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0.1 Introduction

Inverse problems seek to learn about the world from indirect, noisy data. They can be
cast as statistical estimation problems and studied using statistical decision theory,
a framework that subsumes Bayesian and frequentist methods. Both Bayesian and
frequentist methods require a stochastic model for the data, and both can incorporate
constraints on the possible states of the world. Bayesian methods require that con-
straints be re-formulated as a prior probability distribution, a stochastic model for
the unknown state of the world. If the state of the world is a random variable with a
known distribution, Bayesian methods are in some sense optimal. Frequentist meth-
ods are easier to justify when the state of the world is unknown but not necessarily
random, or random but with an unknown distribution; some frequentist methods are
then optimal—in other senses.

Parameters are numerical properties of the state of the world. Estimators are
quantities that can be computed from the data without knowing the state of the world.
Estimators can be compared using risk functions which quantify the expected “cost”
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of using a particular estimator when the world is in a given state. (The definition of
cost should be dictated by the scientific context, but some definitions, such as mean
squared error, are used because they lead to tractable computations.)

Generally, no estimator has the smallest risk for all possible states of the world:
there are tradeoffs, which Bayesian and frequentist methods address differently.
Bayesian methods seek to minimize the expected risk when the state of the world
is drawn at random according to the prior probability distribution. One frequentist
approach—minimax estimation—seeks to minimize the maximum risk over all states
of the world that satisfy the constraints.

The performance of frequentist and Bayesian estimators can be compared both
with and without a prior probability distribution for the state of the world. Bayesian
estimators can be evaluated from a frequentist perspective, and vice versa. Compar-
ing the minimax risk with the Bayes risk measures how much information the prior
probability distribution adds that is not present in the constraints or the data.

This chapter sketches frequentist and Bayesian approaches to estimation and
inference, including some differences and connections. The treatment is exposi-
tory, not rigorous. We illustrate the approaches with two examples: a concrete one-
dimensional problem (estimating the mean of a Normal distribution when that mean
is known to lie in the interval [−τ, τ ]), and an abstract linear inverse problem.

For a more philosophical perspective on the frequentist and Bayesian interpre-
tations of probability and models, see Freedman & Stark (2003); Freedman (1995).
For more careful treatments of the technical aspects, see Berger (1985); Evans &
Stark (2002); Le Cam (1986).

0.2 Prior Information and Parameters: What do you
know, and what do you want to know?

This section lays out some of the basic terms, most of which are shared by frequentist
and Bayesian methods. Both schools seek to learn about the state of the world—to
estimate parameters—from noisy data. Both consider constraints on the possible
states of the world, and both require a stochastic measurement model for the data.

0.2.1 The state of the world, measurement model, parameters
and likelihoods

The term “model” is used in many ways in different communities. In the interest of
clarity, we distinguish among three things sometimes called “models,” namely, the
state of the world, the measurement model, and parameters.

The the state of the world, denoted by θ, is a mathematical representation of the
physical system of interest; for example, a parametrized representation of seismic
velocity as a function of position in the Earth, of the angular velocity of material in
the Sun, or of the temperature of the cosmic microwave background radiation as a
function of direction. Often in physical problems, some states of the world can be



ruled out by physical theory or prior experiment. For instance, mass densities and
energies are necessarily nonnegative. Transmission coefficients are between 0 and
1. Particle velocities are less than the speed of light. The rest mass of the energy
stored in Earth’s magnetic field is less than the mass of the Earth (Backus 1989).
The set Θ will represent the possible states of the world (values of θ) that satisfy the
constraints. That is, we know a priori that θ ∈ Θ.1

The observations Y are related to the particular state of the world θ through a
measurement model that relates the probability distribution of the observations to θ.
The set of possible observations is denoted Y , called the sample space. Typically,
Y is an n-dimensional vector of real numbers; then, Y is IRn. Depending on θ, Y
is more likely to take some values in Y than others. The probability distribution of
the data Y when the state of the world is η (i.e., when θ = η) is denoted IPη; we
write Y ∼ IPη. (The “true” state of the world is some particular—but unknown—
θ ∈ Θ; η is a generic element of Θ that might or might not be equal to θ.) We shall
assume that the set of distributions P ≡ {IPη : η ∈ Θ} is dominated by a common
measure µ.2 (In the special case that µ is Lebesgue measure, that just means that
all the probability distributions P ≡ {IPη : η ∈ Θ} have densities in the ordinary
sense.) The density of IPη (with respect to µ) at y is

pη(y) ≡ dIPη/dµ|y. (1)

The likelihood of η given Y = y is pη(y) viewed as a function of η, with y fixed.
For example, suppose that for the purposes of our experiment, the state of the

world can be described by a single number θ ∈ IR that is known to be in the interval
[−τ, τ ], and that our experiment measures θ with additive Gaussian noise that has
mean zero and variance 1. Then the measurement model is

Y = θ + Z, (2)

where Z is a standard Gaussian random variable (we write Z ∼ N(0, 1)). The set
Θ = [−τ, τ ]. Equivalently, we may write Y ∼ N(θ, 1) with θ ∈ [−τ, τ ]. (The sym-
bol ∼ means “has the probability distribution” or “has the same probability distribu-
tion as.”) Thus IPη is the Gaussian distribution with mean η and variance 1. This is
called the bounded normal mean (BNM) problem. The BNM problem is of theoret-
ical interest, and is a building block for the study of more complicated problems in
higher dimensions; see, for example, Donoho (1994). The dominating measure µ in
this problem can be taken to be Lebesgue measure. Then the density of IPθ at y is

φθ(y) ≡ 1√
2π

e−(y−θ)2/2, (3)

1There is a difference between the physical state of the world and a numerical discretization or
approximation of the state of the world for computational convenience. The numerical approximation
to the underlying physical process contributes uncertainty that is generally ignored. For discussion, see,
e.g., Stark (1992b).

2By defining µ suitably, this can allow us to work with “densities” even if the family P contains mea-
sures that assign positive probability to individual points. Assuming that there is a dominating measure is
a technical convenience that permits a general definition of likelihoods.



and the likelihood of η given Y = y is φη(y) viewed as a function of η with y fixed.
As a more general example, consider the following canonical linear inverse prob-

lem. The set Θ is a norm or semi-norm ball in a separable, infinite-dimensional
Banach space (for example, Θ might be a set of functions whose integrated squared
second derivative is less than some constant C < ∞, or a set of nonnegative func-
tions that are continuous and bounded).3 The data Y are related to the state of the
world θ through the action of a linear operator K from Θ to Y = IRn, with additive
noise:

Y = Kθ + ε, θ ∈ Θ, (4)

where the probability distribution of the noise vector ε is known. We assume that
Kη = (K1η, K2η, . . . , Knη) for η ∈ Θ, where {Kj}n

j=1 are linearly independent
bounded linear functionals on Θ. Let f(y) denote the density of ε with respect to a
dominating measure µ. Then pη(y) = f(y − Kη). The BNM problem is an example
of a linear inverse problem with K the identity operator, Y = IR, Θ ≡ [−τ, τ ], ε ∼
N(0, 1), f(y) = φ0(y).

A parameter λ = λ[θ] is a property of the state of the world. The entire descrip-
tion of the state of the world, θ, could be considered to be a parameter; then λ is the
identity operator. Alternatively, we might be interested in a simpler property of θ.
For example, in gravimetry, the state of the world θ might be mass density as a func-
tion of position in Earth’s interior, and the parameter of interest, λ[θ], might be the
average mass density in some region below the surface. In that case, the rest of θ is a
nuisance parameter: it can affect the (probability distribution of the) measurements,
but it is not of primary interest.

Our lead examples in this paper are the “bounded normal mean” problem and
the canonical linear inverse problem just described.

0.2.2 Prior and posterior probability distributions

In the present framework, there is prior information about the state of the world θ
expressed as a constraint θ ∈ Θ. Frequentists use such constraints as-is. Bayesians
augment the constraints using prior probability distributions. Bayesians treat the
value of θ as a realization of a random variable that takes values in Θ according to a
prior probability distribution π.4 The constraint θ ∈ Θ is reflected in the fact that π
assigns probability 1 (or at least high probability) to the set Θ.5 In the BNM problem,

3Separable Banach spaces are measurable with respect to the σ-algebra induced by the norm topology,
a fact that ensures that prior probability distributions—required by Bayesian methods—can be defined.

4To use prior probability distributions, Θ must be a measurable space; frequentist methods generally
do not need the set of parameters to be measurable. We will not worry about technical details here. For
rigor, see Le Cam (1986).

5 Freedman (1995) writes, “My own experience suggests that neither decision-makers nor their statis-
ticians do in fact have prior probabilities. A large part of Bayesian statistics is about what you would do
if you had a prior. For the rest, statisticians make up priors that are mathematically convenient or attrac-
tive. Once used, priors become familiar; therefore, they come to be accepted as ‘natural’ and are liable
to be used again; such priors may eventually generate their own technical literature.” And, “Similarly, a
large part of [frequentist] statistics is about what you would do if you had a model; and all of us spend



a Bayesian would use a prior probability distribution π that assigns probability 1 to
the interval [−τ, τ ]. For instance, she might use as the prior π the “uninformative”6

uniform distribution on [−τ, τ ], which has probability density function

Uτ (η) ≡
{

1
2τ , −τ ≤ η ≤ τ
0, otherwise

≡ 1

2τ
1[−τ,τ ](η). (5)

(In this example, π(dη) = 1
2τ 1[−τ,τ ]dη.) There are infinitely many probability dis-

tributions that assign probability 1 to [−τ, τ ]; this is just one of them—one way to
capture the prior information, and more. The constraint θ ∈ Θ limits the support of
π but says nothing about the probabilities π assigns to subsets of Θ. Every particular
assignment—every particular choice of π—has more information than the constraint
θ ∈ Θ, because it has information about the chance that θ is in each (measurable)
subset of Θ. It expresses more than the fact that θ is an elements of Θ. Below we
will show how the assumption θ ∼ π (with π the uniform distribution) reduces the
apparent uncertainty (but not the true uncertainty) in estimates of θ from Y when
what we really know is just θ ∈ Θ.

In the linear inverse problem, the prior π is a probability distribution on Θ,
which is assumed to be a measurable space. In most real inverse problems, θ is a

enormous amounts of energy finding out what would happen if the data kept pouring in.” We agree. One
argument made in favor of Bayesian methods is that if one does not use Bayes rule, an opponent can make
“Dutch book” against him—his beliefs are not consistent in some sense. (“Dutch book” is a collection of
bets that acts as a money pump: no matter what the outcome, the bettor loses money.) This is superficially
appealing, but there are problems: First, beliefs have to be characterized as probabilities in the first place.
Second, the argument only applies if the prior is “proper,” that is, has total mass equal to one. So, the
argument does not help if one wishes to use the “uninformative (uniform) prior” on an unbounded set,
such as the real line. See also Eaton (2008); Eaton & Freeman (2004).

6Selecting a prior is not a trivial task, although most applications of Bayesian methods take the prior
as given. See footnote 5. Many studies simply take the prior to be a multivariate normal distribution on a
discretized set of states of the world. Some researchers tacitly invoke Laplace’s Principle of Insufficient
Reason to posit “uninformative” priors. Laplace’s Principle of Insufficient Reason says that if there is
no reason to believe that outcomes are not equally likely, assume that they are equally likely. For a dis-
cussion, see Freedman & Stark (2003). When the state of the world represents a physical quantity, some
researchers use priors that are invariant under a group with respect to which the physics is invariant; sim-
ilarly, when an estimation problem is invariant with respect to a group, some researchers use priors that
are invariant with respect to that group. See, e.g., Lehmann & Casella (1998, p. 245ff). This is intuitively
appealing and mathematically elegant, but there are difficulties. First, not all uncertainties are express-
ible as probabilities, so insisting on the use of any prior can be a leap. Second, why should the prior be
invariant under the same group as the physics? The argument seems to be that if the physics does not
distinguish between elements of an orbit of the group, the prior should not either: a change of coordi-
nate systems should not affect the mathematical expression of our uncertainties. That is tantamount to to
applying Laplace’s principle of insufficient reason to orbits of the group: if there is no reason to think
any element of an orbit is more likely than any other, assume that they are equally likely. But this is a
fallacy because “no reason to believe that something is false” is not reason to believe that the thing is true.
Absence of evidence is not evidence of absence; moreover, uncertainties have a calculus of their own,
separate from the laws of physics. Third, invariance can be insufficient to determine a unique prior—and
can be too restrictive to permit a prior. For example, there are infinitely many probability distributions on
IR2 that are invariant with respect to rotation about the origin, and there is no probability distribution on
IR2 that is invariant with respect to translation.



function of position—an element of an infinite-dimensional space. Constraints on
θ might involve its norm or seminorm, nonnegativity or other pointwise restric-
tions, for example Backus (1988, 1989); Evans & Stark (2002); Parker (1994); Stark
(1992b,c). There are serious technical difficulties defining probability distributions
on infinite-dimensional spaces in an “uninformative” way that still captures the con-
straint θ ∈ Θ. For example, rotationally invariant priors on separable Hilbert spaces
are degenerate: they either assign probability 1 to the origin, or they assign probabil-
ity 1 to the event that the norm of θ is infinite—contrary to what a constraint on the
norm is supposed to capture (Backus 1987).7

Recall that pη(y) is the likelihood of η ∈ Θ given y. We assume that pη(y) is
jointly measurable with respect to η and y. The prior distribution π and the distri-
bution IPη of the data Y given η determine the joint distribution of θ and Y . The
marginal distribution of Y averages the distributions {IPη : η ∈ Θ}, weighted by π,
the probability that θ is near η. The density of the marginal distribution of Y (with
respect to µ) is

m(y) =

∫

Θ

pη(y) π(dη). (6)

The marginal distribution of Y is also called the predictive distribution of Y . The
information in the data Y can be used to update the prior π through Bayes’ rule; the
result is the posterior distribution of θ given Y = y:

π(dη|Y = y) =
pη(y) π(dη)

m(y)
. (7)

(The marginal density m(y) can vanish; this happens with probability zero.)
In the BNM problem with uniform prior, the density of the predictive distribution

of Y is

m(y) =
1

2τ

∫ τ

−τ

φη(y)dη =
1

2τ
(Φ(y + τ) − Φ(y − τ)). (8)

The posterior distribution of θ given Y = y is

π(dη|Y = y) =
φη(y) 1

2τ 1η∈[−τ,τ ](η)

m(y)
=

φη(y)1η∈[−τ,τ ](η)

Φ(y + τ) − Φ(y − τ)
. (9)

Figure 1 shows the posterior density fθ(η|y) of θ (the density of π(dη|Y = y)) for
four values of y using a uniform prior on the interval [−3, 3]. The posterior is a re-
scaled normal density with mean y, restricted to Θ. It is unimodal with mode y, but
symmetric only when y = 0. The mode of the posterior density is the closest point
in Θ to y.

In the linear inverse problem, the density of the predictive distribution is

m(y) =

∫

Θ

f(y − Kη)π(dη), (10)

7Discretizing an infinite-dimensional inverse problem then positing a prior distribution on the dis-
cretization hides the difficulty, but does not resolve it.
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Figure 1 Posterior densities of θ for a bounded normal mean with a uniform prior
on the interval [−3, 3] for four values of y.

and the posterior distribution of θ given Y = y is

π(η|Y = y) =
f(y − Kη)π(dη)

m(y)
. (11)

Any parameter λ[θ] has a marginal posterior distribution given Y = y, πλ(d`|Y =
y), induced by the posterior distribution of θ given Y = y. It is defined by

∫

Λ

πλ(d`|Y = y) ≡
∫

η:λ[η]∈Λ

π(dη|Y = y) (12)

for suitably measurable sets Λ.

0.3 Estimators: What can you do with what you
measure?

Estimators are mappings from the set Y of possible observations to some other set.
Let L denote the set of possible values of the parameter λ[η] as η ranges over Θ.
Point estimators of λ[θ] assign an element ` ∈ L to each possible observation y ∈ Y .
For example, in the BNM problem, L = [−τ, τ ] is the set of possible values of the
parameter θ, and we might consider the truncation estimator

θ̂τ (y) ≡





−τ, y ≤ −τ,
y, −τ < y < τ
τ, y ≥ τ

≡ −τ1(−∞,−τ ](y) + y1(−τ,τ)(y) + τ1[τ,∞)(y). (13)



We will consider other point estimators for the BNM problem below.
A set estimator of a parameter assigns a subset of L to each possible observation

y ∈ Y . Confidence intervals are set estimators. For example, in the BNM problem
we might consider the truncated naive interval

Iτ (y) ≡ [−τ, τ ] ∩ [y − 1.96, y + 1.96]. (14)

(This interval is empty if y < −τ − 1.96 or y > τ + 1.96.) This interval has the
property that

IPη{Iτ (Y ) 3 η} = 0.95, (15)

whenever η ∈ [−τ, τ ]. Below we will study the truncated Pratt interval, a confidence
interval that uses the constraint in a similar way, but tends to be shorter—especially
when τ is small.

More generally, a set estimator S for the parameter λ[θ] that has the property

IPη{S(Y ) 3 λ[η]} ≥ 1 − α (16)

for all η ∈ Θ is called a 1 − α confidence set for λ[θ].
A 1 − α Bayesian credible region for a parameter λ[θ] is a set that has posterior

probability at least 1 − α of containing λ[θ]. That is, if Sπ(y) satisfies

∫

Sπ(y)

πλ(d`|Y = y) ≥ 1 − α, (17)

then Sπ(y) is a 1 − α credible region. Among sets with the property (17), we may
choose as the credible region the one with smallest volume: that is the smallest region
that contains θ with posterior probability at least 1 − α. If the posterior distribution
of λ[θ] has a density, that credible region is the highest posterior density credible
set, a set of the form Sπ(y) = {η : πλ(d`|Y = y) ≥ c} with c chosen so that Sπ(y)
satisfies (17). See, e.g., Berger (1985).

In the bounded normal mean problem with uniform prior, the highest posterior
density credible region for θ is of the form

{η ∈ [−τ, τ ] : e−(y−η)2/21η∈[−τ,τ ](η) ≥ c}, (18)

where c depends on y and is chosen so that (17) holds. Figure 2 shows examples of
the truncated naive confidence interval, the truncated Pratt confidence interval and
credible regions for several values of y and τ . The truncated naive and truncated Pratt
intervals are at 95% confidence level; the credible regions are at 95% credible level.
When y is near 0, the truncated Pratt interval is the shortest. When |y| is sufficiently
large, the truncated naive interval is empty. Section 0.5 shows the confidence level
of the credible region in the BNM problem.
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Figure 2 Examples of confidence intervals and credible sets for the BNM with τ =
1/2 and τ = 3, for eight different values of y. The horizontal axis represents the
datum Y = y, indicated by an x, and the values η in in the confidence interval for
the observed value of y, which are plotted as horizontal bars. The red bars are 95%
maximum posterior density credible regions using a uniform prior on [−τ, τ ]. The
blue bars are 95% truncated Pratt intervals and the black bars are 95% truncated
naive intervals. The truncated naive intervals are empty when |y| > τ .

0.4 Performance of estimators: How well can you
do?

This section presents several properties of estimators that can be used to define what
it means for an estimator to be “good,” or for one estimator to be “better” than
another.

0.4.1 Bias, Variance

Statisticians commonly consider the bias and variance of point estimators. The bias
is the expected difference between the parameter and the estimate of the parameter.
For example, let λ̂(Y ) be an estimator of λ[θ]. The bias at η of λ̂ is

biasη(λ̂) ≡ IEη(λ̂(Y ) − λ[η]) = IEηλ̂(Y ) − λ[η]. (19)

when the expectation exists. The estimator λ̂ is unbiased for λ[η] at η if biasη(λ̂) = 0.
It is unbiased if biasη(λ̂) = 0 for all η ∈ Θ. If there exists an unbiased estimator
of λ[θ] then we say λ[θ] is unbiasedly estimable (or U -estimable). If λ[θ] is U -
estimable, there is an estimator that, on average across possible samples, is equal to
λ[θ]. (Not every parameter is U -estimable.)



For example, the bias at η of the truncation estimator θ̂τ in the BNM problem is

biasη(θ̂τ ) = IEη θ̂τ (Y ) − η, (20)

where

IEη θ̂τ (Y ) =

∫ ∞

−∞

θ̂τ (y)φη(y)dy

= (−τ − η)Φ(−τ − η) + (τ − η)Φ(−τ + η) +

+φ(−τ − η) − φ(τ − η), (21)

and φ(y) = φ0(y) is the standard Gaussian density (Eqn. (3) with η = 0) and Φ(y) =∫ y

−∞
φ(x)dx is the standard Gaussian cumulative distribution function (cdf). Note

that if η = 0, the bias at η of θ̂τ is zero, as one would expect from symmetry.
Figure 3 shows bias2η(θ̂τ ) as a function of η. Note that the squared bias increases
as |η| approaches τ . There, the truncation acts asymmetrically, so that the estimator
is much less likely to be on one side of η than the other. For example, when η = −τ ,
the estimator is never below η but often above, so the expected value of θ̂τ is rather
larger than η—the estimator is biased.
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Figure 3 Squared bias, variance and MSE of the truncation estimator θ̂τ as a function
of η ∈ [−3, 3].

The variance at η of an estimator λ̂ of a real-valued parameter λ[θ] is

Varη(λ̂) ≡ IEη

(
λ̂(Y ) − IEη(λ̂(Y )

)2

(22)



when the two expectations on the right exist. For example, the variance at η of the
truncation estimator θ̂τ in the BNM problem is

Varη θ̂τ =

∫ ∞

−∞

(
θ̂τ (y) −

(∫ ∞

−∞

θ̂τ (x)φ(x − η)dx

))2

φ(y − η)dy

= (τ2 − η2 − 1)Φ(−τ − η) + (η2 − τ2 + 1)Φ(τ − η) + (η − τ)φ(τ + η)

−(τ + η)φ(τ − η) + τ2 − ( IEη θ̂τ (Y ) )2. (23)

Figure 3 shows bias2η(θ̂τ ) and Varη(θ̂τ ) as functions of η for τ = 3. The variance is
biggest near the origin, where truncation helps least—if τ is large, the variance at
η = 0 approaches the variance of the additive Normal noise, σ2 = 1. Near ±τ , the
truncation reduces the variance because it keeps the estimator from being very far
from η on one side. But as we have seen, that introduces bias.

Neither bias nor variance alone suffices to quantify the error of an estimator: even
if an estimator is unbiased, its variance can be so large that it is rarely close to the
parameter it estimates.8 Conversely, an estimator can have small or zero variance,
and yet its bias can be so large that it is never close to the parameter. Small variance
means small scatter; small bias means that on average the estimator is right.9 Insist-
ing that estimators be unbiased can be counter-productive, for a number of reasons.
For instance, there are problems in which there is no estimator that is unbiased for
all η ∈ Θ. And allowing some bias can reduce the overall MSE, or another measure
of the accuracy of an estimator. We would agree that it is important to have a bound
on the magnitude of the bias—but that bound need not be zero.

The next subsection presents a general approach to defining the quality of esti-
mators.

0.4.2 Loss and Risk

A more general way to evaluate and compare estimators is through a loss function
that measures the loss we incur if we take a particular action ` when the true value
of the parameter is λ[η]. The risk at η of an estimator is the expected value of the
loss when that estimator is used and the world is in state η:

ρη(λ̂, λ[η]) ≡ IEη loss(λ̂(Y ), λ[η]). (24)

For example, consider estimating a real-valued parameter λ[θ] from data Y . For
point estimates, actions are possible parameter values—real numbers in this case. We

8Three statisticians go deer hunting. They spot a deer. The first shoots; the shot goes a yard to the left
of the deer. The second shoots; the shot goes a yard to the right of the deer. The third statistician shouts,
“we got him!”

9Estimation is like shooting a rifle. If the rifle is well made, the shots will hit nearly the same mark;
but if its sights are not adjusted well, that mark could be far from the bullseye. Conversely, shots from
a poorly made rifle will be scattered, no matter how well adjusted its sights are. The quality of the rifle
is analogous to the variance: small variance corresponds to high quality—low scatter. The adjustment of
the sights is analogous to the bias: low bias corresponds to well adjusted sights—on average, the estimate
and the shots land where they should.



could define the loss for taking the action ` ∈ IR when the true parameter value is
λ[η] to be loss(`, λ[η]) = |` − λ[η]|p, for example. Scientific context should dictate
the loss function,10 but most theoretical work on point estimation uses squared-error
loss: loss(`, λ[η]) = |` − λ[η]|2. For squared-error loss, the risk at η of the estimator
λ̂ is the mean squared error:

MSEη(λ̂) ≡ IEη |λ̂(Y ) − λ[η]|2, (25)

when the expectation exists. The MSE of a point estimate can be written as the square
of the bias plus the variance:

MSEη(λ̂) = bias2η(λ̂) + Varη(λ̂). (26)

In the BNM problem, the MSE at η of the truncation estimator θ̂τ of θ is

MSEη(θ̂) = IEη|θ̂ − η|2 = bias2η θ̂τ + Varη(θ̂τ ). (27)

Figure 3 plots MSEη(θ̂) as a function of η for τ = 3. Near the origin the MSE is
dominated by the variance; near the boundaries the squared bias becomes important,
too.

For set estimators, one measure of loss is the size (Lebesgue measure) of the set;
the risk at η is then the expected measure of the set when the true state of the world
is η. For example, let I be a (suitably measurable) set of confidence set estimators—
estimators that, with probability at least 1 − α produce a (Lebesgue-measurable) set
that contains λ[η] when η is the true state of the world. That is, if I ∈ I then

IPη{I(Y ) 3 λ[η]} ≥ 1 − α (28)

for all η ∈ Θ. If I(Y ) is always Lebesgue-measurable,

ρη(I, λ[η]) ≡ IEη

∫

`

I(Y )d` (29)

is the expected measure of the set, a reasonable risk function for set estimates;
see Evans et al. (2005). For example, Figure 4 shows the expected length of the
truncated naive interval (and some other intervals) for the bounded normal mean, as
a function of η. We will discuss this plot below.

0.4.3 Decision theory

Decision theory provides a framework for selecting estimators. Generally, the risk
of an estimator λ̂ of a parameter λ[θ] depends on the state θ that the world is in:

10For example, consider the problem of estimating how deep to set the pilings for a bridge. If the pilings
are set too deep, the bridge will cost more than necessary. But if the pilings are set too shallow, the bridge
will collapse, and lives could be lost. Such a loss function is asymmetric and highly nonlinear. Some
theoretical results in decision theory depend on details of the loss function (for instance, differentiability,
convexity, or symmetry), and squared error is used frequently because it is analytically tractable.



some estimators do better when θ has one value; some do better when θ takes a
different value. Some estimators do best when θ is a random variable with a known
distribution π. If we knew θ (or π), we could pick the estimator that had the smallest
risk. But if we knew θ, we would not need to estimate λ[θ]: we could just calculate
it.

Decision theory casts estimation as a two-player game: Nature versus statisti-
cian. Frequentists and Bayesians play similar—but not identical—games. In both
games, Nature and the statistician know Θ; they know how data will be generated
from θ; they know how to calculate λ[θ] from any θ ∈ Θ; and they know the loss
function ρ that will be used to determine the payoff of the game. Nature selects θ

from Θ without knowing what estimator λ̂ the statistician plans to use. The statisti-
cian, ignorant of θ, selects an estimator λ̂. The referee repeatedly generates Y from
the θ that Nature selected and calculates λ̂(Y ). The statistician has to pay the average
value of loss(λ̂(Y ), λ[θ]) over all those values of Y ; that is, ρθ(λ̂, λ[θ]).

The difference between the Bayesian and frequentist views is in how Nature
selects θ from Θ. Bayesians suppose that Nature selects θ at random according to
the prior distribution π—and that the statistician knows which distribution π Nature
is using.11 Frequentists do not suppose that Nature draws θ from π, or else they do
not claim to know π. In particular, frequentists do not rule out the possibility that
Nature might select θ from Θ to maximize the amount the statistician has to pay on
average. The difference between Bayesians and frequentists is that Bayesians claim
to know more than frequentists: both incorporate constraints into their estimates and
inferences, but Bayesians model uncertainty about the state of the world using a par-
ticular probability distribution in situations where frequentists would not. Bayesians
speak of the probability that the state of the world is in a given subset of Θ. For
frequentists, such statements generally do not make sense: the state of the world is
not random with a known probability distribution—it is simply unknown. The dif-
ference in the amount of information in “θ is a random element of Θ drawn from a
known probability distribution” and “θ is an unknown element of Θ” can be small
or large, depending on the problem and the probability distribution.

So, which estimator should the statistician use? The next two subsections show
those differences in the rules of the game lead to different strategies Bayesians and
frequentists use to select estimators.

Minimax Estimation

One common strategy for frequentists is to minimize the maximum they might be
required to pay. That is, to use the estimator (among those in a suitable class) that
has the smallest worst-case risk over all possible states of the world η ∈ Θ.

11Some Bayesians do not claim to know π, but claim to know that π itself was drawn from a probability
distribution on probability distributions. Such hierarchical priors do not really add any generality: they
are just a more complicated way of specifying a probability distribution on states of the world. A weighted
mixture of priors is a prior.



For example, consider the BNM problem with MSE risk. Restrict attention to the
class of estimators of θ that are affine functions of the datum Y ; that is, the set of
estimators θ̂ of the form

θ̂ab(y) = a + by, (30)

where a and b are real numbers. We can choose a and b to minimize the maximum
MSE for η ∈ Θ. The resulting estimator, θ̂A, is the minimax affine estimator (for
MSE loss). To find θ̂A we first calculate the MSE of θ̂ab. Let Z ∼ N(0, 1) be a
standard Gaussian random variable, so that Y ∼ η + Z if θ = η.

MSEη(θ̂ab) = IEη(θ̂ab(Y ) − η)2

= IEη(a + b(η + Z) − η)2

= IEη(a + (b − 1)η + bZ)2

= (a + (b − 1)η)2 + b2

= a2 + 2a(b − 1)η + (b − 1)2η2 + b2. (31)

This is quadratic in η with positive leading coefficient, so the maximum will occur
either at η = −τ or η = τ , whichever has the same sign as a(b − 1). Since the lead-
ing term is nonnegative and the second term will be positive if a 6= 0, it follows that
a = 0 for the minimax affine estimator. We just have to find the optimal value of b.
The MSE of the minimax affine estimator is thus τ 2(b − 1)2 + b2, a quadratic in b
with positive leading coefficient. So the minimum MSE will occur at a stationary
point with respect to b, and we find

2τ2(b − 1) + 2b = 0, (32)

i.e., the minimax affine estimator is

θ̂A(y) =
τ2

τ2 + 1
· y. (33)

This is an example of a shrinkage estimator: it takes the observation and shrinks it
towards the origin, since τ 2/(τ2 + 1) ∈ (0, 1). Multiplying the datum by a number
less than 1 makes the variance of the estimator less than the variance of Y —the
variance of the minimax affine estimator is τ 2/(τ2 + 1)2, while the variance of Y
is one. Shrinkage also introduces bias: the bias is η(τ 2/(τ2 + 1) − 1). But because
we know that η ∈ [−τ, τ ], the square of bias is at most τ 2(τ2/(τ2 + 1) − 1)2, and
so the MSE of the minimax affine estimator is at most

τ2

(τ2 + 1)2
+ τ2

(
1 − τ2

τ2 + 1

)2

=
τ2

τ2 + 1
< 1. (34)

By allowing some bias, the variance can be reduced enough that the MSE is smaller
than the MSE of the raw estimator Y of θ (the MSE of Y as an estimator of θ is 1
for all η ∈ Θ)



Affine estimators use the data in a very simple way. The truncation estimator
θ̂τ is not affine. What about even more complicated estimators? If we allowed an
estimator to depend on Y in an arbitrary (but measurable) way, how small could its
maximum MSE be than the maximum MSE of the minimax affine estimator?

In the BNM problem, the answer is “not much smaller:” the maximum MSE
of the minimax (nonlinear) estimator of θ is no less than 4/5 the maximum MSE
of the minimax affine estimator of θ (Donoho at al. 1990). Let a ∧ b ≡ max(a, b)
and a ∨ b ≡ min(a, b). Figure 6 also shows the risk of the truncated minimax affine
estimator

θ̂Aτ (y) = τ ∧ (−τ ∨ τ(τ2 + 1)−1y) (35)

as a function of η. This estimator improves the minimax affine estimator by ensuring
that the estimate is in [−τ, τ ] even when |Y | is very large. For τ = 1/2, the maximum
risk of the truncated minimax affine estimator is about 25% larger than the lower
bound on the maximum risk of any nonlinear estimator. For τ = 3, its maximum
risk is about 12% larger than the lower bound.

We can also find confidence set estimators in various classes that are minimax for
a risk function, such as expected length. Stark (1992a) studies the minimax length
of fixed-length confidence intervals for a BNM when the intervals are centered at
an affine function of Y . Zeytinoglu & Mintz (1984) study the minimax length of
fixed-length confidence intervals for a BNM when the intervals are centered at non-
linear functions of Y . Evans et al. (2005) study minimax expected size confidence
sets where the size can vary with Y . They show that when τ ≤ 2Φ−1(1 − α), the
minimax expected size confidence interval for the BNM problem is the truncated
Pratt interval:

IPτ (Y ) ≡ IP (Y ) ∩ [−τ, τ ], (36)

where IP (Y ) is the Pratt interval (Pratt 1961):

IP(Y ) ≡
{

[(Y − Φ−1(1 − α)), 0 ∨ (Y + Φ−1(1 − α))], Y ≤ 0
[0 ∧ (Y − Φ−1(1 − α)), Y + Φ−1(1 − α)], Y > 0.

(37)

The truncated Pratt interval IPτ has minimax expected length among all 1 − α
confidence intervals for the BNM when τ ≤ 2Φ−1(1 − α). (For α = 0.05, that is
τ ≤ 3.29.) For larger values of τ , the minimax expected length confidence proce-
dure can be approximated numerically; see Evans et al. (2005); Schafer & Stark
(2009). Figure 4 compares the expected length of the minimax expected length con-
fidence interval for a BNM with the expected length of the truncated naive interval
as a function of η. It also shows the expected length of the Bayes credible region
using a uniform prior (see the next section). Note that the minimax expected length
interval has the smallest expected length when η is near zero.



−0.5 0 0.5
0.8

0.85

0.9

0.95

1

η

m
ea

n 
le

ng
th

τ = 1/2
credible truncated Pratt truncated naive

−2 0 2
1.5

2

2.5

3

3.5

4
τ = 3

η

Figure 4 Expected length of the 95% credible, truncated naive and truncated Pratt
interval for the BNM as a function of η for τ = 1/2 and τ = 3. For reference, the
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Bayes risk

The average ρ-risk of an estimator for prior π is the mean risk of the estimator when
the parameter θ is chosen from the prior π:

ρ(λ̂, λ; π) ≡
∫

η

ρη(λ̂, λ[η])π(dη). (38)

The Bayes ρ-risk for prior π is the smallest average ρ-risk of any estimator for prior
π:

ρ(λ; π) ≡ inf�
λ

ρ(λ̂, λ; π), (39)

where the infimum is over some suitable class of estimators. An estimator whose
average ρ-risk for prior π is equal to the Bayes ρ-risk for prior π is called a Bayes
estimator.

Consider estimating a real-valued parameter λ[θ] under MSE risk. It is well
known that the Bayes estimator is the mean of the marginal posterior distribution
of λ[θ] given Y , πλ(d`|Y = y):

λ̂π(Y ) ≡
∫

`πλ(d`|Y = y). (40)

See, e.g., Berger (1985); Lehmann & Casella (1998).12

12This follows from the general result that if X is a real-valued random variable with probability
measure µ, then among all constants c, the smallest value of

�
(x − c)2µ(dx) is attained when c =�

xµ(dx) = IE(X). Let µ(dx) = πλ(dx|Y = y).



For example, in the BNM problem the average MSE risk of the estimator λ̂(Y ) =
Y of θ for the uniform prior on [−τ, τ ] is

ρ(Y, θ; π) ≡ 1

2π

∫ τ

−τ

IEη(Y − η)2dη = 1. (41)

The Bayes risk is
ρ(θ, π) = inf�

λ
ρ(λ̂, θ; π). (42)

And the Bayes estimator is

θ̂π(Y ) ≡ Y − φ(τ − Y ) − φ(τ + Y )

Φ(τ − Y ) − Φ(−τ − Y )
. (43)

Because the posterior distribution of θ has a unimodal density, a level set of the
posterior density of the form S(Y ) = {η : π(dη|Y = y) ≥ c} is an interval. If c is
chosen so that the posterior probability of S(Y ) is 1 − α, S is a 1 − α credible
interval. Figure 4 shows the expected length of the Bayes credible region for the
BNM using a uniform prior.

Bayes/Minimax duality

The Bayes risk depends on the parameter to be estimated and the loss function—and
also on the prior. Consider a set of priors that includes point masses at each element
of Θ (or at least, priors that can assign probability close to 1 to small neighborhoods
of each η ∈ Θ). Vary the prior over that set to find a prior for which the Bayes risk
is largest. Such priors are called “least favorable.”

The frequentist minimax problem finds an η ∈ Θ for which estimating λ[η] is
hardest. The least favorable prior is a distribution on Θ for which estimating λ[η] is
hardest on average when θ is drawn at random from that prior. Since the set of priors
in the optimization problem includes distributions concentrated near the η ∈ Θ for
which the minimax risk is attained, the Bayes risk for the least favorable prior is
no smaller than the minimax risk. Perhaps surprisingly, the Bayes risk for the least
favorable prior is in fact equal to the minimax risk under mild conditions. See, for
example, Berger (1985); Lehmann & Casella (1998).13

Because the Bayes risk for the least favorable prior is a lower bound on the
minimax risk, comparing the Bayes risk for any particular prior with the minimax
risk measures how much information the prior adds: whenever the Bayes risk is
smaller than the minimax risk, it is because the prior is adding more information
than simply the constraint θ ∈ Θ or the data. When that occurs, it is prudent to ask

13Casella & Strawderman (1981) derive the (nonlinear) minimax MSE estimator for the BNM problem
for small τ by showing that a particular 2-point prior is least favorable when τ is sufficiently small and that
a 3-point prior is least favorable when τ is a little larger. They show that the number of points of support
of the least favorable prior grows as τ grows. Similarly, Evans et al. (2005) construct minimax expected
measure confidence intervals by characterizing the least favorable prior distributions; see also Schafer &
Stark (2009).



whether the statistician knows that θ is drawn from the distribution π, or has adopted
π to capture the constraint that θ ∈ Θ. If the latter, the Bayes risk understates the
true uncertainty.

0.5 Frequentist performance of Bayes estimators for
a BNM

In this section, we examine Bayes estimates in the BNM problem with uniform prior
from a frequentist perspective.14 In particular, we look at the maximum MSE of the
Bayes estimator of θ for MSE risk, and at the frequentist coverage probability and
expected length of the 95% Bayes credible interval for θ.15

0.5.1 MSE of the Bayes Estimator for BNM

Figure 5 shows the squared bias, variance and MSE of the Bayes estimator of a
bounded normal mean for MSE risk using a uniform prior, for τ = 3. The figure can
be compared with figure 3, which plots the squared bias, variance and MSE of the
truncation estimator for the same problem. Note that the squared bias of the Bayes
estimate is comparatively larger, and the variance is smaller. The Bayes estimate has
its largest MSE when |η| is close to τ , which is where the truncation estimate has its
smallest MSE. Figure 6 compares the MSE of the Bayes estimator of θ with the MSE
of the truncation estimator θ̂τ and the minimax affine estimator θ̂A, as a function of
θ, for τ = 1/2 and τ = 3. When τ = 1/2, the truncation estimator is dominated
by both of the others: the other two have risk functions that are smaller for every
η ∈ Θ. The risk of the Bayes estimator is smaller than that of the nonlinear minimax
estimator except when |η| is close to τ , although the two are quite close everywhere.
When τ = 3, none of the estimators dominates either of the others: there are regions
of η ∈ Θ where each of the three has the smallest risk. The truncation estimator
does best when |η| is close to τ and worst with |η| is near zero. The Bayes estimator
generally has the smallest risk of the three, except when |η| is close to τ , where its
risk is much larger than that of the truncation estimator and noticeably larger than
that of the minimax estimator.

0.5.2 Frequentist coverage of the Bayesian Credible Regions for
BNM

Figure 7 plots the coverage probability of the 95% Bayes maximum posterior den-
sity credible region as a function of η ∈ Θ, for τ = 1/2 and τ = 3. For τ = 1/2, the

14Generally, Bayes point estimators are biased. For more about (frequentist) risk functions of Bayes
estimators, see, e.g., Lehmann & Casella (1998, p. 241ff).

15For a discussion of the frequentist consistency of Bayes estimates, see Diaconis & Freedman (1986,
1998).
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Figure 5 Squared bias, variance and MSE of the Bayes estimator of a bounded
normal mean using a uniform prior on [−3, 3].

coverage probability is nearly 100% when η is in the middle of Θ, but drops precip-
itously as η approaches ±τ , where it is 68%. For τ = 3, the coverage probability is
smallest when η is near zero, where it is 90.9%. For most values of η, the coverage
probability of the credible region is at least 95%. On average over η ∈ Θ, the cover-
age probability is about right, but for some values is is far too large and for some it
is far too small.

0.5.3 Expected length of the Bayesian Credible Region for BNM

The frequentist coverage probability of the Bayesian 95% credible region is close
to 95% except when θ is near ±τ . Does the loss in coverage probability buy a sub-
stantial decrease in the expected length of the interval? Figure 4 shows that that is
not the case: when τ is small, the expected length truncated Pratt interval is nowhere
longer than that of the maximum posterior density credible region; when τ is mod-
erate, the truncated naive interval has expected length only slightly larger than that
of the credible region, and the truncated Pratt interval has smaller expected length
for much of Θ.

0.6 Summary

Inverse problems involve estimating or drawing inferences about a parameter—a
property of the unknown state of the world—from indirect, noisy data. Prior infor-
mation about the state of the world can reduce the uncertainty in estimates and
inferences. In physical science, prior information generally consists of constraints.
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For example, mass density is nonnegative; velocities are bounded; energies are finite.
Frequentist methods can use such constraints directly. Bayesian methods require that
constraints be re-formulated as prior probability distribution. That re-formulation
inevitably adds information not present in the original constraint.

Quantities that can be computed from the data (without knowing the state of the
world or the value of the parameter) are called estimators. Point estimators map the
data into possible values of the parameter. The sample mean is an example of a point
estimator. Set estimators map the data into sets of possible values of the parameter.
Confidence intervals are examples of set estimators. There are also other kinds of
estimators. And within types of estimators, there are classes with different kinds of
functional dependence on the data. For example, once might consider point estima-
tors that are affine functions of the data, or that are arbitrary nonlinear functions of
the data.
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Figure 7 Frequentist coverage as a function of η of the 95% credible interval for the
BNM with a uniform prior on [−τ, τ ] for τ = 1/2 and τ = 3.

Estimators can be compared using risk functions. Mean squared error is a com-
mon risk function for point estimators. Expected measure of a confidence set is a
reasonable risk function for set estimators. Scientific considerations should enter the
choice of risk functions, although risk functions are often selected for their mathe-
matical tractability rather than their relevance.

The risk depends on the true state of the world. Typically, no estimator has small-
est risk for all possible states of the world. Decision theory makes the risk tradeoff
explicit. For example, one might consider the worst-case risk over all possible states
of the world. The estimator with the smallest worst-case risk is the minimax estima-
tor, a frequentist notion. Or one might consider the average risk if the world were
drawn at random from a given prior probability distribution. The estimator with the
smallest average risk is the Bayes estimator for that prior distribution. If the state
of the world is not random, or random but with unknown probability distribution,
frequentist methods may be preferable to Bayesian methods.

Bayesian methods can be evaluated from a frequentist perspective, and vice
versa. For example, one can calculate the Bayes risk of a frequentist estimator, or
the maximum risk of a Bayes estimator. The frequentist notion of a confidence set
is similar to the Bayesian notion of credible region, but the two are not identical.
The frequentist coverage probability of a Bayesian 1 − α credible set is typically
not 1 − α for all parameter values: it can be much higher for some and much lower
for others. There is a duality between Bayesian and frequentist methods: under mild
technical conditions, the risk of the Bayes estimator for the least favorable prior is
equal to the risk of the minimax estimator. When the Bayes risk for a given prior
is less than the minimax risk, the apparent uncertainty in the Bayes estimate has



been reduced by the choice of prior: the prior adds information not present in the
constraints.
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