Generally, σ^{2} will not be known and must be estimated from the data by calculating the pooled sample variance,

$$
s_{p}^{2}=\frac{(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}}{m+n-2}
$$

where $s_{X}^{2}=\left(n-\overline{\bar{Y} \sum_{i=1}^{n}}\left(X_{i}-\bar{X}\right)^{2}\right.$ and similarly for s_{Y}^{2}. Note that s_{p}^{2} is a weighted average of the sample variances of the X^{\prime} 's and Y 's, with the weights proportional to the degrees of freedom. This weighting is appropriate since if one sample is much larger than the other, the estimate of σ^{2} from that sample is more reliable and should receive greater weight. The following theorem gives the distribution of a statistic that will be used for forming confidence intervals and performing hypothesis tests.

THEOREM A

Suppose that X_{1}, \ldots, X_{n} are independent and normally distributed random variables with mean μ_{X} and variance σ^{2}, and that Y_{1}, \ldots, Y_{m} are independent and normally distributed random variables with mean μ_{Y} and variance σ^{2}, and that the Y_{i} are independent of the X_{i}. The statistic

$$
t=\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

follows a t distribution with $m+n-2$ degrees of freedom.

Proof

According to the definition of the t distribution in Section 6.2, we have to show that the statistic is the quotient of a standard normal random variable and the square root of an independent chi-square random variable divided by its $n+m-2$ degrees of freedom. First, we note from Theorem B in Section 6.3 that $(n-1) s_{X}^{2} / \sigma^{2}$ and $(m-1) s_{Y}^{2} / \sigma^{2}$ are distributed as chi-square random variables with $n-1$ and $m-1$ degrees of freedom, respectively, and are independent since the X_{i} and Y_{i} are. Their sum is thus chi-square with $m+n-2$ df. Now, we express the statistic as the ratio U / V, where

$$
\begin{aligned}
U & =\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{\sigma \sqrt{\frac{1}{n}+\frac{1}{m}}} \\
V & =\sqrt{\left[\frac{(n-1) s_{X}^{2}}{\sigma^{2}}+\frac{(m-1) s_{Y}^{2}}{\sigma^{2}}\right] \frac{1}{m+n-2}}
\end{aligned}
$$

U follows a standard normal distribution and from the preceding argument V has the distribution of the square root of a chi-square random variable divided by its degrees of freedom. The independence of U and V follows from Corollary A in Section 6.3.

