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Cumulative Hazard Variables

F0 ⊆ F1 ⊆ F2 ⊆
N ≥ 1 a stopping time: (N ≤ n) ∈ Fn

hn := P(N = n | Fn−1), n ≥ 1

An :=
∑n

k=1 hk ↑ A∞ = AN = total hazard

Key Facts:

An − 1(N ≤ n) is an (Fn)-martingale

→ A∞ − 1 as n→∞ assuming P(N <∞) = 1

Limit holds in Lp for p ≥ 1

EA∞ = 1

EAp
∞ < Γ(p + 1) for p > 1.

EAp
∞ > Γ(p + 1) for 0 < p < 1.

(cf. Dellacherie-Meyer Probabilités et Potentiel B (1982) §106)

Jim Pitman (U. C. Berkeley) Cumulative Hazards
Meeting in memory of Marc Yor June 3, 2015 3

/ 16



Example: birthday repeat time

Birthday problem with y days/year.

Y1,Y2, . . . independent uniform on {1, . . . , y}
N := min{n : Yn ∈ {Y1, . . . ,Yn−1}}
hn := P(N = n |Y1, . . . ,Yn−1) = n−1

y 1(N ≥ n)

An := h1 + · · ·+ hn ⇒
A∞ = 1

y (0 + 1 + · · ·+ (N − 1)) = N(N−1)
2y ≈ N2

2y

E [N(N − 1)] = 2y ⇒ N is of order
√

y

Simple formula for E [N(N − 1)] not so obvious from

P(N ≥ n) =
(

1− 1
y

)
· · ·
(

1− n−1
y

)
≈ exp

(
− n2

2y

)
P(N/

√
y ≥ x)→ e−x

2/2 as y →∞, x ≥ 0

Let ε be standard exponential: P(ε > t) = e−t , t ≥ 0. As y →∞:

√
2A∞ ≈ N/

√
y

d→
√

2ε and A∞
d→ ε
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Compensators

Extend to continuous time: (Ft)t≥0, (T ≤ t) ∈ Ft .
We know (Doob-Meyer): ∃! predictable ↑ (At , t ≥ 0) so that

At − 1(T ≤ t) is an (Ft)-martingale.

→ A∞ − 1 = AT − 1 in every Lp if P(T <∞) = 1 .

Question:

What can be said about the laws of such total hazard variables A∞?
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Neveu’s Inequality

From Neveu Martingales a temps discret (1972):
(At) an (Ft)-predictable ↑ process with A0 = 0, E (A∞) = 1.

Zt := E [A∞ − At | Ft ] = E [A∞ | Ft ]− At (≥ 0 super MG )

Suppose 0 ≤ Z ≤ 1 (bounded potential). e.g. the Azéma supermartigale
Zt := P(T > t | Ft) for some random T [(Ft)-stopping? F∞-meas.?].

Mt := E [A∞ | Ft ] = At + Zt ≥ 0 [ UI MG ]

Note M0 = 1, M∞ = A∞.
Let τa := inf{t : At > a}. Then (A∞ > a) = (τa <∞) ∈ Fτa−. So

E [A∞ |A∞ > a] = E [Aτa− |A∞ > a] + E (Zτa− |A∞ > a] (1)

≤ a + 1 (2)

= E (ε | ε > a) where P(ε > t) = e−t , t > 0. (3)

Conclusion: A∞≤mrl ε and E (A∞) = E (ε) = 1
Distribution of A∞ is NBUE - Barlow-Proshan(1965)
Daley 1988 - Tight bounds in exponential approximation. Mark Brown, ...
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The Azéma-Yor Construction

ψ(b) ↑, ψ(−∞) = 0, φ := ψ−1.

T := inf{t : St ≥ ψ(Bt)}, St := sup0≤s≤t Bs

P(BT ≥ b) = P(ST ≥ ψ(b)) = exp
(
−
∫ ψ(b)
0

dy
y−φ(y)

)
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Azéma-Yor Calculus

ψ(b) ↑, ψ(−∞) = 0, φ := ψ−1.

T := inf{t : St ≥ ψ(Bt)}, St := sup0≤s≤t Bs

F̄ (b) := P(BT ≥ b) = P(ST ≥ ψ(b)) = exp
(
−
∫ ψ(b)
0

dy
y−φ(y)

)
Assume f (b) := −F̄ ′(b) exists, and use φ(ψ(b)) = b

f (b) = F̄ (b)
ψ′(b)

ψ(b)− b

d

db

[
F̄ (b)ψ(b)

]
= −bf (b)

F̄ (b)ψ(b) =

∫ ∞
b

xf (x)dx

ψ(b) =

∫∞
b xf (x)dx

F̄ (b)
= E [X |X ≥ b] for X = BT
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Azéma-Yor Theorem

For a distribution of X with E (|X |) <∞, define the barycenter function

ψX (b) := E (X |X ≥ b) [ = b if P(X ≥ b) = 0].

Theorem (Azéma-Yor (1979))

Let B be Brownian motion. For X with E (X ) = 0 let

T := inf{t : St ≥ ψX (Bt)} where St := sup0≤s≤t Bs . Then BT
d
= X and

(Bt∧T , t ≥ 0) is a uniformly integrable martingale.

Corollary: [Dubins-Gilat(1978)]

If (Mt) is a right-continous UI MG with M∞
d
= X then supt Mt≤stST .

Many variations and extensions now known:
See Obloj (2004) Probability Surveys + 129 citations.
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Stochastic orders

Reference: Shaked and Shanthikumar(2007), Stochastic orders.

The stochastic order: X≤stY ⇔
(i) Eφ(X ) ≤ Eφ(Y ) ∀φ ≥ 0, ↑;
(ii) P(X > a) ≤ P(Y > a) for all real a;

(iii) ∃ X ′ and Y ′ with X ′
d
= X , Y ′

d
= Y and P(X ′ ≤ Y ′) = 1.

The convex order: For integrable X and Y : X≤cxY ⇔
(i) Eφ(X ) ≤ Eφ(Y ) ∀ convex φ

(ii) E (X ) = E (Y ) and E (X − a)+ ≤ E (Y − a)+ for all real a

(iii) E (X ) = E (Y ) and E |X − a| ≤ E |Y − a| for all real a

(iv) ∃X ′ and Y ′ with X ′
d
= X , Y ′

d
= Y and E (Y ′ |X ′) = X ′.
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Mean residual life order

The mean residual life order: For integrable X and Y : X≤mrlY ⇔
(i) E [X − a |X ≥ a] ≤ E [Y − a |Y ≥ a] for all a (with convention)

(ii) ΨX (a) ≤ ΨY (a) for all a, for ΨX (a) := E [X |X ≥ a] as before.

Corollary of the Azéma-Yor embedding:

X≤mrlY and E (X ) = E (Y )⇒ X≤cxY (4)

[Shift to E (X ) = E (Y ) = 0, then embed in BM with TX ≤ TY .]
– van der Vecht (1986), Madan-Yor (2002)
Warning: converse of (4) is false. Indirect argument: if true then TY

would be an ultimate time T for the distribution of Y [Meilijson 1982]
meaning:

BT
d
= Y and ∀X with X≤cxY ∃ stopping S ≤ T with BS

d
= X .

But (Meilijson and van der Vecht, 1980s): the only ultimate times for BM
are the first hitting times of {a, b} for some a, b.
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Azéma-Yor embedding of total hazards

Example: Birthday repeat time for y = 4 days/year.
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Setting: (Ft)t≥0, (T ≤ t) ∈ Ft , P(T <∞) = 1

At − 1(T ≤ t) is an (Ft)-martingale

→ A∞ − 1.

Assume a uniform [0, 1] variable U independent of F∞.

Theorem

There exists a standard exponential variable ε such that

E (ε | F∞) = A∞ (5)

E [(ε− A∞)2 | F∞] = ∆AT := AT − AT− (6)

E [(ε− A∞)2] = E [∆AT ] = E
∑
s

(∆As)2 (7)

Remarks

(5) follows from Neveu’s inequality that A∞≤mrl ε.

(6) involves details of the Azéma-Yor embedding.
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Details of the coupling

For each t > 0 there is a unique p = (1− e−t)/t ∈ (0, 1) so

ξ(t)
d
= p Dist(ε | ε < t) + (1− p)Dist(ε | ε > t) has

E [ξ(t)] = pE (ε | ε < t) + (1− p)E (ε | ε > t) = t

Also Var(ξ(t)) = t. Explicitly, take U,V , ε′ are independent, with U,V

uniform[0, 1] and ε′
d
= ε, and set

ξ(t) = tU 1(V ≤ e−tU) + (t + ε′)1(V > e−tU).

For AT a total hazard, take U,V , ε′ indpt. of (AT−,AT ). Let

ε = AT− + ξ(AT − AT−) so

E (ε |AT−,AT ) = AT and E [(ε− AT )2 |AT−,AT ) = AT − AT−
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Exponential coupling

Example: discrete distribution of X with constant hazards

h∗n = P(X = n |X ≥ n) and A∗n :=
n∑

i=1

hi∗
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Loose Ends

Characterize all possible laws of total hazard variables AT . (Know
extemes. Simplex?)

Can show γr/r is ↓ in MRL as r ↑. (So Madan-Yor ⇒ reverse

peacock). γ1
d
= ε. Is γr/r a total hazard for r > 1?

What about γr − r . Is this ↑ in MRL?

Embedding the entire martingale At − 1(T ≤ t) in BM.

What about the non-adapted case (martingale derived from a
potential)?

Suppose a stopping time S ≤ TY where TY is the Azéma-Yor time
for embedding Y in BM. Does that imply BS≤mrlY ?
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