
Measuring Traffic

Peter Bickel∗ Chao Chen‡ Jaimyoung Kwon§

John Rice∗ Erik van Zwet† Pravin Varaiya‡

May 24, 2004

Abstract

A traffic performance measurement system, PeMS, currently func-
tions as a statewide repository for traffic data gathered by thousands
of automatic sensors. It has integrated data collection, processing,
and communications infrastructure with data storage and analytical
tools. In this paper, we discuss statistical issues that have emerged
as we attempt to process a data stream of two GB per day of wildly
varying quality. In particular, we focus on detecting sensor malfunc-
tion, imputation of missing or bad data, estimation of velocity, and
forecasting of travel times on freeway networks.

Keywords and phrases: ATIS, freeway loop data, speed estimation,
malfunction detection.

1 Introduction

Over a number of years, the State of California has invested in developing
Transportation Management Centers (TMCs) in urban areas to help manage
traffic. The TMCs receive traffic measurements from the field, such as aver-
age speed and volume. These data, which are updated every thirty seconds,
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help the operations staff react to traffic conditions, to minimize congestion
and to improve safety.

More recently, the California Department of Transportation (Caltrans)
recognized that the data collected by the TMCs is valuable beyond real time
operations needs, and a concept of a central data repository and analysis sys-
tem evolved. Such a system would provide the data to transportation stake
holders at all jurisdictional levels. It was decided to pursue this concept at
a research level before investing significant resources. Thus, a collaboration
between Caltrans and PATH (Partners for Advanced Transit and Highways)
at the University of California at Berkeley was initiated to develop a perfor-
mance measurement system or PeMS.

PeMS currently functions as a statewide repository for traffic data gath-
ered by thousands of automatic sensors. It has integrated existing Caltrans
data collection, processing, and communications infrastructure with data
storage and analytical tools. Through the Internet1, PeMS provides im-
mediate access to the data to a wide variety of users. The system supports
standard Internet browsers, such as Netscape or Explorer, so that users do
not need any specialized software. In addition, PeMS provides simple plot-
ting and analysis tools to facilitate standard engineering and planning tasks
and help users interpret the data.

PeMS has many different users. Operational traffic engineers need the
latest measurements to base their decisions on the current state of the free-
way network. For example, traffic control equipment, such as ramp-metering
and changeable message signs, must be optimally placed and evaluated. Cal-
trans managers want to quickly obtain a uniform, and comprehensive as-
sessment of the performance of their freeways. Planners look for long-term
trends that may require their attention; for example they try to determine
whether congestion bottlenecks can be alleviated by improving operations or
by minor capital improvements. They conduct freeway operational analyses,
bottleneck identification, assessment of incidents, and evaluation of advanced
control strategies, such as on-ramp metering. Individual travelers and fleet
operators want to know current shortest routes and travel time estimates.
Researchers use the data to study traffic dynamics and to calibrate and val-
idate simulation models. PeMS can serve to guide development and assess
deployment of intelligent transportation systems (ITS).

PeMS has many different faces, but at some level it is just a simple bal-

1http://pems.eecs.berkeley.edu

2



ance sheet. A transportation system consumes public resources. In return,
it produces transportation services that move people and goods. PeMS pro-
vides an automated system to account for these outputs and inputs through a
collection of accounting formulas that aggregate received data into meaning-
ful indicators. This produces a balance sheet for use in tracking performance
over time and across agencies in a reasonably objective manner. Examples
of “meaningful indicators” are

• Hourly, daily, weekly totals of VMT (vehicle-miles traveled), VHT
(vehicle-hours traveled) and travel time for selected routes or freeway
segments (links).

• Means and variances of VMT, VHT and travel time.

These are simple measures of the volume, quality and reliability of the
output of highway links. Publication each day of these numbers tells drivers
and operators how well those links are functioning. Time series plots can be
used to gauge monthly, weekly, daily and hourly trends.

Every thirty seconds, PeMS receives detector data over the Caltrans wide
area network (WAN) to which all 12 districts are connected. Each individual
Caltrans district is connected to PeMS through the WAN over a permanent
ATM virtual circuit. A front end processor (FEP) at each district receives
data from freeway loops every 30 seconds. The FEP formats these data and
writes them into the TMC database, as well as into the PeMS database.
PeMS maintains a separate instance of the database for each district. Al-
though the table formats vary slightly across districts, they are stored in
PeMS in a uniform way, so the same software works for all districts.

The PeMS computer at UC Berkeley is a four-processor SUN 450 work-
station with 1GB of RAM and 2 terabytes of disk. It uses a standard Oracle
database for storage and retrieval. The maintenance and administration of
the database is standard but highly specialized work, which includes disk
management, crash recovery and table configuration. Also, many parame-
ters must be tuned to optimize database performance. A part-time Oracle
database administrator is necessary.

The PeMS database architecture is modular and open. A new district
can be added online with six person-weeks of effort, with no disruption of
the district’s TMC. Data from new loops can be incorporated as they are
deployed. New applications are added as need arises.
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PeMS includes software serving three main functions: operating the database,
processing and analyzing the data, and providing access to the data via the
Internet. The processing of the data is done to ensure their reliability. It is
a fact of life that the automatic detectors that generate most of our data are
prone to malfunction. Detecting malfunction in an array of correlated sen-
sors has been a statistical challenge. The related problem of imputation of
bad or missing values is another major concern. PeMS provides access to the
database through the Internet. Using a standard browser such as Netscape
or Internet Explorer the user is able to query the database in a variety of
ways. He or she can use built in tools to plot the query results, or download
the data for further study.

In this paper we will describe how PeMS works. Our emphasis will be
on the statistical issues that have emerged as we attempt to process a data
stream of two GB per day of wildly varying quality. Real-time processing of
the data is essential and while our methods cannot be optimal or “best” in
any statistical sense, we aim for them to be as “good” as possible under the
circumstances, and improvable over time.

The remainder of the paper is organized as follows. In section 2 we
describe the basic sensors upon which PeMS relies, loop detectors. In section
3 we describe our approaches to detecting sensor malfunction and in section
4 describe how we impute values that are missing or in error. Section 5 is
devoted to a description of how we estimate velocity from the loop detectors,
and section 6 describes our method of predicting travel times for users. The
reader will see that these efforts are very much a work in progress, with some
aspects well developed and others under development.

2 Loop detectors

Caltrans TMCs currently operate many types of automatic sensors: mi-
crowave, infrared, closed circuit television, and inductive loop. The most
common type by far, however, is the inductive loop detector. Inductive loop
detectors are wire loops embedded in each lane of the roadway at regular in-
tervals on the network, generally every half-mile. They operate by detecting
the change in inductance caused by the metal in vehicles that pass over them.
A detector reports every thirty seconds the number of passing vehicles, and
the percentage of time that it was covered by a vehicle. The number of vehi-
cles is called flow, the per cent coverage is called the occupancy. A roadside
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controller box operates a set of loop detectors and transmits the information
to the local Caltrans TMC. This is done through a variety of media, from
leased phone lines to Caltrans fiber optics. PeMS currently receives data
from about 22,000 loop detectors in California.

A single inductance loop does not directly measure velocity. However,
if the average length of the passing vehicles were known, velocity could be
inferred from flow and occupancy. Estimation of velocity or, equivalently,
average vehicle length has been an important part of our work, which is the
subject of section 5. At selected locations, two single loop detector are placed
in close proximity to form a “double loop” detector, which does provide
direct measurement of velocity, from the time delay between upstream and
downstream vehicle signatures. Most of the loop detectors in California are
single loop detectors while double loop detectors are more widely used in
Europe.

For a particular loop detector, the flow (volume) and occupancy at sam-
pling time t (corresponding to a given sampling rate) are defined as

q(t) =
N(t)

T
, k(t) =

∑
j∈J(t) τj

T
(1)

where T is the duration of the sampling time interval, say 5 min, N(t) is the
number of cars detected during the sampling interval t, τj is the on-time of
vehicle j, and J(t) is the set of cars that are detected in time interval t. The
traffic speed at time t is defined as

v(t) =
1

N(t)

∑
j∈J(t)

vj,

where vj is the velocity of vehicle j.
We will use d, t, s, n to denote day, time of day, detector station and lane,

letting them range over 1, ..., D, 1, ..., T, 1, ..., S, and 1, .., N . By “station” we
mean the collection of loop detectors in the various lanes at one location.
Flow, occupancy, speed measured from station s, lane l at time t of day d
will be denoted as

qs,l(d, t), ks,l(d, t), vs,l(d, t)

We will also index detectors by i = 1, ..., I in some cases and use t to denote
sample times, so that notations like qi(t), qs,l(t) etc. will be seen as well.
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Single loop detectors are the most abundant source of traffic data in
California, but loop data are often missing or invalid. Missing values occur
when there is communication error or hardware breakdown. A loop detector
can fail in various ways even when it reports values. Payne et al. (1976)
identified various types of detector errors including stuck sensors, hanging
on or hanging off, chattering, cross-talk, pulse breakup, and intermittent
malfunction. Even under normal conditions, the measurements from loop
detectors are noisy; they can be confused by multi-axle trucks, for example.

Bad and missing samples present problems for any algorithm that uses
the data for analysis, many of which require a complete grid of good data.
Therefore, we need to detect when data are bad and discard them, and
impute bad or missing samples in the data with “good” values, preferably
in real time. The goal of detection and imputation is to produce a complete
grid of clean data in real time.

3 Detecting malfunction

Figure 1 illustrates detector failure. The figure shows scatter plots of occu-
pancy readings in four lanes at a particular location. Loops in the first and
second lane suffer from transient malfunction.

The problem of detecting malfunctions can be viewed as a statistical
testing problem, wherein the actual flow and occupancy are modeled as fol-
lowing a joint probability distribution over all loops and times, and their
measured values may be missing or produced in a malfunctioning state. Let
∆i(t) = 0, 1, 2 according as the state of detector i at time t is good, malfunc-
tioning, or the data are missing. The problem of detecting malfunctioning
is that of simultaneously testing H : ∆i(t) = 0 versus K : ∆i(t) = 1 or of
estimating the posterior probabilities, P (∆i(t) = 1|data).

Since the model is too general and high dimensional for practical use,
simplification is necessary. The most extreme and convenient simplification
is to consider only the marginal distribution of individual (30-second) sam-
ples at an individual detector. In that case, the acceptance region and the
rejection region partition the (q, k) plane.

The early work in malfunction detection used heuristic delineations of this
partition. Payne et al. (1976) presented several ways to detect various types
of loop malfunctions from 20-second and 5-minute volume and occupancy
measurements. These methods place thresholds on minimum and maximum
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flow, density, and speed, and declare data to be invalid if they fail any of
the tests. Along the same line, Jacobsen and Nihan (1990) at the University
of Washington defined an acceptable region in the (q, k) plane, and declared
samples to be good only if they fell inside. We will refer to this as the
Washington Algorithm. This has the rejection region of the form shown in
Figure 2.

PeMS currently uses a Daily Statistics Algorithm (DSA), proposed by
Chen et al. (2002), which proceeds as follows. A detector is assumed to be
either good or bad throughout the entire day. For day d, the following scores
are calculated.

• S1(i, d) = number of samples that have occupancy = 0.

• S2(i, d) = number of samples that have occupancy> 0 and flow=0

• S3(i, d) = number of samples that have occupancy > k∗(= 0.35)

• S4(i, d) = entropy of occupancy samples (−
∑

x:p(x)>0 p(x)logp(x) where

p(x) is the histogram of the occupancy). If ki(d, t) is constant in t, for
example, its entropy is zero.

Then the decision ∆i = 1 is made whenever Sj > s∗j for any j = 1, ..., 4. The
values s∗j were chosen empirically. Since this algorithm does not run in real
time, a detector is flagged as bad on the current day if it was bad on the
previous day.

The idea behind this algorithm is that some loops seem to produce rea-
sonable data all the time, while others produce suspect data all the time.
Although it is very hard to tell if a single 30-second sample is good or bad
unless it’s truly abnormal, by looking at the time series of measurements for
an entire day, one can usually easily distinguish bad behavior from good.

This procedure effectively corresponds to a model in which flow and oc-
cupancy measurement failures are independent and identically distributed
across loops. The trajectory of detector i, {qi(t); ki(t); t = 1, . . . T} is a point
in the product space Q × K × T , where Q, K, and T are the space of q, k
and t. Unlike the Washington algorithm, the partition is complicated and
impossible to visualize.

The Daily Statistics Algorithm uses many samples (time points) of a sin-
gle detector. Its main drawbacks are: (1) that the day-by-day decision is
too crude, and (2) the spatial correlation of good samples is not exploited.
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Because of (1), a moderate number of bad samples at an otherwise good
detector will never be flagged. By (2), we mean that some errors that are
not visible from a single detector can be readily recognized if its relation-
ship with its spatial and temporal neighbors is considered. For example,
for neighboring detectors i and j, if the absolute difference |qi(t) − qj(t)| is
too big, either ∆i = 1 or ∆j = 1 or both. This has to do with the high
lane-to-lane (and location-to-location) correlation of both q and p. Figure 1
illustrates these points. Loops in the first and second lane suffer from tran-
sient malfunctions, which cannot be easily detected from one dimensional
marginal distributions, but which are immediately clear from the joint two
dimensional distributions. From their relationships with lanes three and four,
one can conclude that both detectors are bad.

The Washington algorithm and the DSA are ad hoc in conception, and
can surely be improved upon. A systematic and principled algorithm is hard
to develop mainly due to the size and complexity of the problem. An ideal
detection algorithm needs to work well with thousands of detectors, all with
potentially unknown types of malfunction. Even constructing a training set is
not trivial since there is so much data to examine and it is not always possible
to be absolutely sure if the data is correct even after careful visual inspection.
(For example, suppose a detector reports (q, k) = (0, 0). It could be that the
detector is stuck at “off” position but good detectors will also report (0,0)
when there are no vehicles in the detection period. Similarly, occupancy
measurements stuck at a reasonable value will not trigger any alarm if one
consider only a single detector and a single time.) New approaches should
include a method of delineating acceptance/rejection regions for k and q for
multiple sensors, combining traffic dynamics theory and manual identification
of good or bad data points, with the help of interactive data analysis tools
such as XGobi2, and an intelligent way of combining evidence from various
sensors to make decision about a particular sensor/observation.

4 Imputation

Holes in the data due to missing or bad observations must be filled with
imputed values. Because of the high lane-to-lane and location-to-location
correlation of q and k, it is natural to use measurements from neighboring

2http://www.research.att.com/areas/stat/xgobi/
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detectors to do so. Although there is flexibility in the choice of a neighbor-
hood, in practice we use the neighborhood defined by the set of loops at the
same location. Let N (i) denote the set of neighboring detectors of i and
consider imputing flow, for example.

A natural imputation algorithm is the prediction of qi(t) based on its
neighbors:

q̂i(t) = ĝ(qN (i)(t)) (2)

where the prediction function ĝ is fit from historical data {(qi(t), qN (i)(t), t =
1, ..., T )}. (Note that the prediction function must be able to properly take
into account possible configurations of missing and bad values among the
neighbors; the latter are especially problematical, since bad readings may
not be flagged as such.

The simplest idea would be estimation by the mean

q̂i(d, t) =
1∑

j∈N (i) 1(∆̂j(d, t) = 0)

∑
j∈N (i)

qj(d, t)1(∆̂j(d, t) = 0)

or median

q̂i(d, t) = median{q̂j(d, t) : j ∈ N (i), ∆̂j(d, t) = 0}

to be more robust. However, such simple interpolation is not desirable since
the relationships between occupancy and flows in neighboring loops are non-
trivial, i.e. qi(t) 6= qj(t), j ∈ N (i) in general. For example, at many freeway
locations, the inner lane has higher flow and lower occupancy for general
free flow condition than do the outer lanes. Also, if one is close to on- or
off-ramps, the relationships can be quite different.

The prediction function is rather hard to manage in its full generality
because of its high dimensionality and because one does not know which
values will correspond to correctly functioning detectors (∆j(t) = 0). From
a computational point of view, the following algorithm is thus appealing.

q̂i(t) = average(q̂ij(t) : j ∈ N (i), ∆̂j = 0) (3)

where q̂ij(t) = ĝij(qj(t)) is the regression of qi(t) on qj(t). One computes
q̂ij(t) for all j ∈ N (i) and averages over only those values regressed on “good”
neighbors. The “average” can be either mean or a robust location estimate
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such as the median. The latter seems preferable since all bad samples from
detectors j ∈ N (i) may not be flagged.

Individual regression function gij(qj(t)) can be fit in various ways. Chen
et al. (2002) considered the linear regression.

qi(t) = α0(i, j) + α1(i, j)qj(t) + noise

to produce

q̂i,j(d, t) = α0(i, j) + α1(i, j)qj(d, t)

for each pair of neighbors (i, j), where the parameters α0(i, j), α1(i, j) are
estimated by the least square using historical data. This is the approach
currently being used by PeMS.

Since this approach relies upon using historical data to learn how pairs
of neighboring loops behave, estimation of the regression functions must be
able to cope with bad data as well. Cleaning the historical data to detect
malfunctions in thus necessary, and robust estimation procedures may be
preferable to least squares. We also note that an empirical Bayes perspective
may be useful in jointly estimating the large set of regression functions.

5 Estimating velocity

As we have noted earlier, single loop detectors do not directly measure ve-
locity. This is unfortunate, because velocity is perhaps the single most useful
variable for traffic control and traveller information systems. In this sec-
tion we present the method currently being used to estimate velocity from
single-loop data (van Zwet et al. 2003).

Let us fix a day d and a time of day t and consider the following situa-
tion. Suppose that at a given detector during a 30 second time interval, N
vehicles pass with (effective3) lengths L1, . . . , LN and velocities v1, . . . , vN .
The occupancy is given by k =

∑N
i=1 Li/vi. Now, if all velocities are equal,

v = v1 = · · · = vN , it follows that

k =
1

v

N∑
i=1

Li =
NL̄

v
, (4)

3The effective vehicle length is equal to the length of the vehicle plus the length of the
loop’s detector zone.
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where L̄ =
∑N

i=1 Li/N is the average of the vehicle lengths. We see that if
the average vehicle length is known, we can infer the common velocity. We
model the lengths Li as random variables with common mean µ. Note that
the Li and L̄ are not directly observed. If µ were known, while the average
L̄ is not, then a sensible estimate of the common velocity may be obtained
by replacing the average by the mean in (4).

v̂ =
Nµ

k
. (5)

Re-writing, we find v̂ = vµ/L̄. Since the expectation of 1/L̄ is not equal
to 1/µ, the expectation of v̂ is not equal to v. In other words, v̂ is not
an unbiased estimator of v, despite our assumption that all vi are equal.
However, if the number of vehicles N is not too small, then L̄ should be
reasonably close to its mean and the bias negligible. Henceforth, we neglect
this bias issue and use formula (5) to estimate velocity. We thus focus on
estimating the mean vehicle length, µ.

5.1 Estimation of the mean vehicle length

Currently, it is a wide spread practice to take the mean vehicle length to be
constant, independent of the time of day. The validity of this assumption has
been examined by many authors (e.g. Hall and Persaud, 1989 and Pushkar
et al., 1994), including ourselves (Jia et al., 2000) and it is now generally
recognized that it does not generally hold. This is further illustrated by
double-loop data from Interstate 80 near San Francisco, which allows direct
measurement of velocity. Figure 3 shows the velocity and the average (ef-
fective) vehicle length at detector station 2 in the East bound outer lane 5.
We believe that the clear daily trend can be ascribed to the ratio of trucks
to cars varying with the time of day. This is confirmed by the fact that the
vehicle length in the fast lanes 1 and 2, with negligible truck presence, is
almost constant. We thus assume that the mean vehicle length depends on
the time of day, denote it by µt to reflect this dependence, and consider how
µt can be estimated.

Suppose we have observed N(d, t) and k(d, t) for a number of days. Let
α0.6 denote the 60-th percentile of the observed occupancies. Assume that
during all time intervals when k(d, t) < α0.6 all vehicles travel at a com-
mon velocity vFF . Since we may assume that any freeway is uncongested at

11



least 60 per cent of the time, vFF may be regarded as the free flow veloc-
ity. Throughout this paper we assume that vFF is known or estimated from
exterior sources of information.

By our assumption on constant free flow velocity, we have for all (d, t)
such that k(d, t) < α0.6

L̄(d, t) =
vFF k(d, t)

N(d, t)
.

If we assume that the average vehicle length L̄(d, t) does not depend on
whether the occupancy is above or below the threshold then

E(L̄(d, t) | k(d, t) < α0.6) = EL̄(d, t) = µt.

For fixed t we can obtain an unbiased estimate of µt as

µ̂t =
1

#{d : k(d, t) < α0.6}
∑

d:k(d,t)<α0.6

vFFk(d, t)

N(d, t)
.

In Figure 4 we have plotted the time of day t versus vFFk(d, t)/N(d, t) for
all times (d, t) when k(d, t) < α0.6. We can now estimate the expectation µt

of the effective vehicle length by fitting a regression line to this scatter plot,
via loess (Cleveland, 1979). The smooth regression line seen in Figure 4 is
our estimator µ̂t of µt. Note the absence of points for times between 3pm
and 6pm when I-80 East is always congested (k(d, t) > α0.6).

Once we have an estimator µ̂t of µt, we define a (preliminary) estimator
of v(d, t) as

v̂(d, t) =
N(d, t)µ̂t

k(d, t)
. (6)

This estimator and the velocity found by the double loop detector is plotted
in Figure 5. We see that it performs very well during heavy traffic and con-
gestion. In particular, it exhibits little bias during the time period 3pm to
6pm over which the smoothing shown in Figure 4 was extrapolated. Unfortu-
nately, the variance of the estimator during times of light traffic, particularly
in the early hours of each day, is unacceptably large. This is clearly visible
in Figure 5 with estimated velocities on day 3 around 1 am shooting up to
120 mph shortly before plummeting to 30 mph. The true velocity at that
time is nearly constant at 64 mph. Recall that our preliminary estimate (6)
is obtained by replacing the average (effective) vehicle length L̄(d, t) by (an
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estimate of) its expectation µt. When only a few vehicles pass the detec-
tor during a given time interval, the average vehicle length will have a large
variance. Hence, in light traffic, the average vehicle length is likely to differ
substantially from the mean. For instance, if only 10 vehicles pass, then it
makes a big difference if there are 6 cars and 4 trucks or 7 cars and 3 trucks.
This explains the large fluctuations of our preliminary estimator v̂ during
light traffic.

5.2 Smoothing

Coifman (2001) suggests a simple fix for the unstable behavior of v̂ during
light traffic. He sets the estimated velocity equal to the free flow velocity
vFF when the occupancy is low.

v̂coifman(d, t) =

{
v̂(d, t) if k(d, t) ≥ α0.6

vFF otherwise .

The performance of this estimator, in terms of mean squared error, is cer-
tainly not bad. However, about 16 out of every 24 hours (60%), the estimated
velocity is a constant and that is not realistic. We can do better, in appear-
ance as well as in mean squared error.

It is clear that we need to smooth our preliminary estimate v̂(d, t), but
only when the volume is small. For the purpose of real time traffic man-
agement, it is important that our smoother be causal and easy to compute
with minimal data storage. Taking all this into consideration, we used an
exponential filter with varying weights. A smoothed version ṽ of v̂ is defined
recursively as

ṽ(d, t) = w(d, t)v̂(d, t) + (1 −w(d, t))ṽ(d, t − 1), (7)

where

w(d, t) =
N(d, t)

N(d, t) + C
, (8)

and C is a smoothing parameter to be specified. If the time interval is of
length 5 minutes, then a reasonable value would be C = 50. With this
value of C , if the volume N(d, t) approaches capacity, say N(d, t) = 100
vehicles per 5 minutes, then there is hardly any need for smoothing and the
new observation receives substantial weight 2/3. On the other hand, if the
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volume is very small, say N(d, t) = 10, then the smoothing is quite severe
with the new observation receiving a weight of only 1/6.

Our filtered estimator ṽ is plotted in Figure 6. The correspondence with
the true velocity is very good. The large variability during light traffic that
plagued the preliminary estimator v̂ has been suppressed, while its good
performance during heavy traffic and congestion has been retained.

We will now explain how our filter is “inspired” by the familiar Kalman
filter. Suppose that the true, unobserved velocity evolves as a simple random
walk:

vt = vt−1 + εt, εt ∼ N (0, τ 2). (9)

Suppose we observe v̂t = Ntµ̂t/kt = vtµt/L̄t, where µ̂t is our estimate of
EL̄t = µt. We will work conditionally on the observed volume Nt. The
conditional expectation of v̂t is—though not quite equal—hopefully close
to vt. Using a one step Taylor approximation we find that the conditional
variance of v̂t is of the order 1/Nt. This “inspires” a measurement equation

v̂t = vt + ξt, ξt ∼ N (0, σ2
t ) = N (0, σ2/Nt). (10)

Finally, we assume that all error terms εt and ξt are independent. Note that
the variance of the measurement error ξt depends inversely on the observed
volume Nt. In light traffic, when Nt is small the variance is large. This is
exactly the problem we noted in Figure 5.

The Kalman filter recursively computes the conditional expectation of
the unobserved state variable vt given the present and past observations
v̂1, v̂2, . . . , v̂t.

ṽt = E(vt | v̂1, v̂2, . . . , v̂t).

In our simple model we can easily derive the Kalman recursions. They are

ṽt = wtv̂t + (1 − wt)ṽt−1,

with

wt =
Pt−1 + τ 2

Pt−1 + τ 2 + σ2
t

=
Nt

Nt + σ2/(Pt−1 + τ 2)
,

where Pt is the prediction error E(vt − ṽt)
2.

We note the similarity of these Kalman recursions with our filter (7),
although C in (7) is constant and the analogue in the Kalman filter is not.
We decided not to try to estimate σ2 and τ 2 partly because we feel that that
would be difficult to do reliably and partly because that would mean taking
our simple model a little too seriously.
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number of lanes
lane number 2 3 4 5

1 71.3 71.9 74.8 76.5
2 65.8 69.7 71.0 74.0
3 62.7 67.4 72.0
4 62.8 69.2
5 64.5

Table 1: Measured average free flow speeds (mph) for each lane (rows) of a
multi-lane freeway depending on the total number of lanes (columns).

5.3 Known free flow velocity

We assume that the free flow velocity vFF is known, which is typically not
true. We believe that free flow velocity depends primarily on the number of
lanes and on the lane number, so in practice we use a table of which is loosely
based on experience and empirical evidence from locations with double loop
detectors.

Clearly, it would be preferable to have an independent method to estimate
site specific free flow velocity. Petty et al.’s (1998) cross-correlation approach
works well when occupancy and volume are measured in 1 second intervals.
However, 20 or 30 second measurement intervals are more common and at
such aggregation this method breaks down.

5.4 Further assumptions on mean vehicle length

We have assumed that the mean (expected) vehicle length µt depends on the
time of day only. However, we have noticed that µt also depends on

1. Day of the week. The vehicle mix on a Monday differs from a Sunday.

2. Lane. There is a higher fraction of trucks in the outer lanes.

3. Location of the detector station. Certain routes are more heavily trav-
eled by trucks than others.

4. Detector sensitivity. Loop detectors are fairly crude instruments that
are almost impossible to calibrate accurately. If a detector is not prop-
erly calibrated, the occupancy measurements will be biased.
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To account for all this, we must form separate estimates of µt to cover these
different situations. We store estimates of µt for every 5 minute interval, for
every day of the week and for every lane at every detector station. In real
time, the appropriate values are retrieved, multiplied by the observed volume
to occupancy ratio and filtered.

5.5 Other methods

We briefly review two other methods that also do not assume a fixed value for
L̄(d, t), beginning with a method described in Jia et al. (2002). Suppose that
we have a state variable X(d, t) which is 0 during congestion and 1 during
free flow. The state variable may be defined, for instance, by thresholding
the occupancy k(d, t). While the state is “free flow”, the algorithm tracks
L̄(d, t), assuming constant free flow velocity. As soon as the state becomes
“congested”, L̄(d, t) is kept fixed and the velocity v(d, t) is tracked.

The main problem we experienced with this algorithm is that is depends
crucially on X(d, t). In particular, if X(d, t) = 1 (free flow) while congestion
has already set in, the method goes badly astray. We found it difficult to
develop a good rule to define X(d, t). In fact, this difficulty was the main
reason for us to look for a different approach.

Building on work of Dailey (1999), Wang and Nihan (2000) propose a
model based approach to estimate L̄(d, t) and v(d, t). Their log linear model
relates L̄(d, t) to the expectation and variance of the occupancy k(d, t), to the
volume N(d, t) and to two indicator functions that distinguish between high
flow and low flow situations. The model has five parameters which need to
be estimated from double loop data. It is not at all clear if these parameter
estimates carry over to a particular, single loop location of interest. Wang
and Nihan (2000) defer this issue to future research.

6 Prediction

We now turn our attention to travel time prediction between any two points
of a freeway network for any future departure time. Besides being useful
per se, travel time prediction serves as input to dynamic route guidance,
congestion management, optimal routing and incident detection.

We are currently developing an Internet application which will give the
commuters of Caltrans District 7 (Los Angeles) the opportunity to query the
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prediction algorithm we describe below. The user will access our Internet
site and state origin, destination and time of departure (or desired time of
arrival), using either text input or interactively querying a map of the freeway
system by pointing and clicking. He or she will then receive a prediction of
the travel time and the best (fastest) route to take. It would also be possible
to make our service available for users of cellular telephones, and in fact we
plan to do so in the near future.

6.1 Methods of Prediction

The task is to forecast the time of a trip from loop a to loop b departing at
some time in the future. It is not obvious how to use the information recorded
up to the current time from all the intervening loops, but we have found a
method based on a simple compression of this data to be remarkably effective
(Rice and van Zwet (2002), Zhang and Rice (2003)). From v evaluated at
an array of times and loops, we can compute travel times Td(t) that should
approximate the time it took to travel from loop a to loop b starting at time
t on day d, by “walking” through the velocity field. We can also compute a
proxy for these travel times which is defined by

T ∗
d (t) =

b−1∑
i=a

2ui

vi(d, t) + vi+1(d, t)
, (11)

where ui denotes the distance from loop i to loop (i + 1). We call T ∗ the
current status travel time (a.k.a. the snap-shot or frozen field travel time).
It is the travel time that would have resulted from departure from loop a at
time t on day d were there no changes in the velocity field until loop b was
reached. It is important to notice that the computation of T ∗

d (t) only re-
quires information available at time t, whereas computation of Td(t) requires
information at later times.

Suppose we have observed vl(d, t) for a number of days d ∈ D in the past,
that a new day e has begun, and we have observed vl(e, t) at times t ≤ τ .
We call τ the “current time.” Our aim is to predict Te(τ + δ), the time a
trip that departs from a at time τ + δ will take to reach b. Note that even
for δ = 0 this is not trivial.

Define the historical mean travel time as

ν(t) =
1

|D|
∑
d∈D

Td(t). (12)
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Two naive predictors of Te(τ + δ) are T ∗
e (τ ) and ν(τ + δ). We expect—and

indeed this is confirmed by experiment—that T ∗
e (τ ) predicts well for small δ

and ν(τ + δ) predicts better for large δ. We aim to improve on both these
predictors for all δ.

6.1.1 Linear Regression

From the extensive PeMS data, we have observed an empirical fact: that
there exist linear relationships between T ∗(t) and T (t + δ) for all t and δ.
This empirical finding has held up in all of numerous freeway segments in
California that we have examined. It is illustrated by Figures 7 and 8, which
are scatter plots of T ∗(t) versus T (t + δ) for a 48 mile stretch of I-10 East
in Los Angeles. Note that the relation varies with the choice of t and δ. We
thus propose the following model

T (t + δ) = α(t, δ) + β(t, δ)T ∗(t) + ε. (13)

where ε is a zero mean random variable modeling random fluctuations and
measurement errors. Note that the parameters α and β are allowed to vary
with t and δ. Linear models with varying parameters are discussed in Hastie
and Tibshirani (1993).

Fitting the model to our data is a familiar linear regression problem which
we solve by weighted least squares. Define the pair (α̂(t, δ), β̂(t, δ)) to mini-
mize ∑

d∈D
s∈T

(Td(s) − α(t, δ)− β(t, δ)T ∗
d (t))2K(t + δ − s), (14)

where K denotes the Gaussian density with mean zero and a variance which
is a bandwidth parameter. The purpose of this weight function is to impose
smoothness on α and β as functions of t and δ. We assume that α and β are
smooth in t and δ because we expect that average properties of the traffic do
not change abruptly. The actual prediction of Te(τ + δ) becomes

T̂e(τ + δ) = α̂(τ, δ) + β̂(τ, δ)T ∗
e (τ ). (15)

Writing α(t, δ) = α′(t, δ)ν(t + δ) we see that (13) expresses a future
travel time as a linear combination of the historical mean and the current
status travel time, our two naive predictors. Hence our new predictor may
be interpreted as the best linear combination of our naive predictors. From
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this point of view, we can expect our predictor to do better than both, and
it does, as is demonstrated below.

Another way to think about (13) is by remembering that the word “re-
gression” arose from the phrase “regression to the mean.” In our context, we
would expect that if T ∗ is much larger than average, signifying severe con-
gestion, then congestion will probably ease during the course of the trip. On
the other hand, if T ∗ is much smaller than average, congestion is unusually
light and the situation will probably worsen during the journey.

In addition to comparing our predictor to the historical mean and the
current status travel time, we subject it to a more competitive test. We
consider two other predictors that may be expected to do well, one result-
ing from Principal Component analysis and one from the nearest neighbors
principle. Next, we describe these two methods.

6.1.2 Principal Components

Our predictor T̂ only uses information at one time point; the “current time”
τ . However, we do have information prior to that time. The following method
attempts to exploit this by using the entire trajectories of Te and T ∗

e which
are known up to time τ .

Formally, let us assume that the travel times on different days are indepen-
dently and identically distributed and that for a given day d, {Td(t) : t ∈ T}
and {T ∗

d (t) : t ∈ T} are jointly multivariate normal. We estimate the large
covariance matrix of this multivariate normal distribution by retaining only
a few of the largest eigenvalues in the singular value decomposition of the
empirical covariance of {(Td(t), T

∗
d (t)) : d ∈ D, t ∈ T}. Define t′ to be the

largest t such that t + Te(t) ≤ τ . That is, t′ is the (random) start time of
the latest trip that we would have seen completed if we observed day d until
time τ . With the estimated covariance we can now compute the conditional
expectation of Te(τ + δ) given {Te(t) : t ≤ t′} and {T ∗

e (t) : t ≤ τ}. This
is a standard computation which is described, for instance, in Mardia et al.
(1979). The resulting predictor is T̂ PC

e (τ + δ).

6.1.3 Nearest Neighbors

As an alternative, we now consider another attempt to use information prior
to the current time τ , based on nearest neighbors. This non-parametric
method makes fewer assumptions (such as joint normality) on the relation
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between T ∗ and T than does the principal components method, but is tied
to a particular metric.

The nearest neighbor method uses that day in the past which is most
similar to the present day in some appropriate sense. The remainder of that
past day beyond time τ is then taken as a predictor of the remainder of the
present day.

The method requires a suitable distance m between days. We have inves-
tigated two possible distances:

m1(e, d) =
∑

i=a,...,b,t≤τ

|vi(e, t) − vi(d, t)| (16)

and

m2(e, d) =

(∑
t≤τ

(T ∗
e (t) − T ∗

d (t))2

)1/2

. (17)

Now, if day d′ minimizes the distance to e among all d ∈ D, our prediction
is

T̂ NN
e (τ + δ) = Td′(τ + δ). (18)

Sensible modifications of the method are windowed nearest neighbors and
k-nearest neighbors. Windowed-NN recognizes that not all information prior
to τ is equally relevant. Choosing a window size w it takes the above sum-
mation to range over all t between τ − w and τ . The k-nearest neighbor
modification finds the k closest days in D and bases a prediction on a (pos-
sibly weighted) combination of these. However, neither of these variants

appear to significantly improve on the vanilla T̂ NN .

6.2 Results

To compare these methods we used flow and occupancy data from 116 single
loop detectors along 48 miles of I-10 East in Los Angeles (between postmiles
1.28 and 48.525). Measurements were done at 5 minute aggregation at times
t ranging from 5 am to 9 pm for 34 weekdays between June 16 and September
8, 2000. We used the methods we have previously described to convert flow
and occupancy to velocity.

The quality of our I-10 data is quite good and we have used simple in-
terpolation to impute wrong or missing values. The resulting velocity field

20



vi(d, t) is shown in Figure 9 where day d is June 16. The horizontal streaks
typically indicate detector malfunction.

From the velocities we computed travel times for trips starting between
5 am and 8 pm. Figure 10 shows these Td(t) where time of day t is on the
horizontal axis. Note the distinctive morning and afternoon congestions and
the huge variability of travel times, especially during those periods. During
afternoon rush hour we find travel times of 45 minutes to up to two hours. In-
cluded in the data are holidays July 3 and 4 which may readily be recognized
by their very short travel times.

We have estimated the root mean squared (RMS) error of our various
prediction methods for a number of ‘current times’ τ (τ =6am, 7am,...,7pm)
and lags δ (δ = 0 and sixty minutes). The RMS errors were estimated by
leaving out one day at a time, performing the prediction for that day on
the basis of the remaining other days, and averaging the squared prediction
errors.

The prediction methods all have smoothing parameters that must be
specified. For the regression method we chose the standard deviation of the
Gaussian kernel K to be 10 minutes. For the Principal Components method
we chose the number of eigenvalues retained to be four. For the nearest
neighbors method we have chosen distance function (17), a window w of 20
minutes and the number k of nearest neighbors to be two. The results were
fairly insensitive to these precise choices.

Figures 11 and 13 show the estimated RMS prediction errors of the his-
torical mean ν(τ + δ), the current status predictor T ∗

e (τ ) and our regression
predictor (15) for lag δ equal to 0 and 60 minutes, respectively. Note how
T ∗

e (τ ) performs well for small δ (δ = 0) and how the historical mean does
not become worse as δ increases. Most importantly, however, notice how the
regression predictor dominates both.

Figures 12 and 14 again show the RMS prediction error of the regression
estimator. This time, it is compared to the Principal Components predictor
and the nearest neighbors predictor (18). Again, the regression predictor
comes out on top, although the nearest neighbors predictor shows comparable
performance.

The RMS error of the regression predictor stays below 10 minutes even
when predicting an hour ahead. We feel that this is impressive for a trip of
48 miles through the heart of L.A. during rush hour.

Comparison of the regression predictor to the Principal Components and
nearest neighbors predictors is surprising: the results indicate that given
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T ∗(τ ), there is not much information left in the earlier T ∗(t) (t < τ ) that is
useful for predicting T (τ + δ), at least by the methods we have considered.
In fact, we have come to believe that for the purpose of predicting travel
times all the information in the vl(d, t) up to time τ is well summarized by
one single number: T ∗(τ ).

6.3 Further remarks

It is of practical importance to note that our prediction can be performed in
real time. Computation of the parameters α̂ and β̂ is time consuming but it
can be done off-line in reasonable time. The actual prediction is trivial.

We conclude this section by briefly pointing out two extensions of our
prediction method:

1. For trips from a to c via b we have

Td(a, c, t) = Td(a, b, t) + Td(b, c, t + Td(a, b, t)). (19)

We have found that it is sometimes more practical or advantageous
to predict the terms on the right hand side than to predict Td(a, c, t)
directly. For instance, when predicting travel times across networks
(graphs), we need only predict travel times for the edges and then use
(19) to piece these together to obtain predictions for arbitrary routes.

2. In the discussion above we regressed the travel time Td(t + δ) on the
current status T ∗

d (t), where Td(t + δ) is the travel time departing at
time t + δ. Now, define Sd(t) to be the travel time arriving at time t
on day d. Regressing Sd(t + δ) on T ∗

d (t) allows us to make predictions
on the travel time subject to arrival at time t + δ. The user can thus
ask what time he or she should depart in order to reach an intended
destination at a desired time.

7 Conclusion

Modern communication and computational facilities make possible, in prin-
ciple, systematic use of the vast quantities of historical and real-time data
collected by traffic management centers. Such efforts invariably require sub-
stantial use of statistical methodology, often of a non-standard variety, sen-
sitive to computational efficiency.
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This paper has concentrated on data collected by inductance loops in
freeways, but similar data is often available on arterial streets as well, which
have more complex flows and geometry. There is also information from other
types of sensors. For example, declining costs make video monitoring an at-
tractive technology, bringing with it challenging problems in computer vision
and statistics. As another example, data derived from transponders installed
in individual vehicles for automatic toll payments is a potentially rich source
of information about traffic flow, since the tags can in principle be sensed
at locations other than toll booths. Effective extraction of information will
require active collaborations of statisticians, traffic engineers, and specialists
in various other disciplines.
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Figure 1: Scatterplots of occupancies at station 25 of westbound I-210
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Figure 2: Acceptance region of Washington algorithm
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Figure 3: Velocity (top) and effective vehicle length (bottom) for four week-
days on I-80.
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Figure 4: Estimation of the mean effective vehicle length µt.
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Figure 5: Our preliminary estimate, defined in (6), superimposed on the true
velocity.
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Figure 6: Our estimate Ṽ , defined in (7), superimposed on the true velocity.
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Figure 7: T ∗(9 am) vs. T (9 am + 0 min’s). Also shown is the regression line
with slope α(9 am, 0 min’s)=0.65 and intercept β(9 am, 0 min’s)=17.3.
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Figure 8: T ∗(3 pm) vs. T (3 pm + 60 min’s). Also shown is the regression
line with slope α(3 pm, 60 min’s)=1.1 and intercept β(3 pm, 60 min’s)=9.5.
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Figure 10: Travel Times Td(·) for 34 days on a 48 mile stretch of I10 East.
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Figure 11: Estimated RMSE, lag=0 minutes. Historical mean (– · –), current
status (- - -) and linear regression (—).
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Figure 12: Estimated RMSE, lag=0 minutes. Principal Components
(– · –), nearest neighbors (- - -) and linear regression (—).
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Figure 13: Estimated RMSE, lag=60 minutes. Historical mean (– · –), cur-
rent status (- - -) and linear regression (—).
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Figure 14: Estimated RMSE, lag=60 minutes. Principal Components (– ·
–), nearest neighbors (- - -) and linear regression (—).
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