- 364 Chapter 9 Testing Hypotheses and Assessing Goodness of Fit
 - **d.** Suppose that you hadn't thought of the preceding fact. Explain how you could determine a good approximation to *c* by generating random numbers on a computer (simulation).
 - 14. Suppose that under H_0 , a measurement X is $N(0, \sigma^2)$, and that under H_1 , X is $N(1, \sigma^2)$ and that the prior probability $P(H_0) = 2 \times P(H_1)$. As in Section 9.1, the hypothesis H_0 will be chosen if $P(H_0|x) > P(H_1|x)$. For $\sigma^2 = 0.1, 0.5, 1.0, 5.0$:
 - **a.** For what values of X will H_0 be chosen?
 - **b.** In the long run, what proportion of the time will H_0 be chosen if H_0 is true $\frac{2}{3}$ of the time?
 - **15.** Suppose that under H_0 , a measurement X is $N(0, \sigma^2)$, and that under H_1 , X is $N(1, \sigma^2)$ and that the prior probability $P(H_0) = P(H_1)$. For $\sigma = 1$ and $x \in [0, 3]$, plot and compare (1) the *p*-value for the test of H_0 and (2) $P(H_0|x)$. Can the *p*-value be interpreted as the probability that H_0 is true? Choose another value of σ and repeat.
 - 16. In the previous problem, with $\sigma = 1$, what is the probability that the *p*-value is less than 0.05 if H_0 is true? What is the probability if H_1 is true?
 - **17.** Let $X \sim N(0, \sigma^2)$, and consider testing $H_0 = \sigma_0$ versus $H_A : \sigma = \sigma_1$, where $\sigma_1 > \sigma_0$. The values σ_0 and σ_1 are fixed.
 - **a.** What is the likelihood ratio as a function of x? What values favor H_0 ? What is the rejection region of a level α test?
 - **b.** For a sample, X_1, X_2, \ldots, X_n distributed as above, repeat the previous question.
 - **c.** Is the test in the previous question uniformly most powerful for testing $H_0: \sigma = \sigma_0$ versus $H_1: \sigma > \sigma_0$?
 - **18.** Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from a double exponential distribution with density $f(x) = \frac{1}{2}\lambda \exp(-\lambda|x|)$. Derive a likelihood ratio test of the hypothesis $H_0: \lambda = \lambda_0$ versus $H_1: \lambda = \lambda_1$, where λ_0 and $\lambda_1 > \lambda_0$ are specified numbers. Is the test uniformly most powerful against the alternative $H_1: \lambda > \lambda_0$?
 - **19.** Under H_0 , a random variable has the cumulative distribution function $F_0(x) = x^2$, $0 \le x \le 1$; and under H_1 , it has the cumulative distribution function $F_1(x) = x^3$, $0 \le x \le 1$.
 - **a.** If the two hypotheses have equal prior probability, for what values of x is the posterior probability of H_0 greater than that of H_1 ?
 - **b.** What is the form of the likelihood ratio test of H_0 versus H_1 ?
 - c. What is the rejection region of a level α test?
 - **d.** What is the power of the test?
 - **20.** Consider two probability density functions on [0, 1]: $f_0(x) = 1$, and $f_1(x) = 2x$. Among all tests of the null hypothesis $H_0: X \sim f_0(x)$ versus the alternative $X \sim f_1(x)$, with significance level $\alpha = 0.10$, how large can the power possibly be?
 - **21.** Suppose that a single observation *X* is taken from a uniform density on $[0, \theta]$, and consider testing $H_0: \theta = 1$ versus $H_1: \theta = 2$.