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FURTHER ASYMPTOTIC LAWS OF PLANAR
BROWNIAN MOTION!

By JiM PITMAN AND MARC YOR

University of California, Berkeley, and Université Pierre et Marie Curie,
Paris '

The asymptotic distributions for large times of a variety of additive
functionals of planar Brownian motion Z are derived. Associated with each
point in the plane, and with the point infinity, there is a complex Brownian
motion governing the asymptotic behavior of windings of Z close to that
point. An independent Gaussian field over the plane governs fluctuations in
local occupation times of Z, while a further independent family of complex
Brownian sheets governs finer features of the windings of Z. These results
unify and extend earlier results of Kallianpur and Robbins, Spitzer, Kasahara
and Kotani, Messulam and the authors.
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0. Introduction. This paper is a sequel to Pitman and Yor (1986), hence-
forth referred to as AL*, where results on the asymptotic distributions of
winding and crossing numbers were presented as part of a larger framework of
asymptotic laws for planar Brownian motion. To follow the present paper in any
detail, the reader should have at hand a copy of that earlier work, to which
frequent references will be made simply by an asterisk. For example, (1.a)* refers
to (1.a) of AL*, Section 1* means Section 1 of AL* and Knight (1971)* refers to
the paper by Knight (1971) in the references of AL*. Two corrections to AL*
appear at the end of this paper.

We attempted in AL* to unify as well as we could the known results on
asymptotic distributions of functionals of planar Brownian motion. Still, the
richness of this subject seems unbounded. We now seé¢ no end to the possible
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966 J. PITMAN AND M. YOR

degree of refinement of such asymptotic laws. Our purpose in this article is to
present some extensions of results in AL¥, linked in various ways to the most
basic asymptotic laws for additive functionals considered there. Some of these
results were presented without proof in Pitman and Yor (1987). We have chosen
to explore the asymptotics of those functionals which seemed to us most natural
from either an analytic or geometric point of view, though this by no means
exhausts the subject.

A focal point of this paper is the asymptotic behavior as ¢ - oo of additive
functionals of a complex Brownian motion Z of the form

(0.2) (i) fotf(Zs)dS and (i) /O’f(zs)dzs,

for various functions f. The two studies are intimately related by It6’s formula,
a connection exploited already in similar contexts by Papanicolaou, Stroock and
Varadhan (1977)* and Kasahara and Kotani (1979)*.

In Section 1, we consider the asymptotic distribution of the stochastic integral
(ii) above in case f is holomorphic in D;\ {z;} for a neighborhood D; of each
peint z;, 1 <j < n. The result obtained here, previously announced as Theorem
8.6*, brings out the fundamental role played by the processes ®/, (¢) of big and
small windings about z;, and is an extension of Theorem 6.1* governing the
asymptotics of these winding processes.

Section 2 offers some developments of the concept of a log scaling law,
introduced in Chapter 8* to unify a large body of asymptotic laws. For martin-
gale additive functionals of type (ii) above, subject to a growth condition on f
near 0, functionals which obey a log scaling law are characterized, and their
limits identified.

Section 3 offers still further refinements for the asymptotics of winding-like
functionals. Thus we show that not only does the normalized winding

lgt ()‘iﬁf——fyzr‘é’(x dyY, - Y, dX,)

converge in law as ¢ — o0, but so does

iog tff(e""»)dcp

for every bounded Borel function f: C — C. (Here, and throughout the paper,
we use C for the unit circle and C for the complex plane.) In particular, the
quadruple

t t t
Z)" %X, dY,; | \Z,|7%Y, dX,; | |Z,|"*X, 5 |12, 72Y, dY,
1gt(f' ih [1z17Y.ax; [\2) 72X, ax,; [1Z,)7%Y, )

converges in law as ¢ > oo and so does the normalized process of windings in
sectors

1 t
(logt-/;l‘ﬂrg(zx)E(o,a)) dd; a € [0,277]),

Moreover, as we show in Section 4, the convergence of these integrals of the
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winding process about one point also holds jointly when one considers the same
quantities relative to a finite number of points. Itd’s formula then allows us to
derive the asymptotic distributions of the normalized Riemann integrals

1 [ ds o/
(e'® 1 °—. ,
logth|Zs_zj|2fJ(e ), <j<n

for bounded Borel functions f: C — C such that
27 ;
fo dafi(e*®) =0,

where ®/ is the winding number of Z around z - up to time s for n distinct
points z,,..., 2, distinct also from the starting point z, of the complex Brownian
motion Z. Section 5 provides a study of a different character for the asymptotics
of occupation times of variously positioned discs in the plane. A striking feature
here in the limit is the whole Ray—Knight process of Markovian local times of
one-dimensional Brownian motion.

Section 6 starts by spelling out the connection between results of Kasahara
and Kotani (1979)* for additive functionals of bounded variation and those of
Messulam and Yor (1982)* for martingale additive functionals. It is then shown
how these “second order” results are linked to the “first order” winding results
in particular and log scaling laws in general.

A key to many of our results is a criterion for the asymptotic independence of
the Brownian motions associated with two continuous local martingales. This
criterion, stated in an Appendix, is a less restrictive version of a criterion
developed in Le Gall and Yor (1986)* and AL*. We expect this simple criterion to
find applications in other problems involving the asymptotic behavior of additive
functionals of diffusions.

1. Asymptotic residue theorem. We begin by proving the following theo-
rem, stated as Theorem 8.6*, which is an extension of the asymptotic joint
distribution of windings.

THEOREM 1.1. Let (Z,, t > 0) be a complex Brownian motion started at z,
and suppose that z,, z,, .. ., 2, is a finite set of distinct points in C. Suppose that
f is a complex valued function such that:

(i) f is holomorphic in D;\ {2;} for a neighborhood D; of each point z;,
j=1,...,n.
(ii) f is bounded and measurable on the complement of the union of these

neighborhoods.
(iii) f is holomorphic in a neighborhood of « and lim,_, _f(z) = 0.

Then, as t = oo,
2[4z, dz, < Y Res( f )§+-Wf
logt-/(;f( s s - es\ 7, 2; 2 14144

" +Res(f,oo)(%—1+iW+),
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where (W,, W/ , A) is an (n + 2)-tuple of real random variables, such that for
each j, (W,, W7 A) is distributed as

(_[ool(ﬂszo) das’ j:,]-(ﬂs<0) das’ Aa),

where B and 6 are two independent Brownian motions, ¢ = inf{t: B, =1},
(A, t = 0) is the local time of B at 0 and the variables W, and (W/,1 <j < n)
are conditionally independent given A.

Before proving this theorem, we remark that, as a particular case, the
asymptotic distribution of the large and small windings around (2; 1 < i < n) is
easily recaptured from it. Indeed, let

1(I2—2jl>rj)

_ 1(|2 2l <17)
(2) Z ( ) +I"‘j (2_2.)

where A, p; are arbltrary complex numbers and r; are fixed p0s1t1ve reals. Let

q)j—(t) Im/ (|Z -z <) q){k(t)_Imf |Z —z|=r)

j 4%
V(1) = Re [ 7 =7 as=ry

We call ®/ the process of small windings of Z around z; and call ®/ the process
of big windings around z;. We then deduce from (1.a) that

1.b ®/(¢t),®1(¢); ¥i(t);1 <)<
(1b) o7 (92(0), 02(0); V()i 1 <5 < n)
converges in distribution to
) A
W_,W+,5;lsj3n

By Tanaka’s formula,
(1) V/(t) = —(log|Z, — ;| — logr;) + LL4(t),

where L7 is the local time at level log r; of the local martingale (log|Z, — z;
t>0). As a consequence of (l.c), we may replace ¥/(¢) by 1L’(¢) in the
expression (1.b). Thus

(1.b") (@7 (), ®4(¢); LY(t);1<j<n)

log ¢
converges in distribution, as ¢ —» oo, toward
‘ (W7, W,,A;1 <j<n).

This special case of Theorem 1.1, established already as Theorem 6.1*, will be
used in the following proof.
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ProOF OF THEOREM 1.1. 1. During the proof, we shall use several times the
fact that for any Borel function y: C —» C which is locally bounded, the
properties

(1.d) sup

1
— — 0 and duly|(Z,) — 0

S
/(;‘P(Zu) d‘Zu (log t)2 t— 00
are equivalent. This is a particular case of Lemma A.1*. Hence, we deduce from
the Kallianpur—Robbins law (1.a)* that for any locally bounded function ¢ €
L%(C, dx dy), the property (1.d) is satisfied.
2. We first assume that f has compact support. We then deduce from 1 and
our hypotheses on f that

S s P
— su Z)\VdZ - 7)1 dZ 0.
log ¢ sslz ‘/(;f( u) “ ?l)f( ") (Z,€Dj) “Cu| o
3. Moreover, for each j = 1,2,..., n, there exists a strictly positive number ¢;

such that f restricted to D(z;, ¢;) \ {2,}, where D(z;, ¢;) is the open disc with
center z; and radius ¢;, admits a Laurent expansion

1
)=o)+ 8| 2 )

J

with A; holomorphic in D(z,, ¢;) and g; an entire function with g;(0) = 0.
Therefore,
(1.e) g,(z) = Res( f, zj)z +2%,(2),

with &, another entire function.
Using the equivalence of (1.d) again, we obtain, for each j < n,

—sup| [ 1(2.) - &3] | ke 42| 222 0
logt az o |~ "\ Z, =z | [P P

4. With the help of Tanaka’s formula as in (1.c) and (1.b") above, to prove the
theorem in the case where f has compact support it now remains to show that
the function £; in (1.e) does not contribute to the limit. That is to say,

1 t 1 ~ 1 P
(1.1) @_/(; dz, 1(|zu—zj|sa,) (Zu _ z.)2gj Z,-z; t—> o 0

J

Let G, be the primitive of &; such that G/(0) = 0. Then, from It&’s formula

af ! ol 2 . dz, [ 1
NZ-2] \z-z j‘;(Za_zj)zgj Z,~ )

Since 1/(Z, — z;) ﬁ; 0, we have

1 t dZu 1 P
1 tf Ry bl vy
08t (Zu zj) u J
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Consequently, in order to prove (1.f), we may replace 1z, . <) by 1z, =)
in the left-hand side of (1.f). The proof of (1.f) is now ended by remarking that
the function of z,

1

J

is bounded, belongs to L%, dx dy) and so satisfies (1.d).
5. In the case where f is holomorphic in a neighborhood of o0, and
lim, _, . f(2) = 0, the above proof is easily modified by remarking that f may be

written as
- _R 1 1 1
f(z) = - eS(f,OO); + ?g(;)

with g holomorphic in an open neighborhood of {z: |2| < 1/}, for some 7 > 0.
It then remains to prove, as we have just done, that

1 P
logtf ZZg( ) |Zs|27l);:.:0‘

This completes the proof of Theorem 1.1. O

REMARK. Note that, because of the equivalence (1.d), the integral from 0 to ¢
in (1.f) cannot be replaced by the supremum over s in (0, ¢) of the modulus of the
integral from 0 to s.

2. Log scaling laws. In the course of obtaining asymptotic distributions for
various functionals of complex Brownian motion, we realized that we were
performing the same operations again and again, namely a certain time change
followed by Brownian scaling. To avoid repetition, and speed up procedure, we
introduced the notion of log scaling laws (Chapter 8*). We now recall the basic
notation related to this notion.

Brownian motion Z = (Z,, t > 0), starting at z,, can be expressed as

Z, = z,exp($(U,)),

where { = B + i is a complex-valued Brownian motion started at 0 and

is the logarithmic clock. A Brownian functional G(¢) = G(¢, Z) can always be
rewritten as

(8.x)* G(¢,2) =T(U,$)

for some process I'(u) = I'(u, {). Now, let T (M be obtained from I' by the
Brownian scaling operation

' (u,§) = %I‘(hzu,{), h>0.
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In Definition 8.3*, we say that the Brownian functional G is logarithmically
attracted to the process v = (y(u, {); u = 0) if

(8.5)* T (u,¢) - v(u, §®) = 0,
where the convergence is uniform on compact sets. Equivalently, by Brownian

scaling
(8:)° \ PO, $0/) =2 9(58)

h— 00

in the same sense. We may also say that y is the logarithmic attractor of G. As a
consequence of this definition, we obtain in particular

2
(2'3) @G(t’z) t—_'(:i;)'Y(ol’g)’

where o, = inf{u: B(u) = a}. See Theorem 8.4* for more consequences.

We turn now to the question of what processes y may arise as logarithmic
attractors, and what functionals G are attracted to them. We restrict our
attention to continuous processes G. Roughly speaking, the attractors y are
functions of ¢{ which commute with Brownian scaling.

PROPOSITION 2.1. A continuous process y is the logarithmic attractor of
some Brownian functional G with continuous paths if and only if there exists a
random variable ¥ such that

(2.b) y(u,$) = Vuj(§¥) forallua.s.

PRrOOF. Suppose y is the logarithmic attractor of G. From (8.t)*, for each
fixed u,

1
(2.¢) —};I‘(uh2,§(1/”)) —P>y(u,§').
Therefore, for every fixed & > 0,

1
S D(uh®?, §0/M) L5 y(u, ).

By Brownian scaling, this implies

1
(2.d) o D(uh?k?, §0/P) = y(u, §®) 0.

Replacing u by u/k? (2.c) and (2.d) yield
v(u,$) = ky(u/k%, ¢®) forall as.
Finally, (2.b) follows by taking & = Vu.

€onversely, if a continuous process y satisfies (2.b), then for all 4 > 0,

1
";Y(th, ¢O/P) = y(u,§), wu=0as,
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indicating that the process y satisfies

Y?(§) = v($(R)), as.
Thus G(t) = y(U, {) is logarithmically attracted to y. O

To illustrate the above proposition, suppose for example that the process v is
of the form

ywn=fmmmn

with (v, {) a continuous process adapted to the filtration of {, such that

E(fudvn(v,§)2) < o0, u>0.
0

Then the identity (2.b) implies that y is the logarithmic attractor of some
continuous process G iff for every v > 0,

n(u,§) = n(u/v,§%),  duas,
so by continuity of n(-, {), for every v > 0,
(2.¢) n(v,$) =0(1,¢9%) as.

Conversely, if 7(1, ) € L% o({,, u < 1)), then by the monotone class theorem
there exists a modification of

(0,8) = n(1,89%)

which is predictable and the process

vmo=fmﬂuw)

is a logarithmic attractor. In case n(u, {) = f(8,), it is necessary for (2.e) that for
every v > 0

f(x) = f(x/Vv), dx a.e.,
which implies that
(24 f(x) =f—1(x50)+f+1(x20), dx a.e.

for some constants f_ and f,.
The following theorem, which was stated as Theorem 8.5%, provides a further
development.

_THEOREM 2.2. Let

¢ dz,
G(t) = / f(Z,) oA for a bounded Borel function f.
0 s
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Then the following are equivalent:

(1) G is logarithmically attracted to some process vy.
(ii) f[exp(h(x + iy))] converges in L} (dxdy) as h = oo.
(iii) There exist constants p, and p_ such that as R — oo,
1 dxd

Yy
—ZIf(2) - 0
log R /p(r, +) |2 1(z)=p.l~0,

where
D(R,+)={z:1<|2| <R} and D(R,-)={z: R"'<|z| < 1}.
If these conditions are satisfied, then the logarithmic attractor vy is

y(u) = /()“p(md;v,

where
p(x)=p,1(x20) +p_1(x <0)
and ti:.re are the alternative formulas

. 1 dx dyf(2)
P = Rh—r»noo 2nlog R /pr,+) |2I°
. 1 dar( 1 dz
- ngnw log R 1(R,¢)7{é;ifcr_z_f(2)},

where I(R, +) =[1,R], (R, —) =[R ,1] and C, = {z: |2| = r}.

REMARK. A discussion of the similarities and differences between Theorems
1.1 and 2.2 is given in AL*, before Theorem 8.6*.

Proor. Time changing G via the logarithmic clock U,
G(t,2) =T(U,,9),
where

T(u,¢) = fo “fexpt,) dt,.

According to (8.t)* if G is logarithmically attracted to some y as A — oo, the
process

Iy, {O/M) = hfouf(exp(hgv)) ds,

converges, uniformly on compact sets, in probability, to y(z). By Lemma A.1*
such convergence takes place iff

(2.8) ]:du“)(h s eih0) — o(kB,; ett)

where we have used the notation ¢(x; e?) = f(exp(x + i8)) and ¢, = B, + i0,.

2 p
—> 0 ash,k— o,
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The proof is easily completed using the following lemma, which indicates the
only possible limits in L¥([0, s], du) for processes ¢(hB,, e**+). 0

LEMMA 23. Let ¢: R X C - R be bounded. The condition (2.g) is satis-
fied if and only if there exist two reals p, and p_ such that, for p(x) =
pi1(x>0)+p_1(x <0),

(2.¢) [ dulo(nBy; e%) ~p(B)[ >0 ash - c.

Proor. Since ¢ is bounded, (2.g) is equivalent to
E °d hB,; ™) — o(kpB,, el
([ o5 €) = o(kB,. &%)

This expectation is identical to

2)—>O as h, k - oo.

2|2 . .
i dxdyA( %)whx; e™) — o(kx; e*) [,
RZ
with
9k A 1 ,xdu u
(-) (’)—E;r —u—exp(—é)

a strictly positive function in LY(dr). Therefore, there exists a function p(x, y)
defined a.s. dx dy such that for all compact subsets K of R2,

_/ dxdy|¢(hx; e?) — p(x, y)l -0 ash - oo.
K

Replacing h by h/t for t > 0 and letting 2z — o0, we obtain

(2.1) forall t >0, p(x,y)=p(tx,ty), dxdy as.
Much in the same vein, since y — ¢(x; e*”) has period 2,
(24) p(x, y) =p(x, y + 27), dxdy as.

It remains to show that for p satisfying (2.) and (2.j), there exist p, and p_
such that

(2.k) p(x,y) =p,1(x>0) -Fp_l(x <0), dxdyas.
Clearly it is enough to deal with the existence of p,. From (2.i), we deduce

fow d f_ww dy fow dt|p(x, y) = p(tx,ty)| = 0.

Make the change of variable u = tx and then change the order of integration to
obtain '

[au [as [ dip(x, ) - p(u,ulr/w)] =0,
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so that there exists at least u, such that

p(x,y) =p(u,,u,(y/x)), dxdyas,x>0.
Let p.(r) = p(u,,u,r) for r € R. Now, using (2,),

+ 27
P+(Z)=P+(y ), dxdyas., x >0,
x x
00 o y y+ 27
fodxf_wdyp+(;)~p+( . )
Change x into (1/¢) to get

[Fat[* alp.(ty) - p.((y+2m)| =0,
0 — o0

so that

so that

fo dt [~ dlp.(y) —p.(y+ 1) =0.

Hence
[~ @[ d\p.(y) -p.(N)|=0.
—w Yy
Switching the roles of A and y, then adding the results, gives

|| drdp.(y) -p.(MV)]=0.
Finally, for at least one A, p_(y) = p.(\), dy as. This proves (2.k), and the rest
of the proof of the lemma is routine. O

REMARK. The above proof shows that the characterization given in the
lemma has little to do with Brownian motion and may simply be understood as a
variant of the following fact:

Let ¢: R,—> R or C be locally integrable. Then ¢(% -) converges in
LY([0,1], dx) as h — oo iff there exists a constant ¢ such that

1 -
Zj(‘) dx|p(x) —¢| = 0as A — oo.

The last condition is reminiscent of the following basic property of an almost
periodic function ¢:

1 /a

—f dx ¢(x) converges as A — 00.

h’o

However, if ¢ is almost periodic, so is ¢(-) — a, for any constant a, and also
|6(+) — al. But unless ¢(-) — a is identically 0, the limit of (1/A)/;" dx|¢(x) — a|
is strictly positive. See, e.g., Katznelson (1976).
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3. Refinements of the asymptotic laws for windings. The asymptotic
distribution of
1

t
10gtfog(Zs)alZs

as t — oo, for a complex-valued function g(z), can be radically different from
that described in Theorems 1.1 and 2.2. We now suppose that zg(z) is a function
of the argument of z. :

THEOREM 3.1. Let f be a bounded measurable complex-valued function
defined on the unit circle C, with [2"f(e**) da = 0. Then

o dZ, 4 o om |
u o, , ia
Zu f(e ) _/(; j(; dr(s,a) f(e )’

logt /g

where o = inf{u: B(u) = 1} is defined in terms of the real part B of { = B + i,
T is a complex-valued Brownian sheet with intensity dsda/2m and ¢ and T are
independent.

REMARKS. (i) This convergence holds jointly with all log scaling laws gov-
erned by ¢.
(ii) In case f does not have mean 0, after writing f = fo, + (f — f.), where

1 dz ( ) 1 2Wda ,a)
= — —f(z) = — e’ R
fe 2'rri-/;; z f 27 Jo (
the constant term gives an extra contribution in the limit of f,{,, due to the
asymptotics of windings. Stated in this manner, Theorem 3.1 now appears as an
extension of Spitzer’s theorem (1.c)*.

(iii) As in the case of windings, this limit theorem can be split into action at 0
and action at oo, and this is the basis of extending results to several points of
origin. (See next section.) More precisely, our method shows that for two
bounded Borel functions f~ and f* on the circle, each with mean 0,

2 tdZu —f tdZu ;
logt(fo Z, f(e tI)u)l('z"'sr)’foz_ﬁ(e Q“)1<|Zu1>r>)

d o r2x _ —/ ia 0 (2m ia
- (,L,/(; dl,q [ (€ )1(ﬁs<0)’/;f0 dlg o (e’ )1(,ss>0)),

where I'" and T'* are two independent copies of I'. This limit could also be
written with dT|, ,, twice instead of dI[; ,, and dTI; ,), but we find the +
presentation more convenient for the extension to several points.

~ (iv) An interesting aspect of Theorem 3.1 is that it gives the joint limit in law
of a familiy of functionals of the complex Brownian motion. However, if one is
interested in the convergence result with respect to just one function f, the next
corollary may be of some interest, if only for checking constants.
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COROLLARY 3.2. Letf, g: V — C be two functions which are holomorphic in
a neighborhood V of the unit disc and such that f(0) = g(0) = 0. Then, using the
notation of Theorem 3.1, the triple

2 dZ t , 2 .
— [—=, — [ d(log|Z @), — ["d®, g(e'
(logt (2 Togi Jy 4008121 1), 3 [ d®us(e ))

converges in law, as t = oo, to

1 1
y T -~ 8;, ’
(&, 2 I fll2%s 3 &l )
where ¢, vy and § are independent complex Brownian motions and

1 o . 1/2
11, = (5 A da|f|2(e“‘)) :

ProOF. From Theorem 3.1, an expression of the limit in law for the triple is
0 (o o [ (27 "
(a,, [ [ @B 1(e), [ [~ D, 8(e )),
where T = B + iD. Now, the corollary follows from the fact that, say
‘St(g) = (‘)4 daD(t, a) g(eia)

is a Gaussian complex-valued martingale which admits a continuous version.
Moreover, if we write g,(z) = Re g(z) and g,(z) = Im g(2), then for any i, j €
(1,2},

(6(8:),8.(8)),= —Z%Lzﬂda(gigj)(eia)-

However, since g is holomorphic and g(0) = 0, we have

1 ,on .
0 =g%0) = a7 ) dag?(e*)

1 2 . . . i
= 5 [ dalgi(e) - gi(e?) + 2i(gi82) ()]
so that ’
2m . 27 . 27 .
dagi(e) = ["dagi(e) and [ da(g.g,)(e™) = 0.
0 0 0

Finally, (V2 /||gll,)8,&) is a standard complex Brownian motion, from which the
statement of the corollary clearly follows. O

REMARK. Assuming f and g satisfy the hypotheses of Corollary 3.2, the
processes (8,( f ), t = 0) and (8,(g), ¢ = 0) ae independent if and only if both

foz"daf(a)g(a) -0 and fo%daf(a)é(a) -0,
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where g(a) is the complex conjugate of g(a). For example, the processes
W2 f2" d,Dy o e t=0) for n=1,2,... are independent complex Brownian
motions, from which the entire sheet D can be recovered by a Fourier series.

Proor oF THEOREM 3.1. This is a straightforward consequence of the
following theorem, which is a slight modification of Theorem 3.5 in Yor (1983).
See also Borodin (1986) and Csaki, Féldes and Kasahara (1987). O

Let P,, be the set of bounded Borel functions f: R — R, which are periodic,
with period 277. We use the notations || f||, and f, for functions f € P,_ as if
they were functions defined on the unit circle C, as considered above. To
illustrate, for f € P,_,

1 27 1 2 21/2
fC:E_/(; f(a)da and ||f—fC||2=(‘2;_/; da(f(a)—fc)) .

THEOREM 3.3. Let B and 0 be two independent real-valued Brownian
motions, each starting from 0. Let f, g € P,,. Then:

(i) As ¢ > oo, the continuous processesint € R ,,

(B,,o,, [ a8, 1(ct), [ ‘dasg(cas)),

converge in law to

(Bt’ot: fCBt + ‘/(;t/;%”dB(s,a)[f(a) - fC]’ gcot + ‘{)t'/(;zﬂdl)(s,a)[g(a) - gC] ’

where B, 0, B, and D are independent and B and D are Brownian sheets
indexed by R X[0,27] whose associated Gaussian measures have intensity
dsda/2m.

(ii) In particular, as ¢ —» o, the quadruple

(ﬂt,o,, [(d8. 1(c0,), ‘dosg(ces))

converges in law toward
(B> b, feBe + | f — fell D, 8c0: + 118 — &cllzey)s

where (B, 0, 8, €) is a four-dimensional Brownian motion, starting from 0.
(iii) For a €[0,27] let S, be the sector 0 < arg(z) < a. As ¢ — oo, the
quadruple of continuous processes in (t, a)

. t .‘
(,3,, 6,, fo‘dﬁs1(ew”~ €S,), /0 do,1(e"% e s,,))

converges in law toward

a ~ a -
(3.a) (.Bt, 6,, E[)’t + B oy 50, + D, a))’

27 ¢
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where

~ a ~ a
B o) = B(t, a) — ﬁBa,zw)’ Dt ay= Dyt 0y = 5D(t,2w)-

REMARKS. (i) The processes B ) and D «y re Brownian motions in t and
Brownian bridges in a. The third and fourth components of the limit in (3.a) are
independent Brownian sheets in (¢, a), both with intensity d¢da/2#. For future
reference, we introduce the notation

a ~
_0t + 'D(t,a)

(3.b) o= 5

for the fourth component in (3.a).

(ii) The convergences in law refer to the weak convergence of the associated
distributions on C(S, R?), equipped with the topology of uniform convergence on
compact subsets of S, where S = R, or R X[0,27].

(iii) The proof of Theorem 3.3 [or that of Theorem 3.5 in Yor (1983)] hinges
on Knight’s theorem (1971)* and the basic fact that

(3.) for feP,,, ['dsf(ch) 25>t as ¢ co.
0

Applications of Theorem 3.1. Recall that the differential of the winding
number ®(¢) derived from Z, = X, + iY, is

X, dy, - Y, dX,
; iz,

Spitzer’s theorem (1.c)* asserts the convergence in distribution of 2®,/log ¢, as
t > o0, to a standard Cauchy variable. We show, in the next theorem, that the
two-dimensional variables

1 [ X,dY; Y,dX,
log ¢ fo \Z,* /o |Z,?

converge in law, and we identify the limit, thereby reinforcing Spitzer’s result
- (L.c)*. In fact, let

t t
a= [X,dX/\Z) b= [Y.d¥/IZ}P,

- [X,a%/122,  d,= [Y,dX,/|Z[.
0 0
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THEOREM 3.4. There exists a four-dimensional Brownian motion (B,, 6,, 8,, ¢,;
t > 0) such that, as t - oo, the 4-tuple

2
E;g_i(at’ b,, ¢, d,)

converges in law to
11+68,;1-8,;0,+¢,; —0,+¢,),
where o = inf(t: B, = 1}.
REMARKS. (i) B + i0 is the usual { for log scaling laws and the convergence

holds jointly with such laws.
(ii) From the theorem, we recover, in particular, the log scaling laws

2 2 d
i;’g—EIOgIZA = Tgt(at‘l‘ b)—1 ast— oo,
2 2

= —(¢,-d,) % -
logtd)'_ logt(c’ d,) 6, ast— co.

PROOF OF THEOREM 3.4. Linear operations on the identities
X, dX,+YdY, X,dY,-Y,dX, dZ,

+
12, T zp z,’
X,dX, - Y,dY, X,dY,+Y,dX, dZ,Z, )\
+ =
1,2 Rk z, \1z] |’

give formulas for da,, etc., in terms of the right-hand differentials above. Hence,
if we use the notation in Theorem 3.1 and introduce the standard complex
Brownian motion

. 2 .
8, + ie, = /0 d, T, o e,
we find as a consequence of Theorem 3.1 that

2
@(atr b, ¢, d,)

converges in law toward
11+6,,1-86,,0,+¢, —0,+¢,). O
Here is a second application of Theorem 3.1:

THEOREM 3.5. Let r > 0. The pair of continuous processes in a € [0,27],

~t t
Too 7 1(1Z Z.e8,); [d®1(2Z|>r,Z €8
lOgt(./O d(ps (l sl <r, 4 Sa)r/(‘) s (l sl r, 4 a))’
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converges in distribution as t - o to

(Y4B, 18, <0); [ [“dE, ,1(B. > 0)],
(‘/(;_/(; (s,u) (Bs ) ‘/(;‘/(; (s, u) (B ))
where we use the same notation as in (3.b) above and where

o = inf{a: B, = 1}.

In particular, the finite-dimensional distributions of the continuous process

logtfd(DlZ €8,), ac0,27],

converge as t = oo to those of
g \1/2
(—) B,, a €[0,27],
27

where (B,, a € [0,27] is a Brownian motion independent of (B,, t > 0), hence
also independent of o.

REMARK. Let X, = (6/27)?B,, a € [0,27]. Then for f € L*[0,27], da),
. (27
Bewwi[*"/(a) aX, | = ex = I

In particular, for 0 < u < v <27, X, — X, has a Cauchy distribution with
parameter ((v — u)/2w)/2

Finally, we give an application of Theorem 3.1 to the asymptotic distribution
of functionals of the type

e ds i®
[izpte™
for certain bounded Borel functions f: C — C. Recall the notation
1 dz 1 Lo .
fo= 3o J ()5 = 57 [TH(e) da.

THEOREM 3.6. (i) Let f: C > C be a bounded Borel function such that
fc = 0. Then

1 [ ds .(p
. — Pe) — F,-F)(®,)d®, 0,
@d) o [ 1gt/( : ) 4o, >
where F(a) = [¢f(e®)db, a € R, is a 27-periodic function and
1 oq 1 (oq ia
FC—E/O F(a)da———E;r-/(; af (e'®) da.

(ii) Moreover, one may incorporate in both the Riemann and the stochastic
integrals in (3.d) either the indicator 1,5, _,, or the indicator L4z, 2 ry
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(iii) Consequently, if f, g: C — C satisfy the hypothesis stated for f alone in
() and if 0 < r <r’ < o, then the C%valued random vector

1 e ds i®, e_ds i®
(3.e) Tgt(-/(‘)wf(e ’)1(|z,|5r),j(;wg(e ’)1(|Z.|2r’)
converges in law toward

0 ro2mw O r2m
(3-f) (j(; j(; dD(s,a)l(B,SO)(FC - F)(a),/(; /(; dD(s, a)l(p,,zO)(GC - G)(a)),
where we use the notation in Theorem 3.1, with D = Im T,

PrOOF. (i) The fact that F is 2#-periodic is an immediate consequence of
the hypothesis f, = 0. Now, let F(a) = [§ dx F(x), a € R. We have, from It6’s
formula,

~ ~ t 1 t ds .
(3.9) F(®) = F(@,) + [[F(9,) de, + 5 [ f(e"®).

Due to the periodicity of F, F(x) — xF, is 27-periodic and continuous, hence a
bounded function, so (3.g) immediately implies (3.d).

(i) In view of (3.d) we need only consider [{(ds/|Z/|*)f(e**)1,z <, Since
fc = 0, the Kallianpur-Robbins law (1.a)* implies that as far as the limit in
law of

1 , ds

logt 0 'Zsl2

f(e™)

is concerned, the indicator 1, _,, can be replaced by x(log|Z,|), where
x: R > R, is a C? function such that x(x) = 1 for x < log r and x(x) = 0 for
x > logr + &, for some ¢ > 0. Keeping the notation from the beginning of the
proof, apply Itd’s formula to the product x(log|Z,|)F*®,), where F¥(x) =
Fx) - xF,, to obtain

x(log|Z)) F¥(®,) — x(log|z,|) F*(®,)

t ds .
(8.h) = j(;X(lOg|Zs|)[(F—FC)(<I>s)d<I>s+ 2|Zs|2f(e@a)

+ /0 'FH®,) d[x(lngZsI)]-

Now divide both sides of this identity by (log ¢). Clearly, the left-hand side does
not contribute to the limit. Next,

i 1;)
: —_ b —
(;;.1) T fo F¥(@,) d[x(10g|Z,))] ;- 0.
I;ldeed, we have

1 ds
d[x(log|Z,|)] = x'(log|Z,|) d(log|Z,]) + Exff(10g|zs|)lz_|2,
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Two applications of the Kallianpur—Robbins law now show that (a) the stochas-
tic integral [with respect to d(log|Z,|)] is of order log¢ in law, while (b) the
Riemann integral is o(log t) in law. Indeed, the perlodlclty of F* implies

0 f FH(@,)x"(08l2.) 775 lz

converges in probability to 0 as ¢ — oo, because the function of Z, in the
integrand has an integral over the whole plane equal to

B[ 208 ) = B (+ ) — x(~)) = 0

since x’ has compact support. Hence, (3.i) is proved. Going back to (3.h), we now
find

ds id,
log th( og| s|)(2|Z|2f(e )+(F Fg)(d’)d@ —)()

and, much as above, we may replace x(log|Z,|) by 1z, < ,)-
(iii) The last assertion of the theorem is an immediate consequence of Theo-
rem 3.1. O

The particular case when the functions f and g featured in the statement of
Theorem 3.6 are traces on C of functions f, g: V — C which are holomorphic in a
neighborhood V of the unit disc and such that f(0) = g(0) = 0 is most interest-
ing. Indeed, for such a function f, say f(z) = X, .,f,2", there is the expression

F(a) = h;(e**), where h;(2z)= —i}, %z".

n>1

We find that f, = F, = 0 and from the discussion in the proof of Corollary 3.2,
the limit variables (3 f) may now be represented as

. 1 g _ 1 ] +
(34) Tl [ 4% 1, <05 Tl [ d% 15,0 )

where Yy~ and y* are two independent complex Brownian motions which are
also independent of 8, ¢ = inf{u: B, = 1} and ||f |l = (Z,»(/f.I2/n*)"2

Two simple interesting examples are f(z) = z and f(z) = 22, in which cases
we deduce

2 tdS‘Zs d
. 2y’
(3:) osth iz %
and
(3‘1) . logt-[ I J_‘YO

where, according to the remark after Corollary 3.2, ¥’ and y” are two complex
Brownian motions independent of each other and of o.
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Local times on rays. We now present a complement to Theorem 3.6, which
gives a more geometric interpretation of the asymptotic Brownian sheet D. We
begin with the fact that if Z starts at z, # 0, there is a jointly continuous
process

(L t=20, a € [0,27]),

such that for every bounded Borel function f: C - C,

t dS 11 2m ia a
(3.m) [izpt(e®) = [ daf(e)Ls.
Such a process (L) is defined by
(3.n) Ly =Y lgt2nm,
nelZ

where (I%; t > 0, b € R) is the jointly continuous version of the local times of
the local martingale (®,, ¢ > 0). Since / is continuous and has compact support
in b, it is immediate that the formula (3.n) defines a jointly continuous process.

THEOREM 3.7. With the notation introduced in Theorem 3.1, define
8,=ImT, ,y=D, ., ac[0,27].
(i) The finite-dimensional distributions of

1
(@(Lf -LY);ac [0,277])
converge weakly toward those of

a
(Sa - -2—7;82,,; ac [0,2%]).

(ii) For every a € [0,27],

(3.0) L P
0 ——L{> —.
(loge)® " 27

REMARK. In view of the approximation of Brownian local times by down-
crossing numbers, aN? — 1L? as a — 0, so (3.0) is the limiting case as a — 0 of
the following result of Burdzy, Pitman and Yor (1988): For every a € (0,27],

8
(log t)?

Before the proof, we give a slightly heuristic explanation of the first statement
in Theorem 3.7, with the help of Theorem 3.6.

Let f: C — C be a bounded Borel function such that f, = 0. Then, from (3.d),
we obtain

@o) g [Tdei(@)(Le - 1) 2 [T ds (B~ F)(a)

d [y
a —_—
(aN?) > .
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Expressing F in terms of f and using integration by parts we may write (3.p) as
1 27 d 27 a
’ a __ 0 —_ —_—
GP) o7 [Tdaf(a)(Le - 17) 2 [T dat(a)(8,~ 3= ),

which renders the first statement of Theorem 3.7 very plausible. A proof of this
statement could presumably be obtained following these lines. But we shall give
an alternative approach.

Proor or THEOREM 3.7. (i) We imitate the proof of the first statement of
Theorem 3.6, the role of Itd’s formula (3.g) now being played by Tanaka’s
formula. More precisely, for a given a € [0,27), let

Fa(x) Z 1(2n1rsx<2mr+a) and F(x) /dyF(y)

neZ

The second derivative of F,, in the sense of Schwartz’s distributions, is the
measure

F/(dx) = X {—esnpia(dr) + ey, (dr)},

nez

where ¢, (dx) is the Dirac measure at ¢ € R.
The analogue of It6’s formula (3.g) is now

- - ¢
(3.) F(®) = F (%) + [F(®,)dd, + {(L - Lf).
We then deduce, much as in the proof of Theorem 3.6, that

(Lg = L9) ~ 5 gt/< 2 (F)c)(®,) de,,

meaning that the difference between the two sides converges in probability to 0.
We immediately deduce, with the help of Theorem 3.1, that

log ¢t

a
(Lt LO) —’ 5, — E‘Szw-

log ¢t

Consideration of linear combinations gives convergence of finite-dimensional
distributions as a varies.

(ii) For any bounded Borel f: C —» C, we have, with the notation of (2.h)*
and (3. h)* and A = ;logt,
i, U i, a/my, ih(m
e™) = — [ “dsf(e™) = dof(e™"),
(k,gt) [l (€)= gz [P () = [ Midor(e)
which, from (3.c), converges in law toward f,o. On the other hand,

4 ds P o
(logt)2-[)|Zs|2f(el ‘)_f daf(e _(L - LY) + h2(/ daf(e ))L,.

Since the first integral converges to 0 in probability, we obtain (3.0). O
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4. Extensions to several origins. Our first aim in this section is to obtain
an extension of Theorem 3.1 to stochastic integrals whose integrands have
singularities at n distinct points z,, 2,,..., z,, assumed also distinct from the
starting point z, of the complex Brownian motion Z. Let ®/ be the winding
number of Z around z; up to time u and let fi C > C,1 <j < n, be a sequence
of bounded Borel functions. We want to show, under some suitable assumptions
on the f;’s, that the random vector

2 t (Eu i/ .
(4.a) (@fozu_zjfj(e ),1<j<n

converges in law as ¢ - o0, and we want to describe the limit law.

The case when the f;’s are constant was the focal point of our study in AL*.
The result then may be summarized as follows. Introduce 2n strictly positive
real numbers r,r{,1 <j<n,and let

Dj_={z: |z—zj|srj}, Dj*={z: |z—zj|>rj’}.
Then there exists a continuous C”"-valued process { consisting of n complex
Brownian motions {; = B;+ if;, 1 <j < n, whose joint law is described in
Theorem (6.2)* (where we used a superscript co notation, which we now drop),
such that

(4b B 2 % 1<j
) i)’ 7 _ eprp L =J =<
) logtfon—zj (Z,€Dj) logtfon—zj (Z, € D) J<n
converges in law toward
9 ; )
(4.0) (_/(; dg‘j(s) l(pj(s)SO)’ ./(; d§j(s) l(ﬁ,(s)zo); 1<j< n),

where o; = inf{¢: () = 1}. [Note that we have already presented the conver-
gence in law of the imaginary parts of (4.b) in (1.b’) above.] The study of the
limit law of (4.a) thus reduces to the case where f; has mean 0 for each j. In this
case we have

THEOREM 4.1. Let f;, g;: C > C(1 <j < n) be 2n Borel bounded functions
such that

20 . 27 .
4d dof(e?) = dig.(e?®) =0 forev .
(4.d) [[7d81(e”) = [Tdbg,(e?) =0 forevery;
Then, the C2%™valued random vector

2 ¢ dZ, dz, .
logt(«{)Z — ( @ ) (Z,eDf )’fZ gj(e )l(z,,eD;):lSJSn)

converges in law toward

0 (27 . i 0 27 i .
(4.) (fojfo Al g <ofile 0)’_[) /(; Al o Lp e =08,(e”), 1 <j< ")’
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where B; and o; are as in (4.c), and I'",1<j<n, and T* are (n+ 1)
independent complex-valued Brownian sheets, with intensity ds df /2w, indepen-
dent of the § process.

Before proving Theorem 4.1, we describe in more detail in a particular case
the law of the random vector in (4.e). Assume now that the n functions g; are
identical to a single function g, that f; for 1 <j < n and g are the traces on C of
functions which are holomorphic on a neighbourhood of the unit disc and that
(4.d) holds. We also assume, without loss of generality, that || ]|, = |Igll, = 1.
Let A/ denote the left-hand component in (4.), A, the common right-hand
component in (4.e) with g instead of g; and A the value (which does not depend
on j) of the local time at 0 of B; at tlme o;. Then the n + 2 complex-valued
random variables (A7, 1 <j<n,A,, A) are such that for each j the triple
(A7 ,A,, A) is distributed as

(4.£) (fol(mo,dss,jolw’w, dss,)\,,),

where 8 and 8§ are independent real- and complex-valued Brownian motions
respectively, both starting at 0, o = inf{¢: B, = 1}, (A,, ¢ > 0) is the local time of
B at 0 and the n + 1 variables A/ , 1 <j < n, and A, are mutually condition-
ally independent given A. This dependence structure, which is very similar to
that described in Theorem 6.1*, comes from the fact that the Brownian motions
B; have independent negative excursions but identical positive excursions, as
described in Theorem 6.2*.

FIRST STEP IN THE PROOF OF THEOREM 4.1. Let

Wi(e,t) = /Ot(dZu/(Zu - zk))g(ei‘bﬁ)l(z,,el);)-

As a first step in the proof, we shall show that, for all j, 2 < n, and all bounded
Borel functions g,

1

(4'g) I—suplwk(g!s)_wj(gas)l—)o
0gt s<;

(Note that it is not necessary to suppose g has mean 0 for this step. The mean 0

assumption is made in the theorem just to focus attention to the contribution of

the Brownian sheets.)

From (1.d), (4.g) is equivalent to

1 t P
4h — | dsf, (Z 0;
(41) G bt A2 2

where
2

((z - zk)')l(zep,:) - ﬁg((z - zj),)l(zeDj")

1
fr, (2) = (z_—g

2)



988 J. PITMAN AND M. YOR

and we write simply £ for £/|£|. We may as well replace f, ; by
2

- 1 1
fr, ;(2) = (—_—-)g((z —2,)) - —_?g((z - z))|1

for R large enough, since the difference f, ; fk’ ; is a bounded, integrable
function. But the function

1 1 1
z- -
z2-2z, z-z2 s> R

(Iz21= R)

is bounded and belongs to L%(C). Therefore, it suffices to show (4.h) w1th fr,
replaced by

fkit,j(z)_ ! |2lg ) g((z zk))l (121> R)*

In case g is the trace on C of a continuously differentiable function & on a
neighborhood V of the unit disc, we may write

le((z - z,)) — &((z - 2))]
<vl(z-z) - (z2-2,)] [Where Y = sup |Vg(£),]

lél<1
Y(2 - 2))lz = 24l — (2 = 24)l2 = 2]
2 =zl 12 — 2

1
= O(—) as |z| = oo.
|2]

Thus f# (2) = 0(1/ |z|*) as |z] = o and f# ; is therefore integrable. The case
where g: C — C is only assumed to be Borel bounded is more delicate to handle,
for the following reason: Under the hypotheses we have made up until now,
much more than (4.h) is true. In fact,

t

Togt s dsfy, ;(Z,) converges in law.

In the general case, which we now turn to, we shall only be able to prove that
t L

4. dsf} (Z,) — 0.

( ) (logt)zfo fk,j( s) t— 00

Our main tool to prove this result will be

PROPOSITION 4.2. Let (Z,) be Brownian motion in C starting from z,, with
|2o| < R. Then, for every Borel function u: C — R, which is locally integrable
in {z: |z| > R} the following inequality holds:

&limsu — [ dsl u(Z ]s — limsu { df u(re® }
z—»wp(Og) f (1Z,| = R) (Z,) 4 r_mop / ( )

The reverse inequality holds with lim sup replaced by lim inf.
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In fact, we shall prove (4.i) by using the two following straightforward
consequences of Proposition 4.2.

COROLLARY 4.3. (i) If u: C > R, is a locally bounded Borel function such
that :

lim rzf%dﬁ u(re®) =0,
r— oo 0
then

lim —— [f dsu(Z, )] =0.

t— oo (log t)’

(ii) Let (Z,) be complex Brownian motion starting from z, with |2,| < R and
let Z! = Z,/|Z,|. Then, for every positive Borel function u: C = R ,,

1

t dg 1 20 .
lim su 1 w(Z)| < — | dou(e®).
t_’wp (logt) [_/(; |Zs|2 (1Z,]= R) ( s)] 477/0 ( )

The reverse inequality holds with limsup replaced by lim inf.

We now prove (4.i). In the case when g: C — C is continuous, the function
u=f# , clearly satisfies the hypothesis of part (i) of Corollary 4.3, and this gives
(4.) in this case.

Consider now the case when g is only assumed to be bounded Borel. Plainly,
it is sufficient to show

(43) — [fash(z) 2
! (log 2’
where (Z,) is complex Brownian motion starting at 0 and
h(z) = ® |2 lg((z + a)) — g(2 )| 1y,>r) forsomea 0.

Now approach g in L%C, df) by a sequence (g,) of continuous functions. Let
h, be the function h with g replaced by g, and let

2
L, r(2) = 2 |2 lgp(z g(z’)l Liz> Ry

Then, for some universal constant c,
(4.k) h(z) < c{l, p_o(z + @) + h,(2) + 1, #(2)}.

Finally, let

I(h) = limsup ——s [f dsh(Z, )]

t— o0 (
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Then, from (4.k) and part (ii) of Corollary 4.3, we obtain
1 ron 20 if
I(h) < c(2—;f0 do\g — g,)%(e”) + I(h,)|.
Since &p is continuous, we already know that I(A p) = (; moreover, as
27 .
fo db|g — g,|%(e*)

can be made arbitrarily small, we have I(h) = 0, which proves (4.j), hence (4.i) in
full generality. O

PROOF OF PROPOSITION 4.2. Define

I(u) = E[ jo " ds 1(|Za|2R)u(Zs)].

Then,
i0 2
(> 2 " |re®™” — 2|
It(u)—errL dO u(re )A(———————t ),
where
oodr
- -r/2
A(x) 27 J, r

is the same function as in (2.h). Since A is a decreasing function,

I(u) < _/Iimrdrl)zwdﬂ u(rew)A(-(i—_t'il)).

Now, let R’ > R. Then, \

I(u) < f:’rdr'/:"da u(re“’)A(SE:_tlz_Ol_)_)

+sup( f d0u(re"’))f ((L_—zl—z—oﬁ-)

r>R’

Now, it is easily seen that

(R — |z0))* 1
(5 e

logt t

and

wdr ((r— |zo|) 1
(logt) fR r ( )l-*w Ar
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so that, making use of the local integrability of u, we obtain

limsup —— 7 I(u) < — sup( f dé u(re“'))
t— o0 ( r>R’
The proof of the first 1nequa11ty is completed by letting R’ tend to co.
On the other hand, we have

I(u) > /:rdrfozwdﬂ u(re)A

t

(r+ |Zo|)2 )

and, for R’ > R,

’ T . R + 2
I(u) > LerrL2 do u(re‘”)A((+m

mf( f dou(re'ﬂ))fmffA

R T

(r+ |zo|)2)

t

which, much as before, implies

1 1 - )
lim inf —I(u) > —hmmf( 2f2 dé u(re‘o)). ]
4 0

t— o0 (log ) T roo

SECOND STEP IN THE PROOF OF THEOREM 4.1. This second half of the proof
is very similar to the proof of Theorem 6.1*, so we go at a quick pace. Thanks to
the equivalence (1.d) and the Kallianpur-Robbins law, we may assume r/ to be
so small and r; to be so large that the (n + 1) sets D, j =1,2,...,n, and Dy
are disjoint. Also, from the first half of the proof, we only have to consider the
C"*'.valued random vector

2 t dZu ( .q’j)l 1 . dZ .
_— . 1@y _ < < u
log ¢ Jo zZ, - zjfj e (z,epry LSJ=s 1N logtf Z _ZIg(e ) (Z,€D;)

for n + 1 real-valued functions f;, g which satisfy (4.d). Let

i t dZu i/
M/ (t) = /(;mfj(ed,")l(zueq‘)’

)_f(Z 1)g(e )1(2 e Dy

The processes M/, 1 <j<n, and M, are conformal martingales [see Getoor
and Sharpe ( 1972)*], hence time changes of complex Brownian motions which we
denote by m’ and m,. Because the sets D/ and D, are disjoint, m/,
1<j<n, and m, are n+ 1 independent complex Browman motions, from
Knight’s theorem (1971)*. Moreover, if we denote by £/ the complex Brownian
motion which is the time change of [;(dZ,/(Z, — z;)), then the random vectors

£E=(&,...,¢") and ==(m',...,m",m,)
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have the asymptotic property
d 00
(8%, m*) = (5, m®),

where the superscript 4 indicates rescaling space by 4 and time by A2, as in
Theorem 6.2*, { and m* are independent, m*® is a Brownian motion in C"*! and
the distribution of { is described in Theorem 6.2%.

In order to prove this result, it suffices—following the proof of Theorem 6.1*
—to replace the vector £ by (£,..., £*, £,) which is the C**'-valued Brownian
motion obtained by time-changing the conformal martingales

ft—s 1 ft————s 1 1<j<n
iys 1y, <J=<n,
o Zs Zj (Z,€ D’) o (Zs 21) (Z,€ DY)
with their respective increasing processes, and to show ((i& h, ey 5’_’* h, 5 ﬁ), m”)

converges in law, as A — o0, to a CX"*D.yalued Brownian motion. In fact,
thanks to the orthogonality properties of the various martingales involved, and
with the help of our appendix, this all boils down to problems involving only one
singularity which have already been dealt with in Section 3.

Next, the normalized vector of clocks,

4 ¢ du - .
(lOg t)2 (‘/(; IZ _ z.l2|fjl2(e Q“)I(ZMGDJ_)s 1 <j<m
u J

¢ du -
[)__lz — Z_1I2|g|2(el¢")1(zueu;))
u
converges in law toward

9 . 4
(” fj“gj(; d‘sl(ﬁj(s)sop 1<j=<n; ||g”§_/(; dSI(ﬁl(s)zO))-

Putting all these results together, the limit in law of

2 .
—_— J y .
logt(M_(t), 1<j<n; M,(t)

may be expressed as

(” fj”2_/(;Idsj_(s)l(ﬁj(s)sov 1<j<n; ||g“2‘/(; d5+(3)1(31(s)20)),

where 87,8% (1 <j < n) are (n + 1) independent complex Brownian motions,
independent of the {-process. Finally, a linearity argument enables us to present
this in terms of a Brownian sheet, as in the statement of Theorem 4.1. O

Asymptotic distributions for some Riemann integrals. To make our story
shorter, we shall only consider the extension of Theorem 3.6 to functions with
several singularities in the case when the functions are holomorphic. The rela-
tionship of the next Theorem 4.4 to Theorem 4.1 is the same as that of Theorem
3.6 to Theorem 3.1: In both cases, what is achieved is the reduction of the
asymptotic study of a Riemann integral to that of a stochastic integral.
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THEOREM 4.4. Let f, 1<j<n, and g be n + 1 functions from V to C,
which are holomorphic in a neighbourhood V of the unit disc, and such that
f(0) = g(0) = 0. Then, the C*"-valued random vector

2 t du .
logt f |Z — 2 |2f( ) (Z, eD ),/ IZ |2g( )1(ZMEDJ+); 1 S] <n

converges in law toward

Gj . 0 .
(4) (ﬁnf,u* [ 4 ey <00 Zigl [ dv 1(,;1<s)20);1smn),

where (v ~,y%; 1 <j < n) are n + 1 independent complex Brownian mations,
which are independent of the {-process, in terms of which the real Brownian
motions f; and the hitting times o; are defined, as in (4.c).

Proor. We have shown, in the proof of Theorem 3.6, that

du ,
( pi®% 1 ~
IOgt./(; |Zu_2j|2fj(e ) (Z"EDj)t

logtf d®] hi(e")1 z, e ;)
where £; is the h-function associated with f; as in the discussion following the
proof of Theorem 3.6.

An analogous result holds for the integral depending on g. The final result
now follows from Theorem 4.1, provided we represent the Brownian sheet
integrals as we did in Corollary 3.2 and formula (3.j). O

To illustrate Theorem 4.4, we look at the n-point extension of the examples
(3.k) and (3.1). Then, the C*"-valued random variables

2 ¢ du ¢ du
{ log ¢ (/0 12, = 2 (Zu= 21z, en; /0 m(z“ - 2!‘)1(2"60,-”)’

2
log ¢

/, du . ft du
0 (2,2, P (2

—1z,eph |5 1 <Jj<n
u Zj)

converge in law, as t = oo, toward

o o
<‘/2_(_/0 dy;” 1<B,<s)sov.£) dy’ 1<Bl<s)20>)?

1

(4.m)
(/ ds; _1(B(s)<0)’/ dd;’ 1(B(s)>0>) 15j5”}’

where (y» ~,y*, 87 7,8% 1 <j < n) are 2n + 2 independent complex Brownian
motions whlch are 1ndependent of the {-process. Moreover, the distribution of
the C"*'-valued variable features in each line of (4.m) is that of a constant (v2
or 1/2) times (A7, A,, 1 <j < n), where we use the notation introduced after
Theorem 4.1. These calculations lead to the next theorem, which concerns the
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asymptotic distribution of
¢
[ dsi(z.)

when f belongs to a class of meromorphic functions. This theorem should be
compared with Theorem 1.1, which dictates the asymptotic distribution of

/ ‘dz, {(2,)

for another class of meromorphic functions.

In order to fully justify our choice for the class of functions considered in
Theorem 4.6, we present the following elementary statement, the proof of which
is left to the reader.

LeEMMA 4.5. Let C_ denote the Riemann sphere and let f: C,, - C_ be a
meromorphic function such that

(i) lim,_, 2f(2) = 0 and

(ii) the poles of f are of at most second order.

Then f has at most a finite number of distinct poles, call them z,,..., z,, and
there exist 2n complex numbers ry,..., 1,, py,--., P,, Such that

1 1
+ Y o—s.
Zj ? (2 - zj)2

_r;=0 and f(2) = erz_
J

J

Moreover:

def _, .
(@) o(f, ) =1lim,_,, 2%/(2) exists and p(f,o0) =X p; + L,12,.
def _, .
- () {f}=1lim,_ o p_ols, ,d2f(2) exists
where ¥, p is the complement of U}_{z: |z — 2| < €} U {2: |2| > R} and

{f} =202 13

Here the notation dz signifies a Lebesgue integral. In the sequel, we shall refer
to this class of functions as M,.

THEOREM 4.6. Let (Z,, t > 0) be a complex Brownian motion started at z,,
and suppose that z,, z,, ..., 2, is a finite set of distinct points in C. Suppose that
f is a complex-valued function such that:

(i) In a neighborhood D; of each point z,, ..., z, and for z € D;\ {z;},
z)=hi(z)+p——=,
f( ) j() pj(z__zj)2

where h, is integrable in D,
(ii) f is bounded and measurable on the complement of the union of these
neighborhoods.
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(iii) In a neighborhood D, of oo,
f(z) = h(2) + &(2),
where h, is integrable in D,, g is holomorphic in D, U {0} and
lim, ,  28(z) = 0. We denote p,, = lim, _, , 2°g(z). Then:
def
(@ {f}=1lm, o g f5, ,d2(2) exists, where ¥, p is as in Lemma 4.5.
(b) As t > oo, (2/logt)[{dsf(Z,) converges in law toward

1 N IZ A 1 A
o ) +ﬁjpj Lt TPl

where the (n + 2)-tuple (A, A/, A,; 1 < j < n) is distributed as indicated after
Theorem 4.1.

REMARKS. (i) The case where f is bounded and integrable on the entire
plane is a particular case of Theorem 4.6. Then {f} = [c dzf(2), p;=1p, =0
and we recover the Kallianpur—Robbins law (1.a)*.

(ii) In the case when f € M,

pj= lim (2 -2,)°f(2),  p,= lim 2%(2).

Then, from Lemma 4.5, the limit variable in Theorem 4.6 may be written as
1 1
+ | =42 + =A,|.
S Dol o)

PrOOF OF THEOREM 4.6. We may choose ¢ so small and R so large that

1
hs,R(z) =f(2) ij )2 (|z zj|<e) poo—z_2—1|2|2R
j

(4.n) Er z A+

‘/—_ J

is an integrable function. Therefore, the Kallianpur—Robbins law combined with
the illustration of Theorem 4.4 given above yields part (b) of the theorem with
(1/27){f} replaced by (1/27)/c dzh, p(2). Part (a) of the theorem and the
equality

{(f} = [ dzh, x(2)
c
are proved by remarking that for ¢ < ¢and R’ > R,

[ f@de= [ hon@)dz = [hoalz)dz. 0

R — o0

The following corollary of Theorem 4.6 plays a key role in the study of the
speed of convergence of renormalized local times of intersection of complex
Brownian motion toward Varadhan’s renormalization, which is undertaken in
Yor (1987). This corollary exhibits a family of functionals of complex Brownian
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motion whose limits in law are the random components in the linear combination
(4.n).
' COROLLARY 4.7. The C2"valued variable
2 t zZ; 2 t ds
ds ] ; ;1 <)<
(byL (g—wgl%Jﬂ4_02 I 4

converges in law toward
( _ A A,
YRR

with the same notation as in Theorem 4.6.

~ (a7 +4,);1 jsn)

Proor. Let py,...,p,,7,..., ¥, be 2n complex numbers. Then

n 1
f(z) = Z('u'l(z—z)z Vj(z—zj)2)

belongs to M, and r; = p;, p; = ;. Now, the result is a consequence of Remark
(ii) following Theorem 4.6. O

Additive functionals derived from singular integrals. We now apply Theo-
rems 4.1 and 4.4 to the asymptotic study of

t
[ as(EF)(2,),
where f: C — C is a bounded Borel function with compact support and
Kf(z) = principal value of f dif(£) _((_:5_;5212

with k: V — C a holomorphic function defined on a neighborhood V of the unit
disc, such that

(4.0) ko=0.

For the existence of Kf, see Stein [(1970), Theorem 3, page 39]. In the particular
case k(z) = z, Kf = Rf is the (complex) Riesz transform of f.

THEOREM 4.8. Assume that the above hypotheses on k and f are satisfied.
Let f = [ df(§). Then

P 2 t ’ d o
(4.9) togz ) BEIZ) =2 R Lokl [ dv 15,0,

where v is a complex Brownian motion independent of B and o = inf{s: B, = 1}.
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REMARKS. (i) Our motivation for this theorem comes from the study under-
taken by Yamada (1986), who shows

1 e 4
(7_5\-/0 dsHf(B,), t = 0) > (faH, t20),

where (B,) is now a one-dimensional Brownian motion, f: R — R a bounded
Borel function with compact support, fg is the Lebesgue integral of f over R,
Hf the Hilbert transform of f and

ds
. t
H, = ?i%fo Esl(lBAZs)'

(ii) In comparison with Theorem 4.1, only the “large” component featured in
the limit (4.m) is present in (4.p). This may be explained heuristically by the
smoothing out of singularities at finite distance by the kernel K.

PROOF OF THEOREM 4.8. (i) We only need to show that, for r large enough
and z, such that |z,| < r, z4 # 2,5, we have

k((Z,— z4))
(4.9) —fds Ki(z,) ~ logt/td31(lzs—z.l>r)W‘

Indeed, once (4.q) is proved, then (4.p) follows from Theorem 4.1.
(ii) In order that (4.q) be satisfied, it is sufficient that the function of z,

k((z - z4)')
|z — z*|2

belong to LY(C, dz) and that its integral with respect to Lebesgue measure be 0.
(iii) We first show that F,, € LXC, dz). First, the function z —
12—2.1< n/Kf(2) belongs to L*C, dz), hence to L(C, dz). Second, we have

k((z z*)')
flz—z‘|>r 2 — z4/?
Sf ‘ k((z - z4)) _ k((z—z*)’) '

lz—z4|>r $|2 |Z _2*|2

b

Ipr,z,.(z) = 1(|2—,z,,|<r)I(f(2) + 1(|z—z‘|<r)(Kf(z) - fC

Ki(z) - fe

dz [ dEIf(&)

For clarity, we write k.(z) = k((z — £)). Then, we have

ke(z) k. (2)

2= &7 |z — 24

<I+1I,

where
k() ~ Ro(2)
lz — ¢
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and
— 24|z — 24| + |2 =€)
2 — &’z — 24/ '
Let A be such that supp(f) C {£: |§| < A}. Then, we have
(A + |240)(2l2] + A + |24])

(2] = A)*(l2] — |24])?

II =|k, (2)] i

and
.1 z—¢ 22— 24
=t -8 -z
211§ = 24l + 1l |2 — 24
|2 — €%z — 24l
21(A + |z4]) + A(lz] + |24])
(12l — A)’(12] = |z41)

where k = sup,_,|k(2)| and k' = sup,_,|k'(2)|. It is now immediate from these
estimates that

|z=2«|>1

k((z —24))
dz ‘Kf(Z) - fclz_—z*lz <
(iv) We now show

(4.1) JE..(2) =0
From the dominated convergence theorem, we need only prove
(4.r) lim F. ,(z)dz=0.
M- djz—z, <M "
Now, for any M > r, we have, using (4.0),
[ dFR.(a)=[  dKf(z)
|z—z4|<M o |z—z4|<M

and, in fact, we shall prove

(4.8) f,z-z ISMcisz(z) = 0(%) as M - oo.

We may as well assume that z, = 0, which is done by .translating the function f
and changing z into z — z,.
Consider M as fixed for the moment. Then

. k((z-¢£))
f,z & KI(z) = lim f.z.sM‘iz [ O

e—0

lim [ d¢f(6)H, u(£),
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where
k((z - £))
H = _ 77
w(®=[ e

Now, the trick is that we also have

He,M('f) _ /‘ dz k((z-¢))

—_— -1,,_ .
le—glze |z — §|2 ( (2| = M) (Iz €|sM))

We introduce a fixed A > 0 such thét supp(f) C {z: |z| < A}. We now remark
that, for |¢| < A,

(2| < M)*

|1(|z|sM) - 1(|z—§|sM)l = l(Mslz—£|5M+|$|) + 1(M—|€ISI2—€:‘IS1"1)‘

Consequently, we have, for |§| < A,

|H, (£)] < ( (M + A)° - M?

+m[ — (M - a) |ju_plk(Z)l

The right-hand side does not depend either on ¢ or £, so that we have finally
shown (4.s). O

5. Occupation times of circles. Let
A(r,t) = /tl(Rs <r)ds, whereR = |Z],
0

be the occupation time of the circle of radius r centered at 0, up to time ¢ by the
Brownian motion Z starting at z, # 0. The Kallianpur-Robbins law (1.a)*
describes the asymptotic distribution of A(r, ¢) as ¢ = oo for each fixed r. But a
more interesting result is obtained by letting r vary as a function of ¢ Put
¢t = 2" as usual. Anticipating that A(-, e?*) will behave like A(-, T(e")), where
T(r) = inf{t: R, = r}, consider that by the occupation density formula for local
time (A.7)%,

A(r(R), T(e")) = fO""’L(R,r, T(e")) dr
where by (A.8)* and (B.2)*,
L(R,r,T(e*)) = rL(log R,log r, T(e"))
=rL(B,logr,a;)
= hrL(B™, (log r) /h, a( ™).
This suggests taking r(h) = e"h to obtain

A(edh, T(e%)) = / hrl B(h) (log r) /A, O(B(h)))

= %he”“‘j; L(B™, a - y,0(B™))2he " dy.
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The continuity properties of Brownian local time show that the supremum over
all a, of the difference between L(8™, a, o(8™)) and the integral in this last
expression, tends to 0 in probability as 2 — co. That is to say, the process

(24(e®*, T(e")) /e, —0 < a < )

viewed as a random element in the space C[(— 0, o), R], with the topology of
uniform convergence, has log scaling limit the Brownian local time process

(5.a) (L(B,a,0), —0 <a< ).

According to the Ray-Knight theorem, the distribution of this process may be
described as follows. Let X(v) = L(B8,1 — v,0). Then, the process X is an
inhomogeneous Markov process, homogeneous on each of the intervals (— o, 0],
[0,1] and [1, 00), with X(v) =0, v <0, (X(v), 0 <v < 1) the square of a
two-dimensional Bessel process and (X(v), 1 < v < ) the square of a zero-
dimensional Bessel process. [See, e.g., Walsh (1978).]

Transforming in the usual way from time T(e”) to time e2?” and putting
h = 1log t, we obtain the following log scaling law.

THEOREM 5.1. For a Brownian motion Z starting at z, # 0, and A(r, t) the
occupation time of the circle of radius r by Z up to time t, as t - oo, the process

{ 4A(t*%, t)

,—0 <a< oo
t®logt }

(5.0)

converges in distribution in the space of continuous functions with compact
support, with the topology of uniform convergence, to the Markov process

(5.c) {(X(1-a), -0 <a<ow)

described above.

REMARKS. (i) For each ¢ > 0, the process in (5.b) is strictly positive over the
random interval

I, <a<d,
and otherwise identically zero, where

I,= inf log R_/log ¢, J,= ~up log R /logt.

O<s<t O<s<t
The same is true for the limiting process (5.c), for

I= inf B, J=1. .
O<u<o
According to (8.d2)*, I, converges in distribution to I, and J, to J, which
strengthens still further the already strong mode of convergence.
(i) The theorem suggests that the functional

G,(t) =2A(t%% ¢t)/¢t*
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must be logarithmically attracted to some process y,. After writing
G,(t) = T(U, ),

the process v, can be calculated as in (8.t)* as
Yo(u,§) = lim TP(u, §4/P).
— o0

After some calculation, it emerges that
(5.) Yo(u,$) = L(B, aB,, u),

where B, = sup, _, ., B;- The convergence is uniform on compacts, as required
for Theorem 8.4*. The appearance of the factor B, in (5.d) is explained by the
necessity for y, to commute with Brownian scaling. (See Proposition 2.1.)
Interestingly, the factor B, is suppressed at the time u = ¢ which is relevant to
the asymptotics of G (t) for fixed times ¢. But this factor appears in the
asymptotics of G(T},) as A — oo for any family of times T}, in Table 8.2*, whose
asymptotic time is not o. The limiting process as a varies seems then to be
rather hard to describe explicitly. Some related questions are taken up in Le Gall
and Yor (1988).

(iii) The previous remark and Theorem 8.2* give a result for occupation times
A (r, t) of circles of radius r centered at points z;, j = 1,..., n, distinct from the
starting point z,. The limit processes X;(v) are then given by

X;(v) = L(B,1 - v,0(B’)),

where the 8/ are the real parts of the linked asymptotic complex Brownian
motions ¢/, denoted ¢/ in Theorem 6.2*. From the description of the {” in that
theorem, the process X;(v) are identical to a common process X, (v) for v < 1,
and move conditionally independently given their common value X, (1) for
v > 1. The value X, (1) is identical to A, the asymptotic local time variable
governing the Kallianpur-Robbins law (1.a)*.

(iv) If we let

t
®;(r,t) = /(;d(bj(s)l(|Z8—2j| <r)ds, —o <r< oo,

a similar argument shows that the above mentioned convergence holds jointly
with that of the processes

2 ; —
(2(I>j(t“/ ,t)/logt, —0 <a <0, j= 1,...,n)
which converge in the same sense to
G )
(/ dﬂsfl(ﬁsfs a), —oo<a<oo,j= 1,...,n),
0

where o; = o(B 7). For a = 1 and 0 this includes the previous results for big and
small windings. If we let @ = 1 — v as before and write

¢,(v) = foojdﬂsfl(ﬁsj <1-v),
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then it can be shown that

¢,(v) =0, ©<0

=B, va+(u)du, 0<ovx<l1
0

- B+(£)1X+(u)du) + Bj(fluxj(u)du), v>1,

where the processes X, and X; were described above and B, B,,..., B, are n

independent Brownian motions independent also of the processes X, and X,.
6. Asymptotic theorem for square integrable martingale additive func-

tionals. Kasahara and Kotani (1979)* show that if f: C —» R is a bounded
Borel function such that

f(iz|z|“|f(z)| < oo for some a > 0,

(6.a)
[ dzf(2) =0,
then
(6.2") (log¢)~'/? f " ds f(Z,) converges in distribution as ¢ > .
0

Messulam and Yor (1982)* prove that if © and v are bounded Borel functions
from C to R, and

(6.b) f(iz(u2(z) +v%(2)) < oo,
then
65)  (logt)” My = (10gt)  [(u(2,) dX, + o(Z,) dY,)
converges in distribution as ¢ — oco.
We first remark that the two results are closely connected. More precisely, the

limit in law for (6.a’) can be obtained as a consequence of (6.b"). Indeed, recall
that if g(x) = (1/7)log|x|, then ;Ag(x) = §,(x), in the sense of Schwartz distri-

butions. Therefore, if Fd=ef f * g, we obtain ;AF = f and Itd’s formula gives

(6.c) F(z)=F(Z) + [(VF(z,),dz,) + ['1(2,) ds.

Replacing z by (z — z,), we may assume z, = 0. Now the hypothesis [ dx f(x) =
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0 implies
d 1 V4 P
F(z,) = - [ dzf(2)log|Z, - A
Hence, we deduce from (6.c) that
1 t t P
6.d ——| [‘dsf(z,) + vFZs,dZS) 0.
(6.4) (1ogt)v2(fo 12) + [(vRz), az,) 2

The following theorem gives the asymptotic distribution of the stochastic inte-
gral featured in (6.d), hence also of the Riemann integral featured in (6.d).

THEOREM 6.1. Let u,v: C > R be two bounded Borel functions such that
[ dz (u? + v*)(2) < 0. Then, as t - oo,

9 \1/2
Mu,l)
(logt) ¢

A2{n(u) + x(0)},

where A, n and x are independent, A has the same meaning as in Theorem 4.1
and n and x are two independent Gaussian measures on R?, with intensity
dz/2w. Moreover, this limit in law holds jointly with all limits in law already
encountered in the present paper, and m and x are independent from the vectors
¢, T =(T7;1<j<n)and T, featured in the limit laws stated in Theorems 1.1
and 4.1.

converges in distribution to

ProoF. (i) By linearity, it is sufficient to show that, for a given pair of
functions u, v which satisfy the above hypotheses, the family of variables
(2/1og t)V/2M* converges in law, as t = oo, toward

d

1/2
||(u2 + 02) LZ(C) A>

1
V2w
where 8 is a one-dimensional Brownian motion which is independent of the

vectors §, I'_ and T,.
(ii) Call (p%*; t > 0) the real-valued Brownian motion such that

MP° = ppuey,  £20.
Thanks to the Kallianpur-Robbins law (1.a)*, we know that

_2_ M®°) —d'*i(de(u2+02')(z))A
log ¢ ¢ 27 \J —
so that it now suffices to show

a; u, v, 1/2 d a
(6.e) ($’h;aeA;,u"h/)m(ﬁ;aeA;u),
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where:
A is the finite set of conformal martingales (N%; a € A) of the form
¢ dZ, .
-/(; Z,— o, oty Lsism

dz

s

t
—1 1
'/(;Zs — 2, (BEDY

t dZs B/ .
/(;—Z — z.l(zseD,;)fj(e‘q’-f), 1<j<n,where(f),=0,
s J

! s io!
./(;E_—zl(zﬁem,)g(e ), where g, = 0;
s 1

for each a € A, £* is the complex Brownian motion associated to N¢;
for each a € A, 6 is a complex Brownian motion, with the joint distribution of
(6, a € A) determined by Theorems 1.1 and 4.1;
v is a real-valued Brownian motion independent of (8% a € A).

(iii) To prove (6.e), we shall apply the results of the Appendix to the family of
martingales

1 1
ZN and h1/2M as h - o0,

where we have dropped the superscripts «, © and v. With the help of the
Appendix, what we have to prove is that

N2
h3/2f< >h ‘d<N M> I ’ 0,
which is easily seen to be equivalent to

1 ¢ P
(G.f) W/(;ld(N, M)sl :; 0

Since we know that (N, /(log t)° converges in distribution, as ¢ - oo, toward a
strictly positive random variable, (6.f) is equivalent to

Wfld<N M),| —2

(iv) For simplicity, we may assume that z; = 0, so that we obtain, in all cases,

(6.8)

t—»oo

(IuI + 1o))(2) &= Z] w(Zt)dt,

where w(z) = (|u| + |v|)(2). Hence, it suffices to show
1

(log £) 3/2 [f lle(Z )]

|, )| s

(6.h)
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This is an immediate consequence of the following proposition, which is a close
relative of Proposition 4.2. O

PROPOSITION 6.2. Let w: C - R, be a locally bounded Borel function.
Then, there exists a universal constant c¢ such that

hmsup——lt?ﬁ-E[/ I;sl w(Z, )] <clim (f

t— o0 r=o \ Y(jz|zr)

12
Lu(z)
In particular, if [dzw%(z) < oo, then

1
1% g0 [/ iz )] -0

ProoF. Thanks to the Kallianpur-Robbins law (1.a)*, we may restrict
attention to

, ds _
4@#E£Eﬂwﬂma)mmRﬂm

Then, using the same notation as in the proof of Proposition 4.2, we have, for
any R’ > R,
jre’® — 2|2
2t

2
s[R dr/0 df w(re®)A| —— "~

(R - |zo|)2 )

2t

V2 oo dr (r - l2o)?\|
2 —9 2
|z|zR'izw (z)) (fR r e ( 2t )

As already noted in the proof of Proposition 4.2,

1 “R—mmj 1
A — =
log ¢ tooo 2

J(w) = /:drfo%dﬂ w(re®)A

< ‘/:’dr fozﬂdﬂ w(re®)A

+

t

and it is easily seen that

wd — |2o1)”
/ _r(2 )A2((r—2|;2|)—)converg‘esast—> 00,

(log t)°
so we obtain

1 1/2
limsup ——=J(w) < ¢ dzw?(z ) .
p oAt << [ dewt(z)

tooo l2|> R’
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The proof of the inequality stated in the proposition is now completed by letting
R’ tend to 0. O

In fact, Proposition 6.2 appears as a special case (p = 2) of the following set of
inequalities (6.1) indexed by p € (1, o), while Proposition 4.2 is the limit case
p = 1. The only change to be made in the proof of Proposition 6.2 in order to
prove (6.0) is the replacement of the Cauchy-Schwarz inequality by Hoélder’s
inequality.

ProPOSITION 6.3. Let w: C » R, be a bounded Borel function and let p, q
satisfy1/p + 1/q = 1, withp € (1, 0). Then there exists a universal constant c,
such that

1 ¢ ds 1/q
6.i)) limsu E w(Z)| < ¢, lim dzw(z .
(6) oo (log £) "7 (fo |Z,|*? ( )) pr-’w( lzl>r ( ))

In particular, if [ dzw(z) < oo, then the limit of the left side of (6.i)) as t >
is 0.

Apart from those examples considered already, we do not know any interest-
ing applications of these inequalities, e.g., to prove asymptotic independence,
because we do not know how to get limits in law for additive functions with

normalization by (log ¢)* except for a = 3, 1 or 2.

Application of Theorem 6.1 to winding numbers in annuli. Consider again
the winding processes ®; for a finite number of distinct points z;, 1 <j < n,
distinct also from the starting point z, of the complex Brownian motion Z.

THEOREM 6.4 [Messulam and Yor (1982)*, Theorem 4.3]. (i) For each j,
there exists a jointly continuous version of the family of variables

. def .
Mi(t,0)= [Tiasig-0ynd®%  £20,a€(0,1].
0 7

(ii) As t > oo, the n-tuple of C(0,1]-valued random variables

9 \1/2
((Tgt) M/(t,a),a€(0,1)];1<j<n
converges in distribution toward

A1/2(a/

—log @’

a<(0,1];1 stn),

where A is as defined in Theorem 4.1 and (af; 1 <j < n, t > 0) is a Gaussian
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process independent of A with covariance determined by the identity

if (z—-2) (2-2))
27 Jai a0, 12— 2z — 2

(6_]) E(ai—logaaj;logb) =

where
A(i,a,b,j)={a<|z—z|<1}n{b<|z—2z| <1}

and u - v is the scalar product in R® of u and v. In particular, for each j,
(af, t>0) is a standard Brownian motion and «; and «; are independent
if |2i - ZJI > 2.

REMARK. We prove this result here, since in Messulam and Yor (1982)* the
proof of the first assertion was skipped, while the proof of tightness given there
is in error. The last line of that paper appealed to the finiteness of E(o?/?) for a
p > 1, where o = inf{t: B, =1}. Of course, this is wrong. As is well known,
E(o??) < w0 iff p < 1.

ProOOF oF THEOREM 6.4. It is natural to break the proof into three parts:

[y

. The joint continuity 6.4(i).

2. Convergence of finite-dimensional distributions in 6.4(ii). This is an immediate
application of Theorem 6.1.

3. For each j and each ¢ € (0, 1), tightness of the laws of

1 .
(WMl(t, a),a € [8,1]) for t > 2, say.

Both 1 and 3 will now be established as consequences of Kolmogorov’s lemma.
To do so, it suffices to show that for each ¢ € (0,1) there exist p > 0, § > 0 and
a constant ¢ such that fore <a <b <1,

sup —————

t>2 (log t)p/2

Using the Burkholder-Davis—Gundy inequalities, it suffices to show

2

f ¢ ds - . p/
012,z esHEY

E(sup |M/(s, a) — M/(s, b)]p) < cla — b'*%.
s<t

(6.k) sup

K < cla — b|**?,
t>2 (log t)p/2 | |

where ¢ changes from line to line. This is an immediate consequence of the
following estimate: .

Foreachn = 1,2,... and R > 0, there exists a constant C, p such that for every
Borel function f: C - R _ with support in {z: |2| < R},

©) supE[(l—olg—t ) ‘dsf(Bs))"] < Gl fasf7(2))

t>2

n/2



1008 J. PITMAN AND M. YOR

Consider the case n = 2. By the Markov property and using the notation (2.h),

E[(jo‘dsf(Bs)r] < 2E[fo'olsf(Bs)flylsmg;yf(Bs + ) A(Iyl%)]

< 2E[fo'dsf(Bs)](fézV(y))w(f 2RciyAz(IyP/t))l/2

Iyl

< c,(logt)E[ A ‘dsf(Bs)]( / d_yfz(y))m,

and the same estimate leads to (6.1) for n = 2, and finally for each n by repeated
application of the Markov property. O

APPENDIX

An asymptotic version of Knight’s theorem on continuous orthogonal
martingales.

Introduction. Let (M"™) and (N") be two sequences of continuous local
martingales defined over a right continuous complete filtered probability space
(2, Z,(%,);s0 P) and such that for every n

M=N=0 and (M") = (N")_ = 0.

Let p? = inf{u: (M"), > t} and »" = inf{u: (N"), > t} be the right continuous
inverses of the increasing processes associated respectively with M"™ and N™.
According to Dambis (1965)* and Dubins and Schwartz (1965)*, B = M"(u})
(t = 0)and C* = N™(») (¢t > 0) are real-valued Brownian motions.

The aim of this Appendix is to refine criteria depending on (M", N"),
(M™) and (N") and stated in AL* and Le Gall and Yor (1986)*, which ensure
the convergence in distribution of (B”, C"), viewed as continuous R2-valued
processes, toward either (B, y), or (B, B), where B and y are two real-valued
independent Brownian motions. In the first case, we say that B" and C" are
asymptotically independent, while in the second case, we say that they are
asymptotically identical.

The criteria obtained in this appendix apply not only to the asymptotics of
winding numbers and connected questions, but also to many studies of limits in
law such as are to be found in Papanicolaou, Stroock and Varadhan (1977)*.

Asymptotically independent Brownian motions. Our main result is the fol-
lowing. .

THEOREM Al. If, for every.t,
" lim (M", N"), = lim (M", N"),, =0
n—oo

n—oo

in probability, then B" and C" are asymptotically independent.
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Proor. 1. The laws of the one-dimensional processes B™ and C" are all
equal to the one-dimensional Wiener measure. Therefore, the laws of the se-
quence (B",C") of R2-valued continuous processes are weakly relatively com-
pact and it remains to prove that the finite-dimensional marginals of (B, C")
converge weakly toward the corresponding marginals to a two-dimensional
Brownian motion. .

2. Let 0 =¢, <% < --- <t,=tand consider real numbers f,,..., f,_, and
8-> 8p_1- We set

f= gfjl(t,-, yap  BY(f) = gfj(Bt?H - B,;_‘),
&= ?gjl(t,-, gy C(8) = ggj(ctfﬂ - th)'
Next, observe that if we set
Ur = [1((M7),) aMy and V7= [g((N"),) aN,

then
B"(f)=U; and C%(g) =V,
Therefore, the identity
Elexp(i(Us + Vi) + (U™ + V") }] =1
yields

(7.a)  E[{expi(B"(f) + C"(g))}H"] = exp — } [(12 + £°)(¢) d,
“where
H"= expfo°°f(<M">s)g(<N">s)d<M", N*),.

3. We now remark that, on one hand, the estimate

H™ < exp(||f ll.ll&ll2)
follows from the Kunita—Watanabe inequality and, on the other hand, since

H" = eXp( _Zkfjgk«M", N*)u avg,, — (M", Nn>#ZV”il)1(ﬂ;}Vv:;<u'¢'jH/\VS‘,,“))’
j'

the hypothesis clearly implies that H” converges to 1 in probability, hence in L,
by application of the dominated convergence theorem. Looking back at (7.a), we
find that ]
lim Elexpi(B"(f) + C"(g))] = exp — & [( 2+ &°)(¢) at,
n— oo

which is the desired result. O
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Of particular interest to us is the case when M = (1/Vn)M, and N/ =
(1/ Vn)N,, since then the one-dimensional Brownian motions B™ and C" are
obtained from B and C by the Brownian scaling operations

1
Bt" = WBM and Ctn =

We then obtain the following

! C
‘/’7 nt*

COROLLARY. If M and N are such that

. (M, N),
TR S Tan,

then B™ and C™" are asymptotically independent.

= tlim (M,N),/(N),=0 a.s.,

Proor. We remark that u} = u(nt) and » = »(nt), so that (2.b) gives for
every t > 0,

a.s.
0,

—
wnt) n— oo

1
<Mn’ Nn>u7 = ;(M’ N>
and likewise for » instead of p. The conclusion now follows from Theorem Al. O

Asymptotically identical Brownian motions. We now present analogues of
Theorem Al and its corollary in the case when B" and C™ are asymptotically
independent; however, the contents of these are the same as in AL* and Le Gall
and Yor (1986)*, to which we refer the reader for proofs.

THEOREM A2. If for every t,
lim (M" - N"),, = lim (M- N"),.=0
n-— oo

n—oo

“in probability, then B" and C" are asymptotically identical.

In the case when M= (1/ \/77)Mt and N = (1/vVn)N, we obtain the
following:

COROLLARY. If M and N are such that
lim (M - N),/(M),= lim (M - N),/{N),=0 a.s.
t— o0 t— o0

then B™ and C" are asymptotically identical.

Corrections to Pitman and Yor (1986). In Theorem 8.2 (page 764) replace
- i(§7*) by ¢ (§”*). In Table 2 (page 767), line (4): replace v/||A|| by 27v/||A|l.
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