component θk, k ∈C , k 6= j, until C(θ) =C, which again is possible.

Then increase θ j to X j +C/2; the resulting Aθ 3 X. Since ` j ≤C/2, this construction is extremal.

�
Proof of theorem 2 Lower Confidence Bounds.

The proof of (1) is immediate. To show (2), note that η j = X j−C/2 is feasible since there is another
i ∈ C , i 6= j, for which ηi can be reduced towards 0 until all other sides of the acceptance region have
length C and are centered. If η j < X j−C/2, the acceptance region for η cannot cross 0 while having jth
sidelength no larger than C. Therefore, what matters for the lower confidence bound is the upper extent of
the acceptance region, ` j, but ` j ≤C/2.

The other parts of Theorem 2 follow from a series of lemmas, starting with two utility lemmas.

Lemma. Suppose X ∈ Aθ and C(θ) ∈ (cα ,C). Then there exists η ∈ℜn such that X ∈ Aη , C(η) =C
and |ηi| ≤ |θi|, and sgn(ηi) = sgn(θi), i = 1, . . . ,n. �

Proof. Suppose C(θ) ∈ (cα ,C) with θ ≥ 0. We have Xi ∈ [θi− `i,θi +ui], i = 1, . . . ,n, with `i = ui = cα ,
i∈Z and `i+ui =C(θ), i∈N . For some k, 0 < |θk|< cα ≤C (or else C(θ) = 2cα ). For that k, |Xk|<C
and sgn(Xk) = sgn(θk), or else X /∈ Aθ . Define

γk(θ)≡ arg inf{aθk : a ∈ [0,1], β ∈ℜn, βi = θi, i 6= k, and βk = aθk and C(β )≤C}. (A7)

Let ηi = θi, i 6= k, and let ηk = γk(θ). Then

1. C(η) =C
2. |ηi| ≤ |θi| and sgn(ηi) = sgn(θi), i = 1, . . . ,n
3. For i 6= k, `i(η)≥ `i(θ) and ui(η)≥ ui(θ), so [ηi− `i(η),ηi +ui(η)]⊃ [θi− `i(θ),θi +ui(θ)] 3 Xi
4. If θk ≥ 0, [ηk−`k(η),ηk +uk(η)] = [0,C]3 Xk, and if θk < 0, [ηk−`k(η),ηk +uk(η)] = [−C,0]3 Xk.

�

Lemma. Suppose X ∈ Aη where η j < 0 and ηi > 0, ∀i 6= j. Suppose ηk > |η j| for some k ∈ C ( j).
Define η ′ such that η ′i = ηi, i 6= k, and η ′k =−η j. Then:

1. X ∈ Aη ′

2. ` j(η
′)≥ ` j(η). �
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Proof. Since Aη crosses orthants, `i(θ)+ui(θ) =C, ∀i∈N . Suppose Xi ≤C−X j. If we set η ′i =−η j <
ηi, then ` j(η

′)≥ ` j(η) and ` j(η
′) = `i(η

′). Since Aη 3 X,

η j + ` j(η)≥ X j, (A8)

and since ` j(η
′)≥ ` j(η),

η j + ` j(η
′)≥ X j. (A9)

�
Theorem 2 follows from the previous two lemmas and a few more specific results:

Lemma. If λκ( j)+1 < X j, L j ≥ 0. �

Proof. The acceptance regions are equivariant under reflections around the axes, so it suffices to consider
θ ≥ 0 and imagine varying the signs of some components of the datum.

Suppose that the maximum protrusion of Aη from the positive orthant is at least X j, so that there is
a datum with jth component −X j that is in the acceptance region for η . That is, suppose that (λ (η)−
t(η))+ ≥ X j. The acceptance region Aη is always centered in every coordinate in which it does not cross
an axis by at least X j: The ith side is [ηi−C/2,ηi+C/2] unless C/2−ηi ≥ X j. (Otherwise, the maximum
protrusion could be reduced by making Aη more nearly symmetric in the ith direction.) It follows that if
Aη crosses any axis, it is symmetric in every direction that does not cross maximally.

By the definition of λk, for Aη to protrude from the positive orthant by x > λk−1, it must protrude by x
from the positive orthant in at least k components. (If it protruded in fewer components than that, it would
be symmetric in enough components to allow greater asymmetry in those components that cross axes, and
hence would protrude less than x.)

The acceptance region for η cannot protrude across an axis by more than x and also include a value on
the same side of that axis that is above C− x, because the side lengths of the acceptance region cannot
exceed C.

Combining these three facts shows that if X j > λk−1 and there are not at least k−1 other components i
for which C−Xi ≥ X j, there is no η ≥ 0 with an acceptance region that includes the value −X j in the jth
coordinate.
�

Lemma. If λκ( j) < X j ≤ λκ( j)+1, then L j = hκ( j)(X j). �

Proof. Define ηi = Xi +C/2 for i /∈ C ( j), i 6= j. Define ηi = λκ( j)+1−X j otherwise. Since λκ( j) < X j ≤
λκ( j)+1, η ≥ 0. Then η has exactly κ( j)+1 equal coordinates, so Aη protrudes from the positive orthant
at most by λκ( j)+1. Hence for i = j and for i ∈ C ( j), ηi−λκ( j)+1 = λκ( j)+1−X j−λκ( j)+1 =−X j.

For i ∈ C ( j), −X j +C ≥ Xi, and for i = j,X j < C/2 implies that −X j +C ≥ X j. Construct η ′ so that
η ′j = −η j and η ′i = ηi for i 6= j. Then X ∈ Aη ′ . There is a manifold of parameter values sharing this
acceptance region: Θ≡ {θ : Aθ = Aη ′}. The lower confidence bound for θ j is no larger than

−max
θ∈Θ

{θ j : θi ≤ X j−λκ( j)+1 for i ∈ C ( j)}, (A10)

which is the maximization problem solved by hκ( j)(X j) if θi is set to 0 for all i ∈ C ( j).
�

Lemma. If X j ≤ λκ( j), L j = X j−C/2. �

Proof. Define η j = C/2−X j, and for i 6= j define ηi = λκ( j)−X j if i ∈ C ( j) and ηi = Xi +C/2 for
i /∈ C ( j). Since t(η) = λκ( j)−X j, and λ (η) = λκ( j),

η j =C/2−X j =C/2− (λκ( j)− (λκ( j)−X j)) =C/2− (λ (η)− t(η)), (A11)

The condition in equation (A6) (case 3) in the definition of the acceptance region is satisfied, and hence
` j = C/2. Therefore, η j −C/2 = (C/2−X j)−C/2 = −X j is the lower edge of the acceptance region
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in direction j: The region includes −X j. By reflection, X is in the acceptance region for η ′, where η ′j =
X j−C/2, and η ′i = ηi for i 6= j.

�

Lemma. If X j = 0 and #C = 1, then L j =−cα . �

Proof. Consider ηi = Xi− cα for all i, so that η j =−cα . This acceptance region for this parameter value
contains X, as shown above. For an acceptance region for a parameter with jth component less than −cα

to include X would require that for some i 6= j, ui + `i > 2cα . But this is impossible because |Xi| ≤ C,
∀i 6= j.

�
These completes the proof of the six cases of theorem 2.

8. CALCULATING NEW CONFIDENCE INTERVALS FOR WHI
We rely on the fact that the hazard ratio estimates, transformed to log-odds ratios, are approximately

Gaussian distributed. We infer standard errors from the widths of the unadjusted 95% confidence intervals
reported in the study.

The transformed, studentized datum is X = (1.947,2.134,2.558). For α = 0.05 and C/2 = 1.2cα

we compute: λ1 = 1.728,λ2 = 1.992,λ3 = 2.125, and C/2 = 2.865 (taking C/2 = 1.8cα yields λ1 =
1.645,λ2 = 1.955,λ3 = 2.121, and C/2 = 4.298).

To apply the results from section 7·2, first note that X2 +X3 ≤ C, so κ( j) = 3, ∀ j. From X1 < λ2 it
follows that the confidence interval for IBC is I1(X) = [X1−C/2,X1 +C/2].

Next, I2(X) = [0,X2 +C/2], since cα > X2 > λ3, and I3(X) = (0,X3 +C/2] because C > X3 > cα .
Transforming back into confidence intervals for the hazard ratio on the original scale produces the

simultaneous 95% intervals in Table 1.
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