Statistics 133 Midterm Exam March 3, 2010

When I ask for an "R program", I mean one or more R commands. Try your best to make your answers general, i.e. they shouldn't depend on the specific values presented in the examples.

- Total: 40 points
- 1. Recall the world data frame that we've examined in class. Here is some information about the data frame:

> summary(world)						
country	cont	gdp	income	literacy	military	phys
Albania : 1	AF:47	Min. : 500	Min. : 569	Min. :12.80	Min. :6.500e+06	Min. : 1.132
Algeria : 1	AS:41	1st Qu.: 1800	1st Qu.: 2162	1st Qu.:69.10	1st Qu.:5.650e+07	1st Qu.: 21.866
Angola : 1	EU:34	Median : 4900	Median : 5894	Median :88.40	Median :2.343e+08	Median :125.653
Argentina: 1	NA:15	Mean : 9054	Mean :10258	Mean :80.95	Mean :5.679e+09	Mean :154.422
Armenia : 1	OC: 4	3rd Qu.:11800	3rd Qu.:14233	3rd Qu.:98.50	3rd Qu.:1.775e+09	3rd Qu.:267.853
Australia: 1 (Other) :147	SA:12	Max. :55100	Max. :63609 NA's : 1	Max. :99.90	Max. :3.707e+11	Max. :606.496

(a) (2 points) Write an R program that will calculate the mean of income and military for each continent.

(b) (2 points) What is the difference between the plots produced by these two commands:

```
xyplot(literacy~gdp,groups=cont,data=world)
and
```

xyplot(literacy~gdp|cont,data=world)

Solution: The first command produces a single plot with different colors for each continent. The second command creates a separate panel for each continent.

(c) (2 points) What option needed to be passed to read.csv to insure that countries in North America didn't have missing values for cont.

Solution: na.strings=''

(d) (2 points) What option would be passed to read.csv to insure that country and cont were character variables, not factors.

```
Solution: stringsAsFactors=FALSE
```

(e) (2 points) Write an R program to produce a barplot showing the number of countries in each continent.

```
Solution:
barplot(table(world$cont))
```

2. Consider the following vector of values stored in a variable called **x**:

```
> x
[1] 7 12 9 15 NA 8 14 NA 2 9 NA 8
```

(a) (2 points) Write an R program to return only the non-missing values into a vector called **y**

Solution: x[!is.na(x)]

(b) (2 points) Write an R program to count the number of missing values in x.

Solution: sum(is.na(x))

(c) (2 points) Write an R program to calculate the median of \mathbf{x} ignoring the missing values.

Solution: median(x,na.rm=TRUE)

(d) (2 points) Write an R program that will replace the missing values with the value in the vector immediately before the missing value.

Solution:

wh = which(is.na(x))
x[wh] = x[wh - 1]

3. Consider a data frame called **crackers**:

> summary(ci	cackers)				
	Company		Product	Grams	Calories
Nabisco	:36	Barnum's Animal	crackers : 1	Min. :13.00	Min. : 50.0
Keebler	:26	Better Cheddars	: 1	1st Qu.:15.00	1st Qu.: 70.0
Sunshine	: 8	Better Cheddars	Low Sodium : 1	Median :16.00	Median : 80.0
Pepperidge	Farm: 6	Better Cheddars	Reduced Fat: 1	Mean :22.11	Mean :102.2
Adrienne	: 3	Big Wheat Thins	: 1	3rd Qu.:30.00	3rd Qu.:140.0
Dare	: 3	Bretton	: 1	Max. :31.00	Max. :160.0
(Other)	:10	(Other)	:86	NA's :11.00	

(a) (2 points) Write an R program to plot Calories on the y-axis and Grams on the x-axis, using a different color for each level of Company.

```
Solution:
library(lattice)
xyplot(Calories ~ Grams,groups=Company,data=crackers)
or
crackers$Company = factor(crackers$Company)
mycolors = topo.colors(length(levels(crackers$Company)))
plot(crackers$Grams, crackers$Calories,
     col=mycolors[crackers$Company])
```

(b) (2 points) Write an R program to show how many observations there are for each Company.

```
Solution: table(crackers$Company)
```

(c) (2 points) Write an R program that will rearrange the rows of the data frame so that they are sorted by the value of Calories.

Solution: crackers[order(crackers\$Calories),]

(d) (2 points) Write an R program that will show the row number of the observation with the maximum value for Calories.

```
Solution: which.max(crackers$Calories)
or
which(crackers$Calories == max(crackers$Calories))
```

- 4. Use regular expressions to answer the following questions:
 - (a) (2 points) Consider a vector called values:

```
> values
[1] "$17,244.41" "$25,622.41" "19,588.41" "$24,441.32"
Write an R program to convert these values into proper numbers, and to calculate
```

the sum of those numbers.

Solution: sum(as.numeric(gsub('[\$,]','',values)))

(b) (2 points) Consider a vector called nms:

```
> nms
```

```
[1] "...Company.." "Interest.Rate" "..Industry." ".Year"
Write an R program to eliminate the leading and trailing periods (.) from these
values, but not periods inside the values.
```

```
Solution:
```

```
nms = gsub('^\\.+','',nms)
nms = gsub('\\.+$','',nms)
or
sub('^\\.*(.*)\\.*$','\\1',nms)
```

- (c) (2 points) Consider a vector of file names, called fnames:
 - > fnames

[1] "dog.jpg" "jpeg.doc" "homework.r" "duck.jpeg" "jpeg.txt" "cat.jpg" Write an R program that will create a vector with all the file names that end in either jpg or jpeg.

Solution: grep('jpe?g\$',fnames,value=TRUE)

(d) (2 points) Consider the following text, and call to gregexpr:

```
> txt = 'name=Fred job=Cashier pay=$12000'
> matches = gregexpr('(.*)=(.*)',txt)
```

matches contains only one match. How would you modify the regular expression passed to gregexpr to return three matches?

```
Solution: gregexpr('([^ ]*)=([^ ]*)',txt)
```

5. Suppose you find an online article that shows how to create a plot that you would like to use. When you try to follow the instructions, you see the following error:

```
> library(plotrix)
Error in library(plotrix) : there is no package called 'plotrix'
```

(a) (2 points) How would you make the plotrix command available on your computer?

Solution: Either use the **Packages** drop-down menu in the console, or call install.packages.

(b) (2 points) Write an R command that would open a browser on newsgroup postings concerning the plotrix package.

Solution: RSiteSearch('plotrix')

(c) (2 points) After seeing the error, one thought might be to use > help(plotrix)

Why would the help command not be useful in this case?

Solution: The help function can only find information about things that are already installed on your computer.