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Abstract

Sampling items using probability proportional to a bound on the

possible error in the item (PPEB) has a long history in financial au-

diting, but has only recently been suggested for auditing elections.

How large a PPEB sample should be drawn to have confidence 1− α

that the election outcome is correct if the sample includes only “small”

errors? What is the confidence that the outcome of the election is cor-

rect, given the discrepancies a PPEB audit uncovers, whatever their

size? If one wants to end up with confidence level 1− α, how should

one increase the PPEB sample size if discrepancies are found, and
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when can one stop auditing? This paper develops a simple way to

answer these questions, and shows how techniques from financial au-

diting can also be adapted to answer these questions. It develops a

conservative sequential test of the hypothesis that the outcome of the

election is incorrect based on the vote-counting errors found in a hand

tally of PPEB sample of precincts. It also shows how to use PPEB

with stratification.

Keywords: hypothesis test, sequential test, auditing, elections, probability

proportional to size, monetary unit sampling.
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1 Introduction

Advantages of drawing financial audit samples using statistical methods have

been known for more than fifty years (e.g., [31, 29, 9]). It has been known for

almost as long that standard statistical techniques for analyzing accounting

errors can be grossly inaccurate, because populations of accounting errors

tend to be mostly zero, with rare large values. See, e.g., Stringer [26] and

references in [19].

Populations of vote-counting errors are similar: typically, precinct-level

discrepancies are at most a few votes, but fraud, bugs and other gross errors

such as miscalibrated optical scanners or misplaced boxes of ballots can pro-

duce discrepancies of thousands of votes. This is essentially the “black swan”
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problem (Taleb [27]): rare large values are unlikely to turn up in samples of

moderate size, and the normal approximation can grossly underestimate the

incidence of extreme values in the population—and hence their effect on the

population total.

In both financial and electoral audits, a key question is whether the total

error is material . The notion of materiality in financial auditing is slippery.

Error in a financial report is material if a reasonable person relying on the

report would have acted differently but for the error. In electoral auditing,

materiality is more straightforward: error is material if it changed the appar-

ent outcome of the contest by making the true winning candidate or position

appear to lose.

Several classes of methods have been developed to deal with statistical

audit data. The most basic uses attributes : does an item in the sample have

error or not? Election auditing methods such as those of Dopp and Stenger,

McCarthy et al., Rivest and Saltman [7, 16, 21, 22] are based on attributes.

These methods do not make use of the magnitude of any error that is found.

In essence, they ask, “If the total error is large enough to affect the outcome,

what is the chance that a sample of a given size will find any error at all?”

These methods use a simple random sample (SRS) of precincts: every set of

n of the N precincts in the race is equally likely to be selected for audit. As

a consequence, every precinct has the same chance of being audited.

For determining whether the value of a financial account is materially

overstated, it is common to sample items with probability proportional to

their book value, rather than with equal probability. This is called monetary
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unit sampling (MUS) or dollar unit sampling . See, e.g., [1, 3, 4, 8, 26].1

MUS is an example of sampling with probability proportional to size (PPS)

Its use in accounting appears to have originated with Stringer [26].2 In

inferences about the total overstatement, it is common to assume that the

overstatement of each item is between zero (i.e., the book value of the item

is correct) and the book value of the item (i.e., the true value of the item is

zero). The book value is then an upper bound on the overstatement error.

MUS thus samples each item with probability proportional to an error bound

for the item (PPEB).

Sampling precincts with probability proportional to a bound on the er-

ror in the precinct vote count (such as the number of ballots cast) has been

proposed for election audits [12, 2, 24], but to my knowledge no jurisdiction

currently allows PPEB sampling for post-election audits. Election integrity

activists are drafting sample audit bills for several states, and sanctioning

PPEB is appealing because, for a given level of confidence, it could lead

to lower workloads than simple or stratified random sampling [2]. If PPEB

audits are permitted, the research on MUS in financial auditing becomes rel-

evant for election auditing—which contains methods that can be re-purposed

to calculate the confidence that a full recount would not find a different win-

1Some methods rely on parametric approximations [14, 28], Bayesian prior distributions

[6, 10, 15, 23, 30] or numerical simulations [17, 5, 11]; the reliability of such methods rests

on assumptions that are largely untestable.
2The Stringer Bound is an example of a method based on combined attributes and

values. It and other combined attributes and values methods are typically applied to

systematic random samples with probability proportional to size, but they are analyzed

as if the samples were random samples with replacement.
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ner, given the discrepancies an audit finds.

Despite the efficiency of PPEB, there are reasonable arguments against

using it for election audits. For example, PPEB is more complex and more

difficult for the public and jurisdictional users to understand. Drawing a

PPEB sample requires a first step of computing error bounds. Using dice

rolls or other physical sources of randomness to draw a PPEB sample is more

complicated than it is for SRS. These factors could decrease the transparency

of election audits, decreasing their public value. There are legal issues as well.

If precincts are sampled using simple random sampling or stratified random

sampling with equal sampling fractions in all strata, every ballot is equally

likely to be audited. That is not the case for PPEB audits: ballots cast in

precincts with large error bounds are more likely to be audited. This could

raise questions of equal protection and differing chances of disenfranchisement

in different precincts.

Aslam et al. [2] propose drawing samples of precincts for post election au-

dits using probability proportional to a bound on the error in each precinct,

with replacement (PPEBWR). They calculate the minimum sample size re-

quired for such a sample to have chance at least 1−α of finding one or more

precincts with a discrepancy if a full manual count would show a different

winner than the preliminary count did. Their calculations are implicit in

the work of Stringer [26] for financial auditing; see also Kaplan [13] and sec-

tion 8 below for a discussion of the connections. Aslam et al. [2] show that

PPEBWR sampling can reduce the workload compared with simple random

sampling when precincts have varying error bounds. They determine how

little PPEBWR sampling is too little. For PPEBWR samples smaller than
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the minimum they prescribe, the confidence in the outcome will be low even

if the audit finds no discrepancies. In practice, auditing a reasonable number

of precincts will find one or more precincts with discrepancies. The question

elections officials need to answer is: “how much sampling is enough to give

high confidence that the apparent outcome is correct, given the discrepan-

cies the audit uncovers?” That will be more sampling than the minimum [2]

prescribe, unless the audit finds no discrepancies.

Stark [25] shows how to deal with discrepancies that an audit uncovers,

to end up with any desired confidence that a full recount would not show

a different winner from the preliminary count, if precincts are selected us-

ing simple or stratified random sampling. Stark argues that to be complete,

an audit procedure should always either (i) certify the election outcome, or

(ii) demand a full recount. The procedure should have an error rate that

can be quantified, for example, a guarantee that if the outcome is certified,

either the outcome was right, or an event with probability no greater than

α occurred. PPEBWR as proposed by Aslam et al. [2] has these properties

only if a full manual count is conducted whenever the audit turns up any

discrepancy whatsoever. This paper makes PPEBWR more useful by allow-

ing one to certify even if some discrepancies are found, provided the sample

size is large enough and the discrepancies that could have made the margin

appear artificially large are small enough. It answers the question “what size

sample can you stop with?” rather than “what size sample should you start

with?” It develops a simple test using PPEB samples, and shows how tools

from financial auditing give more powerful—though more complex—tests .

This paper also extends PPEB to allow stratification. The ability to use
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stratified samples is important for several reasons: In many states, coun-

ties independently draw precincts to audit, resulting in a stratified sample

of precincts for races that cross county lines. Then the strata are counties.

Even for races entirely contained in one county, it could be useful to stratify

on a variety of variables, such as the type of technology used in the pre-

liminary tally. Moreover, to implement audits efficiently, it can be useful

to draw a sample of ballots cast in precincts on election day, then to draw

an independent sample of provisional ballots and ballots cast by mail (VBM

ballots). That can allow an audit to start while VBM and provisional ballots

are still being counted. This was the approach used in the first election audit

performed to attain a target level of confidence, the audit of Measure A in

Marin County, California, after the 5 February 2008 election (Stark [24]).3

Section 2 sets out the notation. Section 3 explains how Aslam et al. [2]

apply PPEBWR to the problem of detecting discrepancy, if the aggregate

discrepancy is enough to eliminate the apparent margin. It draws connections

between PPEBWR and SRS-based methods for detection, and how they

relate to the method of Stark [25]. Section 4 explains how PPEBWR can be

modified to provide a conservative test when there is a nonzero background

rate of discrepancy. Section 5 explains how to use the maximum potential

margin overstatement observed in a PPEBWR sample to find a P -value

3Measure A was audited to attain 75% confidence that the outcome was correct. The

audit was performed in two stages. First, a simple random sample of 6 precincts was

drawn; the votes cast in those precincts on election day were tallied by hand. Once

the VBM and provisional ballots were counted, an independent simple random sample of

6 precincts was drawn; the (valid) provisional and VBM ballots from those precincts were

tallied by hand.
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for the hypothesis that the aggregate overstatement could have produced the

apparent margin. Section 6 wraps the P -value calculation in a sequential test,

following Stark [25]. Section 7 extends PPEB sampling to allow stratification.

Section 8 makes connections to MUS audit sampling in finance and explains

how several tools from financial auditing can be used to test whether the

apparent outcome of an election is the same that a full manual recount would

show—if PPEB sampling is sanctioned. Sections 9 and 10 present discussion

and conclusions.

2 Assumptions and notation

We consider one contest at a time. There are N precincts in the contest. Each

voter can vote for up to f of K candidates; there can be f winners. (Under

some circumstances, it can help to “pool” the vote counts for some of the

losing candidates, as discussed in Stark [25]; K is the number of candidates

after any pooling.) The reported vote for candidate k in precinct p is vkp.

The vote that an audit would show for candidate k in precinct p is akp. The

total reported vote for candidate k is Vk =
∑N
p=1 vkp. The total true vote for

candidate k is Ak =
∑N
p=1 akp. The indices of the set of apparent winners

is Kw ⊂ K, where #Kw = f . The indices of the set of apparent losers is

K` ⊂ K. The apparent margin M is the total number of votes reported for

the apparent winner with the fewest votes, minus the total number of votes

reported for the apparent loser with the most votes:

M ≡ ∧k∈KwVk − ∨k∈K`
Vk. (1)

8



The potential margin overstatement discrepancy in the vote in precinct p is

ep ≡
∑
k∈Kw

(vkp − akp)+ +
∑
k∈K`

(akp − vkp)+ (2)

Let e ≡ (ep)
N
p=1. For I ⊂ N ≡ {1, 2, . . . , N} and x ∈ IRN , define∑

I
x ≡

∑
p∈I

xp, (3)

∨Ix ≡ max
p∈I

xp, (4)

and

∧Ix ≡ min
p∈I

xp. (5)

The total discrepancy is E =
∑
N e.

3 The logic behind current election audit sam-

pling procedures

The current crop of election auditing methods are based on the same under-

lying reduction: A necessary condition for the preliminary outcome to differ

from the outcome a full manual count would show is that E =
∑
N e ≥ M ;

see Stark [25].

Since precincts for which ep = 0 contribute nothing to
∑
N e, if

∑
N e ≥M ,

there must be some set T of precincts for which∑
T
e ≥M and ep > 0,∀p ∈ T . (6)

If no such T exists, the preliminary outcome of the election must be the

same that a full hand count would show. Audits try to find strong statis-

tical evidence that no such T exists, which gives high confidence that the

preliminary outcome is correct.
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To do so, the auditing methods require knowing a vector u such that

e ≤ u: u is a set of upper bounds on the discrepancy, precinct by precinct.

Stark [25] derives up from an upper bound rp on the number of valid votes

in precinct p and {vkp}k∈K, the reported votes for each candidate in precinct

p:

up = rp +
∑
k∈Kw

vkp − ∧k∈K`
vkp. (7)

A value for rp might in turn come from voter registrations, pollbooks, or an

accounting of paper ballots (“ballot reconciliation”). Aslam et al. [2] propose

a bound that assumes there are only two candidates and that
∑K
k=1 akp =∑K

k=1 vkp, which need not be the case.4 Some studies advocate taking u =

0.4b [22, 21, 16, 7], which is, at best, ad hoc.

For any I ⊂ N ,
∑
I e ≤

∑
I u. If M >

∑
N u, the apparent outcome of the

election must agree with what a full manual tally would show—an audit is not

required to confirm the outcome. Henceforth, we assume that M ≤ ∑
N u.

It is impossible that
∑
T e ≥ M unless

∑
T u ≥ M . This observation is key

to current statistical election auditing methods.

PPEBWR and methods based on simple random samples part ways here.

PPEBWR uses the fact that
∑
T u ≥ M directly: Let λp;u ≡ up/

∑
N u,

p ∈ N . The vector λ = (λp;u)
N
p=1 is a probability vector: ∧Nλ ≥ 0 and∑

N λ = 1. If we draw precinct p with probability λp;u then the probability

of getting an element of T is

IP{ draw an element of T } =
∑
p∈T

IP{ draw precinct p }

=
∑
p∈T

λp;u

4For example, in the 2006 U.S. Senate race in Minnesota, that assumption was violated.
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=
∑
T
λ

=
∑
T
u/
∑
N
u

≥ M/
∑
N
u. (8)

The chance that in n independent draws, each using probability vector λ, no

element of T is drawn is

(1−
∑
T
u/
∑
N
u)n ≤ (1−M/

∑
N
u)n. (9)

So the chance that n independent draws using λ yield at least one element

of T is

1− (1−
∑
T
u/
∑
N
u)n ≥ 1− (1−M/

∑
N
u)n. (10)

Hence if we set

nPPS(α;u,M) =

⌈
ln(α)

ln(1−M/
∑
N u)

⌉
, (11)

the chance that nPPS(α;u,M) independent draws from N using probabilities

λ yield at least one element of T is at least 1− α—if T exists.

Let J λ
n denote the set of values that result from n independent draws

from N according to the probability vector λ = (up/
∑
N u)Np=1. The set J λ

n

is a subset of N with at most n elements. We have just shown that

IP{J λ
nPPS(α;u,M) ∩ T 6= ∅} ≤ α (12)

if
∑
T (e) ≥M .

When we look at the precincts in the sample, we can tell whether p could

be an element of T : if we see that ep = 0, then p /∈ T , since every p ∈ T has

ep > 0. Hence if ep = 0 for every p in the sample, no element of the sample
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could be a member of T , and we have statistical evidence that T does not

exist. The PPEBWR method rides on the fact that we have a lower bound

on the probability
∑
T λ that each draw gives an element of T : for any T for

which
∑
T e could equal or exceed M ,

∑
T λ ≥M/

∑
N u.5

Note that nPPS(α) is the number of draws with replacement, not the

attained sample size, because the same precinct p could be drawn more than

once. Let Ip be the indicator of the event that precinct p is selected:

Ip ≡

 1, J λ
nPPS(α;u,M) 3 p

0, otherwise.
(13)

The attained sample size is
∑
p∈N Ip. The expected sample size is

IE
∑
p∈N

Ip =
∑
p∈N

IP{Ip = 1}

=
∑
p∈N

(1− (1− up/
∑
N
u)nPPS )

= N −
∑
p∈N

(1− up/
∑
N
u)nPPS . (14)

The expected sample size is maximal when the elements of u are equal; the

more the elements of u differ, the smaller the attained sample size is expected

to be.

Methods based on simple random samples use the fact that
∑
T u ≥ M

indirectly: they use u to find a lower bound on #T , the number of elements of

T . By starting with the largest element of u and working down, one can find

the smallest number of elements of u required for the sum of those elements

to wipe out the margin. Suppose that the minimum number is k(M,u). We

5Other sampling probability vectors could also yield useful bounds; independent sam-

pling using λ is particularly simple to analyze.
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know that, if T exists, #T ≥ k(M,u). Hence, if T exists, the chance that a

simple random sample of n elements of N will contain at least one element

of T is

1−

(
N−#T

n

)
(
N
n

) ≥ 1−

(
N−k(M,u)

n

)
(
N
n

) . (15)

If we pick nSRS(α;u,M) so that(
N−k(M,u)
nSRS(α;u,M)

)
(

N
nSRS(α;u,M)

) ≤ α (16)

then chance that a simple random sample of size nSRS(α;u,M) from N

contains at least one element of T is at least 1 − α—if T exists. If p is

selected, the audit can tell whether p could be an element of T : if we see that

ep = 0, then p /∈ T , since every p ∈ T has ep > 0. So if ep = 0 for every p in

the sample, we have statistical evidence that T does not exist.

The approach of Stark [25] is related through its indirect use of the fact

that
∑
T u ≥ M . Let {wp}p∈N be a set of N monotonic functions. Let

w−1
p (t) = sup{q ∈ IR : wp(q) ≤ t} and define w−1(t) = (w−1

p (t))Np=1. Define

Tw,t ≡ {p ∈ N : wp(ep) > t}. (17)

(If ep > 0 implies that wp(ep) > t, p ∈ N , then Tw,t = T .) A necessary

condition for
∑
T u ≥M is that

∑
Tw,t

u ≥M −∑N w−1(t).

Instead of using u to find a lower bound on #T , Stark [25] uses u to find

a lower bound on #Tw,t. Suppose that lower bound is k(M,u,w, t). Then if

T exists, the chance that a simple random sample of n elements of N will

contain at least one element of Tw,t is

1−

(
N−#Tw,t

n

)
(
N
n

) ≥ 1−

(
N−k(M,u,w,t)

n

)
(
N
n

) . (18)
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If we pick nSRS(α;u,M,w, t) so that(
N−k(M,u,w,t)
nSRS(α;u,M,w,t)

)
(

N
nSRS(α;u,M,w,t)

) ≤ α (19)

then the chance that a simple random sample of size nSRS(α;u,M,w, t) from

N includes at least one element of Tw,t is at least 1−α—if T exists. As before,

if p is selected, the audit can tell whether p could be an element of Tw,t: if we

see that wp(ep) ≤ t, then p /∈ Tw,t. So if wp(ep) ≤ t for every p in the sample,

we have statistical evidence that T does not exist.

For all these methods, the requirement that
∑
T u ≥ M is used to find a

lower bound on the probability that the sample drawn in a particular way

will turn up an element p with a recognizable property, if T exists. For most

of the methods, the property is that ep > 0, a property shared by all elements

of T . For the method of Stark [25], the property is that wp(ep) > t. The

methods conclude that T does not exist—that
∑
N e < M—if the sample

contains no precinct with the property in question.

4 Extending PPEBWR to account for dis-

crepancies

If T exists,
∑
Tw,t

u− w−1(t) ≥ M −∑N w−1(t). If we draw precinct p from

N with probability λp;u,w,t = (up − w−1
p (t))/

∑
N u− w−1(t), then

IP{ draw an element of Tw,t } =
∑

p∈Tw,t

IP{ draw precinct p }

=
∑

p∈Tw,t

up − w−1
p (t)∑

N u− w−1(t)
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=

∑
Tw,t

u− w−1(t)∑
N u− w−1(t)

≥ M −∑N w−1(t)∑
N [u− w−1(t)]

. (20)

The chance we select at least one element of Tw,t in n independent draws,

each using the same sampling probability vector (λp;u,w,t)
N
p=1, is

1−
(
1−∑Tw,t

[u− w−1(t)]/
∑
N [u− w−1(t)]

)n
≥ 1− (1− (M −∑N w−1(t))/

∑
N [u− w−1(t)])

n
. (21)

Hence if we set

nPPS(α;u,M,w, t) =

⌈
ln(α)

ln(1− (M −∑N w−1(t))/
∑
N [u− w−1(t)])

⌉
, (22)

the chance that nPPS(α;u,M,w, t) independent draws from N using proba-

bilities (λp;u,w,t)
N
p=1 contains at least one element of Tw,t is at least 1− α—if

T exists. When we look at the precincts in the sample, we can tell whether

p could be an element of Tw,t: if we see that wp(ep) < t, then p /∈ Tw,t. So

if wp(ep) < t for every p in the sample, no element of the sample could be

a member of Tw,t, which is statistical evidence that T does not exist. Note

that this approach essentially assumes that for every p ∈ N , the discrepancy

is at least w−1
p (t), even if the data show that some precincts have less error

than that. The methods developed in financial auditing use more informa-

tion about the observed distribution of wp(ep) and can lead to less auditing,

although the computations are more complex; see section 8.

As with PPEBWR, nPPS(α;u,M,w, t) is the number of draws, not the

attained sample size. The expected sample size is maximal when the elements

of u−w−1(t) are equal; the more variable the elements of u−w−1(t) are, the

smaller the attained sample size is expected to be.
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5 P -values

The previous derivation shows how many times to draw to have a big chance

(> 1 − α) of finding at least one precinct p with wp(ep) > t if the total

discrepancy E ≡ ∑
N e ≥ M . In this section, we turn things around to ask

what the chance is that wp(ep) ≤ t for every p in a PPS sample of n draws

if
∑
N e ≥ M . The wrinkle is that we need to be able to choose t after the

sample is drawn, so we need a sampling probability vector λ and a vector of

functions w that let us bound the chance of finding no p with wp(ep) ≤ t for

any choice of t, assuming T exists. The easiest way to accomplish this is to

choose w so that

λp;u,w,t =
up − w−1

p (t)∑
N [u− w−1(t)]

(23)

does not depend on t. One simple choice of w that works is w∗p(q) = q/up.

That is, w∗p(ep) scales the discrepancy ep in precinct p to be a fraction of the

error bound up for precinct p; thus 0 ≤ t ≤ 1. This is related to the notion

of taint in financial audits, discussed in section 8.

With this choice, up − w∗−1
p (t) = (1− t)up, so

λp;u,w∗,t =
up − w∗−1

p (t)∑
N [u− w∗−1(t)]

=
(1− t)up∑
N (1− t)u

= up/
∑
N
u

= λp;u, (24)

the same sampling probability vector used in PPEBWR. If T exists, the
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chance a single PPEBWR draw will yield an element of Tw∗,t is∑
p∈Tw,t

λp;u,w∗,t =
∑

p∈Tw,t

up/
∑
N
u

≥ M −∑N w∗−1(t)∑
N u

=
M∑
N u
− t. (25)

The chance n independent PPEB draws include no member of Tw∗,t is no

greater than

P (t;u,M,w∗, n) = (1−M/
∑
N
u+ t)n (26)

if T exists, for t ∈ [0, 1]. I.e., if
∑
T e ≥M ,

IP{J λ
n ∩ Tw∗,t = ∅} ≤ (1−M/

∑
N
u+ t)n. (27)

Hence P (t;u,M,w∗, n) is a conservative P -value for the hypothesis that the

apparent election outcome differs from the outcome a full manual count would

show, if the largest observed value of w∗p(ep) ≡ ep/up in n PPEBWR draws

is t.

This calculation uses only the maximum observed value of ep/up. By

using information about all of the nonzero observed values, one can get a

more powerful test. See section 8.

In PPEB draws with replacement, the conditional chance of drawing an

element of T is the same for every draw, while in PPEB draws without

replacement, the conditional probability of drawing an element of T given

that none has yet been drawn increases monotonically with each unsuccessful

draw. Hence, if precincts are drawn by PPEB without replacement, updating

λ before each draw to reflect only those elements of N not yet in the sample,

the chance of drawing at least one element of T in n draws is increased.
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6 A sequential test that the preliminary out-

come is wrong

This P -value can be used in the sequential testing approach proposed by

Stark [25] to determine whether, given the discrepancies observed in a PPEBWR

sample, to certify the election outcome or to expand the sample. Here is

the full procedure. Recall that w∗p(q) ≡ q/up. Let J λ
n denote the indices

that result from n independent draws from N according to the probability

vector λ = (up/
∑
N u)Np=1. Recall that for any set I ⊂ N and x ∈ IRN ,

∨Ix ≡ maxp∈I xp. Define w∗(e) ≡ (w∗p(ep))
N
p=1.

1. Select an overall significance level α and a sequence (αs) so that sequen-

tial tests at significance levels α1, α2, . . ., give an overall significance

level no larger than α. For example, set αs ≡ α/2s, s = 1, 2, . . ..

2. Group apparent losing candidates using the pooling rule given by Stark [25].

3. Compute error bounds u and the apparent margin M .

4. Select an initial sample size n1 and a rule for selecting ns when the

hypothesis E ≥ M is not rejected at stage s − 1. One can take n1 =

nPPS(α1;u,M) The only requirement is that n1 ≥ 0 and ns−ns−1 ≥ 1.

5. Set s = 1, n0 = 0 and J0 = ∅.

6. Draw ns − ns−1 times independently from N using probability vector

λ to form J λ
ns−ns−1

. Set Js = Js−1 ∪ J λ
ns−ns−1

.

7. Tally the votes in any precincts in Js that were not in Js−1.
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8. If Js = N , the correct outcome is known: certify the election if the

outcome was correct, and stop.

9. If there are still precincts not in the sample, calculate ts = ∨Jsw
∗(e).

10. If P (ts;u,M,w∗, ns) ≤ αs, certify the election and stop. Otherwise,

increment s and return to step 6.

7 Stratified PPEB sampling

Suppose the population of N precincts is divided into C strata, with Nc

precincts in stratum c, c ∈ C = {1, . . . , C}. As mentioned in the introduction,

it can be desirable to sample independently from each stratum.

More to come . . .

8 Methods from financial auditing

This section shows how PPEB-based methods (MUS methods) for estimating

financial overstatement error could be applied to election auditing, and could

lead to sharper inferences at the cost of more complex and less transparent

calculations.

The total overstatement of a ledger is analogous to the total vote dis-

crepancy in an election. If a 1−α upper confidence bound for the total vote

discrepancy is less than M , there is 1−α confidence that a full recount would

show the same result as the preliminary count.

The first step in applying MUS methods to elections is to think of PPEB

as sampling units of possible error, rather than sampling precincts or votes.
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The discrepancy in precinct p is between 0 and up. We think of each of the up

possible units of discrepancy in precinct p as having taint tp ≡ ep/up ∈ [0, 1].

The total discrepancy is

E =
∑
N
e =

∑
p∈N

tpup. (28)

Thus a necessary condition for the apparent outcome to differ from the out-

come a full hand count would show is
∑
p∈N tpup ≥M . The (weighted) mean

taint τ is

τ =

∑
N tpup∑
N u

=
E∑
N u

. (29)

So the apparent outcome must be the same that a full hand count would

show if τ < M/
∑
N u.

In MUS, we draw a random sample from {tp}p∈N such that the proba-

bility of selecting tp is up/
∑
N u. In practice, the draws are made without

replacement, but MUS methods are typically analyzed as if the draws are

with replacement; i.e., as a PPEBWR sample.

More to come . . .

8.1 The Stringer Bound and the Bickel Bound

Stringer [26] proposed an upper confidence bound for the weighted mean

taint τ based on the number of nonzero observed taints and their values. Let

Tj be the taint observed on the jth draw, j = 1, . . . , n. Suppose that P of

{Tj}nj=1 are strictly positive. Let (zj) be the P nonzero observed taints in

decreasing order, so that 1 ≥ z1 ≥ . . . ≥ zP > 0, and define z0 ≡ 1. Suppose

X ∼ Binomial(n, π) Let πα,n(j) denote the upper 1 − α confidence bound
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for π when X = j; i.e., πα,n(j) satisfies( ∑j
`=0 n

`πα,n(j)`(1− πα,n(j))n−` = α.

)
(30)

Let πα,n(−1) ≡ 0. The Stringer Bound is

τα(z) ≡
P∑
j=0

[πα,n(j)− πα,n(j − 1)]zj. (31)

There is considerable evidence that the Stringer Bound is conservative; Bickel [3]

proves that it is essentially always conservative for finite samples, and asymp-

totically quite conservative.

The special case that all the observed taints are zero gives

τα = πα,n(0). (32)

Note that πα,n(0) solves

(1− πα,n)n = α, (33)

i.e., n = ln(α)/ ln(1−πα,n). Recall that E = τ
∑
N u. To have 1−α confidence

that E < M when all observed taints are zero—so that the outcome of the

election is not in doubt—we need 1 − α confidence that τ < M/
∑
N u, i.e.,

τα = πα,n < M/
∑
N u. The smallest n that suffices is

nα =

⌈
lnα

ln(1−M/
∑
N u)

⌉
= nPPS(α;u,M). (34)

That is, the result of Aaslam et al. [2] is a special case of the Stringer Bound

when all observed taints are zero. See also Kaplan [13].

The Stringer Bound uses all the observed taints, not just the maximum

observed taint. As a result, it generally leads to smaller P -values than the

statistic proposed in section 5 and to a more powerful test than that proposed

in section 6.

[19, 3, 4]
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8.2 Multinomial Bounds

Suppose we divide the interval of possible taints, [0, 1], into bins. For ex-

ample, we might use the 100 bins [(j − 1)/100, j/100) for j = 1, . . . , 99, and

[0.99, 1]. For with PPEB sampling, the joint distribution of the number of

observed taints that fall in each bin is multinomial. Fienberg et al. [8] exploit

this to construct an upper confidence bound for τ .

. . .

Like the Stringer Bound, the multinomial bounds developed by Fienberg

et al. [8] use the values and frequencies of all the observed taints. It can also

lead to smaller P -values and a more powerful test, but it is quite complex to

compute when the data fall into more than a few bins.

[8, 18, 20]

More to come . . ..

9 Discussion

9.1 Room for improvement

The condition E ≥M is necessary but not sufficient...

Still to come . . .

10 Conclusions

Still to come . . .
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