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ASYMPTOTIC LAWS OF PLANAR BROWNIAN MOTION!

By JiMm PiTMAN AND MARC YOR

University of California, Berkeley and Université Pierre et Marie Curie,
Paris
Recent results on the asymptotic distribution of winding and crossing
numbers are presented as part of a larger framework of asymptotic laws for
planar Brownian motion. The approach is via random time changes, martingale
calculus, and excursion theory.

Table of contents

1. Introduction 733
2. Windings as stochastic integrals 736
3. Spitzer’s law 738
4. Big windings, small windings, and additive functionals 741
5. Excursions 745
6. Windings about several points 753
7. The joint limit law of the windings 757
8. Log scaling laws 761
Appendix A. Continuous semimartingales 769
Appendix B. Time changes to Brownian motion 771

1. Introduction. Brownian motion in the plane has special features which
set it apart from Brownian motion in other dimensions. What distinguishes
dimension two from higher dimensions is that the planar motion is neighborhood
recurrent. This means that for any open domain D in the plane, the random
occupation time of D by a planar Brownian motion Z before time ¢,

A(D, t) = '/‘;tll)(zs)ds’

has limit sc almost surely as ¢t — o0. For large t, the occupation time A(D, t) is
roughly proportional to the area of D and to log t. More precisely, Kallianpur
and Robbins (1953) showed that for all Borel sets D with 0 < area(D) < o

27A(D,t)

- t ,
area( D)log t astm >

(1.a)
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734 J. PITMAN AND M. YOR

where H is a random variable with the standard exponential distribution
P(He dh)/dh=e", 0<h< x,

l/
and — indicates convergence in distribution.

What distinguishes dimension two from dimension one is that the planar
motion does not hit points: for each point z in the plane, :

(1.b) P(Z, = z for some t > 0) = 0.

For points z other than the initial point Z, of the Brownian motion, this allows
the definition of a winding random variable ®4(¢), the continuous total angle
wound by the Brownian motion Z around the point z up to time ¢. For large ¢,
the winding ®3(t) is also roughly proportional to log ¢. Spitzer (1958) showed
that

d ’
(1.c) 20:(t)/logt > W ast— o,
where W has the standard Cauchy distribution
1
P(WEdw)/dw=7T(Twz), —o0 <w< ™.

We refer to these basic asymptotic distribution theorems (1.a) and (1.c) as the
Kallianpur—Robbins law and Spitzer’s law, respectively. These are typical of a
large class of asymptotic laws for planar Brownian motion. Such a law asserts
convergence in distribution as ¢t - oo of G(t)/g(t) for some functional G(t) of
the Brownian path up to time ¢, and some normalizing function g(¢), typically
(logt)* for a = }, 1 or 2.

The purpose of this paper is to provide a survey of these asymptotic laws,
explaining how they arise, and how they are linked together. We say that two or
more asymptotic laws are linked if the laws hold jointly as ¢ — o0, meaning that
there is convergence of finite dimensional distributions toward some joint distri-
bution of limiting random variables. For example, the Kallianpur-Robbins law
(1.a) may be regarded as a collection of asymptotic laws parameterized by the set
D. These laws are linked as D varies in a very simple way: they hold jointly with
the same asymptotic exponential variable H for every D. This is by virtue of the
ratio ergodic theorem, due also to Kallianpur and Robbins (1953):

A(D,t) area(D)
(1.d) A(C. 1) - area(C) as. ast— oo,
for all Borel subsets C and D of the plane with finite and strictly positive area.
We call H the asymptotic local time variable. Roughly speaking, H measures
how much time the Brownian motion has spent per unit area up to a large time ¢,
relative to log t.

Spitzer’s law (1.c) may be regarded similarly as a collection of asymptotic laws
parameterized by the point z about which the winding ®%(¢) is computed.
Following the work of Messulam and Yor (1982) and Lyons and McKean (1984),
Pitman and Yor (1984) showed that these Spitzer laws are linked in an interest-
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ing way, both to each other, and to the Kallianpur-Robbins law. For windings

about points z,..., 2z, the asymptotic winding variables W' ..., W” may be
written as
(l.e) W =W, + W/,

where W is a component in common to all points, attributable to big windings
made when the Brownian motion is far from all points, and the W' are
individual components for each point z » attributable to small windings about z,.
The link with the Kallianpur-Robbins law is that the big winding variable W',
and the n asymptotic small winding variables W/ are mutually conditionally
independent given the asymptotic local time variable H.

Sections 2 through 7 give an exposition of these results for windings and
occupation times. We start in Section 2 with the stochastic integral representa-
tion of the windings. This is used in Section 3 to give an elementary proof of
Spitzer’s law. The argument follows the method suggested by Williams (1974)
and developed further by Messulam and Yor (1982) and Durrett (1982, 1984).
Section 4 treats the asymptotic joint distribution of occupation times and big and
small windings about a single point. In Section 5 the conditional independence of
the asymptotic big and small windings given the asymptotic local time is
explained using ideas of Brownian excursion theory. This leads to the representa-
tion in Section 6 of the asymptotic winding variables in (1.e) as functions of a
collection of n linked complex Brownian motions, which have identical excursions
in the right half plane, but independent excursions in the left half plane.

Section 7 concerns details of the joint distribution of the n asymptotic
windings W',..., W" in (1.e). This is a multivariate distribution with Cauchy
marginals and an interesting dependence structure which does not seem to have
been encountered before. Every linear combination of W' ..., W” has a distri-
bution belonging to a two-parameter family of scale mixtures of symmetric
Cauchy distributions. In particular, every positive linear combination is Cauchy
distributed.

The development of Sections 2 through 6 leads to a large class of limit laws,
including the Spitzer and Kallianpur-Robbins laws, which we call log scaling
laws. These laws, described in Section 8, form a linked collection of limit laws for
functionals of the Brownian motion which admit asymptotically simple expres-
sions in terms of polar coordinates. The collection of log scaling laws is curious in
that while large collections of random variables admit joint limit distributions,
there does not seem to be any functional limit theorem of the usual kind, like
Donsker’s theorem.

While the collection of log scaling laws encompasses a great many asymptotic
distribution theorems for functionals of planar Brownian motion, there are still
further laws, linked to the log scaling laws, but involving more and more
independent Brownian motions for the description of the limits. These include
results of Kasahara and Kotani (1979) and Messulam and Yor (1982) for additive
functionals, mentioned in Section 4, and further results related to windings, to
appear in a sequel to this paper. The effect of probing deeper and deeper into the
asymptotic fine structure of complex BM is the production of more and more
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independent Brownian motions in terms of which limit distributions can be
written. This is so mainly as a consequence of Knight’s theorem, which asserts
that n continuous mutally orthogonal local martingales may be written as time
changes of n independent Brownian motions.

Appendix A is a brief summary of It6’s calculus of continuous semimartingales,
which is used throughout the paper. Appendix B is concerned with time changes
to Brownian motion, including an asymptotic form of Knight’s theorem which
proves useful in Section 6. Immediately following is a paper which applies the
results for windings to obtain asymptotic distributions for the numbers of level
crossings of a Cauchy process.

The results of this paper can be extended to apply to some other processes in
the plane. Le Gall and Yor (1986) give extensions to certain Brownian motions
with drift. Belisle (1986) gives an analog of Spitzer’s theorem for random walks.
Interestingly, for random walks the limit law for the windings is not Cauchy, but
the distribution of W, the asymptotic big winding for Brownian motion. What
happens is that small windings of Brownian motion occur so fast they go
unnoticed by a discrete time skeleton. Davis (1975, 1979a, b) uses the winding of
Brownian motion to study analytic functions. McKean (1969) and Lyons and
McKean (1984) give applications to the classification of Riemann surfaces. See
also Doyle (1984) and McKean and Sullivan (1984) for related work.

2. Windings as stochastic integrals. Throughout this section let
Z=(Z,t>0)=(X,+1iY,t>0)

be a complex Brownian motion starting at 1, unless otherwise mentioned. Since Z
a.s. never hits zero, Z may be written in polar coordinates as

(2.a) Z, = R,exp(i®,), t>0,

" where R = |Z| is the radial part of Z, and @, is the total winding of Z about 0 up
to time t. More precisely, (®,, ¢ > 0) is the unique continuous process such that
&, = 0 and (2.a) holds. The total winding up to time ¢ may be regarded as in
complex analysis as the integral along the path of Z between times 0 and ¢ of the
closed differential form on C \ {0}

dz xdy — ydx

Im( —) iy

z Cx* 4y

Thus if we define

dz
(2.b1) 1ogz,=f =,

Z[0,t] 2

the integral along the path of Z between times 0 and ¢ of dz/z [see Yor (1977a)],
then (log Z,, ¢ > 0) is the unique continuous determination of a logarithm of Z,
starting at log Z, = 0, and

(2.b2) logZ, = log R, + i®,.

It is an important property of complex Brownian motion that integrals of
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complex differential forms along Brownian paths, such as the one appearing in
(2.b1), may be rewritten as It6 type stochastic integrals.

THEOREM 2.1. If f is holomorphic on a domain D from which Z a.s. never
escapes, then

t
(2.c) /m )z =f()f<zs>dzs.

See for example Ikeda and Manabe (1978, 1979) and Yor (1977a), where more
general results of this type are discussed for a complex-valued semimartingale
instead of the Brownian motion Z. The process defined by the integrals in (2.c¢) is
an example of a conformal martingale relative to the o-fields (F,) generated by
Z. This is a process M + iN with continuous paths such that M and N are local
martingales relative to (), which are orthogonal, and have identical increasing
processes:

(M,Ny=0, (M,M)=(N,N).
Appendices A and B give a brief review of the theory of continuous local
martingales which is used in this paper. Getoor and Sharpe (1972) give a detailed
treatment of conformal martingales.

If there exists a primitive F' for f in the domain D, so F'(z) = f(z), z € D,
then formula (2.c) becomes

(2.d) F(Z,) - F(Z,) = fo '1(2,) dz,.

This is a special case of Itd’s formula, with less than the usual number of terms
because

oF
— =0 and AF =0.
dz
Returning to the example f(z) = 1/z, where the primitive must be defined
along the path, formulae (2.b) and (2.c) yield

,dZ

(2.e)

whence the stochastic integral representations
X, dX, + Y, dY, ¢ X, dY, — YdX
R? ’ _/
Thus the log radial process log R and the winding process ® are orthogonal

continuous local martingales, with common increasing process U, the log clock
defined by

ds
t
(2.g) Uzz'[)?-

S

(2.f) log R,=f0

It was assumed above that Z started at z,= 1. If Z starts at z, # 0 then
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formulae (2.e), (2.f), and (2.g) still hold, provided log Z, is replaced by log(Z,/z,),
the unique continuous determination of the logarithm starting at zero, and log R,
is replaced by log(R,/r,) where r,=|z,. We shall continue to assume for
simplicity that z, = 1. With the changes just indicated everything works also for
a more general starting point z, # 0. But it is impossible to define the winding
process starting at z, = 0. As explained in Section 7.16 of It6 and McKean
(1965), if Z starts at zero, at time ¢ = 0 the sample path of the naively defined
angular process on the circle “comes in spinning like a circular Brownian motion
defined for — o0 < ¢ < 0 as ¢ comes in from — c0.” This happens because U, = «
for all ¢ > 0 if Z, = 0, whereas U, < oo for all ¢ > 0if Z, # 0.

The skew product representation. A conformal martingale may be repre-
sented by a time change of complex Brownian motion. This result, due to Getoor
and Sharpe (1972), is a generalization of the theorem of Lévy (1948) that the
composition of a nonconstant holomorphic function F with complex Brownian
motion Z, as in (2.d) above, yields a time changed BM(C). The result for a
conformal martingale may be regarded as an immediate corollary of the theorem
of Knight (1971) stated in Appendix B. In the case at hand, the conformal
martingale

logZ, =log R, + i®,

may be represented as

(2.h) log Z, = §(U,),
where U is the log clock (2.g), and
(2.1) {=B+10

is a complex Brownian motion starting at zero, which may be written in terms of
" log Z by inverting the time change. According to (2.h)

(2) logR,=,B(U,), (I)[=H(U,), t>0,

where B and 6 are two independent BM’s, which we call the log radial and
angular BM’s, respectively. Since the log clock U, can be expressed in terms of

B as
(2.k) U = inf{u: fuexp(2Bl.) dv > t},
0

the o-fields generated by R and B are identical. As a consequence the angular
BM is independent of the whole radial process, and in particular independent of
the log clock U. This representation (2.j) of the winding process ® as a BM run
with an independent clock U determined by the radial motion is called the skew
product representation of ®. Similar representations for Brownian motions on
spheres and Brownian motion with drift may be found in Section 7.15 of It6 and
McKean (1965) and in Pitman and Yor (1981).

3. Spitzer’s law. Spitzer proved (1.c) by explicit computation of the char-
acteristic function of ®,. A variation of Spitzer’s argument appears in It6 and
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McKean (1965), page 270. The skew product is used to make the step
2 \

a
(3.a) E exp(ia®,) = Eexp(— -2—U,)

After taking a Laplace transform, explicitly solving a differential equation, and
inverting the transform, it is found that the expectation in (3.a) may be obtained
by integrating the function of r
rr
Iw( L)
t

r,\r
1]

with respect to the distribution of R,. Here I (x) is the usual modified Bessel
function, and Z is supposed to start with |Z,| = r,.. As this computation suggests,
the function in (3.b) is identical to
o>
exp| = 5,

See Edwards (1967), Yor (1980), and Pitman and Yor (1981, 1982) for derivations
of this identity and related results. In particular, Yor (1980) shows how to make
the identification between (3.b) and (3.c) using Girsanov’s theorem and formulae
for the transition densities of Bessel processes.

Williams (1974) made the key observation that all computations involving
Bessel functions could be avoided by simply comparing the winding ®(¢) at a
fixed time ¢ with the winding ®(7,) at a radial hitting time

T, = inf{¢: R, > r}.

(3.h)

(3.c) E[exp(ia®,)|R,=r| = E R,=r|.

At time T, the log clock reads simply
U(T,) = Ojog r»
where
(3.d1) o, = inf{u: B, > h}
and we have assumed for simplicity that r, = 1. The skew product formula (2.j)
now gives ‘
(3.d2) ®(T(e*)) =60(s,), h=0.
As remarked by Spitzer (1958), and further explained in Section 1.9 of Durrett
(1984), the right-hand process defined in terms of independent BM’s 8 and 6 is a

Cauchy process. Thus so is the left-hand process embedded in the windings. In
particular, for A = log r

(3.0) h'O(T,) = h~'6(0,) < 6())

by Brownian scaling, as will be discussed in more detail below. The common
distribution here is the standard Cauchy distribution appearing as the limit in



740 J. PITMAN AND M. YOR

Spitzer’s theorem. To complete a proof of Spitzer’s law, it now suffices to take
r=vVt,soh=1logr= ylog t, and show that as t —»
I)

(3.f) ho'[@(t) — ®(Ty)] - 0.

Williams proved this by a tightness argument using Brownian scaling, which is
presented and further exploited in Messulam and Yor (1982). Other variations of
this argument are given by Durrett (1982, 1984). We remark here that (3.f) holds
because an application of Brownian scaling shows that

(3.8) O(t) - (T)) S0~ ast— w,

where ® ™ is the total angle wound between times 1 and T, for a complex
Brownian motion started at zero. Thus (3.f) holds for any A = h(t) tending to
as t — o, in particular for A(¢) = jlog¢. This completes the proof of Spitzer’s
theorem.

There is one point in the above argument which deserves further considera-
tion. This is the Brownian scaling operation which yields the Cauchy scaling
property (3.e). To bring out the important réle played by Brownian scaling we
introduce the following notation.

NoTATION. For E = R or C, let Q(E) be the set of all continuous E valued
paths a = a(u), u > 0.
For h > 0, a a path in Q(R) or ©(C), let a'”’ be the path

(3.h) a™(u) = h 'a(h’u), u > 0.
Of course, if « is a BM, then so is a'”). To illustrate the notation, define a
measurable map W: Q(C) —» R by
(3.1) W({) =60(0,),
where { = B + i6 and o, are as in (2.j) and (3.d). Then
W({™) = h '0(ay),

so line (3.e) may be rewritten as

d

(34) hOO(T.) = W({) = W(¢), where h = log r.

This makes the role of Brownian scaling quite obvious, and leads to formulation
of the following lemma.

LEMMA 3.1. Let Z be a BM(C) starting at z,+ 0. As t and h = }logt tend
to >,

BOe(e) — W(EM) So,

where { = B + 10 is the BM(C) obtained by time changing log(Z/z,) via its
clock U, and W({) = 0(o,).
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ProOOF. Put together (3.f) and (3.j). O

Spitzer’s law is an immediate consequence of the lemma, the invariance of
Brownian motion under Brownian scaling, and the Cauchy distribution of 6(0,).
It is this lemma behind Spitzer’s law rather than Spitzer’s law itself, which turns
out to be the right kind of building block for further asymptotic laws.

4. Big windings, small windings, and additive functionals. An im-
portant step toward understanding the asymptotic behavior of Brownian wind-
ings about more than one point is to decompose each winding process into a
process of big windings and a process of small windings. As in the previous
section, let ® be the winding process about zero of a complex Brownian motion Z
starting at z, = 1. Let D, the big domain and D_ the small domain be the
open sets outside and inside the unit circle. The sign used as a subscript is
the sign of log|z| for z in the domain. The symbol + is an index which may be
+ or —, indicating big or small. Define processes ® , by the stochastic integrals

(4.2) @, (t) = ['do(s)1(2(s) € D),

where 1( A) stands for the indicator of A.

The process @, is the process of big windings and ® _ is the process of small
windings. Because the Lebesgue measure of the time spent by Z on the unit circle
1S a.s. zero,

D=0, + .

The idea now is that this decomposition describes the winding process ® as
alternating between typically very long stretches of time during which Z is far
away from the origin in D,, when ® changes very slowly, but nonetheless
significantly, according to the increments of ® ,, and typically very short stretches
of time when Z is in D_ approaching zero, when ® changes very rapidly
according to the increments of ® . To help describe the dependence between the
big and small windings, we introduce the local time L on the unit circle, defined
as the local time process of the semimartingale R at 1, as in Appendix A. The
local time process L may also be identified as the continuous additive functional
of BM(C) associated with length measure on the circle. According to the ergodic
theorem for additive functionals of complex Brownian motion [see Itd6 and
McKean (1965), page 277], if A(t) is another continuous increasing additive
functional, such as

(4.b) A(t) = ['a(z,) ds,

for a nonnegative measurable function a, then

(4.0) L e
A(t) Al

where ||A|l is the total mass of the measure representing A, with the



742 J. PITMAN AND M. YOR

normalization convention that

14l = [ [a(x + iy) dxdy

in case (4.b). This is a generalization of the result (1.d) for occupation times. Thus
so far as asymptotic distributions are concerned, as in the next theorem, any
other additive functional A with ||A|| = 27 may be substituted for L. But it will
be seen that the local time process on the circle enjoys exact distributional
properties which distinguish it from other additive functionals and make it
particularly easy to work with in association with the windings. Roughly speak-
ing, L(t) measures the amount of crossing back and forth over the unit circle
which has occurred by time ¢, or the amount of alternation between the two
kinds of windings.

In view of these remarks about additive functionals, the following theorem
shows that the Kallianpur-Robbins law (1.a) holds jointly with Spitzer’s law
(1.c), after making the identifications H = jA, W= W_+ W_.

THEOREM 4.1. Ast — o
[@,(¢),®_(¢), L(1)] /h(t) > [W,, W_, A],

where h(t) = )logt, and the limit random variables are defined as follows in
terms of a complex Brownian motion { = B + i6:

Wi(g) = L”II(Bu € R t)daur

where o, = inf{u: B,=1}, R, =(0,0), R_ = (—c0,0), and
A =L(:By0,°1)

is the local time of B at 0 up to time o,.

NoTE. Further descriptions of the joint limit law are given in Theorem 4.2
below.

ProoF. It will be shown that Lemma 3.1 holds with ® , or L substituted for
®, and W, or A correspondingly substituted for W. By a time change in the
stochastic integrals (4.a) defining @ . (see Lemma B.1) for r > 0, h = logr, we
obtain parallels of formula (3.j):

(4.d) ®,(T) = ["1(B, € R ) dd, = hW.(§"),
0
where we are taking z, = 1 for simplicity.
Similarly, by the time-change recipe for local times (B.1) and (A.8)
(dee) L(T,) = L(B,0,0,) = RA(Y™).

Moreover, (3.f) still holds with either @, or L substituted for ®, because (3.g)
holds with these substitutions, except that ® ~ should be replaced by zero in the
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cases of ® and L. Thus Lemma 3.1 holds with the substitutions indicated
above, and the conclusion of the theorem is immediate. O

A useful consequence of the Kallianpur-Robbins component of the above
theorem is if j and % are real valued functions in L*C, dxdy), then the
martingale additive functional .

M, = [{/(2,) dX, + k(Z,) aY,)

is o(log t) in probability as ¢ = oo. In fact for any y > j,as t - oo

(4.1) sup |Ms|/(logt)yi)>0.

O<s<t

Indeed, the increasing process of M is the additive functional
A= [P+ k)(2,) ds.
0
The Kallianpur-Robbins result implies
oy P
A/(logt)" >0, y>14,

which yields (4.f) by Lemma A.1. -

As a further refinement Messulam and Yor (1982) showed that M,/ \h(¢) is
convergent in distribution to \/A/27 {n(j) + x(k)}, where n and x are two
Gaussian measures on R?, with intensity dx dy, independent of each other and of
A. As j and k vary, these limit laws are linked, both to each other, and to
companion results for additive functionals of bounded variation due to Kasahara
and Kotani (1979). We will show elsewhere that if n and x are taken to be
independent of {, this collection of limit laws is linked to Theorem 4.1 and the
broader class of log scaling laws described in Section 8.

The above remarks imply that just as the definition of L(#) can be consider-
ably perturbed without making any difference to the asymptotic behavior de-
scribed in Theorem 4.1, so can the definition of the big and small windings ® , (¢).
For example, as an immediate application of (4.f) above, the indicator functions

1(Z(s) eD,) =f.(Z(s))

used as the integrand in the stochastic integrals defining ® . can be replaced by
any other bounded functions g, which agree with f, in neighborhoods of 0 and
. For instance, the domains D, and D _ defining the indicator can be replaced
by any disjoint pair of neighborhoods of oo and 0, respectively. Thus windings in
an annulus amount to only o(log ¢) in probability as .t — co. It is really only the
very big windings and very small windings which count so far as the asymptotic
behavior of the total winding is concerned.

" There is a more geometric way to compute big and small windings, suggested
by the work of Lyons and McKean (1984), which also gives the same results
asymptotically. Simply add + 7 every time the path crosses between the positive
and negative parts of the real axis, classifying a crossing as big or small depending
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on whether it reaches its destination at a point inside or outside the unit circle,
and adding +o or —« according to the total winding over the crossing. See
Pitman and Yor (1986) for a proof of the asymptotic equivalence of the two
definitions up to o(log¢) in probability. As will be indicated in Section 5C, this
makes a connection between the asymptotic laws described in Section 4 of Lyons
and McKean (1984), for windings of spherical Brownian motion, and results
considered here in the plane.

Some important features of the distribution of the limit triple in Theorem 4.1
are summarized by the following theorem.

THEOREM 4.2. Let (W_,W_, A) be as in Theorem 4.1.
(i) Fora >0, b,c € R,
Eexp(—aA + ibW_+icW,) = f(2a + |b], ¢),
where
f(u,v) = [coshv + (u/v)sinhov] ', v+#0

=[1+u]’, v=0.

(ii)) A has exponential distribution with mean 2.

(iil) P(W, € dw)/dw = [2cosh(mw/2)]".

(ivy W and W, are conditionally independent given A.

(v) The conditional distribution of W_ given W, and A =l is Cauchy with
scale parameter 1/2.

NOTE. As remarked in Section 3, the distribution of W= W, + W _ is the
standard Cauchy distribution, defined below (1.c). The conditional distribution in
(v) is the distribution of (//2)W

ProOF. (i) Since 8 and # are independent, the conditional distribution of
W, given B is Gaussian with mean zero and variance s, (0,), where s (u) is the
time spent by 8 in R , up to time u. Thus

(4.g) Eexp(—aA + ibW_+ icW,) = Eexp[—a(0,)],
where (a(u), u > 0) is the additive functional of 8 defined by
a(u) =aL(B,0,u) + ;b%_(u) + icis,(u).

Such Laplace transforms of stopped additive functionals of Brownian motion can
be calculated by traditional methods. See for example Problem 5 of Section 2.8 of
Itd6 and McKean (1965) and Knight (1978). But our preference is to use martingale
calculus. To complete the calculation of the right side of (4.g) it will suffice to find
a function F such that

F(B(u A o,))exp[—a(u A a,)], u>0,
is a bounded martingale, since the right side of (4.g) will then be F(0)/F(1). Using
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Itd’s formula, it is enough for F' to satisfy

(1) F" = [2a8, + b*1(x < 0) + c*1(x > 0)]F,
where §,, is the measure with mass 1 at 0,

(2) F(0) =1,

(3) F(x) bounded for x < 0.

This implies
F(x) = cosh(cx) + ksinh(cx), x>0
= e(bl-r, x <0,
where the constant % is determined by
F(0+) - F(0-) =2a.
This gives ck — |b| = 2a. Finally,

|b] + 2a

F(1) = coshc + sinh ¢,

whence the formula (i). Properties (ii) through (v) can of course be obtained by
examination of the transform. But greater insight into these properties is pro-
vided by decomposing the Brownian motion B into its positive and negative
excursions. O

See Kennedy (1976), Williams (1976), Lehoczky (1977), and Azéma and Yor
(1979) for applications of similar martingales to compute Laplace transforms of
functionals of Brownian motion. As a general rule, It6’s formula is the key to
finding the right martingale.

5. Excursions. The main object of this section is to describe the decomposi-
tion of a complex Brownian motion { = 8 + if into its excursions in the two
open half planes

C,={z:Re(z) >0}, C_={z:Re(z) <0}.

When ¢{ is the time change of log Z, as in the previous section, these excursions
correspond to excursions of Z in the domains D, and D_. This decomposition of
¢ explains why in Theorem 4.1 the asymptotic big winding W, and asymptotic
small winding W _ are conditionally independent given the asymptotic local time
A. Further, the decomposition into excursions is an essential part of our descrip-
tion of the joint limit distribution of windings and other functionals defined
relative to several origins. )

The timing of the excursions of 8 + if into C | and C _ is entirely determined
by the timing of the excursions of 8 into R, = (0, c0) and R _ = (— 00, 0). So the
- analysis of excursions of the complex Brownian motion 8 + if into C, and C _
reduces quickly to the theory of excursions of one-dimensional Brownian motion.
Instead of considering a point process of excursion, as in the general Markovian
excursion theory of It6 (1970) and Maisonneuve (1975), we exploit the spatial
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homogeneity of Brownian motion to construct much simpler processes incorpo-
rating the excursions into C , and C _. Roughly speaking, we take the excursions
of B + i from the imaginary axis into C ,, and knit them together to form a
process p, + i0,, a Brownian motion in C , with reflection at the boundary axis.
The same operation is performed on the excursions into C _ to obtain p_ + if _, a
reflecting Brownian motion in C _. These operations are made precise in Section
5B, after first considering the one-dimensional aspect of splitting 8 into the
processes p , obtained from its positive and negative excursions.

A. One-dimensional excursions. Given a one-dimensional Brownian motion
B starting at zero, define

u
si<u)=f01(ﬁ,eni)dt, ©>0,

so the process s, is a clock measuring time spent by 8 in R ,. Let u, be the
right-continuous inverse of s ,:

u,(s)=inf{u: s (u) > s}, s> 0.

Time changing via u , has the effect of closing up the gaps of time spent by f
in the opposite interval —R ,. Thus the processes p , defined by

pi(s) =B(u,(s), s=0,

are derived from B by throwing out the excursions of 8 in —R ,, and closing up
the gaps. Define

u,(s)
Bu(s)= ["U(BeR.)dB.
The processes 8, play important roles as the martingale parts of p ,.
THEOREM 5.1. Let p, and B, be defined as above in terms of a Brownian

motion (.

(i) The processes p, and —p_ are independent reflecting Brownian motions
on [0, ), related to B, and B_ via the formulae

(5.a) p.=B. %L,
where 1 , is the local time process of p , at zero, and
(5.b) $.(s) = — min [£8.(v)].

(ii) The Brownian motion B may be recovered from p . and p_ as

B=1f(p.p-)
for a measurable function f: [UR)]* - QR), and the same is true with f

instead of p ,, for a different f.

PROOF. (i) According to Section 2.11 of It6 and McKean (1965), p, and —p
are both reflecting Brownian motions on [0, «0). We now sketch a proof of this
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fact, following the argument of Knight (1971), which shows further that p, and
p are independent. See also McKean (1975). The argument involves the processes
B ., which are time changes of the martingales

(5.c) Mi(u)z Llll(ﬁ,ERi)dlB,

via the inverses u, of their increasing processes s .. Since the martingales M,
and M are orthogonal, B, and B _ are independent Brownian motions by
Knight’s theorem (B.3). The Brownian motions 8, are the martingale parts of
p ., appearing in the Tanaka formulae (5.a). Here [/, is the local time process at
zero of p ,, as discussed in Appendix A. Using the notation of that section, and
abbreviating the local time L(X,0, ) to L(X, t)

(5.d) 1,(s)=L(p,,s)=L(B,u,(s)),
by a variation of the time change formulae (B.1) and (B.2). More explicitly,

I, (s)= lirrzu)%Ti(s,s) as.,

where T (e, s) is the time spent by p , in [0, ¢] up to time s, which is the time
spent by + 8 in [0, €] up to time u ,(s). But by a result of Lévy (1948) [see also
Skorokhod (1961) and El Karoui and Chaleyat-Maurel (1978)] /, may be ex-
pressed in terms of B, as in (5.b). Substituting this expression for ;/, in (5.a)
shows that p, and —p _ are reflecting Brownian motions on [0, o), by Lévy’s
representation of reflecting Brownian motion [see Lévy (1948) and Chung and
Williams (1983), Section 8.2].

(ii) It is part of the folklore of Brownian excursion theory that the Brownian
motion B can be recovered from its positive and negative excursions, incorporated
here in the processes p, and p_. To recover 8 from p, and p_, notice first that
by the definition of p ,,

B(t) =B(t)" = B(¢) =p.(s.(t) +p_(s_(2)),

so it suffices to show that the clocks s, and s_ are measurable functions of p,
and p . But from (5.d), the local times of these processes at zero are linked via
the clocks s, and s _, according to the identity

(5.e) L(p,,s.(t))=L(p_;s_(t)) = L(B,t), t=0.
Since s (t) = t — s,(t), this suggests
(5.f1) s,(¢) =inf{s: L(p,,s) > L(p_,t—s)},

a formula which is readily confirmed. Thus the clocks s, and s _, and hence B,
are measurable functions of p, and p_. O

" The above theorem summarizes all the one-dimensional excursion theory
which is needed for treatment of planar Brownian excursions in the next section.
The remainder of this section is a digression from the main theme, to point out
how the ideas behind Theorem 5.1 can be used to obtain some important results
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for one-dimensional Brownian motion, including Lévy’s arcsin law for the distri-
bution of s, (1).

There is a useful companion to the formula (5.f1), expressing the inverse u , of
the clock s, in terms of p, and p_:
(5.£2) u,(s)—s=inf{v: L(p_,v) > L(p,,s)}, s> 0.

This can easily be derived from (5.f1), or verified directly.

Notice that u,(s) — s = s_(u_(s)) is the time spent negative by 8 up to the
instant when B has spent time s positive. Together with the identity (5.b) this
allows (5.f2) to be rewritten as

(5.£3) s (u,(s)) =inf{v: B_(v) > {L(p,,s)}, s=0,

where § is a Brownian motion independent of p,.
For h > 0 let the distribution of ¢, = inf{u: B(x) = h}, which is stable with
index | and scale parameter /4, be denoted Stable(}, ). Then (5.f3) immediately

)

implies the following results, due to Williams (1969):

(5.g1) The conditional distribution of s_(u,(s)) given p, is Stable(}, H),
where

H=3L(p.,s)=3L(B,u.(s)).
If U is a random time such that s, (U) is a measurable function of p ,,
(5.22) then s, (U) and s_(U) are conditionally independent given L(B, U), and
"8%) the conditional distribution of s_(U) given s, (U) and L(B,U) =1 is
Stable(3, 51).

To illustrate (5.g2) take U = o, = inf{u: B(u) = 1}. Then (5.g2) applies because
s, (o)) =inf{u: p,(u) =1}.
As remarked by Williams (1969), Lévy’s arcsin law

(5.h+) P(s,(1) € ds) =

— 0<S<1,
mys(l — s)

is a consequence of (5.gl). Indeed, by the identity of events
(s,(1) <) = (u.(s) > 1) = (s_(u,(s)) > 1 — 5),
(5.g1) yields
(5i+) P(s,(1) <s|iL(p,,s)=h)=P(o,>1—-5s), h=0, 0<s<I.
This formula should be compared with a companion: formula for
s(,(1)1= sup{s < 1: B(s) = 0},

which is however much more obvious, by an application of the Markov property
of B at time s:

(5.i0) P(sy(1) <s||B(s)|=h)=P(o,>1-35), h>0, 0<s<l1.
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Since by (5.b), (5.d) and the reflection principle
d
yL(p,,s)=— inf B, (v)=|B(s)| for fixed s,
O<r<s
comparison of (5.i+) and (5.i0) reveals Lévy’s result that

(5.5) 3+(1)(=130(1)-

It is well known that the arcsin law of sy (1) can be obtained from (5.i10) by
integration, after some slightly tedious calculus. But we cannot resist including
the following argument, which highlights some related distributional curiosities.
By Brownian scaling,
d .
o,=l%,.

Substituting &, for o,, where 6, is a,( B) for another BM J independent B, (5.i0)
yields

P(So(]) < 3) = P(.BZ(S)&] >1- S) = P((l + V)_l < s),

where
V=s5"B%s)é,.

17
But by scaling again s '8%(s) = %), and by a change of variable

6,2 1/p°(1).
Thus
v g1y /81 £ we

where W has a standard Cauchy distribution, since the ratio of two independent
standard normal variables is standard Cauchy. A final change of variable shows
that (1 + W?2) ! has the arcsin law if W is standard Cauchy, and the proof is
complete.

See Karatzas and Shreve (1984) for further results in this vein. More on
excursion theory can be found in Walsh (1978), Greenwood and Pitman (1980),
Ikeda and Watanabe (1981), and Pitman (1981).

B. Excursions in half planes. Suppose now that { = 8 + 16 is a BM(C). Let
p , be the reflecting Brownian motions derived from B as in the last section, and
B . their martingale parts. The clocks s , now measure the time spent by { in the
half planes C , to the right and left of the imaginary axis. Let

u,(s)
0,(s) = fo 1(B,€ R ,)db,

where u | is the inverse of s . Informally, the process 8 , is derived from 6 by
deleting the increments of 6§ over intervals when f isin —R ,, and closing up the
gaps. A little care is required to make this precise, since the sum of increments of
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6 over the gaps is almost surely not absolutely convergent. But since 8 and @ are
independent, any method of summation for the deletions, determined by 8 alone,
will give the same answer almost surely as the stochastic integral.

Thus p , + if , is derived from B + if by taking tke excursions of 8 + i in
C | and knitting them together to form a process with continuous paths in C ,
and reflection at the imaginary axis.

THEOREM 5.2. (i) The processes p,, p_, 0,, and 6 are mutually indepen-
dent, as are the processes 3., B ,0,, and 6 .
(ii) The processes +p , are reflecting Brownian motions on [0, ), while the
processes 3, and 0 , are Brownian motions on (— 0, ).
(iili) The original Brownian motion { = B + if may be recovered as a mea-
surable function of either (B,.,8 ,8.,,8 )orof (p.,p ,0,,60 ).

PrOOF. The processes f, and 6, are the time changes of the orthogonal
martingales M , and N, via their clocks s ,, where M , was defined in (5.c), and
N, is defined similarly with d#, instead of dB,. So by another application of
Knight’s theorem (B.3), the processes 8., B_, 6,, and 6_ are four mutually
independent Brownian motions. Parts (i) and (ii) now follow immediately from
Theorem 5.1. Since by Theorem 5.1 the Brownian motion 8 and hence the clocks
s, and s are measurable functions of 8, and B_, or of p, and p _, the process

can be recovered via the formula

O(u) =0, (s, (u)+0 (s (u)),

which proves (iii). O

C. Application to windings. Suppose now that { = 8 + if is obtained by
time changing log Z, via its clock U, where Z is a complex Brownian motion
starting at 1, as before. By time changing the stochastic integrals, and local times
[see Lemma B.1, and formulae (B.1) and (B.2)] -

(5.41) . ()= [""1B, R ) d8,=0.(5.(V)),

(5~j2) L(t)=L(:8,OaU1)=L(P¢’O’St(U1)),

where L(t) is the local time of Z on the circle of radius 1 up to time ¢. These
formulae are especially informative at random times ¢ such that s, (U,) admits a
simple expression in terms of p, and p_, by variations of Williams’ one-dimen-
sional results (5.g). For example, if (7, { > 0) is the inverse of the local time
process L, then (U(7,), [ > 0) is the inverse of the local time process of 8 at zero,
whence from (5.e), (5.d), and (5.a).

s (U(7)) =inf{s: L(p,,0,s) > 1} =inf{s: B, (s) < —}i}.

Since 8., B_, 0., and 6 _ are mutually independent Brownian motions, it follows
that

(5.k1) the processes (2® ,(7,), [ > 0) are independent Cauchy processes.



ASYMPTOTIC LAWS OF PLANAR BROWNIAN MOTION 751

The average of these two independent Cauchy processes is the further Cauchy
process

(5.k2) o(7)=460(v), 1=0,

where v, = U(1)), so (v;, { > 0) is the inverse of (L(,0, u), u > 0).
This Cauchy process embedded in the windings should be compared with the
similarly embedded Cauchy process

(5.1) o(T(e")) = 6(s,), h=0,

which was encountered in the proof of Spitzer’s theorem. In contrast to sampling
at the times 7,, when Z has returned to the circle on which it started, the big and
small windings are neither independent, nor Cauchy distributed, nor symmetric,
when sampled at times T(e”) when Z hits larger circles. On the contrary, the
joint distribution of A~'® (T (e”)) is identical to the joint distribution of W, in
Theorems 4.1 and 4.2. Indeed, taking 2 = 1 and substituting ¢t = T, = T(e) in
(5.)) yields

(5.m1) o (T,)=W,=0,(s,(0,),
(5m2) L(T(,)=A=L(pi,0,si(ol)).

This excursion representation of the asymptotic winding variables and the
asymptotic local time given by the right-hand formulae in (5.m) explains the
conditional independence of W, and W_ given A, by a straightfoward extension
of Williams’ result (5.g). Because ® (t) is flat on the interval from time ¢ = T, to
time ¢ = 7, when Z next hits the unit circle, there is the alternative expression

(5.m3) W_=o_(T,)=2 () = ;Y (A),

where (Y (1), I > 0) is the Cauchy process obtained as twice the small winding at
time 7, as in (5.k1), which is a function of 8_ and 6_. But from (5.e)

A= L(B,O, 01) = L(p+,0,s+(01)),
and
(5.m4) s.(0,) =inf{s: p (s) > 1}.

Thus both A and s,(o,) are functions of p,, hence of 8, while the Cauchy
process Y is a function of the Brownian motions 8_ and §_. The mutual
independence of the four Brownian motions 8, and 6, now implies that
W, =86,s,(0,)and W_= ;Y_(A) are conditionally independent given A, and
that the conditional distribution of W_ given W, and A = [ is Cauchy(}/), as
asserted in parts (iv) and (v) of Theorem 4.2.

Parts (ii) and (iii) of Theorem 4.2 can be derived similarly without considera-
tions of Laplace transforms. The exponential distribution of A = L(,0,0,) is a
well-known consequence of the strong Markov property of 8 at the stopping
times defined by the inverse local time process of 8 at zero. And formulae (5.m1)
and (5.m4), plus the fact that p, is a reflecting Brownian motion identical in
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distribution to |B|, imply that
[W., A1 [6(6,),2L(8,0,6,)] = [&(T,), L(T,)], where
(5.n) 6, = inf{u: B, = +1or —1},
T,=inf{t: R,=eore™'}, soU(T,) =6,

and L(T,) is the local time Z on the unit circle up to time T,. From the middle
expression, the distribution of the first component of each of these three pairs is
the imaginary part of the hitting distribution of two lines parallel to the
imaginary axis thorough +1, for the complex Brownian motion 8 + if starting
at zero. The density of this distribution is well known to be the density given for
W, in part (iii) of Theorem 4.2. See for example Section 5.1 of Durrett (1984).

It is obvious that this distribution of W, is different to that of W_, which is
the distribution of HY, where H and Y are independent random variables with
standard exporiential and standard Cauchy distribution. The former distribution
has finite moments of all orders, and the latter finite moments of order « for
a < 1 only. The symmetry between big and small windings at the sampling times
7, breaks down at time T(e”), because the analog of (5.m3) for big windings is
false. While the small winding is flat between times T, and 7,, the big winding
process is moving, so the first identity in (5.m3) fails when + is substituted
for —.

Thus there is no symmetry between big windings and small windings in the
asymptotic distribution as ¢t - oo, despite the symmetry in distribution dis-
played in (5.k1) at the random times 7, tending to infinity. This result for the
inverse of L implies by straightforward approximations using the ergodic theo-
rem (4.c), that for any nonnegative additive functional H(¢) with ||H|| = 27, and
now the inverse of H,

Th

(5.0) R @, (1), @ ()] = [3Y,, Y],

where Y, and Y_ are independent standard Cauchy random variables. This
result is due in a slightly different form to Lyons and McKean (1984), who used
the geometric definition of big and small windings mentioned at the end of
Section 4.

The difference between the asymptotic distribution of big and small windings
at fixed times tending to infinity and at the inverse local times 7, tending to
infinity may be understood as follows. So far as the windings are concerned, the
fixed time ¢ cannot be approximated by the random times 7, at which there is a
symmetry in distribution between big and small windings. But ¢ is very well
approximated by the radial hitting time Tj;, which necessarily catches Z in the
middle of some big windings, thereby breaking the symmetry.

In retrospect, it is a remarkable coincidence that the limit laws for the total
windings ®(t)/h(t) and ®(7,)/h are both Cauchy, since one would naively
expect this coincidence to extend to the big and small windings, which it does not.
What the above arguments show is that

(5.p) R(t) ' [0(8), ®(1y)] = [6(0,), 8(,)],
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where 8 and 6 are independent BM’s, and

o, = inf{u: B(u) =1}, v, = inf{u: L(B,0,u) =1}.
That is to say, there is a very clear sense in which the asymptotic Cauchy
variables governing the total winding at fixed times and the total winding at the
inverse of an additive functional are different. )

The Fourier transform of this limit law with Cauchy marginals can be
calculated via the Laplace transform of (o,, v,), which has Stable(}, 1) marginals,
but the resulting formula seems rather complicated. Numerous companion results
for sampling of the windings by other families of random times are discussed in
Section 8.

6. Windings about several points. The main object of this section is to
prove the existence of an asymptotic joint distribution as ¢ — oo of the windings
®'(t),...,®"(t) of a Brownian motion Z about n distinct points z,,..., z,,
distinct also from the starting point z,. This result is most easily understood if,
in addition to the windings ®/(¢), we consider as in Theorem 4.1 an increasing
additive functional L(t) with ||L|| = 2, as well as big windings ®/ (¢) and small
windings @/ (¢) about each point z:

. t
(6.a) o/ (¢) = [)1(|Z(s) — 2| € I/} do(s),
where
Ii =(O) rj): I'/+=(r/)°o)7

for some r, > 0. As remarked below Theorem 4.1, windings in an annulus do not
count so far as asymptotics with normalization by A(¢) = }logt are concerned.
So the values of r; are irrelevant. Less obviously, the positions of the points
z,,..., 2, are also irrelevant.

THEOREM 6.1. Ast — oo,
h(t)'[®@%(2), @/ (¢); 1 <j < n; L(¢t)]
converges in distribution to
[W,,W/;1<j<n;Al,

where for each j the triple (W ,, W’ | A) has the joint distribution of (W,, W_, A)
described in Theorems 4.1 and 4.2, and the n + 1 random variables W, and
(W', 1 <Jj < n) are mutually conditionally independent given A.

This theorem is a corollary of Theorem 6.2 below, which is the central result of
the paper. Adding the big and small components in Theorem 6.1 shows that as
t— % .

(6.b) h(t) '[0i(t);1<j<n]S[W, + Wil<j<n].

So the asymptotic distribution of the windings about several points may be
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understood in terms of a common asymptotic big winding variable W, attribut-
able to the Brownian movement in a neighborhood of o0, and n small windings
W/, attributable to the Brownian movement in small neighborhoods of the
points. These n + 1 contributions are not independent. Rather, they are condi-
tionally independent given the asymptotic local time variable A. By virtue of the
ergodic theorem, A governs the amount of crossing back and forth between the
n + 1 neighborhoods. The larger the value of A, the larger in absolute value all
the winding components tend to be. So there is a positive dependence between
the absolute values of the various winding components which is explained by A.
To formulate the central theorem, let

= B/’ + 167
be the BM(C) obtained as in (2.i) by time changing the logarithm of the process

(Z —2z)/(2),— 2))- That is to say, 8/ and 6/ are the Brownian motions obtained
by time changing the two orthogonal local martingales

(6.c1) log(|Z(¢) — 2| /12y — 2),  t=0,
and .
(6.c2) ®/(t), t>0,
via their common increasing process
. t 2
(6.c3) U/(t) = f)ds/|Z(s) -z
(

Next, for & > 0 let /" be the BM(C) derived from {’ by the Brownian scaling
operation

¢ M u) = h (R, u>0.
THEOREM 6.2. As h — o©
. d .
({j’h) .]= 1""»”) g ({Lx, .]: 1)"'}”’)’

where the limit is a family of n complex Brownian motions whose excursion
processes p’;* + i0”;* in the half planes C , have the following two properties:

(i) As j varies, the excursion processes p’ > + i0%> are identical to a
common process p% + i07. .

(ii) The common excursion process p= + i and the n excursion processes
p’* + i/ >*, 1 <j < n, are mutually independent.

In the statement of the theorem, the Brownian motions {/*” and {/** are
regarded as random elements in the path space @(C). By Lemma B.3 the theorem
implies that for every measurable transformation y from @(C) to a separable
metric space, .

. . I . .
(Gd) (4’(§th))]=1"'-yn)—’(\l/(§j‘x)’.]=17""n)'
Taking ¢({) = W({) = 0(0,), Lemma (3.1) implies that as ¢ and A tend to x
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with A = jlogt
1)
(6.e) h'®/(t) — W(§") - 0.

This gives (6.b) with W({/ <) instead of W, + W-. Letting ¢ be first W, then
W and then A instead of W gives the more detailed account of Theorem 6.1, by
the parallels of Lemma 3.1 described in the proof of Theorem 4.1.

By the same token, to prove Theorem 6.2 it suffices to establish (6.d) for a
transformation ¢ which can be almost surely inverted. This is the case for the
transformation ¢ which splits a complex Brownian motion { into the four
Brownian motions 8 ,, 6,, 8_, and 6_, from which { can be recovered according
to Theorem 5.1. Thus Theorem 6.2 is an immediate consequence of the following
lemma, in which each process denoted by a B with indices is the Brownian
motion obtained as the martingale part of the reflecting Brownian motion p with
the same indices, the processes p* + i#* and p”* + i#/* are as in the state-
ment of Theorem 6.2, and p%” + i@’;" are the excursion processes of {/* in C ,.

LEMMA 6.3. Ash — o
[(BL", 6057, 7" 620), j=1,...,n]
converges in distribution to
[(B%, 8%, B, 00%), j=1,...,n],
where B*, B* and B*,07>, j=1,...,n, are 2 + 2n mutually independent

Brownian motions.

ProoF. Using the scaling notation (3.h), it should be noted from the defini-
tions that for « = 8 or 6

(6.f) a " = [aé](h).

Moreover, by a time change in the stochastic integrals, ,8@ and 6/, are the
Brownian motions associated with the local martingales G/, and ®/, which are
the components of the conformal martingale

o 1(12, -z € I,)
(6.8) G/i(t)+z®fi(t)=/(; Z ) %

where
I=(0,]zg—z}), I =(lzg— 2], ).

The processes <I>-"i are processes of big and small windings about z;, and G, is the
martingale part of [log(|Z — z,/|z, — z;))] *. Consider first the case n = 2. It
must be seen that as A — o

an P
(6.h1) gL — B =0,

P
(6.h2) o8y =630,
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and

(6.h3) (BL7, 0 h, BlLh glh p2h g2h)

converges in distribution to a vector of six independent Brownian motions
(Bx, 0%, BL>, 0>, 2> 6%>).

These conclusions follow from general criteria for asymptotic identity and
asymptotic independence of Brownian motions derived as time changes of con-
tinuous local martingales.

If M, and M, are two continuous local martingales relative to the same
filtration, with (M), = (M,),. = oo, and
M, - M,
(6.1) S—-‘——i&ao as. ast— oo fori=1,2,

(My),

then the Brownian motions 3; obtained by time changing M, are such that
l)
B — B > 0ash - .
This is a special case of Theorem B.4. For M, = G, M, = G2, it is easily
checked that

(M, — M,), = /(:f(Zs)dS,

where

. |2y = 22|2
(6.) f(z)= Iz - 2 |2|Z S |21(|2 —z|> |z — Z()|)1(|Z — 25| > |z, — 2)),
1 2

a function which is integrable over the plane, whereas (M, ), has the same form
with functions f, which are not integrable. Thus (6.i) in this case follows from the
ergodic theorem (4.c), and (6.h1) follows. Formula (6.j) and the above argument
apply just as well to the imaginary parts ®/ of the conformal martingale (6.g),
yielding (6.h2). Turning to the proof of (6.h3), we make use of the following
general criterion, which is a case of Theorem B.2:

If M,, 1 <i <k, are k continuous local martingales relative to the same
filtration with (M, = oo, i =1,..., k, and for every i < j
1
(M),

then the Brownian motions f3, obtained by time changing the M, are such that

(6.k1)

/(:Id<Mqu>,,-| -0 as. ast— o,

(6.k2) (B™M,i=1,...,k) S (B*, i=1,....,k) ash— oo,

)

where the limit is a k-tuple of independent Brownian motions.
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Applying this criterion to the six local martingales of the form G’/ and &~
whose rescaled Brownian motions appear in (6.h3), it must be checked that (6.k1)
holds for every pair. For a pair chosen from the first four components, or for the
last pair, this is immediate since the processes are simply orthogonal. For the
eight remaining pairs it is found that

t
(M,, My, = f g.(2,)ds

for a function g,; which is integrable in every case. For example, if M, = G',
M, = G?, the function &:/(2) is similar to the function f(z) in (6.j), but with
|z, — z,|* replaced by the inner product of z — 2z, and z — z,, and the inequali-
ties reversed inside the indicators. Again, the denominator (M,), in (6.k1) is of
the same form for a function f; which is not integrable, so (6.k1) holds by the
ergodic theorem.

This proves the lemma in the case n = 2. The case n > 2 is quite similar. O

7. The joint limit law of the windings. We record in this section some
properties of the joint limiting distribution of (2®,(¢)/logt, 1 <j < n). Accord-
ing to Theorems 4.2 and 6.1, this is the joint law of (W,,..., W) defined by

(7.a1) W, = W/ + W,

where

(7.a2) W/ =HY, j=1,...,n,

(7.a3) Y,,...,Y, are independent standard Cauchy random variables, indepen-

dent also of the pair (H,W,), which has Laplace-Fourier transform
(7.a4) Ee H+iW. = f(q v) = [coshv + (a/v)sinhv] !, @ > 0, v € R.

By the scaling property of the Cauchy process, HY, in (7.a2) can be replaced
by Y.(H), where Y|(+),...,Y,(+) are independent Cauchy processes. This is the
representation provided by the proof of parts of Theorem 4.2 in Section 5, with

H = ! A, so H is exponentially distributed with mean 1. But the representation
(7.a) has the merit that it presents the n random variables W,,..., W, as a
function of just n + 2 random variables Y,,...,Y,, H,and W,.

Obvious properties of the joint law are that it is exchangeable with standard
Cauchy marginals. And it is easy to see that it is infinitely divisible, but not
stable. Denote by Cauchy(w, h) the distribution of w + AY, when Y has stan-
dard Cauchy distribution. From (7.a), conditional on W, = w and H = h,
W,, ..., W, are independent with identical Cauchy(w, &) distribution. This gives
a formula for the joint density of (W,,..., W,) as an integral with respect to the
distribution of W, and H of products of Cauchy densities. But although the
marginal distributions of W, and H are quite simple (see Theorem 4.2) the joint
distribution of W, and H seems rather intractable. We are equally unable to
give any useful formula for the Lévy measure of the law of (W,,..., W,).

By an-amazing coincidence, which we can explain only by invoking the
Ray -Knight theorem on Brownian local times, Lévy (1951) encountered the joint
distribution of H and W, as the joint law of |Z,|?/2 and 2A,, where Z = X + iY
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is a complex Brownian motion starting at zero, and (A,) is the stochastic area
process traced out by Z:

AI: .lZ/I(Xdes - Y;dXs)'

0

This may be compared to the winding process

@, = [(X,dY, - Y, dX,) /12",
0

though it must be assumed for the winding that Z is not zero. It would be most
interesting to find a more direct connection between these two stochastic in-
tegrals. Lévy’s results for |Z,|?/2 and 2 A, show that

(7b) E(eit:W,IH — h) — (D/Sinhv)eh(lft‘cothc),

which implies that H and W, have a joint density. But we are unable to simplify
the Fourier inversion formula for the conditional density of W, given H = hA.

We note that the factor v/sinhv in (7.b) can be interpreted by a last exit
decomposition in the representation of H = ;A and W, in Theorem 4.1, as the
Fourier transform of 6(s, — o,), where ¢, is the last time 8 is at zero before time
o, when B first hits 1. According to Lévy, the corresponding distribution has
density

(7.c) P(6(o, — 0,) € dx) = n/[4cosh®(7x/2)].
In terms of windings, this is the limit distribution as ¢t - oo of
Z[Q(t) - (I)(t(,)]/log t,

where ¢, is the last time before ¢ that Z visits the unit circle (see Theorem 8.4).
It is the second factor in (7.b),

eh(l—rcothl') — E(eilﬁ(a”)lH — h)’

which seems difficult to invert.
Another way to describe the joint law of (W), 1 <j < n) is to specify for each

set of real coefficients c,,..., ¢, the law of
XeW,,
which is the limit in distribution as't — oo of
(2/1og t) 3 c,®;(¢).

To describe this law, we introduce for a, b > 0 a distribution MC(a, b) on the
line, the mixed Cauchy distribution with weights a and b, defined by

(7.d) MC(a, b) is the distribution of aW_ + bW,

‘where W, are asymptotic small and big winding random variables as in Theo-
rems 4.1 and 4.2. The terminology “mixed Cauchy” will be explained shortly.
The roles of the coefficients a and b are indicated by the mnemonic a for small
windings and b for big windings.
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Elementary convolution and scaling properties of the Cauchy distribution
imply that for all real coefficients c,,..., ¢, and d,

(7.e) the distribution of }_c,W’ + dW, is MC( X |c/, |d|).
In particular, for W, = W’ + W,
(7.£) the distribution of Y- ¢,W; is MC( L lc;l,| L /).

Thus, every linear combination of windings about a finite number of points has
asymptotic distribution belonging to the two parameter family of mixed Cauchy
distributions.

We record now a number of further consequences of (7.f), then give a more
explicit description of the mixed Cauchy distributions. Since from (7.d) the
MC(b, b) distribution is the symmetric Cauchy distribution with scale parameter

b, it is a consequence of (7.f) that

(7.9) every positive linear combination of W,,..., W, has a symmetric Cauchy
) Jistribution.

Moreover, (7.a) and (7.d) yield,

every linear combination ¥c¢;W, with Yc; = 0 has the law of (L |c,)HY,,
(7.h) where H and Y, are independent random variables which are standard
exponential and standard Cauchy, respectively.

From (7.d), (7.f), and Theorem 4.1 we obtain the Fourier transform of W,,..., W,:

(7.) Eexp( W) = f(Zlef [ Zel),

for f(a, v) as in (7.a4), but this seems difficult to invert.
. We turn now to a more detailed study of the two parameter family of

distributions {MC(a, b), a, b > 0}. An obvious feature of this family is the
scaling property, that if the law of X is MC(a, b), then for any constant ¢ the
law of c¢X is MC(a|c|, b|c|). In particular, the MC(a, b) distribution is symmetric
about zero. It is also easily seen that MC(a, b) is infinitely divisible.

From Theorem 4.2 the characteristic function of MC(a, b) is the function of

veER
(7.41) f(alv|, bv]) = [cosh a|v| + (a/b)sinh bjv|] ~".

An elementary calculation reveals that this characteristic function can be repre-
sented as

(7.42) _ﬁ Ba o(ds)e 1,

where p, , is the signed measure with total mass 1 on (0, c0) defined as follows:

For b # 0, p,, , is the discrete measure which puts mass

(7.3) (2b/(a + b))((a - b)/(a +b))"
at each of the points (2n + 1)b, n = 0,1,2,..., and a0 1S the exponential
distribution with mean a: p, (ds) = a e */“ds, s > 0.
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Since ¢ — e *Il is the characteristic function of the Cauchy distribution, sym-
metric about 0 with scalar parameter s, and u, , is a probability measure for
a > b, we learn that

for a > b, MC(a, b) is a scale mixture of symmetric Cauchy distributions,
in the usual probabilistic sense. More precisely, for a > b, MC(a, b)
is the distribution of Y(T, ,) and T, ,Y(1), where Y is a Cauchy process,
and T, , is an independent random variable with distribution g, ,.

This case a > b is the one relevant to the basic formula (7.f) for the asymptotic
windings. Let us consider three subcases.
(1) If a = b then
T, ,=b
is constant. That is, as noted already,

MC(b, b) = Cauchy(0, b),

corresponding via (7.f) to the fact that the distribution of each W, is Cauchy(0, 1).
(ii) If b =0, then T, , is exponentially distributed with mean a. Then by
(7.d), (7.k) amounts to the description (5.a2) of W/ with the identification

T,,=aH.
So, in the context of the windings, T, , is interpretable as the asymptotic local
time variable. The MC(a, 0) distribution has characteristic function
f(alo,0) = (1 +alo) ', veR,
and probability density function
= e */%ds

x) = —_—, x €R,
GRS e perape
which is the mixture of Cauchy densities corresponding to the mixture of
characteristic functions (7.2).

(iii) If @ > b > 0, then

Ta,b = (2Na,b + 1)b’

where N, , is geometrically distributed on {0, 1,... } with parameter 2b/(a + b).
Instead of an integral formula there is a corresponding series formula for the
density f, , of MC(a, b):
x 2 a—bln (2n+ 1)b
f(t,l)(x) = Z 259 9] °
n=()(a+b) at+b w[(2n+1)b +x]

.But we are quite unable to provide an explanation in terms of windings for the
appearance in this case of the geometric mixing distribution.

In addition to the three subcases considered above of (7.k) with a > b, which
suffices for the consideration of (7.f), in (7.d) and (7.e) there is the further case to
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consider when

(iv) 0 < a < b. In this case the mixing measure p(a, b) on (0, o) defined by
(7.j3) is a discrete signed measure with masses on the points (2n + 1)b,
n =0,1,...,which alternate in sign. The probabilistic interpretation of the
mixing operation breaks down in this case. Still, it follows analytically from (7.j)
that the formula for the density of MC(a, b) in case (iii) is still valid.

In the subcase when a = 0, the series simplifies to

fo, p(x) = $b/cosh(mx/2b),

as noted by Lévy (1951). This yields the formula of Theorem 4.2 for the density
of the asymptotic big winding W . This MC(0, b) distribution has all moments
finite, in contrast to the MC(a, b) distributions for @ > 0, which do not have a
first moment.

We do not know of any reference in the literature either to this mixed Cauchy
family of distributions on the line, or to the multivariate distribution of the
asymptotic windings.

8. Log scaling laws. The preceding sections have largely been devoted to
the asymptotic behavior of the winding numbers generated by a Brownian path,
around a finite number of points in the plane. We now explore the extent to
which the same methods can be applied to other functionals of the Brownian
path. It turns out that there is a large and quite varied collection of Brownian
functionals G(t), for which there are asymptotic laws linked with the results for
windings. This section concerns a particular family of such limit laws, which we
call log scaling laws.

The most basic kind of log scaling law states that

(8.2) 2G(t)/log(t) > v(0,) ast— oo,

where G is a functional of a complex Brownian motion Z started at z, # 0,

v =(v(u), u=0)
is a process associated with G, defined in terms of a single BM(C) starting at 0
{=B+10,
and '
o, = inf{u: B, = v}.

Roughly speaking, the process y is obtained from G as a limit by Brownian
scaling, after time changing via the clock

8.b U= | =
(5b) U=

S

which transforms log Z into {. We shall say that G is logarithmically attracted to
y. A formal definition of logarithmic attraction is given in Definition 8.3 below.
But it seems best to introduce the notion with some examples and operations for
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TABLE 1
Logarithmic attractions

process G(t) attracting process y(u)
ay [do (R, € L) [fd81(8 e®y)
0 0
u
@ ['dllog R,J1(R, € 1) [ dB (B e Ry)
O Q0
. ,ds 172 u 1/2
@) [f“ (R k) [f“ de1(B eIR_\)]
(4) increasing additive functional A(¢) 2m) "AIL(B,0, u)
(5) a,G,(8) + a,Gy(t) a v (u) + ayy.(u)
(6) G,()V Gy(t) yi(u) vV v(u)
(7) sup G(s) sup y(t)
O<s<t O<v<su

generating further examples. In Table 1 I, stands for one of the intervals
I,=(r,o), I =(0,r), I=(0,00),
where r > 0 is arbitrary, and R, stands for a corresponding interval
R,=(0,0), R_=(-0,0), R=(—o00,00).

Thus A may be +, —, or absent altogether.

The processes of line (1) of Table 1 are the processes of big windings, small
windings, and total winding about zero up to time ¢. It was proved in Theorem
4.1 that the limit law (8.a) holds for the processes G in lines (1) and (4). The same
argument extends with no difficulty to the processes G in lines (2) and (3). The
processes G in (2) are just the real parts of the three conformal martingales
whose imaginary parts are the winding processes in line (1). And the processes in
(3) are the square roots to the increasing processes Uy(¢) of these three conformal
martingales. After squaring both sides the limit law (8.a) in this case becomes

4U\(t)
(8. ooty ),

where s, (0,) is the time spent positive by the Brownian motion 8 before time o,
s (o,) is the corresponding time spent negative, and sy(¢,) = ¢, if Uy = U as in
(8.b). It is shown in Pitman and Yor (1986) that Uy(¢) — Ny(¢) is o(log*(t)) in
probability as ¢t — oo, where N(t) is the number of.crossings of Z between the
positive and negative parts of the real axis up to time ¢, N_(¢) is the number of
big crossings, and N _(¢) the number of small crossings, for the classification of
¢rossings mentioned above Theorem 4.2. So the geometrically defined counting
processes N,(t) can be substituted for the Brownian clocks Uy(¢) in (8.c).

In lines (5) through (7) of Table 1, it is assumed that G, and G are processes
which are logarithmically attracted to y, and v, respectively. These lines indicate
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operations by which the table may be extended. Proof that logarithmic attraction
respects these operations is immediate from Definition 8.3. Combining these
operations shows that logarithmic attraction respects similarly the transforma-
tions from a process G(t) to
|G(¢t)|, inf G(s), sup |G(s)].
O<s<t

O<s<t

As illustrations, lines (1) and (2) may be extended via line (7) to obtain in (8.a)

d
(8.d1) 2 sup ®(s)/log(t) > sup 6(v)
O<s<t O<v<o
d
(8.d2) 2 inf log R(s)/log(¢) » inf B(v).
O<s<t O<tv<a

However, logarithmic attraction does not respect products: the square of a
process G satisfying (8.a) has a limit with normalization by log?(¢) rather than

log(¢).

Looking at the proof of Spitzer’s law and Theorem 4.1, we have argued over
and over again that a limit theorem of the form (8.a) holds with limit ¢({), for
some measurable functional ¢ of ¢, if

. r
(8.h) h'G(e*") —y(§) >0,
where (') is obtained from ¢ by the Brownian scaling operation

(8.i) {M(u) = h %(h%u), u=0.
Writing ¥(h) or ¥(h, Z) instead of A~ 'G(e?") suggests the following definition.

DEFINITION 8.1. A process
(¥(h), h>0)=(¥(h,w), h>0,0 < Q(C))
has log scaling limit , where ¢ is a measurable function on (C), if
(84) Y(h,Z) - y(§™) 50 ash - w

whenever Z is a BM(C) starting at a point z,# 0, { = {(Z) is the BM(C)
starting at 0 defined by time changing the conformal martingale [{(dZ,/Z,) by
its clock U, = [{(ds/R?), and {") is derived from { by the Brownian scaling
operation (8.1).

Log scaling limits have most of the usual properties of a notion of convergence
of random variables. For example, log scaling limits are unique a.s. with respect
to the distribution of ¢, and limits are preserved under the usual algebraic
operations and transformation by continuous functions. Because the distribution
of {'" is the same for all A, if ¥(h) has log scaling limit ¢ then

(8.k) ¥(R) S y(8).

We call such an asymptotic law a log scaling law. A remarkable fact, which is
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obvious from the definition, is that all log scaling laws are linked: Every finite
collection of log scaling laws holds jointly.
According to Lemma 3.1, the winding process

(8.1) ¥(h) = ®(e?*)/h, h>0,

has log scaling limit 6(o,). Moreover, the proof of Theorem 4.1 shows that for
every choice of G in lines (1) to (4) of Table 1, the process

(8.m) V(h) = G(e?")/h, h>0,

has log scaling limit y(0,), where vy is the logarithmic attractor of G as defined by
Table 1.

Furthermore, log scaling laws hold jointly relative to several origins. Thus
Theorem 6.1 for windings is a particular case of the following general result:

THEOREM 82. If z,,2,,...,2, are n distinct points in the plane, and
Y (Z, h) is a process with log scaling limit y;, j=1,...,n, then, as h - o

. d . 3
[‘I'j(Z —z,h),j= 1,...,n] - [\I'j(g’f'x), j=1,..., n],
where the ¢ are the linked Brownian motions described in Theorem 6.2.

Proor. Immediate from Theorem 6.2 and Lemma B.3. O

There is one important distinction between this notion of a log scaling limit
and more usual notions of convergence of random variables: if ¥(4) has log
scaling limit 4, it will typically not be true that ¥(a(h)) has log scaling limit y
for functions a(%) increasing to oo as h — oco. For example, it is easy to check
that

if ¥ has log scaling limit Y, and ¥, is defined by
(8.n) Y (h) =¥(ah), a>0,
then ¥, has log scaling limit  ,, where
Yo($) =9 (§@).

In this case the limit exists and has the same distribution as iy, but may be
different almost surely. For other increasing functions a( ) the log scaling limit
may not exist at all.
As a particular case of (8.n), we may take ¥ as in (8.m). Without further
calculation, the linkage between all log scaling laws implies that as 2 — oo
Fd

(8.0) (G(e?**) /R, a > 0) > (y(o,), @ > 0)

where 5 indicates convergence of finite dimensional distributions. When G is
the winding process ®, y is the Brownian motion 6, which is independent of the
Brownian motion B whose hitting time of a is o,. Then, as remarked in Section
3, the process on the right is a Cauchy process. This extension of Spitzer’s law
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may be found in Section 5.5 of Durrett (1984). When G = A is an increasing
additive functional,

v(o,) = (27) 'IAIL(B,0,0,), a=0,

and we obtain a companion result due to Kasahara and Kotani (1979), extending
the Kallianpur—-Robbins theorem. According to the above discussion, these re-
sults (8.0) hold jointly with each other, as G varies, and jointly for several
origins.

As remarked by Kasahara (1982) and Durrett (1984), it is impossible to
strengthen the convergence of finite dimensional distributions (8.0) to weak
convergence in the function space D[0, o) equipped with any of the usual
topologies. This is because the processes converging have continuous paths,
whereas the limit has jumps. As an example, for the winding process G = @, the
convergence in (8.0) cannot take place in any topology on D[0, co) which makes
the maximum on [0,1] a continuous functional. To see this, we recall Spitzer’s
remark that (®(t), ¢ > 0) satisfies the same reflection identity as Brownian
motion:

P(®(t) > x) =2P(®(t) > x),
where for a process G we write

G(t) = sup G(s).
O<s<t
This follows directly from the time change to Brownian motion. Thus Spitzer’s
theorem implies that as A — o

(8.p) B(e2h) /h S [W(1)],

where the standard Cauchy random variable W(1) may be obtained from the
Cauchy process

(W(a) = 6(0,), a20)

appearing in (8.0) in this case. On the other hand, were there convergence in (8.0)
in a topology on D[0, co) which made the maximum functional continuous, the
limit in (8.p) would be identified as the distribution of
(8.9) W(1) = sup 6(s,).
O<a<l

But the jumps of the Cauchy process forbid a reflection principle, and the
distributions of |W(1)| and W(1) are different. The situation is clarified by finding
the right representation in terms of { = 8 + i for the limit random variable in
(8.p). According to line (7) of Table 1, we should substitute

8(o,) = sup 6(v)
. ’ O<r<o
instead of |W(1)|in (8.p). This substitution turns (8.p) into yet another log scaling
law, holding jointly with the convergence of finite dimensional distributions (8.0).
Of course, 6(o,) is with probability one strictly bigger than the maximum value
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WI(1) of the Cauchy process W(a) = 6(o,) up to time a = 1. The latter maximum
looks only at those values of # when f is hitting new maxima, and the maximum
of @ will almost surely occur between such times. Thus the convergence of finite
dimensional distributions in (8.0) does not in any sen$e determine the limit
distribution of the maximum. Nonetheless this distribution can be obtained
within the larger framework of log scaling laws. )

This example brings us to the question of what it means for a process G
defined in terms of the Brownian motion Z to be logarithmically attracted to a
limit process y defined in terms of the time changed Brownian motion {. Since Z
can be expressed in terms of { via the formula

Z,= 20exp(§'(U,)),
where U, can be written in terms of { by (2.k), the Brownian functional
G(t) = G(t, Z) can always be rewritten as
(8.r) G(t,Z) = (U, §)

for some process I'(u) = I'(u, (). Now let '’ be obtained from I' by the
Brownian scaling operation

1
P(u) = - T(h*),  h>0,

and regard ') as a process parameterized by A > 0, with values in the path
space 2(R), where we assume for simplicity that G has continuous paths.

DEFINITION 8.3. 'The Brownian functional G is logarithmically attracted to y
if the Q(R) valued process ' has log scaling limit .

Spelled out, this condition states that
1)
(8.s) ™) —y(8™) >0 ash - oo,

where the convergence is uniform on compact sets. Equivalently, by Brownian
scaling,

(8.t) (k) 4 v(¢) ash - oo,

in the same sense.

Straightforward calculations show that each of the processes G in the first
four lines of Table 1 is logarithmically attracted by the corresponding process vy.
Moreover the closure properties stated in lines (5) thorugh (7) of the table are
easily verified. A large class of log scaling limit laws, including all those men-
tioned so far, can now be obtained by application of the following theorem:

THEOREM 8.4. Suppose that a Brownian functional G = (G(t), t > 0) is
logarithmically attracted to y = (y(u), u > 0). Suppose also that (T, h > 0) is a
family of random times such that

1
(8.u) 72 U(T),) has log scaling limit T,
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where U is the logarithmic clock (8.b). Then

1
(8.v) ;;G(Th) has log scaling limit y( 7).

Proor. By the definition of T in (8.r),

1 1
ZG(Th) = ZF(U(Th))

- r"’)(;lgU(T,,)),

so the result follows from the assumptions (8.u) and (8.v).

In particular, the hypothesis (8.u) holds for T, = e*", with 7 =o0,. The
conclusion (8.v) then implies that the basic log scaling law (8.a) holds for every
Brownian functional G which is logarithmically attracted to y.

Table 2 indicates some families of random times (7},, A > 0) and the corre-
sponding asymptotic times 7, which are the log scaling limits of (1,/A%)U(T}).
According to Theorem 8.4, for each selection of G and y from Table 1, and each
selection of (77,) from Table 2, there is the log scaling law

1 (
(8.w) ZG(Th)—[)‘Y(T) as h — oo.

Proors. From line (6) of Table 2, which is obvious from the definition of a
log scaling limit, there is no restriction whatever on the collection of possible
asymptotic times 7. Letting 7 be g, yields line (2) from line (6). Lines (1) and (3)
are deduced from line (2) by Brownian scaling, as in (3.g). Taking 7 as in line (4),
for ||A|| = 27 the formula for T}, in line (6) gives the left side of line (4) for the
particular additive functional

A,= L(log R,0,t)

TABLE 2
Logarithmic time changes

family of times (T},) asymptotic time
(1) 0""/', >0 g,
(2) inf{t: R, = e""}, all real ¢ g,
(3) inf{t: A, = e"’}, v > 0, where A, a,
is the local time of X, at 0
(4) inf{t: A, = th} where A, is an inf{u: L.(/f,(), u) = v/||All}

increasing additive functional
with ||A|| < o

(5) sup{t <e?M R, < r} sup{u < o5 B, = 0)

6) U [ re(s)] T
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by the transformation of martingale local times under time and space changes
according to (A.8), (B.1), and (B.2) . The result for a general additive functional
A can then be derived by a comparison with this special case, using the ergodic
theorem for additive functionals. O

Combining Theorems 8.2 and 8.4 for the times in lines (1) and (3) of Table 2
shows how the results (5.0) and (5.p) extend to hold jointly relative to several
origins. This yields the joint asymptotic laws for windings described by Lyons
and McKean (1984) and Pitman and Yor (1984). The times in line (3) yield
asymptotic laws which have interesting implications for the Cauchy process
obtained by watching Z only when it touches the real axis. See Pitman and Yor
(1986).

Which additive functionals of the planar Brownian motion admit log scaling
limit laws? For increasing additive functionals A(¢) the answer is simple if we
assume that it is A(¢) itself and not some power A(¢)* that satisifes the log
scaling limit law. By the ratio ergodic theorem, A(¢) must have ||A|| < o0, and
the result is then the extension due to It6 and McKean (1965) of the
Kallianpur—Robbins theorem, given by (8.a) for G in line (4) of Theorem 8.1.

For martingale additive functionals, represented as say

GM=LW&V%+A@AML

where f and g are Borel functions, the question is more interesting. The
following result is a refinement of Theorem 6 in Messulam and Yor (1982), where
it is assumed that zf(z) converges both as z = 0, z # 0, and as z - . Using
complex conjugates, it is a straightforward matter to formulate a corresponding
result for G(t) as above.

THEOREM 8.5. Let
t . ¢
G(t) = [1(2,) dz, with|f(z)| < —.
0 ) ) 12|
Then the following assumptions are equivalent:
(1) G is logarithmically attracted to some process 7.
(ii) exp[h(x + iy)] f[exp(h(x + iy))] converges as h — oo in L (dx dy).
(iii) There exist constants p, and p _ such that as R — oo,

1 dx d
Y 1(z) - p, | =0,

log R Jixr, +) 12|

where )
D(R,+)={z:1<|z| <R},

. D(R,—-)={z: R"7'<|2] < 1}.
If these conditions are satisfied, then the logarithmic attractor vy is
v(w) = [ p(B,)ds,
0
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where
p(x)=p,1(x>0)+p_1(x <0).

This theorem, and Theorem 8.6 below will be established in a forthcoming
paper. .

If f is holomorphic in {z # 0; |z| < r} for some r € (0,1), and bounded on
{r' <|z] < 1} for some r’ < r, then the limit p_ exists and is the residue of the
function at zero. This lies outside the scope of the above theorem, since the
assumption |f(z)| < c¢/|z| will not be satisfied in general. But a log scaling law
can still be obtained in this case. Put together for several origins, using the
notation of Theorem 6.1, the result is the following asymptotic residue theorem:

THEOREM 8.6. Letz,,..., z, be a finite set of points in C. Suppose that f is a
complex valued function such that

(i) f is holomorphic in D \ {2,} fora neighborhood D of each pomt
(ii) f is bounded on the complement of the union of these nezghborhoods
(iii) f has compact support.

Then, as t > «

logt-[f( )dZ_)ZReS(f )(A-HWJ)

If instead of (iii), f is holomorphic in a neighborhood of « and
lim f(z) =0,
then the same conclusion holds with the addition in the limit of

A
Res(f,oo)(; -1+ iW+).

APPENDICES

A. Continuous semimartingales. Unless otherwise stated, all processes
considered here are defined on a probability space (£, %, P), and are adapted to
a filtration (%)), , of sub o-fields of #. A real-valued process M is a continuous
local martingale, to be abbreviated as CLM, if the trajectories of M are
continuous, and there exists a sequence (7,) of stopping times increasing to oo
a.s., such that (M(¢ A T,), ¢ > 0) is a martingale for every n.

A very important process attached to a continuous local martingale M is its
increasing process (M) also known as its quadratie variation or variance
process, which is characterized by

= (M) is a CLM.

As explalned in Yor (1982), following Lenglart and Sharpe, the process (M) both
allows the construction of the stochastic integrals [H dM of predictable processes
with respect to M, and can be obtained during their construction via the Itd
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formula
ME - M¢ =2 [ M dM, + (M),
0

Among other things, the process (M) governs the speed at which M* =
sup,  /M,| increases. This shows up clearly in the following distributional in-
equalities which can be used to establish the Burkholder-Gundy inequalities in
L” for 0 < p < 0. See for example Burkholder (1973). If M is a CLM, and
M* = sup, _,|M,|, then for any A > 0, § > 0

(A.1) P(M} > 2\, (M)/? < 8X) < 48*P(M* = \).
This immediately implies
(A.2) P(M¥ > 2\) < 482 + P((M)'/? > 8)).

Moreover, the same inequalities hold with M* and (M)/* switched. The
following lemma is an easy consequence, the proof of which is left to the reader.

LEMMA A.l. (i) Let (M}, t > 0) be a sequence of CLM’s. Then, as n — oo,
r P
(M™)% -0 ifandonlyif (M"), — 0.

(ii) In particular, if (7(1), I = 0) is a family of stopping times, M is a CLM,
and g(l) is a real valued function of I, then, as I - oo,

P 3 . r
MY,/g(l) >0 if and onlyif (M),,/g*(1) = 0.

A fundamental link between martingale theory and Brownian motion is Lévy’s
characterization of an (%,)BM, defined as a process (B,) which is (%,) adapted,
has the distribution of BM, and such that, for any ¢ > 0, the increments
(B,,,— B,, s > 0) are independent of .#,. Lévy’s characterization reads
(A.3) (B,) is an (#,)BM iff ( B,) is a CLM with (B), = ¢.

A continuous semimartingale is the sum of a CLM and a process with continuous
paths of bounded variation on any compact of R ,. Semimartingales are precisely
the right objects for stochastic integration. See Dellacherie’s survey (1980), for
example. Further developments are found in Meyer (1976) and Dellacherie and

Meyer (1978, 1980).
A cornerstone of stochastic calculus is Itd’s formula

F(X) = (X = ['1(X,)ds + 4 [1(X,) d(X0,,

for continuous semimartingales X and functions f with two continuous deriva-
tives. From among the numerous extensions of Itd’s formula we extract the
following:
If X is a continuous semimartingale which takes its values in an open
(A.4) interval I C R, and f: I — R is a difference of two convex functions, then
Y = f(X) is a continuous semimartingale.
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In particular, Tanaka’s formula

(A5) (X,—a)" = (X,—a)" + fothsl(X_)a) +1L(X, a,t)

and its companion

— — t
(A6)  (X,~a) =(X,—a) = [[dX 1y 0+ (X, 0, 0)

serve to define the local time L( X, a, t) of the semimartingale X at a up to time
t. For each a the process (L(X, a, t), t = 0) is an increasing process, whose set of
points of increase is contained in {¢: X, = a}. All the local times we consider are
well known to admit versions which are jointly continuous in the time and space
variables. (When dealing with R, valued processes, we restrict the levels a to
belong to R ,.) Such a version of local times, with which we shall work hence-
forth, satisfies the occupation density formula:

(A.7) f’d(M>sh(Xs) ~ [dan(a)L(X,a,t)

for any positive Borel function &, with M the martingale part of X. Proofs may
be found in Yor (1978a, b).

Semimartingale local times respond well to deterministic space transforma-
tions. Using the same notation as in (A.4), and assuming further that f is strictly
increasing, it is easily shown that

(A.8) L(Y, f(a),t) =f(a)L(X,a,t), acl

These local times also respond well to random time changes, as discussed in the

next appendix.
For a pair of CLM’s M and N, the covariance process of M and N, denoted

(M, N), is defined by the requirement

(A.9) MN — (M, N) is a CLM.

According to Itd’s formula for integration by parts,

(A.10) M,N,— M,N,= [M,aN, + ['N,aM, + (M, N),.
0 0

B. Time changes to Brownian motions. Let M be a CLM with increasing
process U = (M), such that U, = oo. We introduce the right-continuous inverse
(T,, u > 0) of the increasing process U:

T(u) = inf{t: U(t) > u}.
Dubins and Schwartz (1965) and Dambis (1965) have shown that
(B,=Mp,u> 0) is an (F )BM,

)

artd moreover
M,:B(/(,), tZO.

This result by itself explains a lot about the ubiquity of BM in stochastic
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processes. We refer to 8 as the BM associated with M. Stochastic integration
with respect to M responds well to the time change (T,, u > 0) as the following
lemma shows.

LEMMmaA B.1. (i) If H is an (%,)-predictable process with
[H2dU, < 0, t>0,
0

then
[Hyam,= ["H; ap,, t=o0.
0 0

(i) If K is an (F7 )-predictable process with
u
/ KZ2dv < o, u>0,
0

then
u T,
/()K“dﬁ”:fo K, dM,.

The local times of M are simply time changes of those of 8. To be precise,
(B.1) L(M,a,t)=L(B,a,U,), t>0,
(B.2) L(B,a,u)=L(M,a,T,), u>0.
For details, and more on questions of measurability of M with respect to B, see
Stroock and Yor (1980).

Continuous local martingales M and N are called orthogonal if their covari-

ance process (M, N) is identically zero, that is if their product MN is a CLM.
Knight (1971) showed that

if (M; 1 <j < k) are CLM’s with respect to the same filtration, such that
(B.3) (M;),. = oo as. for every j, and M; and M, are orthogonal for every i < j,
then the associated Brownian motions f; are mutually independent.

Meyer (1971) gave a very quick proof of this, which is now sketched. For the sake
of clarity, we assume k = 2. It is sufficient to show that if F; (j =1,2) are
o( B;)-measurable, bounded functionals, then

(B.4) E(F\F,) = E(F\)E(E,).

Since every square integrable Brownian functional may be represented as a
stochastic integral, we have

(B.5) F - E(F) + /0 “f(u, w) dB ()

with (f(u,w)) a predictable process with respect to the natural filtration of B,
By Lemma B.1, we may write

(B.6) F= E(E) + ["H((M),) dMy(0).
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Now (B.4) follows from Itd’s integration by parts formula (A.10), since the 1td
correction term disappears by the orthogonality assumption. A slightly different
proof of Knight’s theorem, using exponential martingales is presented in Cocozza
and Yor (1980).

In Section 6 we make use of the following extension of Knight’s theorem. We
expect this result should also prove to be useful in other studies of limit theorems
in distribution, such as those conducted by Papanicolaou, Stroock and Varadhan
(1977), Kasahara (1977), etc. The formulation was suggested in a particular case
by Varopoulos.

THEOREM B.2. Let (M; 1 <j < k) be a sequence of k-tuples of continuous
local martingales such that (M), = o for every j and n, and for every pair of
distinct indices i and j there exists a sequence of positive random variables H,
such that

Q) [ o

(1) at least one of the sequences ((M/)y ) and ((M]), ) converges in
probability to co as n = oo.

o
S MM| -0 asn— o

Then, as n = oo the Brownian motions B/ associated with M are asymptoti-
cally independent, in the sense that

(Brs1<j<k)S(B¥1<j<k),
where (B*; 1 < j < k) are k independent BM’s.
REMARKS. A sufficient condition for (i) and (ii) is easily seen to be
(iii) forall u, [ |aquy, 1| 50 asn— o.

A particularly important special case arises when the M are defined in terms of
k CLM’s M, 1 <j <k, by

"= M,/Vn.

Then the BM’s B" are obtained from the BM B; associated with M; by the
Brownian scaling operation

1
B/ (u) = ﬁﬁj(nu), u>0.

Condition (iii) in this case reduces to

1 | P
Ly _ <Ml>n . .
(4111) nj(; d<M,,Mj>S‘—>O asn — o0,
a condition which is obviously implied by
(iv) f’d(Ml, asn — o«c.

<M>;
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Thus if the covariance processes between the M; grow more slowly than their
variance processes, the associated Brownian motions become asymptotically
independent when viewed on a sufficiently large scale.

Proor. For simplicity we again treat only the case £ = 2. Write M " instead
of M', N" instead of M. Following the same track as in the proof of Knight’s
theorem above, we consider two bounded Brownian functionals F and G, and let

(B.7) F,=F(8"), G,=G(H"),

where 8” and y” are the Brownian motions associated with M” and N”". We
denote by f,(u,w) and g,(u, w) the predictable processes which appear in the
representation (B.5) of F, and G, as stochastic integrals with respect to dB”" and
dy”. We shall show that, as n - o«

(B.8) E(EG,) » E(F)E(G).
By Ito’s integration by parts formula (A.10),

E(FG,) - E(F)E(G) = E(X,),
where

x,= [ “f(w)a,(u) d(M", N"Y,,

and we use the abbreviations
f:z(t) =fn(<Mn>t)’ gn(t) =gn(<Nn>l)'
We prove (B.8) by showing that

(B.9) X, is bounded in L?,
and
(B.10) x, 5o,

so that X, convergesin L' to 0.
To see (B.9), notice that by the Cauchy-Schwarz inequality and time changes

Xi = | [ du| [“itw) du

b

implying
E(X?) < Vd,

where
. c= E[/‘)xf,,z(u) dur

is a number which does not depend on n by definition of f,, and is finite by the
inequalities of Burkholder-Davis—Gundy and Doob, and the same is true of d
defined similarly in terms of g,,.
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To prove (B.10), we argue that for K > 0

(1) 1X,| < /Ux|d<Mn,Nn>u,|( e ) uw)1(| f(u)] = K)
(2) + '/(')xld<M", Nn>u||( :,§,,)(u)|1(|gn(u)| N K)
*) + K2 [, Ny, |

0

x . 2r i« . 1/2
(4) L ff(u)du] [ Ceitwa] ™
(M™)y 0
Call these terms X, i = 1,2,3,4. We first show that for i = 1,2, X" converges
to 0 in L', and hence in probability, uniformly in n as & tends to co. Consider
that

B( %)) = B[ [ dut2n( )| = 5)| B[ [ dugz)]

Each expectation on the right does not depend upon n, by definition of f, and
&, S0 the right side tends to zero as n — oo by dominated convergence. The same
argument applies to X?. Thus it suffices to show that for fixed K the terms X
and X" converge in probability to zero as n — 0. For X* this follows from the
hypothesis (i). Finally, for ¢ > 0 and v > 0

P(X\">¢) < P((M"y, <v)+ P{('/‘oc duf,,z(u)olu)l/z(foxé;f,‘f(u)du)l/2 > e}

< P, < 0) + %[E/(x duf,?(u)]l/Z[Ef(,ng(u) du]l/2

Fix ¢ > 0. As before, the last term does not depend on n, and converges to zero as
v — oo, while for each v the first term tends to zero as n — oo by the hypothesis
(ii). This completes the argument. O

It appears at first sight that the above argument proves more than conver-
gence in distribution of (8/; 1 <j < k) toward (B8/°; 1 <j < k). The argument
shows that

(‘Pj(ﬁjn)§ 1<j< k) j’ (‘Pj(Bjx); 1<j< k)

for any k-tuple of measurable Brownian functionals (¢,, 1 <j < k). However, the
following lemma, which proves useful in Section 6, shows that this reinforcement
has nothing to do with either stochastic integration or independence.

LEmMMA B.3. Suppose that. for each j=1,...,k and n=1,2,..., X" is a
random variable with values in a separable metric space S;, such that for each j
the distribution of X does not depend on n, and as n =

. 174 .
(Xj", J= 1,,k) “)(X/, J = 1,,k)
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Then for Borel measurable functions ¢; from S; to further separable metric
spaces T,

. d .
((pj(Xj"); J=1,...,k)> (qu(Xj); J=1,..., k).

REMARK. The hypothesis that X" has the same distribution for every n can
be weakened to the hypothesis that the distribution of X /' converges in total
variation.

Proor. Consider first the special case when k& = 2 and ¢, is the identity
function on S,. The result in this case is a straightforward consequence of the
fact that the Borel o-field on S, is generated by C,(S,), the space of bounded
continuous functions on S,, so C,(S,) is dense in L'(p), with p the common
distribution of X;. Repeated application of the special case yields the general
case. O

Returning to the consideration of continuous local martingales M” and N”,
the associated Brownian motions 8" and y” may become asymptotically identi-
cal rather than asymptotically independent as n — oo. A sufficient condition is
provided by the following theorem:

THEOREM B.4. If there exists a sequence of time changes (R ,(t)) such that

. ., P ., P
(i) (M YRt and (N YR, b
1 n n r

(ii) (M"=N")g n—0,

then, for every k > 0
[)
sup|B™(t) —y™(t)] >0 asn - .
t<k
Moreover, the hypotheses (i) and (ii) are satisfied if and only if
foreveryt>0, (M"—=N") v, —>0 asn-— o,

with 7, and o, the right-continuous inverses of (M"Y and (N"™).

Proor. This is a simple application of the equivalence between the conver-
gence to 0 in probability for the maximal processes and quadratic processes
associated with CLM’s, as presented in Lemma A.1. O

In the case when M" = M//n, N" = N/ Vn, the conditions (i) and (ii) may
be rewritten as below Theorem B.2. In this case, a sufficient condition for (i) and
(i1) is provided by

1 .
» (111) ——(M - N),-»>0 as. ast— o©
X, &

both for X = M and X = N.
Again, the conclusion of the theorem may be reinforced by Lemma B.3.
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Of course, the Brownian motions obtained by time changing a sequence of
pairs of CLM’s may be neither asymptotically independent nor asymptotically
identical. Section 6 of this paper shows how the above two criteria may be
combined to describe an example in which the positive excursions of the Brownian
motions become asymptotically identical, while the negative excursions become
asymptotically independent.
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