
Bounded-Variable Least-Squares: an Algorithm and
Applications

P.B. Stark
Department of Statistics
University of California
Berkeley CA 94720-3860
USA

R.L. Parker
Institute for Geophysics and Planetary Physics
University of California A-025
La Jolla CA 92093
USA

Summary
The Fortran subroutine BVLS (bounded variable least-squares) solves linear
least-squares problems with upper and lower bounds on the variables, using
an active set strategy. The unconstrained least-squares problems for each
candidate set of free variables are solved using the QR decomposition. BVLS
has a “warm-start” feature permitting some of the variables to be initialized
at their upper or lower bounds, which speeds the solution of a sequence of
related problems. Such sequences of problems arise, for example, when
BVLS is used to find bounds on linear functionals of a model constrained to
satisfy, in an approximate lp-norm sense, a set of linear equality constraints
in addition to upper and lower bounds. We show how to use BVLS to solve
that problem when p = 1, 2, or ∞, and to solve minimum l1 and l∞ fitting
problems. FORTRAN 77 code implementing BVLS is available from the
statlib gopher at Carnegie Mellon University.

Keywords: Optimization, constrained least-squares, l1 and l∞ regression.

Acknowledgments: The first author received support from the NSF through
PYI award DMS-8957573 and grant DMS-9404276, and from NASA through
grant NAGW 2516.

1 Introduction

In our research we have often encountered linear least-squares, l1, and l∞
regression problems with linear inequality constraints on the unknowns, as
well as the problem of finding bounds on linear functionals subject to upper
and lower bounds on the variables and a bound on the l1, l2, or l∞ misfit to
a set of linear relations ([7, 8, 13, 16, 14, 12, 6]). We have used the NNLS
(non-negative least-squares) algorithm of Lawson and Hanson [5] to solve



2

some of these problems, and in principle, NNLS can solve them all. However,
in practice, when either (1) both lower and upper bounds on the variables
are given, or (2) one must solve a sequence of related problems, NNLS can be
impractical. In (1), the size of the matrix and the number of unknowns for
NNLS is unnecessarily large, since many slack variables are needed. In (2),
NNLS incurs high overhead in finding a good free set from scratch in each
problem (it overwrites the information needed for warm starts). We have been
able to solve much larger problems in much less time using an algorithm that
explicitly incorporates upper and lower bounds on the variables and returns
information about its final free and bound sets.

BVLS (bounded-variable least-squares) is modelled on NNLS and solves
the problem bvls:

min
l≤x≤u

‖Ax− b‖2 (1)

where l, x, u ∈ Rn, b ∈ Rm, and A is an m by n matrix. The relative size
of m and n is immaterial; typically, in inverse problems, m << n. Some
commercial codes advertised to work when m < n do not.

As we show below, if one can solve problem bvls one can also solve the
problem bvmm(p) (bounded-variable minimum misfit):

min
l≤x≤u

‖Ax− d‖p (2)

when p = 1 or p = ∞ (p = 2 is just bvls); as well as the problem blf(p):

min c · x (3)

subject to the constraints
l ≤ x ≤ u (4)

and
‖Ax− d‖p ≤ χ (5)

where p is any of 1, 2, or ∞.

2 The BVLS Algorithm

BVLS uses an active set strategy similar to that of NNLS [5], except two
active sets are maintained—one for variables at their lower bounds and one
for variables at their upper bounds. The proof that BVLS converges to a
solution of problem bvls follows that for NNLS [5]; we do not give it here.

Here is an outline of the algorithm, numbered to agree with Lawson and
Hanson’s notation. The set F contains the indices of “free” components
of the working solution x that are strictly between their lower and upper
bounds; L contains the indices of components at their lower bounds; and U
contains the indices of components at their upper bounds.



3

1. If this is a warm start, F , L and U were initialized externally; set each
component of x whose index is in F to the average of its lower and
upper bounds, and set each component of x whose index is in L and U
to its corresponding bound. If this is a warm start and F = {1, · · · , n},
stop with an error message. If this is a cold start, set F = U = ∅,
L = {1, · · · , n}, and set every element of x to its lower bound.

2. Compute w = AT (b−Ax), the negative of the gradient of the squared
objective.

3. If F = {1, · · · , n}, or, if wj ≤ 0 for all j ∈ L and wj ≥ 0 for all j ∈ U ,
go to step 12. (This is the Kuhn-Tucker test for convergence.)

4. Find t∗ = arg maxt∈L∪U stwt, where st = 1 if t ∈ L and st = −1 if
t ∈ U . If t∗ is not unique, break ties arbitrarily.

5. Move t∗ to the set F .

6. Let b′ be the data vector less the predictions of the bound variables;
i.e., b′j = bj −

∑
k∈L∪U Ajkxj . Let A′ be the matrix composed of

those columns of A whose indices are in F . Let j′ denote the index
of the column of A′ corresponding to the original index j ∈ F . Find
z = arg min ‖A′z − b′‖2

2.

7. If lj < zj′ < uj for all j′, set xj = zj′ and go to step 2.

8. Let J be the set of indices of components of z that are out-of-bounds.
Define

q′ = arg min
j′∈J

min
{∣∣∣∣ lj − xj

zj′ − xj

∣∣∣∣ ,

∣∣∣∣ uj − xj

zj′ − xj

∣∣∣∣} .

9. Set

α = min
{∣∣∣∣ lq − xq

zq′ − xq

∣∣∣∣ ,

∣∣∣∣ uq − xq

zq′ − xq

∣∣∣∣} .

10. Set xj := xj + α(zj′ − xj) for all j ∈ F .

11. Move to L the index of every component of x at or below its lower
bound. Move to U the index of every component at or above its upper
bound. Go to step 6.

12. Done.

FORTRAN 77 code implementing BVLS is available through the statlib
on-line software library at Carnegie-Mellon University. The code includes a
number of features to enhance numerical stability that are not evident in the
outline above. These features are described below.

As noted by Lawson and Hanson, roundoff errors in computing w may
cause a component on a bound to appear to want to become free, yet when



4

the component is added to the free set, it moves away from the feasible region.
When that occurs, the component is not freed, the corresponding component
of w is set to zero, and the program returns to step 3 (the Kuhn-Tucker test).

When the solution of the unconstrained least-squares problem in step 6
is infeasible, it is used in a convex interpolation with the previous solution to
obtain a feasible vector (as in NNLS) in step 11. Using a convex combination
ensures that the value of the objective function is lower at the new iterate
(the step is taken in a descent direction). The constant in this interpolation
is computed to put at least one component of the new iterate x on a bound.
However, because of roundoff, sometimes no interpolated component ends up
on a bound. Then in step 11, the component that determined the interpo-
lation constant in step 8 is forced to move to the appropriate bound. This
guarantees that “Loop B” (Lawson and Hanson’s labelling) is finite. Also
following Lawson and Hanson, any component remaining infeasible at the
end of step 11 is moved to its nearer bound.

There are several differences between NNLS and BVLS that improve nu-
merical stability: Our implementation of BVLS uses the QR decomposition
to solve the unconstrained least-squares problem in step 6, as does NNLS.
While NNLS updates the QR decomposition each time step 6 is entered, for
efficiency, we compute the decomposition from scratch each time step 6 is
executed, for stability. We also assume the solution is essentially optimal if
the norm of the residual vector is less than a small fraction of the norm of the
original data vector b (10−12 in the code below); this test might be removed
by the more cautious.

If the columns of A passed to the QR routine at step 6 are linearly depen-
dent, the new component is not moved from its bound: the corresponding
component of w is set to zero, and control returns to step 3, the Kuhn-Tucker
test. When the columns of A are nearly linearly dependent, we have observed
cycling of free components: a component just moved to a bound tries imme-
diately to become free; the least-squares step (6) returns a feasible value and
a different component is bound. This component immediately tries to be-
come free again, and the original component is moved back to its previous
bound. We have taken two steps to avoid this problem. First, the column of
the matrix A corresponding to the new potentially free component is passed
to QR as the last column of its matrix. This ordering tends to make a com-
ponent recently moved to a bound fail the “round-off” test mentioned above.
Second, we have incorporated a test that prohibits short cycles. If the most
recent successful change to the free set was to bind a particular component,
that component can not be the next to be freed. This test occurs just after
the Kuhn-Tucker test (step 3).



5

3 Using BVLS to Solve Minimum l1 and l∞
Problems

Consider the problem bvmm(p) (bounded-variable minimum misfit in the p
norm):

min
l≤x≤u

‖Ax− b‖p. (6)

The problem bvls is the case p = 2. The cases p = 1 and p = ∞ can be
written as linear programs, but can also be solved iteratively using algorithm
BVLS. For reference, we give the linear programming formulations of these
problems.

Problem bvmm(1) is solved by the following linear program:

min
m∑

j=1

(sj + tj) (7)

subject to the inequality constraints

l ≤ x ≤ u, 0 ≤ s, and 0 ≤ t, (8)

where x ∈ Rn, and s, t ∈ Rm; and the linear equality constraints

Ax− b + s− t = 0. (9)

The proof of the equivalence of this linear program to bvmm(1) is just the
observation that ‖s − t‖1 ≤

∑
j(sj + tj), and that whatever sj − tj may

be, equality is possible without changing the fit to the data or violating the
inequality constraints.

Problem bvmm(∞) is solved by the linear program:

min r (10)

subject to the linear inequality constraints

r ≥ 0, l ≤ x ≤ u, and − 1r ≤ s ≤ 1r, (11)

where r ∈ R, x ∈ Rn, s ∈ Rm, and 1 is an m-vector of ones; and the linear
equality constraints

Ax− b + s = 0. (12)

3.1 Solving Problem bvmm(1) With BVLS

A computationally effective strategy is to mimic the linear program above,
using large weights to impose the equality constraints. Let Ã be the matrix
A with its rows renormalized to unit Euclidean norm (to improve numerical



6

stability), and let b̃ be the vector b scaled by the same constants as the rows
of Ã. Define the matrix

G ≡
[

Ã I −I
0 γ1 γ1

]
, (13)

where I is an m by m identity matrix, 0 is a row vector of n zeros, 1 is a
row-vector of m ones, and γ << 1 is a positive scalar discussed later. Define
the m + 1-vector

d ≡
[

b̃
0

]
, (14)

and the n + 2m-vectors

e ≡
[

l
0

]
, and f ≡

[
u

“∞”

]
. (15)

Here “∞” is a very large number. Now consider the bvls problem

min ‖Gz − d‖2 such that e ≤ z ≤ f, (16)

where z ∈ Rn+2m. If γ is sufficiently small, the equations involving the
matrix A will be satisfied with high accuracy, while the least-squares misfit
will derive almost entirely from the last row, which is the l1 misfit. A different
approach is given below in section on 4.1.

3.2 Solving Problem bvmm(∞) With BVLS

The strategy we employ to solve bvmm(∞) as a sequence of bvls problems is
to find the largest constant r such that constraining the infinity-norm misfit
to be at most r still yields a feasible problem. In implementations, we have
used a bisection search to find the smallest the smallest positive value of r
such that the bvls problem

min
l≤x≤u, −r1≤s≤r1

∥∥∥∥[
A I

]
·
[

x
s

]
− b

∥∥∥∥2

2

≈ 0, (17)

(within machine precision) where 1 is an m-vector of ones. This strategy
is quite stable numerically and less demanding on memory than introducing
additional slack variables for each data relation. Numerical stability can be
further improved by normalizing each row of A to unit Euclidean length,
and adjusting the constraints on the vector s accordingly. The number of
iterations in the search for r can be reduced substituting for the bisection an
algorithm that uses derivatives. It is clear from set inclusions that the bvls
misfit is a monotonic function of r, so the searches are straightforward.

In all of bvmm(p), p = 1, 2,∞, it is trivial to incorporate weights on the
data to account for unequal error variances.



7

4 Solving Problem blf(p) With BVLS

The problems blf(p) (bounds on a linear functional, subject to a p-norm
misfit contraint) with p = 1, 2, and ∞ can be solved by solving a sequence of
related bvls problems. The following subsections describe strategies we have
used successfully.

It is useful to have a priori bounds on c ·x, which we can find by ignoring
the misfit constraints:

c− ≡
∑

j:cj≤0

cjuj +
∑

j:cj>0

cj lj ≤ c · x ≤
∑

j:cj≥0

cjuj +
∑

j:cj<0

cj lj ≡ c+. (18)

4.1 p = 1

Problem blf(1) can be solved by standard linear programming techniques.
However, we have found the following strategy to be faster and more reliable
than naive simplex algorithms, such as that in [9].

One may test for feasibility, i.e., the existence of an x0 satisfying l ≤ x0 ≤
u and ‖Ax0 − b‖1 ≤ χ, by solving the following bvls problem:

Let

G ≡
[

A I −I 0
0 1 1 1

]
, (19)

where the matrices I are m by n matrices with ones on the diagonal and zero
elsewhere; 0 in the top row is a column vector of m zeros; 0 in the lower row
is a row vector of n zeros; the first two 1’s in the lower row are row vectors
of m zeros, and the last 1 is just the scalar 1.

Let d be the vector

d ≡
[

b
χ

]
(20)

and let e and f be given by

e ≡
[

l
0

]
, (21)

where 0 is a column vector of 2m + 1 zeros, and

f ≡

 u
“∞′′

χ

 , (22)

where “∞′′ is a 2m-vector of numbers large enough that the bounds can not
be active. It is possible to compute how large these numbers need to be
a priori from A and b; alternatively, one can use trial values and verify a
posteriori whether the bounds are active, and increase the value if they are.

The problem blf(1) is feasible if the bvls problem

min
y∈Rn+2m+1

‖Gy − h‖2 s.t. e ≤ y ≤ f (23)



8

has the value zero within machine precision. Then the first n elements of
the solution vector y comprise a feasible point for the problem blf(1), if one
exists. This also gives an alternative algorithm for solving bvmm(1): as in
the algorithm for bvmm(∞), use a bisection search to find the smallest value
of χ for which the bvls problem has value 0 within machine precision.

The information in the istate vector can be used to warm-start the
iterations about to be described. Re-define

G ≡


A I −I 0 0 0
0 1 1 1 0 0
c 0 0 0 1 −1
0 0 0 0 γ γ

 . (24)

In this definition, the matrices I are as before, and the vectors 0 in the top
row are column-vectors of m zeros. In the second row, the first 0 is a row-
vector of n zeros; the first two vectors 1 are row-vectors of m ones; and the
third 1 and the last two 0’s are scalars. In the third row, c is the objective n-
vector (written as a row-vector); the first two 0’s are row vectors of m zeros;
and the third 0, the 1 and the −1 are scalars. In the last row, the first 0 is
a row-vector of n zeros; the next two 0’s are row-vectors of m zeros; and the
last three entries are the scalars 0, γ and γ. The scalar γ is a small positive
number used to downweight the last row relative to those above, which we
want to treat as equality constraints. The dimension of G is thus m + 3 by
n + 2m + 3.

Let d now be the m + 3-vector

d ≡


b
χ
c±

0

 , (25)

where c+ is used to maximize c · x, and c− is used to minimize c · x (see the
definitions 18). Let e and f be given by

e ≡
[

l
0

]
, (26)

where 0 is a column vector of 2m + 3 zeros, and

f ≡


u
∞
χ
∞
∞

 , (27)

where ∞ is a 2m-vector of numbers large enough that the constraints will
never be active, and the last two entries ∞ are two more such scalars.



9

Let x∗ denote the n-vector consisting of the first n elements of the solution
of the bvls problem

arg min {‖Gz − d‖ : e ≤ z ≤ f} . (28)

If γ is chosen well, c · x∗ gives the optimal value of blf(1). One should verify
a posteriori that the l1 misfit ‖Ax∗ − b‖1 is adequately close to χ; if not, γ
needs to be adjusted. A proof that this scheme works follows that suggested
in the next section for blf(2).

We remark that the dimension of the matrix G is larger than it needs to
be; it is possible to eliminate the last row and last two columns, substituting
the row [γc 0 0 0] for [c 0 0 0 1 1] and making corresponding changes to d,
e, and f . However, we have found the scheme spelt out above to be more
stable and less sensitive to the choice of γ.

4.2 p = 2

This problem can be solved relatively easily using BVLS and a scheme that
lies conceptually between the Lagrangian dual and the use of linear con-
straints directly. (See Rust and Burris [10] for a different algorithm.) The
basic idea is to minimize the misfit to the data subject to the inequality con-
straints on x and the constraint c · x = γ. The value of γ is varied from the
“best-fitting” value to determine the range of values for which the minimum
misfit is at most χ.

We can find the “best-fitting” value of γ by solving the bvls problem

x0 = arg min
l≤x≤u

‖Ax− b‖2
2, (29)

and setting γ0 ≡ c · x0.
Consider finding min c · x; the case for the maximum follows by changing

the sign of c or other obvious modifications. Define the matrix

G ≡
[

A
αc

]
(30)

and the vector

d ≡
[

b
αγ

]
. (31)

Now consider
Φ(γ) ≡ min

l≤x≤u
‖Gx− d‖2

2, (32)

and let x∗(γ) denote the minimizer. This is a bvls problem. We assert that
for γt < γ0, c · x∗(γ) is the solution to

min c · x such that l ≤ x ≤ u and ‖Ax− b‖2 ≤ ‖Ax∗(γ)− b‖2. (33)



10

The proof just relies on the convexity of the linear functional c · x, the strict
convexity of ‖Ax − b‖2

2, and the convexity of the set l ≤ x ≤ u. One may
thus solve blf(2) by finding the smallest and largest values of γ such that
‖Ax∗(γ)−b‖2 ≤ χ. The search is straightforward since ‖Ax∗(γ)−b‖ increases
monotonically with |γ − γ0| (the functional is quasiconvex in γ). If, during
the search, c · x∗(γ) ≤ c− (or c · x∗(γ) ≥ c+) while ‖Ax∗(γ) − b‖ < χ, then
the minimum (maximum, respectively) value of c · x is c− (c+). The warm-
start feature of BVLS affords large economies in solving the sequence of bvls
problems for different values of γ, especially since the sets of components at
their upper and lower bounds change gradually as γ varies.

The positive constant α is chosen to enhance numerical stability; we have
found that for n up to about 200, α ≈ 10−3 works well in double precision on
32 bit machines. One should allow some tolerance in attaining the exact value
of χ (e.g., 1% of the nominal value) to avoid excessive searching. This may
be justified by remembering that in practice one picks χ using (uncertain)
estimates of the standard deviations of the data errors.

4.3 p = ∞
This problem can also be solved directly using linear programming; we have
found the following approach using BVLS to be faster and more stable than
simple simplex methods. Reducing problem blf(∞) to a bvls problems is
similar to the treatment for p = 1.

As noted in section 3.2, to find a feasible point one may solve

arg min
e≤z≤f

‖Gz − d‖2
2, (34)

where
G ≡

[
ΛA I 1

]
, (35)

(Λ is a diagonal matrix introduced to improve numerical stability; its entries
are the reciprocals of the Euclidean norms of the corresponding rows of A; I
is an m by m identity matrix, and 1 is a column-vector of n ones)

e ≡
[

l
−Λ · χ

]
, (36)

where χ is an m-vector all of whose entries are χ, and

f ≡
[

u
Λχ

]
. (37)

The first n elements of z give a feasible point for the infinity-norm problem.
Let z∗ solve the bvls problem

min ‖Gz − d‖2
2 (38)



11

such that e ≤ z ≤ f , where

G ≡

 ΛA I 0 0
c 0 1 −1
0 0 γ γ

 , (39)

e ≡


l

−Λ · χ
0
0

 , (40)

and

f ≡


u

Λ · χ
∞
∞

 . (41)

Let x∗ denote the n-vector composed of the first n elements of z∗. If α is
chosen well, c · z∗ solves blf(∞); again, one should check a posteriori to verify
that ‖Ax∗ − b‖∞ is adequately close to χ.

5 Applications

As noted in the introduction, BVLS has been used to solve a variety of sta-
tistical problems arising in inverse problems. Stark and Parker [15] used
BVLS to find a confidence region for the velocity with which seismic waves
propagate in the Earth’s core. The upper and lower bounds resulted from a
nonlinear transformation that rendered the problem exactly linear, and from
thermodynamic constraints on the monotonicity of velocity with radius in
the Earth’s outer core. Stark [11] reports joint work with D.L. Donoho using
BVLS to study the extent to which positivity constraints permit “superres-
olution,” recovering missing high frequencies beyond the linear “Rayleigh
limit,” in signal recovery problems. Parker and Zumberge [8], Ander et al.
[1], and Zumberge et al. [17] used BVLS to test the hypothesis that Newton’s
law of gravitation was consistent with geophysical experiments designed to
measure the “fifth force.” In that problem, the inequality constraints arose
from limits on the density of rocks. Hildebrand et al. [3] and Parker [6] used
BVLS to find uncertainties in the direction of the Earth’s paleomagnetic
field from the magnetization of seamounts. The inequalities on the variables
arose from limits on the magnetization of minerals. Stark [12] illustrated how
BVLS can be used to solve a variety of inverse problems in gravimetry, geo-
magnetism and seismology, using the transformations of bvmm and blf given
above. Genovese et al. [2] used BVLS to test hypotheses about the internal
rotation of the Sun from observations of the splitting of eigenfrequencies of
the “5-minute” solar vibrations. In that problem, the inequalities derived
from physical hypotheses about changes in the rotation rate with position



12

in the Sun. Johnson et al. [4] used BVLS to find bounds on the displace-
ment within the Earth after earthquakes based on geodetic measurements.
The inequalities arose from infinity-norm bounds on the misfit to geodetic
measurements linearly related to the unknown displacement field.

The dimensions of the numerical problems in these applications reach
several thousands of data and several hundreds of parameters. In every case,
BVLS has been found to be numerically stable, and when the algorithm
could be compared with others (for example, when BVLS was used to solve
a linear programming problem by weighting, as described above, and could
thus be compared with a standard simplex method), BVLS was found to be
computationally more efficient, with run times up to 10 times shorter.

References

[1] M.E. Ander, M.A. Zumberge, T. Lautzenhiser, R.L. Parker, C.L.V.
Aiken, M.R. Gorman, M.M. Nieto, P.R. Cooper, J.F. Ferguson,
E. Fisher, G.A. McMechan, G. Sasagawa, J.M. Stevenson, G. Backus,
A. Chave, J. Greer, P. Hammer, B.L. Hansen, J.A. Hildebrand, J.R.
Kelty, C. Sidles, and J. Wirtz. Test of Newton’s inverse-square law in
the Greenland ice cap. Phys. Rev. Lett., 62:985–988, 1989.

[2] C.R. Genovese, D.O. Gough, and P.B. Stark. Uncertainties for two-
dimensional models of solar rotation from helioseismic eigenfrequency
splitting. Technical Report 406, Dept. Stat. Stat. Univ. Cal. Berkeley,
1994.

[3] J.A. Hildebrand, J.M. Stevenson, P.T.C. Hammer, M.A. Zumberge, and
R.L. Parker. A seafloor and sea-surface gravity survey of axial volcano.
J. Geophys. Res., B8:12,751–12,763, 1990.

[4] Johnson H.O., D.C. Agnew, and K. Hudnut. Extremal bounds on earth-
quake movement from geodetic data - application to the Landers earth-
quake. Bull. Seis. Soc. Am., 84:660–667, 1994.

[5] C.W. Lawson and R.J. Hanson. Solving Least Squares Problems. John
Wiley and Sons, Inc., New York, 1974.

[6] R.L. Parker. A theory of ideal bodies for seamount magnetism. jgr,
96:16101–16112, 1991.

[7] R.L. Parker and K. Whaler. Numerical methods for establishing solu-
tions to the inverse problem of electromagnetic induction. jgr, 86:9574–
9584, 1981.

[8] R.L. Parker and M.A. Zumberge. An analysis of geophysical experiments
to test Newton’s law of gravity. Nature, 342:39–31, 1989.



13

[9] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Nu-
merical Recipes in C. Cambridge University Press, New York, 1988.

[10] B.W. Rust and W.R. Burrus. Mathematical Programming and the Nu-
merical Solution of Linear Equations. American Elsevier Pub. Co., Inc.,
New York, 1972.

[11] P.B. Stark. Strict bounds and applications. In P.C. Sabatier, editor,
Some Topics on Inverse Problems, pages 220–230. World Scientific, Sin-
gapore, 1988.

[12] P.B. Stark. Inference in infinite-dimensional inverse problems: Dis-
cretization and duality. J. Geophys. Res., 97:14,055–14,082, 1992.

[13] P.B. Stark and R.L. Parker. Smooth profiles from τ(p) and X(p) data.
Geophys. J. R. Astron. Soc., 89:997–1010, 1987.

[14] P.B. Stark and R.L. Parker. Velocity bounds from statistical estimates
of τ(p) and X(p). J. Geophys. Res., 92:2713–2719, 1987.

[15] P.B. Stark and R.L. Parker. Correction to ‘Velocity bounds from sta-
tistical estimates of τ(p) and x(p)’ by Philip B. Stark and Robert L.
Parker. J. Geophys. Res., 93:13,821–13,822, 1988.

[16] P.B. Stark, R.L. Parker, G. Masters, and J.A. Orcutt. Strict bounds
on seismic velocity in the spherical Earth. J. Geophys. Res., 91:13,892–
13,902, 1986.

[17] M. A. Zumberge, J. A. Hildebrand, J.M. Stevenson, R.L. Parker, A.D.
Chave, M. E. Ander, and F. N. Spiess. Submarine measurement of the
Newtonian gravitational constant. Phys. Rev. Lett., 27:3051–3054, 1991.


