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1 Summary

We study confidence sets for a parameter θ ∈ Θ that have minimax expected
measure among random sets with at least 1 − α coverage probability. We

∗Running Title: Minimax measure confidence sets. AMS Subject Classifications:
62C10, 62C20, 62F25, 62F30, 90C46. Keywords: constrained parameters, Bayes/Minimax
duality. This work was supported by the National Science Foundation through Presidential
Young Investigator Award DMS-89-57573 and grants DMS-94-04276, AST-95-04410 DMS-
97-09320, DMS-98-72979, DMS-00-71468, and Postdoctoral Fellowship DMS-0102056, and
by NASA through grants NAG5-3941 and NRA-96-09-OSS-034SOHO. Part of the work
was performed while the first and third authors were on appointment as Miller Research
Professors in the Miller Institute for Basic Research in Science.

1



characterize the minimax sets using duality, which helps to find confidence
sets with small expected measure and to bound improvements in expected
measure compared with standard confidence sets. We construct explicit
minimax expected length confidence sets for a variety of one-dimensional
statistical models, including the bounded normal mean with known and
with unknown variance. For the bounded normal mean with unit variance,
the minimax expected measure 95% confidence interval has a simple form
for Θ = [−τ, τ ] with τ ≤ 3.25. For Θ = [−3, 3], the maximum expected
length of the minimax interval is about 14% less than that of the minimax
fixed-length affine confidence interval and about 16% less than that of the
truncated conventional interval [X − 1.96, X + 1.96] ∩ [−3, 3].

2 Introduction

There are many procedures for constructing confidence sets. Classical con-
siderations for choosing among them include accuracy, unbiasedness, equiv-
ariance, and combinations of these [Lehmann, 1986]. Accuracy seems quite
natural: Given a pair of confidence procedures with the same probability
of covering the correct value, the procedure with smaller chance of covering
incorrect values is preferable.

Unbiasedness—the requirement that the probability of covering the true
value of the parameter be at least as large as the probability of covering
any other value—is related to accuracy and also seems desirable in many
situations. Equivariance requires a bit more structure: The parameter space
and the set of possible data both must be equipped with groups of trans-
formations. There must be a correspondence between elements of the data
group and elements of the parameter group. Then the confidence proce-
dure is equivariant if the confidence set associated with the transformation
of the data by an element of the data group is the transformation of the
confidence set by the corresponding element of the parameter group. This
limits the applicability of equivariance to situations with a high degree of
symmetry. See Mandelkern [2002a] for a list of properties some view as
desirable in a confidence interval for a bounded parameter; his list includes
equivariance under one-to-one transformations of the parameter—which is
rather restrictive.

Even when these three classical criteria can be applied, they can be
at odds with the scientific goal of the estimation problem, can preclude
intuitively reasonable optimality criteria [Woodroofe and Zhang, 2002], and
can fail to specify a unique procedure.
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The accuracy of a confidence procedure usually depends both on the
procedure and on unknown parameters, making accuracy alone impractical
as a criterion for choosing among confidence procedures. However, some
problems do admit uniformly most accurate confidence sets. Uniformly most
accurate confidence sets minimize expected measure for the worst-case values
of the parameter [Lehmann, 1986, pp. 261, 524].

This paper studies how to construct confidence sets that are as small as
they can be, in the sense of minimizing worst-case expected measure, while
attaining at least their nominal confidence level. The structure required to
study expected measure is both more and less restrictive than that used
traditionally to study accuracy: The set of possible parameter values must
be a measurable space, and the confidence sets must be measurable subsets
of the set of parameters, but confidence sets with minimax expected measure
can exist even when there is no uniformly most accurate confidence set. See
§ 3.

2.1 The bounded Normal mean

The bounded normal mean (BNM) problem, estimate θ ∈ [−τ, τ ] ⊆ (−∞,∞)
from the observation X ∼ N (θ, 1), is a special case. The difficulty of min-
imax estimation of linear functionals of infinite dimensional parameters in
Gaussian noise is related to the difficulty of estimating a BNM [Donoho
and Liu, 1991, Donoho, 1994, Ibragimov and Khas’minskii, 1984]. Esti-
mating a BNM arises in robotics [Kamberova et al., 1996, Kamberova and
Mintz, 1999], and it is of theoretical interest in its own right (e.g., Bickel
[1981], Casella and Strawderman [1981], and references below). Bounded
parameters often arise in physical problems, and finding sensible confidence
intervals for bounded parameters is an interesting statistical challenge [Man-
delkern, 2002a, Casella, 2002, Gleser, 2002, Wasserman, 2002, van Dyk, 2002,
Woodroofe and Zhang, 2002, Mandelkern, 2002b].

The constraint θ ∈ [−τ, τ ] allows point estimators to have smaller risk
than otherwise would be possible. Bickel [1981], Casella and Strawderman
[1981], Gourdin et al. [1994], Vidakovic and Dasgupta [1996], and Marchand
and Perron [2001] studied minimax MSE estimates of the BNM. Point esti-
mates of a BNM for loss functions other than squared-error also have been
considered [Bischoff and Fieger, 1992, Eichenauer-Herrman and Ickstadt,
1992, Donoho, 1994], as have point estimates of a multi-dimensional BNM
[Berry, 1990, Weiss, 1988, Marchand and Perron, 2001], point estimates of
restricted parameters for distributions other than the normal [Johnstone and
MacGibbon, 1992], and point estimates of the square of a bounded normal
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mean [Donoho and Nussbaum, 1990, Fan and Gijbels, 1992].
The constraint θ ∈ [−τ, τ ] also allows confidence sets for a normal mean

to be smaller without sacrificing coverage probability: Consider the conven-
tional confidence set I(X) = [X − 1.96, X + 1.96] for a normal mean with
unit variance. The conventional interval does not exploit the constraint
θ ∈ [−τ, τ ]. In contrast, the variable-length “truncated” interval

IT (X) = [X − 1.96, X + 1.96] ∩ [−τ, τ ] (1)

has 95% coverage probability provided θ ∈ [−τ, τ ], and is shorter than I(X)
for many values of X.

How much can the maximum expected length be reduced? One might
optimize the tradeoff between coverage and length as a decision problem
using a measure of loss that combines the two. However, Casella et al. [1993]
show that this can produce interval estimates with undesirable properties.
In contrast, Zeytinoglu and Mintz [1984], Zeytinoglu and Mintz [1988], and
Kamberova and Mintz [1999] fix the length of the interval, then find how
to center an interval of that length to maximize the minimum coverage
probability for θ ∈ [−τ, τ ]. Their results can be used to find 1−α confidence
intervals of minimal fixed length; see appendix A.

By definition, the length of a minimax fixed-length interval is determined
before the observation is made. Allowing the size of the confidence set to
depend on the datum enlarges the collection of confidence procedures avail-
able, and variable-length intervals indeed can be shorter on the average than
the minimax fixed-length interval without compromising uniform coverage
probability.

Below, we determine how much the maximum expected size of a 1 − α
confidence set can be reduced by allowing the size to depend on the data.
This minimax problem is not new. For example, Lehmann [1986, p. 524]
states the general minimax problem for expected measure and relates it to
accuracy. Minimax expected measure confidence sets have been constructed
for some special cases in which the set of possible parameters has group
structure and the procedure is restricted to be equivariant (e.g., Hooper
[1982, 1984] and Lehmann [1986]). Moreover, in many problems, equivariant
confidence sets are not admissible, and using non-equivariant procedures—
centered at shrinkage estimators and sometimes of variable size—can im-
prove coverage probability uniformly without increasing expected volume
[Brown, 1966, Joshi, 1967, 1969, Hwang and Casella, 1982, Casella and
Hwang, 1983]. We are not aware of previous work finding minimax ex-
pected measure not-necessarily-equivariant confidence sets, when there is
no uniformly most accurate procedure.
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For inference about a normal mean θ ∈ [−τ, τ ], τ ≤ 2z1−α, from X ∼
N (θ, 1), we show that the optimal procedure is the truncated Pratt interval:

ITP(X) ≡ IP (X) ∩ [−τ, τ ], (2)

where IP (X) is the Pratt interval [Pratt, 1961]

IP(X) ≡
{

[(X − c), 0 ∨ (X + c)], X ≤ 0
[0 ∧ (X − c), X + c], X > 0,

(3)

with c = z1−α. It is not surprising that the truncated Pratt interval has
minimax expected length when τ is small: IP has minimal expected length
at θ = 0 among all confidence intervals with 1 − α coverage for all θ ∈ <
[Pratt, 1961]. By continuity, it should nearly minimize expected length for
a range of values of θ around zero, but if τ is sufficiently small, that range
includes all permissible values of θ. It is surprising to us how large τ can
be: The truncated Pratt interval is minimax for expected length when τ as
large as 2z1−α, nearly twice as large as the value of τ for which the minimax
MSE point estimate has a simple form [Casella and Strawderman, 1981].
Moreover, for τ ≤ 2z1−α, not only is the truncated Pratt interval minimax
for expected length among non-randomized 1 − α confidence intervals, it is
minimax for expected Lebesgue measure among more general randomized
1 − α confidence sets.

2.2 Improvements in expected length

Table 1 compares the maximum expected length of the optimal confidence
interval (which is often the truncated Pratt) with the maximum expected
lengths of some competing procedures, all at 95% confidence. With τ = 2.0,
the maximum expected length of the truncated Pratt interval is 38% less
than the length of the conventional interval I(X), 23% less than that of the
affine minimax interval IA(X) [Stark, 1992], 11% less than the maximum
expected length of the truncated conventional interval IT (X), and 16% less
than the length of the minimax nonlinear fixed-length interval IN(X) (see
appendix A).

Insert Table 1

The truncated Pratt interval (i.e., (3), with c equal to the 1−α quantile
of the distribution of X when θ = 0) is minimax for any shift family of distri-
butions with monotone likelihood ratios, provided that the shift parameter
is restricted a priori to a sufficiently small set Θ = [−τ, τ ].
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2.3 Outline

This paper is organized as follows. § 3.1 presents the basic notation and
assumptions. § 3.2 applies a minimax theorem due to Kneser [1952] and
Fan [1953] to establish a Bayes-minimax duality for the expected measure
of confidence sets, exploiting the representation of confidence sets in terms
of families of randomized hypothesis tests. This leads to confidence sets
of the form S(x) ≡ {η : fη(x)/fπ(x) > λη}, where fη is the probability
density of the observation if the parameter value is η, fπ is a fixed mixture
of densities corresponding to a Bayesian prior on parameters, and λη are
constants chosen so that the procedure has uniform 1−α frequentist coverage
probability. Such Bayesian/frequentist hybrid confidence sets have arisen in
other contexts, e.g., Brown et al. [1995]; similarly, see Casella [2002] for an
argument in favor of frequentist-calibrated Bayesian credible regions.

§ 3.3 uses the Bayes/minimax duality to study minimax expected mea-
sure confidence sets for restricted real-valued shift parameters of univariate
distributions with monotone likelihood ratios. This is equivalent to the re-
striction that the density f0 be strongly unimodal [Lehmann, 1986, p. 509].
Such distributions include the normal, uniform, logistic, and double expo-
nential; a necessary and sufficient condition is that the cdf F0 be continuous
and that log F ′

0 be concave wherever neither one-sided derivative of F0 van-
ishes [Ibragimov, 1956]. In particular, results for the BNM are corollary.
§ 3.4 extends the theory to situations with nuisance parameters, and studies
confidence sets for the BNM where σ2 is unknown, but for which the signal-
to-noise ratio τ/σ is not too large. Proofs are postponed, for the most part,
until § 4.

3 Principal Results

3.1 Framework, Notation and Assumptions

The framework that follows is similar to those of Joshi [1969], Hooper [1982,
1984] and Lehmann [1986].

Let Θ and X be measurable spaces. Let ν be a sigma-finite measure on
Θ, and let µ be a sigma-finite measure on X . Let {Pζ : ζ ∈ Θ} be a family of
probability distributions on X , absolutely continuous with respect to µ. For
ζ ∈ Θ, let fζ denote the density of Pθ with respect to µ. Let Eζ denote the
expectation with respect to Pζ . Assume that the mapping (ζ, x) 7→ fζ(x) is
product measurable.

We observe an X -valued random variable X ∼ Pθ (we sometimes write
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X ∼ fθ instead) and a uniform real-valued random variable U ∼ U [0, 1] that
is independent of X. The value of θ is unknown except that θ ∈ Θ. We
seek a “small” confidence set S(X,U) for θ based on the observation X and
the extra randomization U ; the size of the set is measured by ν. (In § 3.4,
we allow θ to consist of two parts, the parameter of interest and a nuisance
parameter. The nuisance parameter need not be subsumed into the measure
space.) Θ captures possible a priori restrictions on θ; for instance, in the
BNM problem Θ = [−τ, τ ], τ < ∞.

Let M be the set of product measurable mappings of Θ×X to <. Define

D ≡ {d ∈ M : 0 ≤ d(ζ, x) ≤ 1, a.s. (ν × µ)}. (4)

Note that D is a closed, norm-bounded subset of L∞[ν × µ], which is the
dual of L1[ν × µ], so D is weak-star compact according to the Banach-
Alaoglu theorem. Members of D can be thought of as families of acceptance
functions for randomized tests of the hypotheses {Hζ : X ∼ fζ} that are
jointly measurable in the hypothesized parameter value ζ and the datum X:
If U > d(ζ,X), reject Hζ ; otherwise not. The significance level of the test
d(ζ, ·) of Hζ is 1−Eζd(ζ,X), the chance that U > d(ζ,X) when X ∼ fζ . If
λ : ζ 7→ λζ is a measurable function of Θ into <, and if η is any point in Θ,

1[fζ(x) > λζfη(x)] ∈ D, (5)

so D includes families of likelihood ratio tests.
By virtue of the general duality between testing and confidence sets

[Lehmann, 1986], each d ∈ D induces a randomized confidence set Sd =
Sd(X,U) for θ, where

Sd(x, u) ≡ {ζ ∈ Θ : u ≤ d(ζ, x)}. (6)

Because d ∈ D, Sd(x, u) is measurable for every (x, u) ∈ X × [0, 1].
The probability that Sd(X,U) correctly covers ζ is the chance that U ≤

d(ζ,X) when X ∼ Pζ :
Cζ(d) ≡ Eζd(ζ,X). (7)

The quantity Cζ(d) is well defined as a measurable function of ζ because,
by assumption, Pζ has density fζ with respect to µ and (ζ, x) 7→ fζ(x) is
product measurable. The nominal confidence level of Sd is infζ∈Θ Cζ(d).
However, we shall regard

CΘ(d) ≡ ν-ess inf
ζ∈Θ

Cζ(d) (8)
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as the confidence level of Sd: If d ∈ D and CΘ(d) = β, then there exists
d′ ∈ D, a.e. (ν×µ) equal to d, with infζ∈Θ Cζ(d

′) = β, so that ν(Sd) = ν(Sd′)
with probability one, whatever be θ. The functions d(·, ·) in

Dα ≡ {d ∈ D : CΘ(d) ≥ 1 − α} (9)

are thus families of decision functions for randomized tests whose inversions
are 1 − α confidence sets for θ. We refer to members of Dα as decision
functions, as families of level-α tests, and as 1 − α randomized confidence
sets (through the association (6)).

For θ = ζ, the expected ν-measure of the confidence set Sd(X,U) is

Lζ(d) = Eζ

∫

Θ
d(η,X)ν(dη), (10)

which, like Cζ(d), is well defined as a measurable function of ζ because Pζ

has density fζ with respect to µ and (ζ, x) 7→ fζ(x) is product measurable.
The maximum expected ν-measure of Sd over Θ is

LΘ(d) ≡ sup
ζ∈Θ

Lζ(d). (11)

In this paper we characterize the decision functions d ∈ Dα with minimal
maximum risk LΘ(d).

3.2 Bayes-minimax duality for confidence procedures

Let Π be the set of all probability measures on Θ. For π ∈ Π, the π-average
expected ν-measure of the confidence set corresponding to the decision func-
tion d is

Lπ(d) ≡
∫

Θ
Lζ(d)π(dζ). (12)

Theorem 1 If D̃ ⊂ D is weak-star compact in L∞[ν × µ], then

inf
d∈D̃

LΘ(d) = sup
π∈Π

inf
d∈D̃

Lπ(d) (13)

Theorem 1 is proved in § 4.1. This theorem is useful because: (1) Pro-
cedures d ∈ D̃ that attain inf

d∈D̃ Lπ(d) can be constructed using likelihood
ratios, and (2) the set Dα is weak-star compact in L∞[ν×µ] (see Lemma 2).
This allows us to find, for any π ∈ Π, the decision function d ∈ D with uni-
form coverage probability CΘ(d) ≥ 1−α that minimizes π-average expected
ν-measure.
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For π ∈ Π, define the average density

fπ(·) ≡
∫

Θ
fζ(·)π(dζ). (14)

Fix α ∈ (0, 1) and let D̃ ≡ Dα. Given π ∈ Π, let dπ = dπ(ζ, x) be a
family of decision functions for size-α randomized tests of the hypotheses
{Hζ : X ∼ fζ , ζ ∈ Θ} such that for each ζ ∈ Θ, the test dπ(ζ, ·) is most
powerful against the alternative

Hπ : X ∼ fπ(·). (15)

Because each test is of a simple null hypothesis against a simple alternative,
dπ is an amalgamation of likelihood ratio tests: For each ζ ∈ Θ let

λζ ≡ inf

{
λ :

∫

fπ<λfζ

fζ(x)µ(dx) ≥ 1 − α

}
. (16)

The function ζ 7→ λζ is measurable because (ζ, x) 7→ fζ(x) is. Define

dπ(ζ, x) ≡





1, fπ(x) < λζfζ(x)
cζ , fπ(x) = λζfζ(x)
0, fπ(x) > λζfζ(x),

(17)

with cζ chosen so that
∫

d(ζ, x)fζ(x)µ(dx) = 1 − α. Then dπ ∈ Dα, and dπ

minimizes Lπ(·) over Dα. (This follows from the optimality of each dπ(ζ, ·)
as a level-α test and from the Ghosh-Pratt identity [Ghosh, 1961, Pratt,
1961, eq. 2]; see also § 4.1.)

Corollary 1

inf
d∈Dα

LΘ(d) = sup
π∈Π

Lπ(dπ), (18)

for 0 < α < 1.

3.3 Bounded real shift parameters

In this section, we study confidence sets for bounded location parameters of
one-dimensional shift families, that is, the special case in which Θ,X ⊆ <,
Θ is bounded, and fθ(x) ≡ f(x − θ) for some density f with respect to
Lebesgue measure.

Pratt [1961] constructed confidence sets for unrestricted parameters by
inverting families of uniformly most powerful tests of the hypotheses θ = ζ
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against a single alternative θ = η = 0 ∈ Θ. This corresponds to a decision
function dπ as in (16)–(17), with π = δη a point mass at η. Let dη ≡ dδη

be the decision function that is most powerful against the alternative θ =
η. Pratt showed that dη yields the confidence set with smallest expected
Lebesgue measure when θ = η:

Lη(d
η) =

∫

Θ
Eηd

η(ζ,X)dζ. (19)

Suppose {fθ : θ ∈ Θ} has monotone likelihood ratios (fθ2/fθ1 is nonde-
creasing in x, when θ1 < θ2). Then the acceptance region of the likelihood
ratio test of a simple null hypothesis against a simple alternative hypothesis
is a semi-infinite interval [Lehmann, 1986]:

dη(ζ, x) =

{
1[x ≤ ζ + q1−α], ζ < η
1[x ≥ ζ + qα], ζ > η,

(20)

where qβ is the β-quantile of P0, the distribution of X when θ = 0.
Pratt [1963] was concerned primarily with the case Θ = <. When Θ

is a bounded subset of <, we call dη the truncated Pratt procedure. In
this section, we show that for shift families with monotone likelihood ratios
(including, for example, the normal, uniform, logistic, and double exponen-
tial), when τ is sufficiently small there is a point η ∈ Θ = [−τ, τ ] such that
the truncated Pratt procedure dη nas minimax expected Lebesgue measure
among randomized 1 − α confidence sets. Figure 1 shows the truncated
Pratt procedure for η = 0, τ = 3, and {Pθ : θ ∈ Θ} the distributions with
densities

{fθ(·) = ϕ(· − θ) : θ ∈ [−τ, τ ]},
a normal shift family with bounded mean.

Let F (·) ≡ ∫ ·
−∞ f0(x)dx be the cdf of P0, and let η be any point in Θ

such that

F (qα + τ) − F (qα + η) = F (q1−α + η) − F (q1−α − τ). (21)

(The equation defining η can be rewritten

∫ τ+qα−η

qα

f0(x)dx =

∫ q1−α

q1−α−τ−η
f0(x)dx; (22)

both integrals vary continuously as η ranges from −τ to τ , one decreases
from a strictly positive quantity to 0, the other increases from 0, so there
is a unique point at which they are equal.) If f0(·) is symmetric about any
point, η = 0.

10



Insert Figure 1

Theorem 2 Let Θ = [−τ, τ ], let {fθ}θ∈Θ ≡ {f0(· − θ)}θ∈Θ be a shift family
of densities with respect to Lebesgue measure that has monotone likelihood
ratios, and let η satisfy (21). Suppose α < 1/2. If

τ + |η| ≤ q1−α − qα, (23)

then

inf
d∈Dα

LΘ(d) =

∫ η

−τ
F (ζ + q1−α)dζ +

∫ τ

η
(1 − F (ζ + qα))dζ, (24)

and the truncated Pratt procedure dη (20) attains the infimum. When f0

is symmetric (so that η = 0 suffices) the truncated Pratt procedure is not
optimal if

τ = τ + |η| > q1−α − qα = 2q1−α. (25)

Corollary 2 The bounded normal mean. Let Θ = [−τ, τ ]; let zβ be
the β-quantile of the N (0, 1) distribution; and suppose that α < 1/2. If
τ ≤ 2z1−α, then

inf
d∈Dα

LΘ(d) = 2

∫ τ

0
Φ(z1−α − ζ)dζ, (26)

and the truncated Pratt procedure d0 attains the infimum. If τ > 2z1−α, the
truncated Pratt procedure is not minimax for expected measure.

Table 2 compares the performance of the truncated Pratt confidence
interval for the BNM,

ITP(X) = [(X − z1−α) ∧ 0, (X + z1−α) ∨ 0] ∩ [−τ, τ ], (27)

to that of the truncated conventional confidence interval,

IT(X) = [X − z1−α/2, X + z1−α/2] ∩ [−τ, τ ], (28)

and to that of the minimax affine confidence interval IA.

Insert Table 2
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3.4 Bounded normal mean with unknown variance: nuisance

parameters

In this section, we change notation to allow the distribution of the data to
depend on two parameters, the parameter θ ∈ Θ of interest, and a nuisance
parameter σ ∈ Σ. We denote this distribution P(θ,σ) and define the family
of distributions

P(Θ,Σ) ≡ {P(θ,σ) : θ ∈ Θ, σ ∈ Σ}. (29)

We assume as before that Θ is a measure space with measure ν, and we seek
a confidence set for θ with small expected ν-measure. We assume that the
family P(Θ,Σ) is dominated by a σ-finite measure µ, as we did in § 3.1. Let
f(θ,σ) be the density of P(θ,σ) with respect to µ. We also assume that for
each fixed σ ∈ Σ, the mapping (θ, x) 7→ f(θ,σ)(x) is product measurable, as
we did in § 3.1.

Let D contain the product measurable mappings from Θ×X → [0, 1] as
before, but define

C(ζ,σ)(d) ≡ E(ζ,σ)d(ζ,X), (30)

C(Θ,σ)(d) ≡ ν-ess inf
ζ∈Θ

C(ζ,σ)(d), (31)

and
Dα = {d ∈ D : C(Θ,σ)(d) ≥ 1 − α, ∀σ ∈ Σ}. (32)

Dα contains only decisions corresponding to confidence sets with probability
at least 1 − α or covering θ, whatever be θ ∈ Θ and σ ∈ Σ. The decision
rules in D do not depend on σ. Define

L(ζ,σ)(d) ≡ E(ζ,σ)

∫

Θ
d(η,X)ν(dη) (33)

and
L(Θ,σ)(d) ≡ sup

ζ∈Θ
L(ζ,σ)(d). (34)

An optimal decision rule d∗ ∈ Dα would satisfy, for each fixed σ ∈ Σ,

L(Θ,σ)(d
∗) = inf

d∈Dα

L(Θ,σ)(d). (35)

We specialize now to the bounded normal mean with unknown variance
σ2. We do not find a decision rule d∗ that is optimal for all σ ∈ <+, but we do
show that the truncated Pratt is optimal (among scale-invariant procedures)
provided τ is not too large compared with σ. We observe X = (Xi)

n
i=1, where

{Xi}n
i=1 are i.i.d. N (θ, σ2) with θ ∈ Θ = [−τ, τ ] but otherwise unknown,
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and σ ∈ Σ = <+ but otherwise unknown. Let ν be Lebesgue measure on
[−τ, τ ], and let µ be Lebesgue measure on <. We seek a confidence set for
θ that has 1−α coverage probability whatever be θ ∈ Θ and σ ∈ Σ, and we
want the expected measure of the set to be as small as possible at the worst
θ, for each value of σ.

Let X̄ ≡ 1
n

∑n
i=1 Xi and S2 ≡ 1

n−1

∑n
i=1(Xi − X̄)2 be the sample mean

and sample variance. Because (X̄, S) is sufficient for P(Θ,<+) and the loss
L(ζ,σ)(d) is convex, by the Rao-Blackwell theorem [Lehmann and Casella,
1998] it suffices to consider decision functions that depend on the data only
through X̄ and S.

Because the scale parameter σ is an unknown nuisance parameter, we
restrict consideration just to decision rules d(ζ, (x̄, s)) that are invariant
under changes of scale: The principle of invariance [Lehmann, 1986, §6.11]
requires that for all c > 0,

d(ζ, (x̄, s)) = d(ζ, (ζ + c(x̄ − ζ), cs)). (36)

Combining these two restrictions leads us to focus on decision functions that
depend on the data only through (X̄ − ζ)/S. Let Di denote the set of such
decision functions, and let Dα,i ≡ Di ∩ Dα. We call Dα,i the scale-invariant
1 − α confidence procedures, even though the set does not contain all scale-
invariant procedures. By sufficiency, for each σ it contains one that solves
(35).

In general, which scale-invariant procedure is minimax for expected mea-
sure depends on σ, but the following theorem asserts that the truncated
Pratt procedure is minimax scale-invariant provided τ is not too big com-
pared with σ.

Theorem 3 Let X̄ and S be independent random variables with X̄ ∼ N (θ, σ2/n)
and (n − 1)S2/σ2 ∼ χ2

n−1, for θ ∈ [−τ, τ ] and σ > 0. Suppose α ∈ (1/2, 1).
Let

dTP
i (ζ, (x̄, s)) ≡

{
1[(x̄ − ζ)/s ≤ t1−α], ζ ≤ 0
1[(x̄ − ζ)/s ≥ −t1−α], ζ > 0,

(37)

where t1−α is the 1−α quantile of Student’s t-distribution with n−1 degrees
of freedom. Then

1. dTP
i ∈ Dα,i,

2. If

τ

σ
≤ 2t1−α

√
n − 2

n(n − 1)
,
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then L(Θ,σ) attains its minimum on Dα,i at dTP
i . In addition,

inf
d∈Dα,i

L(Θ,σ)(d) = L(Θ,σ)(d
TP
i ) = 2

∫ τ

0
Fζ

√
n/σ(t1−α)dζ, (38)

where Fx is the cdf of the noncentral t-distribution with n− 1 degrees
of freedom and noncentrality parameter x.

Remark. The condition τ/σ ≤ 2t1−α

√
n−2

n(n−1) is sufficient, but not neces-

sary, for dTP
i to be minimax among scale-invariant procedures. Numerical

experiments suggest that the largest τ/σ for which the result is true is be-

tween 2t1−α√
n

and 2t1−α

√
n−2

n(n−1) .

4 Proofs

4.1 Theorem 1

To prove theorem 1 we apply a general minimax theorem that requires that
D̃ be compact in a topology in which d 7→ Lπ(d) is lower semicontinuous.
The weak-star topology on L∞[ν × µ] suffices.

Lemma 1 For each π ∈ Π, d 7→ Lπ(d) is a weak-star lower semicontinuous
mapping of L∞[ν × µ] into [0,∞].

Proof of Lemma 1. Fix π ∈ Π. Let {Aj}∞j=1 be an increasing nested
sequence of measurable subsets of Θ such that ν(Aj) < ∞ and ∪jAj = Θ.

Lπ(d) =

∫

Θ
Lζ(d)π(dζ)

=

∫

Θ

(
Eζ

∫

Θ
d(η,X)ν(dη)

)
π(dζ)

=

∫

Θ

(∫

Θ×X
d(η, x)ν(dη)fζ (x)µ(dx)

)
π(dζ)

=

∫

Θ×X
d(η, x)

(∫

Θ
fζ(x)π(dζ)

)
ν(dη)µ(dx)

= sup
j

∫

Θ×X
d(η, x)

(
1Aj

(η)

∫

Θ
fζ(x)π(dζ)

)
ν(dη)µ(dx). (39)

by monotone convergence. The term in parentheses in (39) is in L1[ν × µ],
so for each j, the outer integral is a weak-star continuous functional of
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d. Because Lπ(d) is the supremum of a collection of weak-star continuous
functionals, it is weak-star lower semicontinuous. 2

The next theorem is a special case of general minimax results of Kneser
[1952], Fan [1953] and Sion [1958].

Theorem 4 Let M be a convex set and let T : M ×N → [−∞,∞] be linear
in M and convex-like in N , in the sense that for each n0, n1 ∈ N , γ ∈ (0, 1),
there is nγ ∈ N such that

γT(m,n0) + (1 − γ)T(m,n1) ≥ T(m,nγ)

for all m ∈ M . If either

1. M is a compact topological space and T(m,n) is upper semi-continuous
in m for each n, or

2. N is a compact topological space and T(m,n) is lower semi-continuous
in n for each m, then

inf
n∈N

sup
m∈M

T(m,n) = sup
m∈M

inf
n∈N

T(m,n). (40)

Proof of Theorem 1. The set D̃ is weak-star compact, by assumption.
The map d 7→ Lπ(d) is linear in d for fixed π, and the map π 7→ Lπ(d)
is linear in π for fixed d. By Lemma 1, d 7→ Lπ(d) is weak-star lower
semicontinuous, so Theorem 4 applies:

inf
d∈D̃

sup
π∈Π

Lπ(d) = sup
π∈Π

inf
d∈D̃

Lπ(d). (41)

For any d ∈ D and c ∈ <, the set {θ ∈ Θ : Lθ(d) ≥ c} is measurable, and
some π ∈ Π concentrates on it provided it is not empty. Therefore,

sup
π∈Π

Lπ(d) = LΘ(d). (42)

2

Lemma 2 If α ∈ [0, 1], then Dα ⊆ L∞[ν × µ] is weak-star compact.

Proof of Lemma 2. Dα ⊆ D, which is a weak-star compact subset of
L∞[ν × µ], so it is enough to show that Dα is closed. Recall that d ∈ Dα iff
for ν-almost-every ζ ∈ Θ,

1 − α ≤ Eζd(ζ,X)

=

∫

X
d(ζ, x)fζ(x)µ(dx). (43)
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For any measurable set A ⊂ Θ with ν(A) > 0, define

CA(d) ≡
∫

Θ

∫

X
d(ζ, x)fζ(x)

1[ζ ∈ A]

ν(A)
µ(dx)ν(dζ). (44)

The function

(ζ, x) 7→ 1

ν(A)
fζ(x)1[ζ ∈ A] (45)

is in L1[ν×µ], so d 7→ CA(d) is a weak-star continuous functional of d. Thus
for each measurable A with ν(A) > 0, {d ∈ D : CA(d) ≥ 1 − α} is closed.
But

Dα =
⋂

A:ν(A)>0

{d ∈ D : CA(d) ≥ 1 − α}. (46)

2

Proof of Corollary 1 from Theorem 1. By Lemma 2, Dα is weak-star
compact. Therefore,

inf
d∈Dα

LΘ(d) = sup
π∈Π

inf
d∈Dα

Lπ(d). (47)

The mapping ζ 7→ λζ is measurable, so (ζ, x) 7→ dπ(ζ, x) is product measur-
able. By construction, Cζ(d

π) = 1 − α for each ζ ∈ Θ, so dπ ∈ Dα.
Fix π ∈ Π. For each ζ ∈ Θ, x 7→ dπ(ζ, x) minimizes

Eπd(ζ,X) =

∫
d(ζ, x)fπ(x)µ(dx) (48)

among d(ζ, ·) : X → [0, 1] satisfying Eζd(ζ,X) ≥ 1 − α. Therefore dπ

minimizes
∫
Θ Eπd(ζ,X)ν(dζ) among d ∈ Dα, i.e.,

Lπ(dπ) = inf
d∈Dα

Lπ(d).

Corollary 1 follows. 2

4.2 Theorem 2

Because {fθ : θ ∈ Θ} has monotone likelihood ratios, dη has the form (20).
The value of cζ is inconsequential because Lebesgue measure is continuous;
take cζ ≡ 1. Let F (·) be the cdf of P0. We calculate the risk at θ ∈ Θ of
the decision procedure dη:

Lθ(d
η) =

∫

Θ

∫
dη(ζ, x)fθ(x)dxdζ (49)

=

∫ η

−τ
F (ζ + q1−α − θ)dζ +

+

∫ τ

η
(1 − F (ζ + qα − θ))dζ. (50)
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Therefore,

d

dθ
Lθ(d

η) =

∫ τ

η
f(ζ + qα − θ)dζ −

∫ η

−τ
f(ζ + q1−α − θ)dζ (51)

=

∫ τ+qα

qα+η
fθ(ζ)dζ −

∫ η+q1−α

−τ+q1−α

fθ(ζ)dζ (52)

=

∫
h(ζ)fθ(ζ)dζ, (53)

where h(ζ) ≡ 1[qα + η < ζ ≤ τ + qα] − 1[−τ + q1−α < ζ ≤ η + q1−α].
Now h(·) is a difference of indicators of intervals, so it has at most one

strict sign change. The restriction τ + |η| ≤ q1−α − qα implies that qα + η ≤
−τ + q1−α. Similarly, τ + |η| ≤ q1−α − qα implies that τ + qα ≤ η + q1−α.
Thus if h has a strict sign change, it is from positive to negative.

Shift families with monotone likelihood ratios are totally positive of order
2 [Lehmann, 1986, p. 509], so f is totally positive of order 2. Integration
against f is therefore variation-diminishing: The function

θ 7→
∫

h(ζ)fθ(ζ)dζ =
d

dθ
Lθ(d

η) (54)

has no more sign changes than h does, and its sign changes must be in the
same directions as those of h [Karlin, 1968, 1.3.1]. Consequently, any local
extremum of θ 7→ Lθ(d

η) is a global maximum.
The definition of η ((21)) ensures that d

dθLθ(d
η) = 0 at θ = η. Therefore,

θ 7→ Lθ(d
η) attains a global maximum at θ = η, and the maximum risk of

the Bayes procedure for prior πη (the point mass at {η}) is equal to the
Bayes risk of πη.

Suppose that f0 is symmetric (so that η = 0 suffices) and that τ > 2q1−α.
We claim that then h has a sign change from negative to positive. Recall
that h is a difference of indicators of two intervals: [−z, τ−z] and [−τ +z, z],
where z = q1−α = −qα > 0. The sign pattern of h depends on the ordering
of the endpoints. There are six cases to consider:

1. −z < τ − z ≤ −τ + z < z

2. −z ≤ −τ + z ≤ τ − z ≤ z

3. −z ≤ −τ + z ≤ z ≤ τ − z

4. −τ + z ≤ −z < τ − z ≤ z

5. −τ + z < z ≤ −z < τ − z
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6. −τ + z ≤ −z ≤ z ≤ τ − z

Case 1 (case 2, resp.) occurs if and only if τ ≤ z (iff τ ≤ 2z), but we have
supposed that τ > 2z. Cases 3 and 4 cannot occur because they require
τ = 2z. Case 5 is impossible because z > −z (recall that α < 1/2). In case 6,
h has a sign change from negative to positive, as asserted. A total positivity
argument similar to the one above thus shows that when τ > 2q1−α, Lθ(d

η)
attains a global minimum (rather than maximum) at θ = η = 0 and hence
the truncated Pratt procedure is not minimax for expected measure.

Lemma 3 (More general version of a common result; see Lehmann and
Casella [1998, Th. 1.4, p. 310].) Suppose π ∈ Π, the set of probability
measures on Θ. Let D̃ be a closed set of decisions. Let the risk at ζ of a
decision d ∈ D̃ be Lζ(d), and let the Bayes risk of a decision d ∈ D̃ with
respect to prior π ∈ Π be

Lπ(d) =

∫

Θ
Lζ(d)π(dζ). (55)

Suppose that D̃ is compact in a topology in which d → Lπ(d) is lower semi-
continuous, for all π. Then for each π ∈ Π, D̃ contains at least one Bayes
decision for prior π, dπ ∈ D̃:

Lπ(dπ) = inf
d∈D̃

Lπ(d). (56)

Suppose λ ∈ Π satisfies

Lλ(dλ) = sup
ζ∈Θ

Lζ(d
λ). (57)

Then dλ is minimax, and λ is least favorable:

Lλ(dλ) ≥ Lπ(dπ) ∀π ∈ Π. (58)

The proof of Lemma 3 is essentially that of Theorem 1.4 on p. 310 of
Lehmann and Casella [1998]. It follows from Lemma 3 that the prior πη

defined above is least favorable, and that dη is minimax. Equation (24) now
follows from equation (50) and Theorem 1. 2

4.3 Theorem 3

We first show that Theorem 1 essentially applies to the scale-invariant con-
fidence procedures, so we can characterize the minimax procedures using
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duality. This requires showing that the set Di of scale-invariant decision
functions is weak-star compact in L∞[ν × µ], when ν is Lebesgue measure
on Θ = [−τ, τ ] and µ is Lebesgue measure on X = <×<+.

Lemma 4 Di is a weak-star compact subset of L∞[ν × µ].

Because Dα is closed, it follows that Dα,i = Dα∩Di is weak-star compact
in L∞[ν × µ].
Proof of Lemma 4. Suppose that, instead of observing (X̄, S), we observed
the scale-invariant quantity Z = (X̄ − ζ)/S. For any θ ∈ Θ and σ > 0, the
distribution of Z is absolutely continuous with respect to Lebesgue measure
λ on <. We know that the set ∆ of measurable decision functions based on
Z is weak-star compact in L∞[ν × λ]. Define

T : R3 → R2 (59)

(ζ, x̄, s) 7→ (ζ, (x̄ − ζ)/s). (60)

Any scale-invariant decision function d ∈ Di can be written as the compo-
sition d = δ ◦ T for some δ ∈ ∆. We want to show that the map δ 7→ δ ◦ T
from ∆ onto Di is weak-star continuous; that will establish that Di is weak-
star compact as the image of a weak-star compact set under a weak-star
continuous map. Suppose δn(ζ, z) is a sequence of elements of ∆ such that

∫

Θ×<
δn(ζ, z)h(ζ, z)ν(dζ)λ(dz) →

∫

Θ×<
δ(ζ, z)h(ζ, z)ν(dζ)λ(dz) (61)

for some δ(ζ, z) ∈ ∆ and all h ∈ L1[ν × λ]. We need to show that (61)
implies that

∫

Θ×<×<+
δn ◦ T (ζ, x̄, s)g(ζ, x̄, s)ν(dζ)µ(dx̄, ds) =

∫

Θ×<×<+
δn(ζ, (x̄ − ζ)/s)g(ζ, x̄, s)ν(dζ)µ(dx̄, ds) →

∫

Θ×<×<+
δ(ζ, (x̄ − ζ)/s)g(ζ, x̄, s)ν(dζ)µ(dx̄, ds) (62)

for all g ∈ L1[ν × µ].
For each ζ ∈ Θ, consider the bijective change of variables

(x̄, s) 7→ (z = (x̄ − ζ)/s, s). (63)
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The Jacobian of this transformation is s, so
∫

Θ×<×<+
δ(ζ, (x̄ − ζ)/s)g(ζ, x̄, s)ν(dζ)µ(dx̄, ds) =

∫

Θ×<×<+
δ(ζ, z)g(ζ, sz + ζ, s)sν(dζ)µ(dz, ds) =

∫

Θ×<
δ(ζ, z)

(∫

<+
sg(ζ, sz + ζ, s)ds

)
ν(dζ)λ(dz) =

∫

Θ×<
δ(ζ, z)hg(ζ, z)λ(dz)ν(dζ), (64)

where hg is given by

hg : Θ ×< → <
(ζ, z) 7→ hg(ζ, z) ≡

∫

<+
sg(ζ, sz + ζ, s)ds.

It follows as a special case (namely, δ ≡ 1) that hg ∈ L1[ν × λ], and thus
that if δn → δ in the weak-star topology on L∞[ν × λ] then δn ◦ T → δ ◦ T
in the weak-star topology on L∞[ν × µ], as required. 2

The following lemma helps to characterize the risk function of dTP
i .

Lemma 5 If τ/σ ≤ 2u
√

n−2
n(n−1) , then

θ 7→ d

dθ
L(θ,σ)(d

TP
i ) (65)

=
d

dθ
E(θ,σ)

∫ τ

−τ
dTP

i (ζ, (X̄, S))dζ (66)

is positive for θ < 0, negative for θ > 0, and has a unique zero at θ = 0.

Lemma 5 is proved in § 4.5.

4.4 Proof of Theorem 3.

Define dTP
i as in Theorem 3. Let Π be a set of probability measures as

specified in § 3.2. For any π ∈ Π and any fixed σ ∈ Σ, define

L(π,σ)(d) ≡
∫

Θ
L(ζ,σ)(d)π(dζ). (67)

To prove theorem 3, we apply Lemmas 2 and 4 to use Theorem 1 to get a
result analogous to Corollary 1 for scale-invariant procedures:

inf
d∈Dα,i

L(Θ,σ)(d) = sup
π∈Π

inf
d∈Dα,i

L(π,σ)(d). (68)
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For each ζ, the most-powerful scale invariant test of Hζ : θ = ζ against
the alternative H0 : θ = 0 is dTP

i ((X1, . . . , Xn), ζ). This implies that for
any fixed σ, dTP

i minimizes, among scale-invariant level α procedures, the
expected confidence set Lebesgue measure when θ = 0:

inf
d∈Dα,i

L0(d) = L0(d
TP
i ). (69)

The procedure dTP
i is thus a Bayes decision from Dα,i for risk L0 and prior

π0, a point mass at 0. By lemma 5, if τ/σ ≤ 2t1−α

√
n−2

n(n−1) then the risk of

dTP
i , L(·,σ)(d

TP
i ), attains a global maximum at 0. The maximum risk of the

Bayes procedure against π0 is equal to the Bayes risk of π0. It follows from
Lemma 3 that dTP

i is minimax. 2

4.5 Proof of Lemma 5

Let σ̃ ≡ σ/
√

n, k ≡ n − 1, and u = t1−α. In terms of the value (x̄, s2) of
X = (X̄, S2), the procedure dTP

i is

dTP
i (θ, (x̄, s)) ≡

{
1[(x̄ − θ)/s ≤ u], θ ≤ 0
1[(x̄ − θ)/s ≥ −u], θ > 0.

(70)

Fix σ̃, τ > 0.

L(θ,σ)(d) = E(θ,σ)

∫ τ

−τ
d(ζ, (X̄, S))dζ (71)

=

∫ τ

−τ
E(θ,σ)[E(θ,σ)(d(ζ, (X̄, S))|S)]dζ (72)

=

∫ τ

0
E(θ,σ)P{(X̄ − ζ)/S ≥ −u|S}dζ +

+

∫ 0

−τ
E(θ,σ)P{(X̄ − ζ)/S ≤ u|S}dζ (73)

=

∫ τ

0
E(θ,σ)

[
1 − Φ

(
ζ − θ − Su

σ̃

)]
dζ +

+

∫ 0

−τ
E(θ,σ)

[
Φ

(
ζ − θ + Su

σ̃

)]
dζ. (74)

Thus,

d

dθ
L(θ,σ)(d) ∝ E(θ,σ)

{∫ τ

0
φ

(
ζ − θ − Su

σ̃

)
dζ−
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−
∫ 0

−τ
φ

(
ζ − θ + Su

σ̃

)
dζ

}
(75)

= E(θ,σ)

{∫ τ−Su

−Su
φ

(
ζ − θ

σ̃

)
dζ−

−
∫ Su

−τ+Su
φ

(
ζ − θ

σ̃

)
dζ

}
(76)

∝ E(θ,σ)g(X̄, S), (77)

where

g(x̄, s) ≡ 1

[−x̄

u
≤ s ≤ τ − x̄

u

]
− 1

[
x̄

u
≤ s ≤ x̄ + τ

u

]
. (78)

Note that for all x̄, g(−x̄, s) = −g(x̄, s). Now

d

dθ
Lθ(d) ∝

∫

<
E(θ,σ)(g(X̄, S)|X̄ = x̄)φ

(
x̄ − θ

σ̃

)
dx̄. (79)

Because the normal density is totally positive, the number of sign changes
of θ 7→ d

dθL(θ,σ)(d) is no larger than the number of sign changes of a version
of x̄ 7→ E(θ,σ)(g(X̄, S)|X̄ = x̄).

One version is x̄ 7→ Ch(x̄), where C is a constant that depends on σ, α,
and k, but not on θ or x̄:

h(x̄) ≡
∫ ∞

0
g(x̄, s)sk−1e−ks2/(2σ̃2)ds (80)

=





−h(−x̄), x̄ ≤ 0
∫ (τ−x̄)/u
0 sk−1e−ks2/(2σ̃2)ds−

∫ (τ+x̄)/u
x̄/u sk−1e−ks2/(2σ̃2)ds, 0 < x̄ ≤ τ

− ∫ (τ+x̄)/u
x̄/u sk−1e−ks2/(2σ̃2)ds, x̄ > τ

(81)

(i) h is antisymmetric about 0;

(ii) h is continuously differentiable in x̄;

(iii) h(0) = 0;

(iv) h(x̄) < 0 for sufficiently small positive x̄, and h′(0) < 0;

(v) h(x̄) < 0 for x̄ ≥ τ , and h′(τ) > 0;

(vi) If τ/σ̃ ≤ 2u
√

k−1
k , then h′ takes the value 0 at most once on [0, τ ].
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Claims (i)–(v) are clear upon inspection of (81); (vi) is discussed below.
Together (i)–(vi) imply that h changes sign once as x̄ ranges from −∞ to
∞, going from positive to negative as x̄ increases through 0. Total positiv-
ity and (79) imply that θ 7→ d

dθL(θ,σ)(d) follows the same pattern, and by
antisymmetry of h its zero must be at θ = 0. That is, θ 7→ L(θ,σ)(d) attains
its maximum at 0.

For (vi), observe that on [0, τ ],

h′(x̄) ∝ −(x̄ + τ)k−1e−
C(x̄+τ)2

2 − (τ − x̄)k−1e−
C(τ−x̄)2

2 +

+x̄k−1e−
Cx̄2

2 (82)

= x̄k−1e−
Cx̄2

2 [−e−
Cτ2

2 (h1(x̄/τ) + h2(x̄/τ)) + 1], (83)

where

h1(ζ) = (1 + 1/ζ)k−1e−Cτ2ζ ,

h2(ζ) = (1/ζ − 1)k−1e−Cτ2ζ , and

C =
k

σ̃2u2
. (84)

We now show that h1 + h2 is strictly decreasing on (0,∞) provided τ/σ̃ ≤
2u

√
(k − 1)/k, the bound in (vi). It follows that h′ is zero at most once.

First, h1 is easily seen to be strictly decreasing on (0,∞), regardless of τ/σ̃.
Second, h2 has derivative

h′
2(ζ) = (k − 1)(1/ζ − 1)e−Cτ2ζ (−1/ζ2 +

k

k − 1

τ2

σ̃2u2
1/ζ − k

k − 1

τ2

σ̃2u2
)

︸ ︷︷ ︸
∗

.

(85)
By viewing (*) as a quadratic function of 1/ζ, one sees that it has a zero on

(0,∞) iff k
k−1

τ2

σ̃2u2 > 4. Otherwise, it does not change sign on the positive
half line. Evidently it must be negative as ζ → ∞, so if it does not change
sign on (0,∞), it must be nonpositive on that interval. It follows that h′

2

must be nonpositive on (0, 1), provided τ/σ̃ ≤ 2
√

(k − 1)/ku. But then h2

is nonincreasing, forcing h1 + h2 to be strictly decreasing, and implying in
turn by (83) that h has property (vi) above. 2

A Minimax fixed-length confidence intervals

Zeytinoglu and Mintz [Zeytinoglu and Mintz, 1984, 1988] study the problem
of determining confidence intervals [θ̂−l/2, θ̂+l/2] for a BNM that minimize
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supθ∈Θ Pθ{θ 6∈ [θ̂ − l/2, θ̂ + l/2]}, the maximum noncoverage probability,
among random intervals of fixed length l. Their results can be used to find
(1 − α)-confidence intervals that are minimax for length among fixed-width
(1 − α)-confidence intervals.

Suppose Z ∼ N (θ, 1), θ ∈ [−τ, τ ]. According to Zeytinoglu and Mintz
[1984], if l/2 < τ ≤ l, then the minimax-noncoverage interval of fixed length
l is centered at

θ̂(Z) =

{
Z, |Z| ≤ τ − l/2
τ − l/2, |Z| > τ − l/2

(86)

and has maximum noncoverage probability Φ(−l/2) [p. 949]. If l < τ ≤
3l/2, then the minimax-noncoverage interval of fixed length l is centered at

θ̂(Z) =





0, |Z| < a
Z − a, a ≤ |Z| < a + l
l, a + l ≤ |Z|,

(87)

where a is the solution of

2Φ(−a − l/2) = Φ(a − l/2). (88)

In this case, the maximum noncoverage probability is Φ(a−l/2) [Zeytinoglu
and Mintz, 1984, p. 948].

The upper half of Table 3 gives maximum noncoverage probabilities of
the minimax-noncoverage length-l procedure, assuming that τ ∈ (l/2, l]. Its
lower half gives the a needed to specify the minimax-noncoverage length-l
procedure if τ ∈ (l, 3l/2], along with corresponding maximum noncoverage
probabilities.

Insert Table 3

Table 3 shows that if τ ∈ [1.6, 3.25], the optimal fixed-width 95% interval
is centered at a point θ̂ of form (86) and has width between 3.25 and 3.30.
Since intervals of this form have maximum noncoverage chance Φ(−l/2), the
minimax-width 95% interval has width precisely 2z.95 ≈ 3.28.

If τ ∈ [3.6, 5.4], an interval of width 3.60 centered at a point of form (87)
has 95% coverage. This minimax-width fixed-width 95% confidence interval
is given by (87), with a = 0.158.

If τ ∈ [3.30, 3.60), then no interval with centering point given by (87)
has sufficient uniform coverage probability. To get a 95% confidence interval
one must center it at a point of form (86). This means τ ∈ (l/2, l], implying
that l ≥ τ . The maximum noncoverage at l = 3.30 falls under the 5% cutoff,
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so l need be no larger than τ . It thus turns out that for τ ∈ [3.30, 3.60) the
maximum noncoverage probability of the minimax-width fixed-width 95%
interval is strictly less than 5% ; for τ = 3.60, this 95% interval has width
3.60 and is in fact a 96.4% interval.
Acknowledgments. We are grateful to D.A. Freedman for advice, di-
rection, and comments on an earlier draft, and to R. Purves for helpful
conversations.
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Table 1: Maximum expected lengths of several 95% confidence procedures
for a bounded normal mean (BNM) θ ∈ [−τ, τ ]. Previously proposed confi-
dence sets for the BNM have maximum expected lengths up to 49% greater
than that of the optimal measurable procedure, IOPT.

conventional truncated Best affine Best meas. Opt.
conventional fixed-widtha fixed-widthb meas.c

τ I = [X ± 1.96] I ∩ [−τ, τ ] IA IN IOPT

1.75 3.9 +49% 2.9 +10% 3.4 +28% 3.3 +25% 2.6
2.00 3.9 +38% 3.2 +11% 3.5 +23% 3.3 +16% 2.8
2.25 3.9 +31% 3.4 +13% 3.6 +19% 3.3 +10% 3.0
2.50 3.9 +26% 3.6 +14% 3.6 +17% 3.3 +6% 3.1
2.75 3.9 +22% 3.7 +15% 3.7 +15% 3.3 +3% 3.2
3.00 3.9 +21% 3.8 +16% 3.7 +14% 3.3 +1% 3.3
3.25 3.9 +19% 3.8 +16% 3.7 +14% 3.3 +0% 3.3
3.50 3.9 +18% 3.9 +16% 3.8 +13% 3.5 +5% 3.3 d

3.75 3.9 +16% 3.9 +15% 3.8 +12% 3.6 +6% 3.4
4.00 3.9 +14% 3.9 +13% 3.8 +10% 3.6 +5% 3.4

aAffine fixed-width intervals have the form [aX + b − e, aX + b + e], with a, b, and e
constant.

bMeasurable fixed-width intervals are of form [θ̂(X)−e, θ̂(X)+e], with θ̂(·) measurable
and e constant.

cGeneral measurable confidence sets have form {θ ∈ Θ : (θ, X) ∈ S}, where S ⊆ Θ×X
is product-measurable.

dThe measurable 95% confidence set with smallest expected measure when τ ≤ 3.29 is
the truncated Pratt interval ITP. The entries in the rightmost column for τ = 3.50, 3.75,
and 4.00 are the maximum expected lengths of optimal confidence sets IOPT, approxi-
mated numerically.
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Figure 1: The truncated Pratt procedure for the BNM with σ = 1, τ = 3,
α = 0.05. Viewed as a confidence interval or as a family of tests, this
truncated Pratt (3) decision rule improves on the conventional procedure
(1), by having smaller expected length or more power.
a
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aUnshaded parts of vertical slices represent sample truncated Pratt confidence sets
ITP(X); unshaded parts of horizontal slices represent truncated Pratt acceptance regions.
The dashed lines show the endpoints of sample confidence sets and acceptance regions for
the truncated conventional procedure.
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Table 2: Expected lengths of the truncated Pratt procedure and some others,
for small to medium τ . The truncated Pratt dominates alternative proce-
dures for small enough τ , but as τ increases above 2z1−α, its worst-case
behavior deteriorates sharply.

E0 supζ Eζ supζ Eζ supζ Eζ

1 − α τ µ(ITP(X))a µ(ITP(X)) µ(IT(X))b µ(IA(X))c

0.90 1.25 1.8 *d 1.8 2.0 2.5
1.50 2.1 * 2.1 2.3 2.7
1.75 2.2 * 2.2 2.6 2.9
2.00 2.4 * 2.4 2.8 2.9
2.25 2.5 * 2.5 3.0 3.0
2.50 2.6 * 2.6 3.1 3.1
2.75 2.6 2.7 3.2 3.1
3.00 2.6 3.0 3.2 3.1
3.25 2.6 3.2 3.2 3.1
3.50 2.6 3.5 3.3 3.2

0.95 1.75 2.6 * 2.6 2.9 3.4
2.00 2.8 * 2.8 3.2 3.5
2.25 3.0 * 3.0 3.4 3.6
2.50 3.1 * 3.1 3.6 3.6
2.75 3.2 * 3.2 3.7 3.7
3.00 3.3 * 3.3 3.8 3.7
3.25 3.3 * 3.3 3.8 3.7
3.50 3.3 3.5 3.9 3.8
3.75 3.3 3.7 3.9 3.8
4.00 3.3 4.0 3.9 3.8
4.25 3.3 4.2 3.9 3.8
4.50 3.3 4.5 3.9 3.8

0.99 2.50 4.0 * 4.0 4.3 4.7
2.75 4.2 * 4.2 4.5 4.8
3.00 4.4 * 4.4 4.7 4.9
3.25 4.5 * 4.5 4.9 5.0
3.50 4.5 * 4.5 5.0 5.0
3.75 4.6 * 4.6 5.0 5.0
4.00 4.6 * 4.6 5.1 5.0
4.25 4.6 * 4.6 5.1 5.0
4.50 4.7 * 4.7 5.1 5.0
4.75 4.7 4.8 5.1 5.0
5.00 4.7 5.0 5.2 5.1
5.25 4.7 5.3 5.2 5.1
5.50 4.7 5.5 5.2 5.1

aµ denotes Lebesgue measure. E0µ(ITP(X)) is the Bayes risk of d0 (the Bayes decision
rule for a prior that concentrates at zero), or ITP. Iff τ ≤ 2z1−α, this is the worst-case
risk of d0.

bIT, the truncated conventional interval, is defined in (1).
cIA, the minimax affine fixed-length interval, was determined and analyzed numerically

by the method of Stark [1992].
d* indicates that ITP is optimal.
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Table 3: Minimax-noncoverage fixed-length intervals: maximum noncover-
age probabilities and offset constants a.

l/2 < τ ≤ l l < τ ≤ 3l/2

la pb l ac pd

3.00 .067
3.05 .064
3.10 .061
3.15 .058
3.20 .055 3.20 .171 .077
3.25 .052 3.25 .169 .073
3.30 .049 3.30 .168 .069
3.35 .047 3.35 .166 .066
3.40 .045 3.40 .164 .062
3.45 .042 3.45 .163 .059
3.50 .040 3.50 .161 .056
3.55 .038 3.55 .159 .053
3.60 .036 3.60 .158 .050

3.65 .156 .048
3.70 .155 .045
3.75 .153 .043
3.80 .152 .040

aLength of confidence interval.
bMaximum noncoverage probability of minimax-noncoverage interval:

p = supθ∈[−τ,τ ] Pθ(θ 6∈ [θ̂ − l/2, θ̂ + l/2]), for θ̂ as defined in (86).
cWhen τ ∈ (l, 3l/2], a combines with (87) to specify the minimax-

noncoverage interval of length l.
dMaximum noncoverage probability of minimax-noncoverage interval:

p = supθ∈[−τ,τ ] Pθ(θ 6∈ [θ̂ − l/2, θ̂ + l/2]), for θ̂ as defined in (87).
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