Martingale coupling of cumulative hazard and exponential variables by Azéma-Yor embedding in Brownian motion

Jim Pitman

University of California, Berkeley

Meeting in memory of Marc Yor June 3, 2015

- 2 The Azéma-Yor embedding
- 3 Stochastic orders
- 4 Azéma-Yor embedding of total hazards

Cumulative Hazard Variables

•
$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq$$

•
$$N \geq 1$$
 a stopping time: $(N \leq n) \in \mathcal{F}_n$

•
$$h_n := P(N = n | \mathcal{F}_{n-1}), n \ge 1$$

• $A_n := \sum_{k=1}^n h_k \uparrow A_\infty = A_N = \text{ total hazard}$

Key Facts:

- $A_n 1(N \le n)$ is an (\mathcal{F}_n) -martingale
- ullet o $A_\infty-1$ as n o ∞ assuming $P(N<\infty)=1$
- Limit holds in L^p for $p \ge 1$
- $EA_{\infty} = 1$
- $EA^p_{\infty} < \Gamma(p+1)$ for p > 1.
- $EA_{\infty}^{p} > \Gamma(p+1)$ for 0 .

(cf. Dellacherie-Meyer Probabilités et Potentiel B (1982) §106)

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Example: birthday repeat time

Birthday problem with y days/year.

•
$$Y_1, Y_2, \ldots$$
 independent uniform on $\{1, \ldots, y\}$
• $N := \min\{n : Y_n \in \{Y_1, \ldots, Y_{n-1}\}\}$
• $h_n := P(N = n \mid Y_1, \ldots, Y_{n-1}) = \frac{n-1}{y} \mathbb{1}(N \ge n)$
 $A_n := h_1 + \cdots + h_n \implies$
• $A_{\infty} = \frac{1}{y}(0 + 1 + \cdots + (N - 1)) = \frac{N(N-1)}{2y} \approx \frac{N^2}{2y}$
• $E[N(N-1)] = 2y \implies N \text{ is of order } \sqrt{y}$
• Simple formula for $E[N(N - 1)]$ not so obvious from
• $P(N \ge n) = \left(1 - \frac{1}{y}\right) \cdots \left(1 - \frac{n-1}{y}\right) \approx \exp\left(-\frac{n^2}{2y}\right)$
• $P(N/\sqrt{y} \ge x) \rightarrow e^{-x^2/2} \text{ as } y \rightarrow \infty, \qquad x \ge 0$
Let ε be standard exponential: $P(\varepsilon > t) = e^{-t}, t \ge 0$. As $y \rightarrow \infty$

æ

・ロト ・聞ト ・ ヨト ・ ヨト

Extend to continuous time: $(\mathcal{F}_t)_{t\geq 0}$, $(T \leq t) \in \mathcal{F}_t$. We know (Doob-Meyer): \exists ! predictable $\uparrow (A_t, t \geq 0)$ so that

•
$$A_t - 1(T \leq t)$$
 is an (\mathcal{F}_t) -martingale.

•
$$ightarrow A_\infty - 1 = A_T - 1$$
 in every L^p if $P(T < \infty) = 1$.

Question:

• What can be said about the laws of such total hazard variables A_{∞} ?

Neveu's Inequality

From Neveu Martingales a temps discret (1972): (A_t) an (\mathcal{F}_t)-predictable \uparrow process with $A_0 = 0$, $E(A_{\infty}) = 1$.

$$Z_t := E[A_\infty - A_t \,|\, \mathcal{F}_t] = E[A_\infty \,|\, \mathcal{F}_t] - A_t \qquad (\geq 0 ext{ super MG })$$

Suppose $0 \le Z \le 1$ (bounded potential). e.g. the Azéma supermartigale $Z_t := P(T > t | \mathcal{F}_t)$ for some random $T[(\mathcal{F}_t)$ -stopping? \mathcal{F}_{∞} -meas.?].

$$M_t := E[A_{\infty} \mid \mathcal{F}_t] = A_t + Z_t \ge 0 \qquad [UI MG]$$

Note
$$M_0 = 1$$
, $M_{\infty} = A_{\infty}$.
Let $\tau_a := \inf\{t : A_t > a\}$. Then $(A_{\infty} > a) = (\tau_a < \infty) \in \mathcal{F}_{\tau_a -}$. So
 $E[A_{\infty} | A_{\infty} > a] = E[A_{\tau_a -} | A_{\infty} > a] + E(Z_{\tau_a -} | A_{\infty} > a]$ (1)
 $\leq a + 1$ (2)
 $= E(\varepsilon | \varepsilon > a)$ where $P(\varepsilon > t) = e^{-t}, t > 0$. (3)

Conclusion: $A_{\infty} \leq_{mrl} \varepsilon$ and $E(A_{\infty}) = E(\varepsilon) = 1$ Distribution of A_{∞} is NBUE - Barlow-Proshan(1965) Daley 1988 - Tight bounds in exponential approximation. Mark Brown, $z_{\infty} \approx$

Jim Pitman (U. C. Berkeley)

The Azéma-Yor Construction

• $\psi(b) \uparrow, \quad \psi(-\infty) = 0, \quad \phi := \psi^{-1}.$ • $T := \inf\{t : S_t \ge \psi(B_t)\}, \quad S_t := \sup_{0 \le s \le t} B_s$ • $P(B_T \ge b) = P(S_T \ge \psi(b)) = \exp\left(-\int_0^{\psi(b)} \frac{dy}{y - \phi(y)}\right)$

・ロト ・聞 と ・ 思 と ・ 思 と … 思

Azéma-Yor Calculus

•
$$\psi(b) \uparrow, \psi(-\infty) = 0, \phi := \psi^{-1}.$$

• $T := \inf\{t : S_t \ge \psi(B_t)\}, \quad S_t := \sup_{0 \le s \le t} B_s$
• $\overline{F}(b) := P(B_T \ge b) = P(S_T \ge \psi(b)) = \exp\left(-\int_0^{\psi(b)} \frac{dy}{y - \phi(y)}\right)$
• Assume $f(b) := -\overline{F}'(b)$ exists, and use $\phi(\psi(b)) = b$
 $f(b) = \overline{F}(b) \frac{\psi'(b)}{\psi(b) - b}$
 $\frac{d}{db} [\overline{F}(b)\psi(b)] = -bf(b)$
 $\overline{F}(b)\psi(b) = \int_b^\infty xf(x)dx$
 $\psi(b) = \frac{\int_b^\infty xf(x)dx}{\overline{F}(b)} = E[X \mid X \ge b] \text{ for } X = B_T$

Jim Pitman (U. C. Berkeley)

▲白▶ ▲圖▶ ▲温▶ ▲温▶ 三臣

For a distribution of X with $E(|X|) < \infty$, define the *barycenter function*

$$\psi_X(b) := E(X \mid X \ge b) \qquad [= b \text{ if } P(X \ge b) = 0].$$

Theorem (Azéma-Yor (1979))

Let B be Brownian motion. For X with E(X) = 0 let

 $T := \inf\{t : S_t \ge \psi_X(B_t)\}$ where $S_t := \sup_{0 \le s \le t} B_s$. Then $B_T \stackrel{d}{=} X$ and $(B_{t \land T}, t \ge 0)$ is a uniformly integrable martingale.

Corollary: [Dubins-Gilat(1978)]

If (M_t) is a right-continous UI MG with $M_{\infty} \stackrel{d}{=} X$ then $\sup_t M_t \leq_{st} S_T$. Many variations and extensions now known: See Obloj (2004) Probability Surveys + 129 citations. Reference: Shaked and Shanthikumar(2007), Stochastic orders.

The stochastic order: $X \leq_{st} Y \Leftrightarrow$ (i) $E\phi(X) \leq E\phi(Y) \quad \forall \phi \geq 0, \uparrow;$ (ii) $P(X > a) \leq P(Y > a)$ for all real a; (iii) $\exists X'$ and Y' with $X' \stackrel{d}{=} X, Y' \stackrel{d}{=} Y$ and $P(X' \leq Y') = 1$.

The *convex order*. For integrable X and Y: $X \leq_{cx} Y \Leftrightarrow$

(i)
$$E\phi(X) \le E\phi(Y) \quad \forall \text{ convex } \phi$$

(ii) $E(X) = E(Y)$ and $E(X - a)_+ \le E(Y - a)_+$ for all real a
(iii) $E(X) = E(Y)$ and $E|X - a| \le E|Y - a|$ for all real a
(iv) $\exists X'$ and Y' with $X' \stackrel{d}{=} X$, $Y' \stackrel{d}{=} Y$ and $E(Y' | X') = X'$.

Mean residual life order

The mean residual life order: For integrable X and Y: $X \leq_{mrl} Y \Leftrightarrow$ (i) $E[X - a | X \geq a] \leq E[Y - a | Y \geq a]$ for all a (with convention) (ii) $\Psi_X(a) \leq \Psi_Y(a)$ for all a, for $\Psi_X(a) := E[X | X \geq a]$ as before. Corollary of the Azéma-Yor embedding:

$$X \leq_{\mathrm{mrl}} Y$$
 and $E(X) = E(Y) \Rightarrow X \leq_{\mathrm{cx}} Y$ (4)

[Shift to E(X) = E(Y) = 0, then embed in BM with $T_X \le T_Y$.] - van der Vecht (1986), Madan-Yor (2002)

Warning: converse of (4) is false. Indirect argument: if true then T_Y would be an *ultimate time* T for the distribution of Y [Meilijson 1982] meaning:

 $B_T \stackrel{d}{=} Y$ and $\forall X$ with $X \leq_{cx} Y \exists$ stopping $S \leq T$ with $B_S \stackrel{d}{=} X$. But (Meilijson and van der Vecht, 1980s): the only ultimate times for BM are the first hitting times of $\{a, b\}$ for some a, b.

◆□> ◆圖> ◆理> ◆理> 三語

Azéma-Yor embedding of total hazards

Example: Birthday repeat time for y = 4 days/year.

Setting: $(\mathcal{F}_t)_{t\geq 0}$, $(T\leq t)\in \mathcal{F}_t$, $P(T<\infty)=1$

• $A_t - 1(T \le t)$ is an (\mathcal{F}_t) -martingale

•
$$\rightarrow A_{\infty} - 1$$
.

• Assume a uniform [0,1] variable U independent of \mathcal{F}_{∞} .

Theorem

There exists a standard exponential variable ε such that

$$E(\varepsilon \,|\, \mathcal{F}_{\infty}) = A_{\infty} \tag{5}$$

$$E[(\varepsilon - A_{\infty})^{2} | \mathcal{F}_{\infty}] = \Delta A_{\mathcal{T}} := A_{\mathcal{T}} - A_{\mathcal{T}-}$$
(6)

$$E[(\varepsilon - A_{\infty})^{2}] = E[\Delta A_{T}] = E\sum_{s} (\Delta A_{s})^{2}$$
(7)

Remarks

- (5) follows from Neveu's inequality that $A_{\infty} \leq_{mrl} \varepsilon$.
- (6) involves details of the Azéma-Yor embedding.

Details of the coupling

For each t > 0 there is a unique $p = (1 - e^{-t})/t \in (0, 1)$ so

$$\xi(t) \stackrel{d}{=} p \operatorname{\textit{Dist}}(arepsilon \mid arepsilon < t) + (1-p) \operatorname{\textit{Dist}}(arepsilon \mid arepsilon > t)$$
 has

$$E[\xi(t)] = pE(\varepsilon | \varepsilon < t) + (1-p)E(\varepsilon | \varepsilon > t) = t$$

Also $Var(\xi(t)) = t$. Explicitly, take U, V, ε' are independent, with U, V uniform[0,1] and $\varepsilon' \stackrel{d}{=} \varepsilon$, and set

$$\xi(t) = tU \mathbb{1}(V \leq e^{-tU}) + (t + \varepsilon')\mathbb{1}(V > e^{-tU}).$$

For A_T a total hazard, take U, V, ε' indpt. of (A_{T-}, A_T) . Let

$$arepsilon = A_{\mathcal{T}-} + \xi (A_{\mathcal{T}} - A_{\mathcal{T}-})$$
 so

 $E(\varepsilon | A_{T-}, A_T) = A_T$ and $E[(\varepsilon - A_T)^2 | A_{T-}, A_T) = A_T - A_{T-}$

▲口 > ▲圖 > ▲ 臣 > ▲ 臣 > 二 臣

Exponential coupling

Example: discrete distribution of X with constant hazards

$$h_n^* = P(X = n \,|\, X \ge n)$$
 and $A_n^* := \sum_{i=1}^n h_i *$

- Characterize all possible laws of total hazard variables A_T. (Know extemes. Simplex?)
- Can show γ_r/r is ↓ in MRL as r ↑. (So Madan-Yor ⇒ reverse peacock). γ₁ ^d ∈. Is γ_r/r a total hazard for r > 1?
- What about $\gamma_r r$. Is this \uparrow in MRL?
- Embedding the entire martingale $A_t 1(T \le t)$ in BM.
- What about the non-adapted case (martingale derived from a potential)?
- Suppose a stopping time S ≤ T_Y where T_Y is the Azéma-Yor time for embedding Y in BM. Does that imply B_S≤_{mrl}Y?

・ロト ・聞 と ・ 思 と ・ 思 と … 思