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Abstract

We develop new simultaneous confidence intervals for the components of a multi-

variate mean. The intervals determine the signs of the parameters more frequently than

standard intervals do: the set of data values for which each interval includes parameter

values with only one sign is larger. When one or more estimated means are small, the

new intervals sacrifice some length to avoid crossing zero. But when all the estimated

means are large, the new intervals coincide with standard simultaneous confidence in-

tervals, so there is no sacrifice of precision. The improved ability to determine signs

is remarkable. For example, if two means are to be estimated and the intervals are

allowed to be at most 80% longer than standard intervals, when only one mean is small

its sign is determined almost as well as by a one-sided test that ignores multiplicity and

has a pre-specified direction. When both are small the sign is determined better than

by two-sided tests that ignore multiplicity. The intervals are constructed by inverting

level-α tests to form a 1−α confidence set, then projecting that set onto the coordinate

axes to get confidence intervals. The tests have hyperrectangular acceptance regions

that minimize the maximum amount by which the acceptance region protrudes from

the orthant that contains the hypothesized parameter value, subject to a constraint

on the maximum side length of the hyperrectangle. R and SAS scripts are available

online.

Key Words: Non-equivariant hypothesis test, hyperrectangular acceptance region

1 Introduction

Standard simultaneous confidence intervals for the components of a multivariate mean serve

at least two purposes: They express the joint uncertainty in estimates of the components and

they classify the sign of each component as positive, negative, or indeterminate. For the first
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purpose, shorter intervals are preferable and standard intervals perform well. For the second,

length is less important than whether the intervals include values of only one sign. One-

sided confidence intervals classify signs well, but have infinite length—and the direction of the

interval (upper or lower) must be pre-specified. Here we construct confidence intervals that

adaptively trade length for the ability to classify the sign as nonnegative or nonpositive more

frequently than standard intervals do, without pre-specifying a direction, while maintaining

simultaneous coverage probability. Where the data make it easy to draw conclusions about

the signs of the parameters, the new intervals are identical to conventional intervals. But

where conventional intervals cannot determine the sign of one or more parameters, the new

intervals sometimes can, at the cost of some length.

The new intervals extend work by Benjamini, Hochberg and Stark [2], Benjamini and

Stark [3] and Madar [11]. Benjamini et al. [2] construct a 1−α two-sided univariate confidence

interval with nearly the same power to determine the sign of the parameter as 1−α one-sided

confidence intervals, without pre-specifying whether to use an upper or a lower one-sided

interval.

Benjamini and Stark [3] develop a simultaneous confidence procedure with more power

than conventional intervals to determine the signs of the components of an n-dimensional

location parameter. Their intervals result from inverting a family of hypothesis tests whose

acceptance regions are hyperrectangles of a fixed size and shape, centered at the hypothesized

parameter value, but the orientation of the hyperrectangle depends on the relative sizes of

the components of the hypothesized parameter value.

Here, we introduce a family {Aθ}θ∈<n of acceptance regions that leads to simultaneous

confidence intervals more directly analogous to the individual confidence intervals of Ben-

jamini et al. [2]: These acceptance regions, called quasi-conventional (QC), protrude as little

as possible from the orthant that contains the hypothesized parameter value, subject to a
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constraint on the level of the test and on the side lengths of the hyperrectangle. The QC

confidence intervals that result from inverting the tests are not centered at the unbiased esti-

mate when one or more components of that estimate is small. Allowing asymmetry—which

biases the tests—increases the power to determine the signs of the components of the mean.

QC acceptance regions are equivariant under permutations and reflections of the coordi-

nates but not under translation. The same is true of the hyperrectangular acceptance regions

considered by [3], but those hyperrectangles have fixed aspect ratios and are centered at the

hypothesized parameter value; only the orientation of the hyperrectangle varies with the

parameter. Those regions yield unbiased tests. Allowing bias, as we do here, increases the

power to determine the signs of the components.

Section 2 reviews the duality between confidence intervals and tests. The QC family

of acceptance regions is presented in Section 3. QC confidence intervals are presented in

Section 4. Section 5 presents some bivariate illustrations and a trivariate example from the

Women’s Health Initiative study of Hormone Replacement Therapy. Section 6 discusses fur-

ther properties and possible generalizations of QC intervals. Appendix A contains technical

details and proofs, including an explicit characterization of the extreme points of the QC

confidence set, which determine the endpoints of the confidence intervals.

2 Tests and Confidence Sets

We seek simultaneous confidence intervals for the components of µ = (µj)
n
j=1 from the n-

dimensional datum X = (Xj)
n
j=1, where {Xj − µj}nj=1 are iid with cdf F , and F has a

symmetric, continuous, unimodal density f(x) that is strictly decreasing for x ≥ 0 in the

support of f . Each Xj might be an unbiased estimator of µj computed from more than one

raw observation. Estimating µ from independent Gaussian observations X ∼ N (µ, σ2I) is
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an example. Section 6 discusses joint confidence intervals when the components of X are

correlated and gives some simulation results for correlated Gaussian estimators of {µj}.

We want the confidence intervals with simultaneous coverage probability 1 − α > 1/2;

i.e., the chance that all n intervals cover their parameters should be at least 1−α. We want

the intervals to determine the signs of {µj}; that is, for the confidence interval for µj to

contain values of only one sign. And we want the intervals to be short.

Suppose that for each θ ∈ <n, Aθ is the acceptance region for a level–α test of the

hypothesis that µ = θ using the datum X = (Xj)
n
j=1. Then

SA(X) ≡ {θ ∈ <n : X ∈ Aθ} (1)

is a 1−α simultaneous confidence set for µ [10, pp. 89–90]. Simultaneous confidence intervals

for the components of µ can be constructed by projecting SA(X) onto the coordinate axes:

For j = 1, . . . , n, define

Ij(X) ≡ [inf{θj : θ ∈ SA(X)}, sup{θj : θ ∈ SA(X)}] . (2)

Then

Pr
µ

{
n
∩
j=1
{Ij(X) 3 µj}

}
≥ 1− α. (3)

Hence, the intervals {Ij} are simultaneous 1 − α confidence intervals for {µj}. Below, we

tailor {Aθ} so that Ij determines the sign of µj more often than conventional simultaneous

intervals do.

3 Acceptance Regions

The conventional choice of α-level acceptance regions is a set of hypercubes centered at the

hypothesized parameter values:

Bθ ≡
n
×
j=1

[θj − cα, θj + cα], (4)
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where cα ≡ F(1+(1−α)1/n)/2 is the pth quantile of F . This family of acceptance regions is

equivariant under permutations of the coordinates, reflections around the coordinate axes,

and translations. The corresponding conventional confidence intervals are

IBj (X) ≡ [Xj − cα, Xj + cα]. (5)

We shall see that inverting a family of tests that is not equivariant under translations

produces simultaneous confidence intervals that determine the signs of the components of µ

more frequently than conventional intervals do.

Suppose θ0 and θ1 differ in the sign of their jth component. The confidence set SA(X)

does not determine the sign of the jth component of µ if X ∈ Aθ0 ∩ Aθ1 . Hence, if we wish

to determine the signs of the components as frequently as possible, the acceptance region

Aθ should be confined as nearly as possible to the orthant in which θ lies. We consider only

hyperrectangular acceptance regions, which correspond to conventional confidence sets when

the regions are hypercubes centered at the parameter. Sidak [14] discusses of the merits of

hyperrectangular acceptance regions.

Let A(θ) denote the set of all hyperrectangles H =
n
×
j=1

[θj − `j(θ), θj + uj(θ)] that satisfy

the significance-level constraint

Pr
θ
{X /∈ H} ≤ α (6)

and a side-length constraint

`j(θ) + uj(θ) ≤ C, j = 1, . . . , n. (7)

We will drop the argument θ when that does not introduce ambiguity. Limiting the maximum

side length to C limits the length of the confidence intervals that result from inverting the

family of tests to less than 2C.

Let Z(θ) ≡ {j : θj = 0} and N (θ) ≡ {j : θj 6= 0}. (The mnemonic is that Z stands for
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the zero components and N for the non-zero components.) We define the QC acceptance

region Aθ for θ ≥ 0 as follows:

1. If there exist hyperrectangles H ∈ A(θ) for which `j = uj = cα, j ∈ Z(θ), and

θj − `j ≥ 0, j ∈ N (θ), then Aθ is the one with the smallest maximum side length.

2. Otherwise, Aθ is the hyperrectangle H ∈ A(θ) with `j = uj = cα, j ∈ Z(θ), for which

minj∈N (θ)(θj − `j) is largest.

Thus, Aθ is the conventional hypercube centered at θ whenever the smallest nonzero compo-

nent of θ is cα or larger. When some component of θ is less than cα, Aθ is a hyperrectangle

that contains only positive values of components j ∈ N (θ) and has maximum side length

not exceeding C, if such a hyperrectangle can satisfy the significance-level constraint. When

that is impossible, Aθ is the hyperrectangle with side length not exceeding C that protrudes

as little as possible into other orthants for j ∈ N (θ). The protrusion of the acceptance region

into orthants other than the one θ belongs to can be reduced or eliminated by lengthening the

sides of the acceptance region for large components of θ and by allowing Aθ to be centered

at a point other than θ. This is the key to the new method.

When θ is not in the positive orthant, the QC acceptance region Aθ is defined by reflecting

the negative components about their coordinate axes. So, for example,

`j((θ1, . . . ,−θj, . . . , θn)) = uj((θ1, . . . , θj, . . . , θn)). (8)

The QC acceptance regions are equivariant under reflections about the axes and permutations

of the coordinates: If π is a permutation of (1, . . . , n), then

`j((θπ(i))
n
i=1) = `π(j)(θ) (9)

and

uj((θπ(i))
n
i=1) = uπ(j)(θ). (10)
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Figure 1: Bivariate QC acceptance regions

(a) Squares with side length cα centered at θ when min(|θ1|, |θ2|) ≥ cα

or θ = 0; (b) Squares with side length C that are centered at θ in

one coordinate when min{|θ1|, |θ2|} < cα and
∣∣∣|θ2| − |θ1|

∣∣∣ ≥ C/2 − λ1

(top left and bottom); Squares with side length C that are not centered

at θ in either coordinates when min{|θ1|, |θ2|} < cα and
∣∣∣|θ2| − |θ1|

∣∣∣ <
C/2−λ(θ) ≤ C/2−λ1 (top right). (c) Rectangles when one component

of θ is zero.

Appendix A characterizes these acceptance regions precisely. Figure 1 shows exemplar

QC bivariate acceptance regions, which can be squares centered at θ, squares centered at a

point other than θ, or rectangles, depending on the magnitudes of the components of θ.
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4 Confidence sets

The confidence set for µ is S(X) = {θ ∈ <n : X ∈ Aθ}. The simultaneous confidence

intervals for {µj}nj=1 are, for each j,

Ij(X) ≡ [inf{θj : θ ∈ S(X)}, sup{θj : θ ∈ S(X)}]

= [inf{θj : X ∈ Aθ}, sup{θj : X ∈ Aθ}] . (11)

This amounts to projecting the convex hull of S(X) onto the coordinate axes. The endpoints

of the intervals for different components might be attained by different parameter vectors, so

the intervals can be jointly conservative. The set S(X) is hard to use directly or interpret.

The n confidence intervals, one for each component of the parameter, are more useful in

practice for simultaneous inference.

Since the acceptance regions are equivariant under reflection, the confidence intervals are

too. We therefore may focus on the case X ≥ 0; other cases are constructed by reflecting

the confidence set about the coordinate axes of those components of X that are negative.

Treating the vector X as fixed, we denote the confidence interval for µj by (Lj, Uj), j =

1, . . . , n. The confidence intervals depend on the datum X in a surprisingly simple way,

described below.

Define

λk ≡ min{x : (2F (C/2)− 1)n−k × (F (x) + F (C − x)− 1)k ≥ 1− α}, (12)

C ≡ {j : Xj ≤ C}, (13)

C(j) ≡ {i 6= j : C −Xi ≥ Xj}, (14)

and

κ(j) ≡ #{i 6= j : C −Xi ≥ Xj} = #C(j). (15)
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These functions allow us to bracket the endpoints of the interval narrowly a priori . In the

most complex case, the lower endpoint can be found exactly by solving an optimization

problem with one variable:

hk(x) ≡ x−max
y
{y : [2F (C/2)−1]n−k−1×[F (C−x)−F (−x)]k×[F (C−y)−F (−y)] ≥ 1−α}.

(16)

The upper confidence bound Uj for θj is never larger than Xj + C/2, since no acceptance

region extends below θj by more than C/2.

Theorem 1 Upper Confidence Bounds

1. If #C = 0, Uj = Xj + cα for all j.

2. If #C = 1, Uj = Xj + cα for j ∈ C and Uj = Xj + C/2 for j /∈ C.

3. If #C > 1, Uj = Xj + C/2 for all j.

The lower confidence bound Lj for θj is never below Xj − (C − λ1), since no acceptance

region contains values of a component that are larger than from the corresponding component

of θ by more than C − λ1.

Theorem 2 Lower Confidence Bounds

1. If Xj > C and #C = 0, Lj = Xj − cα.

2. If Xj > C and #C > 0, Lj = Xj − C/2.

3. If λκ(j)+1 < Xj ≤ C, Lj = (Xj − (C − λ1))+.

4. If λκ(j) < Xj ≤ λκ(j)+1, Lj = hκ(j)(Xj).

5. If 0 < Xj ≤ λκ(j) then Lj = Xj − C/2.
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6. If Xj = 0 and #C = 1, Lj = 0− cα.

Proofs of both theorems are in the appendix. R and SAS code for computing QC intervals

is available at the URL www.math.tau.ac.il/~ybenja.

5 Examples and Illustrations

5.1 Bivariate Confidence Regions and Intervals

Figure 2 shows QC bivariate confidence sets and simultaneous confidence intervals for rep-

resentative values of X. The intervals are sometimes of the form Xj ± cα, but not when any

component of X is close to zero.

Figure 3 contrasts the values of X for which conventional simultaneous intervals determine

the signs of the components of µ with the set for which QC intervals determine those signs.

The set of data values for which QC confidence intervals determine the sign of at least one

component of µ strictly includes the set for which conventional intervals do, so the QC

intervals indeed determine the sign more frequently. The values themselves are surprising:

almost too good to be true. For instance, suppose that the QC intervals are allowed to be 1.8

times as long as the conventional intervals in the worst case. Then if one component of X is

large, the sign of both parameters is determined when the smaller component of X is larger

in magnitude than λ1 = 1.65. This is comparable to 1.645, the threshold to determine sign

of a component using a one-sided regular interval—with a pre-determined direction. The

signs of both components of the parameter are determined when both components of the

datum are larger than λ2 = 1.95. This is smaller than 1.965, the threshold to infer the signs

of the components separately, not simultaneously. QC intervals have remarkable power to

determine signs.

10
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Figure 2: Bivariate QC confidence sets and confidence intervals

Let LXU denote the 95% confidence interval around the estimator X.

(a) I1 = −19.02−15−10.98 and I2 = −4.43−2.20.00 (b) I1 = −9.23−7−0.60

and I2 = 10.971519.03 (c) I1 = 0.001.986.01 and I2 = 0.0048.03 (d) I1 =

12.761517.24 and I2 = −14.23−12−9.77. C/2 = 1.8cα in these examples.
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Figure 3: Sign determinations by QC and conventional simultaneous confidence intervals.

(Left) Data values for which 95% QC intervals determine the sign of

one or both components of µ, for C/2 = 1.8cα. (λ1 = 1.65 < λ2 =

1.95 < cα = 2.24) (Right): Data values for which 95% conventional

intervals determine the sign of one or both components of µ. The white

regions are data values for which both components of µ are determined

to be nonnegative, the light gray regions are data values for which

one component is determined to be nonnegative, and the dark gray

regions are data values for which neither component is determined to

be nonnegative.
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5.2 Women’s Health Initiative Trial of Hormone Replacement Ther-

apy

The results of the Women’s Health Initiative (WHI) randomized controlled clinical trial of

Estrogen plus Progestin hormone therapy for postmenopausal women are reported in [13].

The primary endpoint for success of the therapy was a decrease in Coronary Heart Disease

(CHD); the primary adverse endpoint was Invasive Breast Cancer (IBC); and there was a

combined endpoint called “Global Health Index” (GHI), which combined risks and benefits.

Larger values of the three parameters indicate worse health. The trial was stopped early

because treatment unexpectedly increased CHD and increased IBC beyond a predetermined

threshold. The GHI indicated that, overall, risk outweighed benefit.

The study reported simultaneous confidence intervals and intervals that were not ad-

justed for multiplicity. Conclusions from the two sets of intervals differed: The unadjusted

intervals showed increases in GHI and the risk of IBC and CHD, as mentioned above. The

simultaneous intervals were consistent with no increase in risk for any of the endpoints. The

clinical recommendations of the study were based on the unadjusted confidence intervals.

Table 1 shows the estimated hazard ratio (HR) for the three endpoints, unadjusted

confidence intervals, conventional simultaneous confidence intervals, and QC simultaneous

confidence intervals for two choices of C. (All are based on the normal approximation to

the log odds ratio.) Computing the QC intervals is described in appendix B. The QC 95%

simultaneous confidence intervals support the clinical recommendations of the study while

maintaining simultaneous confidence.
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Endpoint HR Unadjusted Conventional QC (C/2 = 1.2cα) QC (C/2 = 1.8cα)

IBC 1.26 [1.00, 1.59] [0.95, 1.67] [0.90, 1.77] [0.76, 2.1]

CHD 1.29 [1.02, 1.63] [0.97, 1.72] [1.00, 1.82] [1.00, 2.16]

GHI 1.15 [1.03, 1.28] [1.01, 1.31] (1.00, 1.35] (1.00, 1.45]

Table 1: Estimated hazard rates, unadjusted (non-simultaneous) 95% confidence intervals,

conventional simultaneous, and QC simultaneous 95% confidence intervals for the three end-

points in the Estrogen + Progestin Women’s Health Initiative study of hormone-replacement

therapy. All the intervals are based on the normal approximation to the log odds ratio. See

appendix B.

6 Discussion

Quasi-conventional (QC) simultaneous confidence intervals determine the signs of the com-

ponents of a multidimensional location parameter µ more often than conventional simulta-

neous confidence intervals do. QC intervals are based on a family of hypothesis tests with

non-equivariant hyperrectangular acceptance regions that exploit asymmetry (which entails

bias) to reduce the the amount by which the acceptance region for θ protrudes from the

orthant that contains θ. Inverting these tests and projecting the convex hull of the resulting

confidence set onto the coordinate axes yields QC simultaneous confidence intervals.

When all components of the datum X are all large, QC intervals are identical to con-

ventional simultaneous confidence intervals. But when any component of X is small, the

QC intervals determine the signs of components of µ more often, power purchased by an

increase in length compared with conventional intervals. The increase in length is controlled

by a parameter C.

The QC intervals include parameter values of only one sign for some values of |Xi| < cα.
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When C is not much larger than 2cα (the length of conventional simultaneous intervals), QC

intervals determine signs better than conventional two-sided intervals that ignore multiplicity.

They do not exclude 0 until |Xi| ≥ cα. Madar [12] defines QC acceptance regions differently

for components of µ that are equal to zero, resulting in intervals that are open at 0 for

some data for which the QC intervals presented here are closed. Since it is implausible that

the point null hypothesis µ = 0 is exactly true, whether the intervals are open or closed at

zero has little effect on their utility, so in the present paper we simplified the definition for

clarity of exposition. The software for computing QC intervals available online uses the more

complicated definition.

QC confidence intervals have simultaneous confidence level 1−α if the estimators of the

components of µ are independent. If the estimators are dependent but the acceptance regions

have probability at least 1 − α under that dependence, QC confidence intervals still attain

their nominal level. Some QC hyperrectangles calibrated for independent, jointly Gaussian

estimators can have probability less than 1−α under dependence, but simulations show that

the resulting intervals remain nearly conservative [12]. For example, for bivariate Gaussian

estimators with C/2 = 1.8cα and α = 0.05, the simultaneous coverage probability of QC

confidence intervals designed to have 95% confidence when the components of the data are

independent have estimated coverage above 94.94%(±0.005%) for all values of the correlation

coefficient. Probability inequalities for hyperrectangular regions for dependent Gaussian and

other elliptically contoured densities explain this empirical finding [14, 15, 7, 12].

Joint confidence sets can be tailored for inferences about scale rather than location,

following the strategy outlined in [3]. Constructing confidence sets to attain other goals can

be useful too. For instance [5, 6, 9] address confidence sets for bioequivalence, and [8] and

[?] address inference conditional on the event that the estimator exceeds a threshold. We

see the present work as a contribution in the larger context of optimizing confidence sets for
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specific scientific applications.

QC methods guarantee simultaneous coverage, but not all inference problems with mul-

tiple parameters require simultaneity: It is often enough to adjust for selection effects by

controlling the False Coverage Statement Rate (FCR) [4]. Combining FCR with the univari-

ate confidence intervals of [2], yields more powerful selection-adjusted sign determinations.

A Derivations and Proofs

This section characterizes QC acceptance regions in a way that helps find the extreme points

of the confidence sets and shows how to project the confidence sets to find simultaneous

confidence intervals.

A.1 Characterizing Aθ

Assume without loss of generality that θ ≥ 0. As noted above, acceptance regions for θ in

other orthants are obtained by reflection.

The significance-level constraint, together with symmetry and unimodality of f , requires

C ≥ 2cα. Setting C = 2cα reproduces the conventional confidence intervals, so the interesting

case is C > 2cα. For technical reasons, we require the support of f to contain the interval

[−C,C]; otherwise, we might as well decrease C, because an acceptance region satisfying the

side-length constraint could have significance level α = 0.

It follows from properties 1 and 2 and inequality 7 (see section 3) that for θ ≥ 0,

`j ≤ uj, (17)

`j + uj ≤ C, (18)

and hence

`j ≤ C/2. (19)
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Define

p(c) ≡ F (c)− F (−c),

t = t(θ) ≡ min
j∈N (θ)

θj,

z = z(θ) ≡ #Z(θ).

The acceptance region Aθ can be characterized using two functions. The first is C(θ), the

smallest possible maximum side length of a hyperrectangular acceptance region that gives

a test with the significance level α, has sides [−cα, cα] for j ∈ Z(θ), and contains only

nonnegative values for the components j ∈ N (θ):

C(θ) ≡ inf

x : [p(cα)]z ×
∏

j∈N (θ)

[F (min(θj, x/2)) + F (x− (min(θj, x/2)))− 1] ≥ 1− α

 .

(20)

Note that C(θ) ≥ 2cα. (It can be infinite—we define the infimum over the empty set to be

infinity.) If C(θ) ≤ C, there is a hyperrectangular acceptance region for a level α test of

the hypothesis µ = θ that has side lengths no larger than C and is entirely confined to the

positive orthant. If C(θ) > C, Aθ crosses at least one axis.

The second function is λ(θ), the value of `j for the smallest nonzero θj; the acceptance

region protrudes from the positive orthant by (λ(θ)− t(θ))+:

λ(θ) ≡ inf { x : [p(cα)]z × [p(C/2)]#{j∈N (θ):θj≥C/2+t(θ)−x} ×

×
∏

j∈N (θ):θj<C/2+t(θ)−x

[F (θj + x− t(θ)) + F (C − (θj + x− t(θ)))− 1]

≥ 1− α

} . (21)

If C(θ) > C, then Aθ contains x ∈ <n with xj = t(θ) − λ(θ) < 0 for some j ∈ N (θ). If

C(θ) ≤ C, then λ(θ)− t(θ) ≤ 0.
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Recall that `j = uj = cα for j ∈ Z(θ). The values of `j and uj for j ∈ N (θ) can be

characterized using C(θ):

• If C(θ) = 2cα, then `j = uj = cα, j ∈ N (θ).

• If 2cα < C(θ) ≤ C, then `j(θ) = min(θj, C(θ)/2) and uj = C(θ)− `j(θ), j ∈ N (θ).

• If C(θ) > C, then for j ∈ N (θ), uj = C − `j and

`j =

 C/2, θj ≥ C/2− (λ(θ)− t(θ))

θj + (λ(θ)− t(θ)), otherwise.

(22)

In the first case, Aθ is the conventional hypercube acceptance region. In the second case,

the sides of Aθ have equal length for j ∈ N (θ), Aθ contains only positive values for the

components j ∈ N (θ), and Aθ is not centered at θ. In the third case, the sides of Aθ have

equal length C for j ∈ N (θ), Aθ contains negative values for some components j ∈ N (θ),

and Aθ is not centered at θ.

Any particular hyperrectangle H with side lengths no less than 2cα and no greater than

C is the acceptance region for at most one θ unless H crosses two or more coordinate axes

equally. On the other hand, if (i) H crosses two or more coordinate axes equally, (ii) the side

lengths of H are equal to C for j ∈ N , and (iii) H does not protrude too far from the positive

orthant, then there can be a manifold of values of θ that have H as their acceptance region.

For instance, in dimension n = 2, the hyperrectangle H = [0, C] × [0, C] is the acceptance

region for θ = (λ1, C/2), θ = (C/2, λ1), θ = (λ2, λ2), and infinitely many other values

of θ. (Note that H gives a biased test for all these parameters: The chance of rejecting

the null is larger than it is for θ = (C/2, C/2), which has a different acceptance region,

[C/2− cα, C/2 + cα]× [C/2− cα, C/2 + cα].) The manifold Θ(H) of values of θ that have a

given acceptance region H plays an important role in inverting the tests to form confidence

intervals.
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A.2 Inverting and Projecting Aθ

Proof of theorem 1 Upper Confidence Bounds.

Recall that X ≥ 0 is fixed. Note that X is always in the acceptance region for θ = X.

The proof follows the numbered assertions in the theorem.

1. Any parameter θ with one or more components close enough to zero to cause C(θ) to

be larger than cα is so close to zero that Aθ cannot include X.

2. Observe that θ cannot be close enough to the axes in components k /∈ C to cause uj to

be larger than cα. Now consider j /∈ C. Starting with θ = X, decrease the component

θk, k ∈ C, until C(θ) = C, which is obviously possible. Then the component θj can be

increased to Xj +C/2; the resulting Aθ includes X. Since `j ≤ C/2, this construction

is extremal.

3. Starting with θ = X, decrease any component θk, k ∈ C, k 6= j, until C(θ) = C, which

again is possible. Then increase θj to Xj +C/2; the resulting Aθ 3 X. Since `j ≤ C/2,

this construction is extremal.

�

Proof of theorem 2 Lower Confidence Bounds.

The proof of (1) is immediate. To show (2), note that ηj = Xj − C/2 is feasible since

there is another i ∈ C, i 6= j, for which ηi can be reduced towards 0 until all other sides of

the acceptance region have length C and are centered. If ηj < Xj − C/2, the acceptance

region for η cannot cross 0 while having jth sidelength no larger than C. Therefore, what

matters for the lower confidence bound is the upper extent of the acceptance region, `j, but

`j ≤ C/2.

The other parts of Theorem 2 follow from a series of lemmas, starting with two utility

lemmas.
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Lemma A.1 Suppose X ∈ Aθ and C(θ) ∈ (cα, C). Then there exists η ∈ <n such that

X ∈ Aη, C(η) = C and |ηi| ≤ |θi|, and sgn(ηi) = sgn(θi), i = 1, . . . , n.

Proof. Suppose C(θ) ∈ (cα, C) with θ ≥ 0. We have Xi ∈ [θi − `i, θi + ui], i = 1, . . . , n,

with `i = ui = cα, i ∈ Z and `i + ui = C(θ), i ∈ N . For some k, 0 < |θk| < cα ≤ C (or else

C(θ) = 2cα). For that k, |Xk| < C and sgn(Xk) = sgn(θk), or else X /∈ Aθ. Define

γk(θ) ≡ arg inf{aθk : a ∈ [0, 1], β ∈ <n, βi = θi, i 6= k, and βk = aθk and C(β) ≤ C}.

(23)

Let ηi = θi, i 6= k, and let ηk = γk(θ). Then

1. C(η) = C

2. |ηi| ≤ |θi| and sgn(ηi) = sgn(θi), i = 1, . . . , n

3. For i 6= k, `i(η) ≥ `i(θ) and ui(η) ≥ ui(θ), so [ηi − `i(η), ηi + ui(η)] ⊃ [θi − `i(θ), θi +

ui(θ)] 3 Xi

4. If θk ≥ 0, [ηk− `k(η), ηk+uk(η)] = [0, C] 3 Xk, and if θk < 0, [ηk− `k(η), ηk+uk(η)] =

[−C, 0] 3 Xk.

�

Lemma A.2 Suppose X ∈ Aη where ηj < 0 and ηi > 0, ∀i 6= j. Suppose ηk > |ηj| for some

k ∈ C(j). Define η′ such that η′i = ηi, i 6= k, and η′k = −ηj. Then:

1. X ∈ Aη′

2. `j(η
′) ≥ `j(η).

Proof. Since Aη crosses orthants, `i(θ) + ui(θ) = C, ∀i ∈ N . Suppose Xi ≤ C −Xj. If we

set η′i = −ηj < ηi, then `j(η
′) ≥ `j(η) and `j(η

′) = `i(η
′). Since Aη 3 X,

ηj + `j(η) ≥ Xj, (24)
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and since `j(η
′) ≥ `j(η),

ηj + `j(η
′) ≥ Xj. (25)

�

Theorem 2 follows from the previous two lemmas and a few more specific results:

Lemma A.3 If λκ(j)+1 < Xj, Lj ≥ 0.

Proof. The acceptance regions are equivariant under reflections around the axes, so it

suffices to consider θ ≥ 0 and imagine varying the signs of some components of the datum.

Suppose that the maximum protrusion of Aη from the positive orthant is at least Xj, so

that there is a datum with jth component −Xj that is in the acceptance region for η. That

is, suppose that (λ(η)− t(η))+ ≥ Xj. The acceptance region Aη is always centered in every

coordinate in which it does not cross an axis by at least Xj: The ith side is [ηi−C/2, ηi+C/2]

unless C/2 − ηi ≥ Xj. (Otherwise, the maximum protrusion could be reduced by making

Aη more nearly symmetric in the ith direction.) It follows that if Aη crosses any axis, it is

symmetric in every direction that does not cross maximally.

By the definition of λk, for Aη to protrude from the positive orthant by x > λk−1, it

must protrude by x from the positive orthant in at least k components. (If it protruded in

fewer components than that, it would be symmetric in enough components to allow greater

asymmetry in those components that cross axes, and hence would protrude less than x.)

The acceptance region for η cannot protrude across an axis by more than x and also

include a value on the same side of that axis that is above C − x, because the side lengths

do not exceed C.

Combining these three facts shows that if Xj > λk−1 and there are not at least k − 1

other components i for which C − Xi ≥ Xj, there is no η ≥ 0 with an acceptance region

that includes the value −Xj in the jth coordinate.
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�

Lemma A.4 If λκ(j) < Xj ≤ λκ(j)+1, then Lj = hκ(j)(Xj).

Proof. Define ηi = Xi + C/2 for i /∈ C(j), i 6= j. Define ηi = λκ(j)+1 − Xj otherwise.

Since λκ(j) < Xj ≤ λκ(j)+1, η ≥ 0. Then η has exactly κ(j) + 1 equal coordinates, so Aη

protrudes from the positive orthant at most by λκ(j)+1. Hence for i = j and for i ∈ C(j),

ηi − λκ(j)+1 = λκ(j)+1 −Xj − λκ(j)+1 = −Xj.

For i ∈ C(j), −Xj + C ≥ Xi, and for i = j,Xj < C/2 implies that −Xj + C ≥ Xj.

Construct η′ so that η′j = −ηj and η′i = ηi for i 6= j. Then X ∈ Aη′ . There is a manifold of

parameter values sharing this acceptance region: Θ ≡ {θ : Aθ = Aη′}. The lower confidence

bound for θj is no larger than

−max
θ∈Θ
{θj : θi ≤ Xj − λκ(j)+1 for i ∈ C(j)}, (26)

which is the maximization problem solved by hκ(j)(Xj) if θi is set to 0 for all i ∈ C(j).

�

Lemma A.5 If Xj ≤ λκ(j), Lj = Xj − C/2.

Proof. Define ηj = C/2 − Xj, and for i 6= j define ηi = λκ(j) − Xj if i ∈ C(j) and

ηi = Xi + C/2 for i /∈ C(j). Since t(η) = λκ(j) −Xj, and λ(η) = λκ(j),

ηj = C/2−Xj = C/2− (λκ(j) − (λκ(j) −Xj)) = C/2− (λ(η)− t(η)), (27)

The condition in equation (22) (case 3) in the definition of the acceptance region is satisfied,

and hence `j = C/2. Therefore, ηj − C/2 = (C/2 −Xj) − C/2 = −Xj is the lower edge of

the acceptance region in direction j: The region includes −Xj. By reflection, X is in the

acceptance region for η′, where η′j = Xj − C/2, and η′i = ηi for i 6= j.

�
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Lemma A.6 If Xj = 0 and #C = 1, then Lj = −cα.

Proof. Consider ηi = Xi − cα for all i, so that ηj = −cα. This acceptance region for this

parameter value contains X, as shown above. For an acceptance region for a parameter with

jth component less than −cα to include X would require that for some i 6= j, ui + `i > 2cα.

But this is impossible because |Xi| ≤ C, ∀i 6= j.

�

These completes the proof of the six cases of theorem 2.

B Calculating New Confidence Intervals for WHI

We rely on the fact that the hazard ratio estimates, transformed to log-odds ratios, are

approximately Gaussian distributed. We infer standard errors from the widths of the unad-

justed 95% confidence intervals reported in the study.

The transformed, studentized datum is X = (1.947, 2.134, 2.558). For α = 0.05 and

C/2 = 1.2cα we compute: λ1 = 1.728, λ2 = 1.992, λ3 = 2.125, and C/2 = 2.865 (taking

C/2 = 1.8cα yields λ1 = 1.645, λ2 = 1.955, λ3 = 2.121, and C/2 = 4.298).

To apply the results from section A.2, first note that X2 +X3 ≤ C, so κ(j) = 3, ∀j. From

X1 < λ2 it follows that the confidence interval for IBC is I1(X) = [X1 − C/2, X1 + C/2].

Next, I2(X) = [0, X2 + C/2], since cα > X2 > λ3, and I3(X) = (0, X3 + C/2] because

C > X3 > cα.

Transforming back into confidence intervals for the hazard ratio on the original scale

produces the simultaneous 95% intervals in Table 1.
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