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Abstract

Mark Kac introduced a method for calculating the distribution of the integral Av=
∫ T
0
v(Xt) dt

for a function v of a Markov process (Xt; t¿0) and a suitable random time T , which yields
the Feynman–Kac formula for the moment-generating function of Av. We review Kac’s method,
with emphasis on an aspect often overlooked. This is Kac’s formula for moments of Av, which
may be stated as follows. For any random time T such that the killed process (Xt; 06t¡T )
is Markov with substochastic semi-group Kt(x; dy)=Px (Xt ∈ dy; T¿t), any non-negative mea-
surable function v, and any initial distribution �, the nth moment of Av is P�Anv = n!�(GMv)n1
where G=

∫∞
0
Kt dt is the Green’s operator of the killed process, Mv is the operator of mul-

tiplication by v, and 1 is the function that is identically 1. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Kac (1949, 1951), and Darling and Kac (1957) introduced a method for calculating
the distribution of the integral

Av=
∫ T

0
v(Xt) dt (1)

for a function v de�ned on the state space E of a Markov process X =(Xt; t¿0),
and a time T that may be �xed or random. Kac (1949, 1951) considered the case
when X is a Brownian motion (BM), but his method leading to the Feynman–Kac
formula in that setting has since been developed and applied much more generally.
See Chung and Williams (1990); Durrett (1984); Karatzas and Shreve (1988); Simon
(1979); Stroock (1993) for textbook treatments of the F-K formula for BM, Section
III:19 of Rogers and Williams (1994) for a modern treatment of the F-K formula for
a Feller–Dynkin process, and Section 5 of Kesten (1986) for a survey with further
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references. In this paper we review an aspect of Kac’s method not mentioned in these
treatments. This is his formula for moments of Av for suitable T , �rst derived in Kac
(1951) for BM on the line, then generalized in Darling and Kac (1957) to a Markov
process with abstract state space. The reader is not assumed to be acquainted with
the modern theory of Markov processes beyond what can be found, for example, in
Chapter III of Rogers and Williams (1994).
To state the basic form of Kac’s formula in some generality, let (Px; x∈E) be the

family of probability measures governing a Markov process (Xt) set up on a suitable
probability space (
;F); Px is the law of X under the initial condition X0 = x. We
assume that there is a �-algebra E on E such that (i) x 7→Px(F) is E-measurable for
each F ∈F, and (ii) (t; !) 7→Xt(!) is a B⊗F=E-measurable mapping of [0;∞)×

into E, where B is the Borel �-algebra on [0;∞). It is convenient to assume that
(
;F) accommodates a random variable T� (�¿0) which (under Px for all x∈E) is
independent of X , and has the exponential distribution with parameter �. Other random
times T involving extra randomization may also be assumed to be de�ned on the same
basic setup.
Call T a Markov killing time of X if under each Px the killed process (Xt; 06t¡T )

is Markovian with (sub-Markovian) semigroup (Kt; t¿0):

Ktf(x)=Px[f(Xt)1(t¡T )]: (2)

In addition we assume that Ktf is E-measurable for all t¿0 and all positive
E-measurable f. In formula (2) (and elsewhere in the paper), 1(B) is the indicator of
the event B and Px serves double duty as the expectation operator for the probability
measure Px. De�ne the Green’s operator or potential kernel G associated with T by

Gf(x)=Px

∫ T

0
f(Xt) dt=

∫ ∞

0
Ktf(x) dt (3)

for non-negative E-measurable f. For example, T� is a Markov killing time with
Kt =e−�tPt , where (Pt; t¿0) is the semigroup of X , in which case G=R�=

∫∞
0 e−�t

Pt dt is the resolvent or �-potential operator associated with (Pt). Other Markov killing
times are ∞= lim�→0 T�, and T the �rst entrance or last exit time of a suitable subset
B of the state space of X . A �nite �xed time T is typically not a Markov killing
time unless X is set up as a space–time process, so T becomes a hitting time. Other
Markov killing times can be constructed (i) by killing the process at state-dependent
rate k(Xt) for some killing rate function k de�ned on E, (ii) by killing according to
a multiplicative functional, and (iii) by combinations of these kinds of operations. See
Blumenthal and Getoor (1968). As shown by the example of last exit times, a Markov
killing time of X is not necessarily a stopping time. See Meyer et al. (1972), Sharpe
(1981) for further examples in this vein.

Kac’s moment formula (Darling and Kac (1957), Kac (1951)). Let T be a Markov
killing time for X, let � be an arbitrary initial distribution on E, and let v be a non-
negative measurable function on E. Then the nth moment of Av=

∫ T
0 v(Xt) dt under
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P� is given by

P�Anv = n! �G
n
v1 (n=1; 2; : : :) (4)

where Gv(x; dy)=G(x; dy)v(y); G is the potential kernel for the killed process as in
(3), and 1 stands for the function that is identically 1.

In terms of operators, Gv=GMv where Mv is the operator of multiplication by v.
For n=1, formula (4) just restates de�nition (3) of the Green’s operator G. For n=2
the formula reads

P�A2v =2�G
2
v1=2

∫
E
�(dx)

∫
E
G(x; dy)v(y)

∫
E
G(y; dz)v(z): (5)

Note the special case v= 1 in Eq. (4): Av=T; Gv=G, so Eq. (4) becomes

P�T n= n! �Gn1: (6)

The �rst appearance of formula (4) seems to be (3:5) in Kac (1951). There Xt=(Bt; t)
is a space–time BM derived from a one-dimensional BM B, and T is a �xed time.
Darling–Kac [1957, p. 445, line 4] give the Laplace transformed version of the same
formula for B a two-dimensional BM, which amounts to the present formula (4) for
X =B and T =T�. Formula (4) for general X and v, and T =T�, is implicit in the
discussion on p. 446 of Darling and Kac (1957) and is used there for an asymptotic
calculation of moments which identi�es the limit distribution of

∫ T
0 v(Xt) dt as T→∞

for a large class of Markov processes. See Athreya (1986), Bingham (1973) for more
recent developments in this vein. To illustrate with three more examples from the liter-
ature, Exercise 4.11.10 of Itô–McKean (1965) is (6) for X a one-dimensional di�usion
and T the �rst exit time from an interval; Nagylaki (1974) gives the more general
formula (4) in the same setting; Propositions 8.6 and 8.7 of Iosifescu (1980) are
Eq. (4) for X a Markov chain, T =∞, and v either the indicator of the set of all
transient states, or the indicator of a single transient state.
As noted by Kac (1951) in the Brownian setting, summing the moment formula (4)

weighted by 1=n! yields the

Feynman–Kac formula (Feynman (1948), Kac (1949)). For v¿0,

P� exp(Av)= �
∞∑
n=0

Gnv1= �fv (7)

where fv is the minimal positive solution f of

f= 1+ Gvf: (8)

Informally, we may write

fv=(I − Gv)−11: (9)

The meaning of (I−Gv)−1 has just been precisely de�ned for v¿0, but this expression
also makes sense for signed v under appropriate conditions.
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Note that replacing Av in Eq. (7) by A�v= �Av for �¿0 gives an expression for the
P� moment generating function of Av, which may however diverge for all �¿0. If the
m.g.f. does converge for some �¿0, it of course determines the P� distribution of Av.
But even if not, Kac’s moment formula still allows evaluation of whatever moments
of Av are �nite.
Khas’minskii (1959) found Eqs. (4) and (7) for a general X and T the exit time of

a domain. He also noted the following immediate consequence of Eq. (4) which has
found numerous applications in the theory of Schr�odinger semigroups (Aizenman and
Simon, 1982; Simon, 1982). See also Berthier and Gaveau (1978), Carmona (1979)
and Pinsky (1986) for various re�nements and further references.

Khas’minskii’s condition. If Gv1 is bounded then for all x the moment generating
function Px[exp(�Av)] converges for �¡1=‖Gv1‖∞.

If the in�nitesimal generator G of the semigroup (Pt) is a di�erential operator (such
as 1

2� for Brownian motion), then integral equation (8) can be recast as a di�erential
equation subject to suitable boundary conditions depending on the nature of T . For
details in various settings see Durrett (1984), Karatzas and Shreve (1988), Stroock
(1993) and Section 13.4 of Dynkin (1965). Ciesielski and Taylor (1962) used Eq. (7)
to derive the distribution of Av for X a BM in Rk for k¿3, T =∞ and v the indicator
function of a solid sphere in Rk , in which case Av represents the total time spent by
B in the sphere. See also Rogers and Williams (1994) Section III:20 for a di�erent
treatment.
The rest of this paper is organized as follows. Kac’s moment formula as stated above

is proved in Section 2. Some variations and corollaries are presented in Section 3. In
Section 4 we explain how these results relate to the more customary statement of the
F-K formula that the semi-group of the process obtained by killing X at rate v(x)
has in�nitesimal generator G −Mv. In Section 5 the general results are specialized to
the context of a Markov chain with �nite state space, where the F-K formula can be
understood with almost no calculation by direct probabilistic argument. In Section 6
we point out how the F-K formula for occupation times of Markov chains applies
to local times of more general Markov processes. Such formulae were the basis of
Ray’s (1963) derivation of the Ray–Knight description of the local time �eld of a
one-dimensional di�usion evaluated at a Markov killing time T , and of calculations by
Williams (1967, 1969) for Markov chains.

2. Proof of Kac’s moment formula

The proof is essentially just a formalization of Kac’s (1951) original argument for
space–time BM. Variations appear in the proofs of similar results in Dynkin (1984),
Khas’minskii (1959), Pitman (1974, 1977). Let Y denote the killed process with state
space E ∪ @ de�ned by Yt =Xt if t¡T and Yt = @ if t¿T , where @∈E is a cemetery
state. In terms of Y , the killing time T is just the hitting time of @. It is therefore
enough to prove the result for T the hitting time of a point in the state space E of X .
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We assume, without any real loss of generality, that the sample space 
 is equipped
with a family of shift operators (�t; t¿0), such that Xs ◦ �t =Xs+t for all s; t¿0.
Furthermore, we assume that there is a �ltration (Ft ; t¿0) on (
;F) to which X is
adapted and with respect to which X has the simple Markov property:

Px(F�(�t))=Px(FPXt�) (x∈E); (10)

for all t¿0, all non-negative Ft-measurable functions F , and all non-negative functions
� on 
 that are measurable with respect to H := �{Xs; s¿0}.
The key property of a hitting time T of X is that it is a terminal time (Blumenthal

and Getoor, 1968; Sharpe, 1988); that is, an (Ft)-stopping time T with the property
T ◦ �t =T−t on the event {T¿t}. The basic inductive step which allows Kac’s moment
formula (4) to be pushed from n to n+1 involves the following identity, which holds
for an arbitrary (Ft)-stopping time T . Let G=GT be the pre-T occupation kernel
de�ned by

Gv(x)=
∫
E
G(x; dy)v(y)=PxAv (11)

for an arbitrary non-negative measurable v. If � is an initial distribution, then �G=∫
E �(dx)G(x; ·) is the measure

�G(F)=P�

∫ T

0
1F(Xs) ds (F ∈E); (12)

which describes the P� expected amount of time X spends in various subsets F of E
up to time T . Call �G the P� pre-T occupation measure for (Xt; t¿0). In case T is
a Markov killing time of X , G is the potential kernel derived from the killed process,
as discussed in Section 1. But the above de�nition (11) of G makes sense, and the
following identity is valid, for an arbitrary stopping time T :

Occupation measure identity (Khas’minskii, 1959, Pitman, 1974, 1977). For each
initial distribution � on E, each non-negative H-measurable �, and each non-negative
E-measurable f,

P�

∫ T

0
f(Xt)�(�t) dt=

∫
E
�G( dy)f(y)Py�: (13)

The assumed measurability of (t; !) 7→Xt(!) implies that (t; !) 7→�(�t!) is B⊗F-
measurable, because � is H-measurable. Thus the left side of Eq. (13) is well de�ned.
Now Fubini’s theorem shows that

P�

∫ T

0
f(Xt)�(�t) dt=

∫ ∞

0
P�[f(Xt)�(�t) 1(t¡T )] dt; (14)

which by the Markov property (10) and the Ft-measurability of {t¡T} is equal to∫ ∞

0
P�[f(Xt)PXt (�) 1(t¡T )] dt=P�

∫ T

0
f(Xt)PXt (�) dt: (15)

Taken together, Eqs. (12), (14), and (15) yield Eq. (13).
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Notice that the proof of Eq. (13) required no strong Markov property of X . So the
occupation measure identity holds without any assumptions about the state space of
X or path properties of X beyond the joint measurability of Xt(!) as a function of t
and !.
Turning to the proof of Eq. (4), observe that

Anv =
(∫ T

0
v(Xt) dt

)n
= n! In (16)

where

In=
∫
06t16t26···6tn6T

v(Xt1 ) dt1 v(Xt2 ) dt2 · · · v(Xtn) dtn: (17)

Because T is a terminal time, the obvious change of variables in Eq. (17) leads to

In+1(!)=
∫ T

0
v(Xt(!)) In(�t!) dt: (18)

Thus Eq. (4) follows by induction from the occupation measure identity (13).

3. Corollaries of Kac’s moment formula

The basic notation and assumptions regarding X , T and G are as for Eq. (4).

3.1. Positive continuous additive functionals

To this point our study has focused on the random variable Av, which is the value
at time t=T of the additive functional Av(t)=

∫ t
0 v(Xs) ds. In the abstract, a positive

continuous additive functional (PCAF) is an (Ft)-adapted family A=(A(t); t¿0) of
positive �nite random variables satisfying the additivity condition

A(t + s)=A(t) + A(s)�t (s; t¿0): (19)

We can de�ne an operator GA analogous to the operator Gv by the formula

GAf(x)=Px

∫ T

0
f(Xt) dA(t); (20)

for positive E-measurable f. Note that GA=Gv when A(t)=
∫ t
0 v(Xs) ds. The validity

of the analog of Eq. (13), namely

Px

∫ T

0
f(Xt)�(�t) dA(t)=

∫
E
GA(x; dy)f(y)Py(�); (21)

requires a mild additional hypothesis. For instance, if E is a complete separable met-
ric space (with Borel �-algebra E) and X has right-continuous sample paths, then
Eq. (21) is valid with f and � as for Eq. (13). The proof of this assertion involves
Ray–Knight compacti�cation methods found in Sharpe (1988), and is well beyond the
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scope of this article. Assuming the validity of Eq. (21), we can repeat the earlier ar-
gument to show that Kac’s moment formula (4) and the F-K formula (7) hold for
any PCAF A, provided the operator GA is substituted for Gv. Ray (1963), Section 2,
used this version of the F-K formula for �nite linear combinations of local times.

3.2. Signed additive functionals

For Av derived from a function v that takes both positive and negative values, or,
more generally, for a CAF A=B−C that is the di�erence of PCAFs, it is easily seen
that Kac’s moment formula remains valid provided at each of the n successive inte-
grations involved in computing (GA1)(x), (GA(GA1))(x); : : : ; the integral is absolutely
convergent for each x∈E, as is the �nal integration with respect to �. Such formulae
are used, for example, in Marcus and Rosen (1992a,b,c, 1995), Rosen (1991) to study
the asymptotics of di�erences Lyt − Lxt of local times, as y→ x.

3.3. Covariances

For positive measurable functions v and w, applying Kac’s formula to Av, Aw and
Av+w and examining the result yields

P�(AvAw)= �(GvGw + GwGv)1 (22)

where the terms in the decomposition can be understood using Eq. (16) and the occu-
pation measure identity:

�GvGw1=P�

∫ T

0
dAv(t)

∫ T

t
dAw(s): (23)

These formulae are related to an energy form associated with v and w (Glover, 1981;
Kemeny and Snell, 1961; Stroock, 1993). The P� covariance of Av and Aw is

�GvGw1+ �GwGv1− (�Gv1)(�Gw1): (24)

For each initial distribution �, Eq. (24) is a symmetric bilinear non-negative de�-
nite function of pairs of non-negative functions chosen from {u: �G2u1¡∞}. Similar
remarks apply to the more general CAFs considered in Section 3.2.

3.4. Additive functionals with jumps

In principle, the moments of an additive functional with jumps can be found by the
same method. The formulae are not as simple however, because diagonal terms (which
vanish in the continuous case) now appear in Eq. (17). The same thing happens in
discrete time analogs of Kac’s formulae discussed in the next subsection.

3.5. Discrete time analogs

To illustrate, in the discrete time version of Eq. (22) (see Kemeny and Snell (1961)
p. 212) there is another term which must be subtracted due to double counting on the
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diagonal in Eq. (17): For T a Markov killing time of the discrete time Markov chain,
X0; X1; : : : ;

P�

[(
T−1∑
n=0

v(Xn)

)(
T−1∑
n=0

w(Xn)

)]
= �(G̃vG̃w + G̃wG̃v − G̃vw)1 (25)

where G̃ is the discrete time potential kernel G̃=
∑∞

n=0 K
n
1 for K1 as in Eq. (2).

Because of diagonal terms like �G̃vw1 above, the discrete time moment formulae do
not iterate neatly except when v is the indicator of some subset B of E. In this case
Av=NB (say) is the number of hits on B before time T , and there is the following
analog of Kac’s formula for the rising factorial moments of NB (Pitman, 1974; 1977)

P�[NB(NB + 1) · · · (NB + n− 1)]= �(G̃MB)n1 (26)

where MB is the operator of multiplication by the indicator of B. See Pitman
(1974; 1977) and Section 3.2 of Iosifescu (1980) for further moment formulae in dis-
crete time.

3.6. The general product moment formula

Returning to the setup of Kac’s moment formula, or, more generally, the setting
of Section 3.1, by iterated application of the occupation measure identity there is the
following generalization of Eqs. (22) and (4) to a product of n additive functionals
A(i), 16i6n:

P�

(
n∏
i=1

A(i)
)
= �

(∑
�

GA(�(1))GA(�(2)) · · ·GA(�(n))
)
1 (27)

where the sum extends over all permutations �=(�(1); : : : ; �(n)) of {1; : : : ; n}.
Theorem 5.2 of Dynkin (1984) is this result in a slightly di�erent framework. Dynkin
assumes a symmetric potential density g(x; y), but Eq. (27) applies nonetheless with-
out such symmetry, and without assuming the existence of a potential density provided
Eq. (21) is valid. Dynkin has shown how in the symmetric case the moment formula
(27) underlies a far-reaching isomorphism between the distribution of functionals of the
occupation �eld of a symmetric Markov process, and the distribution of the square of
a Gaussian �eld with covariance derived from the positive de�nite kernel g(x; y). See
Dynkin (1983, 1984), Marcus and Rosen (1992a,b,c, 1996) for further developments,
and Rogers and Williams (1994) I.27 for an elementary proof of Dynkin’s isomorphism
formula for a Markov chain, which is closely related to the discussion in Section 5
below.

Question. Is there any interesting connection between the occupation �eld of a Markov
process that is not necessarily symmetric and the Gaussian process with covariance
structure de�ned by the non-negative de�nite function (24)? It seems not, since it is
not this positive kernel but the one derived more directly from g(x; y) that works in
the symmetric case.
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3.7. Conditioning on XT−

Assume now that E is a complete separable metric space, and that the sample paths
of X are right-continuous with left limits; in particular Eq. (21) is valid. In this situation
all of the previously displayed formulae have versions involving a conditioning on XT−,
as indicated in various settings by Kac (1951), Ray (1963) and Dynkin (1983; 1984).
Such conditioning can be achieved in great generality using h-processes. To illustrate,
the h-process version of Eq. (27), as formulated in Dynkin (1984), takes a simple
form due to cancellation of the h-factors in the product of Green’s kernels. See also
Proposition 5.14 of Pitman (1977) for a discrete time example, and Aase (1977) for
the formula obtained this way for the mean exit time of a di�usion on an interval
conditioned to exit at a speci�ed boundary point. The e�ect of conditioning on XT−
is simplest for the special class of Markov killing times introduced in the following
de�nition:

De�nition 1. Say a Markov killing time T is killing with state-dependent rate k, where
k is a non-negative measurable function on E, if given (Xs; 06s6t) and the event
{T¿t}, the killing rate is k(Xt):

Px(T ∈ (t; t + dt) |Xs; 06s6t; T¿t)= k(Xt) dt: (28)

More formally, assuming T has been set up as a stopping time relative to a suitable
enlargement (Ft) of the �ltration (Ft), the assumption is that, under Px for every x∈E,
the process (1(t¿T ) − Ak(t ∧T ); t¿0) is an (Ft)-martingale. Equivalently,

Px(ZT f(XT−);T¡∞)=Px
∫ T

0
Zt f(Xt−) k(Xt) dt (29)

for every positive (Ft)-predictable process Z and every positive E-measurable func-
tion f.
The above de�nition makes sense, and the obvious analog of Eq. (29) is valid, if a

general PCAF is substituted for Ak(t). For example, the last exit time from a subset B
of E will be “killing with rate dA(t)” (for a suitable PCAF A) provided X is a strong
Markov process with quasi-left-continuous sample paths (a “Hunt process”). In this
context the PCAF A is naturally associated with the so-called “equilibrium distribution”
on B; see Chung (1973), Getoor and Sharpe (1973a,b) and Glover (1982). Note that
a �rst passage time into a set B will be of this form only if the �rst passage occurs at
the time of a jump of X . In particular, a predictable Markov killing time T , such as
the hitting time of a set for a process with continuous paths, will not be of this form.

Proposition 1. For a Markov killing time T that is killing with rate function k¿0,
and arbitrary non-negative measurable v and f,

P�[(Av)nf(XT−);T¡∞] = n! �GnvGkf (n=0; 1; 2; : : :) (30)

where Gv=GMv and Gk =GMk .
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Proof. For n=0 the result is the special case Z ≡ 1 in Eq. (29):

P�(f(XT−);T¡∞)= �Gkf: (31)

For general n we proceed by induction, as in the proof of Eq. (4). Thus, de�ne

In(t)=
∫
06t16t26···6tn6t

v(Xt1 ) dt1 v(Xt2 ) dt2 · · · v(Xtn) dtn

and notice that In+1(t)=
∫ t
0 In(t − s)�s v(Xs) ds. Using ’n(x) as an abbreviation of

Px[(Av)nf(XT−);T¡∞], we have

’n+1(x) = (n+ 1)!Px

∫ T

0
In+1(t)f(Xt−) k(Xt) dt

= (n+ 1)!Px

∫ T

0

∫ t

0
[In(t − s)f(Xt−s)k(Xt−s)]�s v(Xs) ds dt

= (n+ 1)!Px

∫ T

0

[ ∫ T

0
In(u)f(Xu)k(Xu) du

]
�s v(Xs) ds

= (n+ 1)Px

∫ T

0
’n(Xs) v(Xs) ds;

the �nal equality following from Eqs. (13) and (29). Thus, ’n+1 = (n + 1)Gv’n, and
Eq. (30) follows by induction on n.

Remark. Formula (30) holds also with either Av(t) or Ak(t) or both replaced by gen-
eral PCAFs. A formula could also be obtained with f(XT−; XT ) instead of f(XT−),
assuming the existence of a L�evy system for the jumps of X and that T is a jump
time. See e.g. Benveniste and Jacod (1973) and Pitman (1981).

Example. The special case of the above proposition for T =T� an independent
exponential time, when k(x)= � for all x, is already evident in Kac (1951). Then
G=R�=

∫∞
0 e−�t Pt dt is the resolvent operator of the semi-group of X . After can-

celling the common factor of � on both sides, the result is as follows: for arbitrary
f¿0,

P�

∫ ∞

0
e−�t (Av)n(t)f(Xt) dt= n!�(R�Mv)nR�f: (32)

While the existence of left limits was assumed in the previous proposition, it is easily
shown that no such hypothesis is required for Eq. (32).

4. The Feynman–Kac formula

To recover more standard expressions of the F-K formula, as presented in Section
III.19 of Rogers and Williams (1994), let (Pvt ) be the semigroup derived from (Pt)
by killing X with state-dependent rate v(x). So if T is the associated Markov killing
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time then

Pvt f(x)=Px[f(Xt)1(T¿t)]=Px[exp(−Av(t))f(Xt)]: (33)

Summing formula (32) weighted by (−1)n=n! yields an expression for the resolvent of
this semigroup:

�Rv�f=
∫ ∞

0
P�[exp(−Av(t))f(Xt)]e−�t dt= �[I + R�Mv]−1R�f (34)

where R�=
∫∞
0 e−�tPt dt is the resolvent of the semi-group of X . Some mild regularity

on f and v are required to make sense of the second equality in Eq. (34), but when
rearranged as

Rv� + R�MvR
v
�=R� (35)

the formula holds as an identity of bounded positive kernels for arbitrary �¿0 and
non-negative measurable v. This is formula (III.19.5) of Rogers and Williams (1994),
which is one of the three forms of the F-K formula presented by Rogers-Williams. As
they remark, and as shown by the above argument, Eq. (35) is a robust form of the
F-K formula which is valid with no hypotheses on the underlying Markov process X
beyond jointly-measurable paths.
To interpret the F-K formula as a statement relating the in�nitesimal generators of

(Pt) and (Pvt ), let us recall that the weak in�nitesimal generator of (Pt) (say) is the
operator G de�ned by

Gf(x)= lim
t↓0
Ptf(x)− f(x)

t
(36)

on the domain D(G) comprising those functions f for which the pointwise limit indi-
cated in Eq. (36) exists and supt¿0 t

−1‖Ptf − f‖∞¡∞. See Dynkin (1956), where
it is shown that for each �¿0, the resolvent operator R� is an injective mapping of
bE (the class of bounded E-measurable functions) onto D(G), and GR�f= �R�f−f.
Brie
y, R�=(�−G)−1. Viewed in these terms, Eq. (35) amounts to the most common
presentation of the F-K formula:

the killed semigroup (Pvt ; t¿0) has generator G
v=G−Mv; (37)

the domain D(Gv) consisting of those functions u∈D(G) for which uv is a bounded
function. In the context of symmetric Markov processes, Eq. (37) can be reformulated
in terms of “Dirichlet forms”; see Section 6.1 of Fukushima et al. (1994).
A third form of the F-K formula noted in Rogers and Williams (1994) (III.19.7) is

the following variant of Eq. (35):

Rv� + R
v
�MvR�=R� (38)

which can be understood with almost no calculation due to the following:

Probabilistic interpretation of Eq. (38). Consider T ∧T�, the minimum of T and an
independent exponential time with rate �. From Eq. (38), the Green’s operator for X
killed at time T ∧T� is Rv�. Since killing at time T ∧T� is the same as killing with
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rate function v(x) + �, the P� distribution of XT ∧ T� on {T¡T�} is found by an easy
variation of the “last exit” formula (31):

P�(XT ∧ T� ∈ dx; T�¿T )= �Rv�Mv(dx): (39)

Thus Eq. (38) comes from integrating with respect to P� the decomposition

Af(T ∧T�) + (Af(T�)− Af(T ∧T�))1(T�¿T )=Af(T�) (40)

for an arbitrary additive functional Af =
∫ t
0 f(Xs) ds.

Another probabilistic interpretation of Eq. (38). Multiplication of both sides of
Eq. (38) by � yields an identity of Markov kernels which may be understood in
another way. By the companion of Eq. (39) with {T�6T} instead of {T�¿T},

the P� distribution of XT� on {T�6T} is ��Rv� (41)

and by Eq. (39) and the memoryless property of T�,

the P� distribution of XT� on {T�¿T} is �Rv�MvR�: (42)

Adding these two distributions we arrive at ��R�, which is the P� distribution of XT� .

Remark. For a constant function v, say v(x)= � for all x, Eq. (38) reduces to the
resolvent identity:

R�+� + �R�+�R�=R� (�; �¿0): (43)

So the above arguments give two simple probabilistic interpretations of this identity

involving the minimum T�+�
d= T� ∧T� of two independent exponential variables T�

and T� and analysis of (Xt; 06t6T�) according to whether T�¡T� or T�¿T�. Since
it is obvious that R�+�R�=R�R�+�, the resolvent identity also yields Eq. (35) in this
special case. For a general v, comparison of Eqs. (35) and (38) establishes the identity
of kernels

R� − Rv�=Rv�MvR�=R�MvRv� (�¿0) (44)

where the �rst identity was interpreted probabilistically above.
There is also a probabilistic interpretation of the second identity in Eq. (44), involv-

ing the idea of resurrection of X after the killing time T , as considered in Fitzsimmons
(1991) and Meyer (1975). Note that Eq. (44) is the Laplace transformed version of
the following identity:

Pt − Pvt =
∫ t

0
Pvs MvPt−s ds=

∫ t

0
PsMvPvt−s ds; (45)

and that if � is an initial distribution, then

�(Pt − Pvt )f=P�[f(Xt); T6t] (46)

for any measurable f¿0. The �rst equality in Eq. (45) is evident from evaluation of
this expectation by conditioning on (T; XT ). The second equality in Eq. (45) is ob-
tained by the following construction. Assume for simplicity that v is bounded. Given
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X , let T =T(1) where T(1)¡T(2)¡ · · · are the points of a Poisson process on (0;∞)
with intensity v(Xt) dt; t¿0. The right-hand expression in Eq. (45) arises from eval-
uating expectation (46) by conditioning on (T(N ); XT(N ) ), where N = max{n: T(n)6t}:
Replacing the �xed time t by T� gives a similar interpretation of the second equality
in Eq. (44). From this perspective, the middle and right-hand expressions in Eqs. (44)
and (45) are seen to be typical “�rst entrance” and “last exit” decompositions.

5. Application to Markov chains

Suppose now that X is a Markov chain with �nite state space and T is a �nite
Markov killing time for X . By obvious reductions there is no loss of generality involved
in the following:

Assumption. The state space of X is E ∪{@} where E is �nite, @ is an absorbing
state, T = inf{t: Xt = @} and Px(0¡T¡∞)= 1 for all x∈E.

Let Kt denote the substochastic semi-group of X restricted to E, and view Kt and
all other operators as matrices indexed by E, for example Kt(x; y)=Px(Xt =y). Then
G=

∫∞
0 Kt dt is just

G= − Q−1 where Q= lim
t→0

t−1(Kt − I) (47)

is the usual Q-matrix of the chain killed at time T . Recall that Gv=GMv where Mv is
the operator of multiplication by v. It is clear that there exists b¿0 such that for all
v with |v|6b the matrix (I−Gv) is invertible. So (I−Gv)−1 = (I+Q−1Mv)−1 = (Q−1(Q
+Mv))−1 = (Q+Mv)−1Q Eq. (47) and the F-K formula (7) can be restated as follows:
There exists b¿0 such that for all v with |v|6b

P� exp(Av)= �(I − Gv)−11= �(Q +Mv)−1Q1: (48)

For x∈E let Lxt =
∫ t
0 1(Xs= x) ds. Since Av=

∑
x∈E v(x)L

x
T , formula Eq. (48) deter-

mines the joint moment generating function of the LxT ; x∈E. The second expression
in Eq. (48) for this m.g.f. appears as formula (4) in Kingman (1968), and again in
Puri (1972). Kingman noted as a consequence that the joint m.g.f. is a ratio of two
multilinear forms in v(x), x∈E, and that the marginal distribution of each LxT is a mix-
ture of a point mass at zero and an exponential distribution on (0;∞). Kingman raised
the problem, which is apparently still open, of characterizing which joint distributions
can appear as the joint distributions of such occupation times of a transient �nite state
chain. For some study of particular examples see Kent (1983) and Longford (1991).
Every killing time of a �nite state chain is easily seen to be of the form assumed in

Proposition 1 for the killing rate function k(x)= (−Q1)(x) where Q is the Q-matrix
of the killed chain. From Eq. (31)

P�(XT−= x)= (�GMk)(x) (49)

so the assumption that Px(T¡∞)= 1 for all x implies GMk1= 1. Formula (30) now
yields expressions for the P� conditional moments of Av given XT−. This leads to the
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following sharper form of the F-K formula for chains. Formula (51) is a variant of
Theorem 2.1 of Dynkin (1983). See also Sections I.27 of Rogers and Williams (1994)
and IV.22 of Rogers and Williams (1987) for related presentations.

Proposition 2. Let k(x)= (−Q1)(x) where Q is the Q-matrix of X killed at time T .
Then for v with |v|6b for some b¿0, and all f,

P�[exp(−Av)f(XT−)]= �(I + GMv)−1GMkf= �(Mv − Q)−1Mkf: (50)

Furthermore, for all x; y∈E such that Px(XT−=y)¿0,

Px[exp(−Av) |XT−=y] = G̃xyGxy (51)

where G=(−Q)−1 is the Green’s matrix for X killed at time T , and G̃=(Mv−Q)−1,
which for v¿0 is the Green’s matrix for X killed at time T̃6T where T̃ is de�ned
by additional killing with rate v.

Proof. Formula (50) results from summing Eq. (30) weighted by −1=n!, and using
QG=−I . To derive Eq. (51) from Eq. (50), take � to be a point mass at x and f to
be the indicator of a single point y, and cancel the common factor of k(y).

Formula (51) for v¿0 can also be understood probabilistically by consideration of
Px(T̃ =T; XT−=y); that is, the probability that the chain starting at x ends with left
limit y at time T having survived the additional killing at rate v. By conditioning on T̃ ,

Px(T̃ =T; XT−=y) =
∫ ∞

0
Px(T̃ ∈ dt; Xt−=y; T̃ =T ) dt

=
∫ ∞

0
Px(Xt−=y; T̃¿t)k(y) dt= G̃xy k(y):

On the other hand, by conditioning on XT− the same probability equals

Px(XT−=y)Px(T̃ =T |XT−=y)=Gxy k(y)Px exp(−Av) |XT−= x):

Comparing the two results yields Eq. (51). Note the parallel between Eq. (51) and the
more obvious formula

Px(exp(−Av) |T¿t; Xt =y)= K̃(t; x; y)=K(t; x; y) (52)

where K(t; x; y)=Px(T¿t; Xt =y) is the transition function of the chain killed at
time T , and K̃ is the same for T̃ instead of T , namely the semigroup with Q-matrix Q̃
instead of Q, where Q̃=Q−Mv. Compare with formula (2.6.6) of Itô-McKean (1965)
in Kac’s original Brownian setting. A common generalization of these formulae in an
abstract setting could be given using h-processes, but this is left to the reader.
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6. Application to local times

Suppose as in Blumenthal and Getoor (1968) Eq. (3.41) that X with state space E
admits a jointly measurable local time process (Lxt ; t¿0; x∈E) relative to a reference
measure dx on E, so that for v¿0∫ t

0
v(Xs) ds=

∫
E
Lxt v(x) dx Px a:s: for all t¿0; x∈E: (53)

For example, X could be a Markov chain with countable state space, with Lxt
=
∫ t
0 1(Xs= x) ds, or a one-dimensional di�usion (Rogers and Williams, 1987).
Fix a Markov killing time T for X . Then g(x; y)=PxL

y
T serves as a density for the

Green’s kernel of X killed at time T . From Eq. (22), for all a; x; y∈E there is the
formula

Pa(LxTL
y
T )= g(a; x)g(x; y) + g(a; y)g(y; x): (54)

So for each a such that Pa(T¡∞)= 1 the covariance
g(a; x)g(x; y) + g(a; y)g(y; x)− g(a; x)g(a; y) (55)

is a symmetric non-negative de�nite function of (x; y)∈E×E. Suppose now that a
�nite subset F of E is such that Px(T¡∞)= 1, for all x∈F . The results of Section 3.6
show that for any initial distribution � on F the P� joint distribution of (L

y
T ; y∈F) is

determined by the values of the Green’s function g(x; y) for x; y∈F . In particular, all
product moments P�[

∏
y∈F (L

y
T )
n(y)] for non-negative integer n(y) have �nite values

which can be read from Eq. (27). And the P� joint moment-generating function of
the (LyT ; y∈F) converges in a neighborhood of the origin and is given there by the
formula

P� exp


∑
y∈F

v(y)LyT


 = �(I − Gv)−11 (56)

where Gv(x; y)= g(x; y)v(y); x; y∈F . Put another way, Eq. (56) states that for v in a
neighborhood of 0, the function

fv(x)=Px exp


∑
y∈F

v(y)LyT




is the unique solution f of the system of equations

f(x)= 1 +
∑
y∈F

g(x; y)v(y)f(y):

For X a one-dimensional di�usion, Ray (1963) Eq. (2.1) derived this system of equa-
tions for an h-process obtained conditioning on XT, and went on to show that these
equations imply the Ray–Knight descriptions for the distribution of local times of one-
dimensional di�usions stopped at a Markov killing time. See also Sheppard (1985)
who recovered most of Ray’s results with the help of Dynkin’s isomorphism theorem.
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Note that the class of possible �nite-dimensional distributions for (LyT ; y∈F) as
above is precisely the class of joint distributions of total occupation times of various
states in a �nite state Markov chain. This can be understood by considering the time-
changed Markov chain (X�l ; l¿0) where (�l; l¿0) is the inverse of (

∑
y∈F L

y
t ; t¿0).

Williams (1967, 1969) used a similar time change argument to derive variations of
formula (54) for local time processes associated with both ordinary and �ctitious states
of a countable state Markov chain. See Theorem 6.1 of Williams (1969).
An altogether di�erent application of the F-K formula to the local times of one-

dimensional L�evy processes can be found in Bertoin (1995). This work concerns the
law of the Hilbert transform of LxT with respect to x (for certain random T ); it extends
and simpli�es (Fitzsimmons and Getoor, 1992), in which Kac’s moment formula (4) is
used. See also Jeanblanc et al. (1997) regarding connections between the F-K formula
and path decompositions for one-dimensional BM.
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