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Abstract. Regard an element of the set of ranked discretedistributions A := {(x1, x2,...) :
X1 > x> ...> 0,3, x; = 1} asafragmentation of unit massinto clusters of masses x;.
The additive coalescent isthe A-valued Markov processin which pairs of clusters of masses
{x:, x;} mergeinto acluster of massx; +x; at ratex; +x;. Aldous and Pitman (1998) showed
that aversion of thisprocess starting from time —oo withinfinitesimally small clusterscan be
constructed from the Brownian continuum random tree of Aldous (1991, 1993) by Poisson
splitting along the skeleton of thetree. In this paper it is shown that the general such process
may be constructed analogously from a new family of inhomogeneous continuum random
trees.

1. Introduction

Markov model sof stochastic coalescenceof N particlesinto clusters, and systemsof
differential equations representing evolution of relative frequencies of cluster sizes
inthe N — oo limit, have alengthy history and literature, surveyed in Aldous[5].
A more recent reformulation (Evans and Pitman [13]) is to regard an element of
the set

A:={x=(x1,x2,...):xlzxzz...zo,Zx,»=l} (1)

asafragmentation of unit massinto clustersof masses.x; andto consider theMarkov
process on state space A whose transitions are described informally by

each pair of clusters, of masses{x;, x;} say, mergesinto one cluster of mass
X; +x; arater(x;, x;)

where k isaspecified rate kernel. Thisis the general stochastic coalescent. In this
paper we speciadizeto the case x (x, y) = x + y, the additive coal escent.
Settings where coal escence with additive kernels has been studied include
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droplet formation in clouds (Golovin [14])

algorithms for merging sets (Yao [22], Pitman [19])

gravitational clustering in an expanding universe (Sheth and Pitman [21])
block lengthsin hashing with linear probing (Chassaing and Louchard [10])

and for general kernelssee[5, 11].

Thereis aremarkable relationship between the additive coal escent and contin-
uum random trees (CRTS). In brief, a realization of a CRT is a connected set of
vertices, with a unique path of length d(v1, v2) between any two vertices v1, v
(giving alength measure £(-) on the skeleton, i.e. the subset of those verticesinside
such a path), and with a probability measure u (the mass) on the set of leaves of
the CRT. A particular Brownian CRT was constructed in Aldous [2], and more
general CRTswere studied in Aldous[3]. Given 0 < A < oo, aPoisson process of
cuts along the skeleton of the Brownian CRT, with intensity A£(-), will fragment
the tree into subtrees, and the ranked p-masses of the subtrees define a random
element Y (1) of A. Varying X gives afragmentation process (Y (1), 0 < A < 00).
The remarkabl e relationship, developed in Aldous and Pitman [7], is that the de-
terministic time-reversal X(¢) := Y(e™") yieldsaversion (X(t), —0o0 < t < 0)
of the additive coalescent, for which the mass X1(¢) of the largest cluster satisfies
X1(t) > O0ast — —oo. Call thisthe standard additive coalescent. Note the time
interval is —oo < t < co. We call such aprocess eternal.

Bertoin [8] recently gave a different construction of the fragmentation process
Y based on excursions of Brownian motion with varying drift. While conceptu-
ally smpler than the construction via CRTS, it does not appear so useful for the
generalizations developed in this paper.

Let /7 be the subset of the unit ball of /% consisting of non-negative ranked

vectors 6. In other words, an element 6 := (01, 6, ...) of lf has61 > 0, > 03 >
...>0andY"; 62 < 1. Now define

O:={0elf: Y 67 <lor ) 6 =oc).
i i

The first purpose of this paper is to construct, for each 6 € ©, a particular inho-
mogeneous continuum randomtree (ICRT) .7, The construction of 7 in Section
2 is an extension of the line-breaking construction of the Brownian CRT made
in [2] in the special case @ = 0 := (0,0, ...). The novel feature for @ # 0 is
that in this case the ICRT has the extra structure of distinguished vertices, which
we cal hubs, labeled by the i with 6; > 0. In Section 3.3 we construct a mass
measure 1. on .7 % using the general theory of CRTs from [3] (thisis the only use
of such general theory). We then show in Theorem 10 that, as with the Brownian
CRT, atime-reversal of the fragmentation process on .7 ? yields an eternal version
X? = (X%(), —oo < t < o0) of the additive coalescent. According to Theorem
15, the processes {X?, 0 € ©)} together with the trivial process (one cluster of
mass 1 for all #) make up the entire entrance boundary at time —oo for the additive
coalescent. The entrance boundary for the multiplicative coalescent («k (x, y) = xy)
was studied by Aldous and Limic [6]. The two cases are compared and contrasted
in Section 6.1.
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The central result of Theorem 10, that time-reversing the fragmentation process
on 7Y gives aversion of the additive coalescent, is deduced in Sections 3.2 and 4
from corresponding discrete-space results viaaweak convergence argument, using
the Feller property [13] of the additive coalescent. Part of the preparatory work for
the weak convergence argument isdonein acompanion paper, Camarri and Pitman
[9]. Another companion paper, Aldous and Pitman [1], develops combinatorial and
distributional aspects of the ICRT 779,

To summarize, the contributions of this paper are

e the construction of the ICRT .77

o theconstruction of eternal additive coal escents by fragmentation and time rever-
sal of 77

e the proof that every extreme eternal additive coalescent may be obtained in this
manner.

The proofs use diverse techniques:

e discretecombinatorial structurerel ating tree-fragmentation and coal escence (Propo-

sition 1, from [13])

discrete “birthday trees’ (Proposition 2, from [9])

weak convergence

alittle general theory of CRTs (Section 3.3)

Kingman’'s [15] theory of exchangeable random partitions (Section 4.1)
calculations with the combinatorial structure of the ICRT (Section 5.1)
stochastic calculus to analyze asymptotic properties of a genera additive coa-
lescent (Section 5.2).

Terminology. We deal with several kinds of trees, defined in detail later, but let
us record here some general terminology. We regard trees as unrooted, and edges
as undirected. A discrete tree has a countable (finite or countably infinite) number
of vertices, with edges of length 1. If instead the edges are assigned positive real
numbers as lengths, we call it a discrete tree with edge lengths. If we regard each
edgeof such atreeasacontinuousset of vertices, weget oneinstance of acontinuum
tree, where the tree has a countabl e set of leaves. More interesting continuum trees,
such as realizations of 77 for § € ®, have an uncountable set of leaves, and the
mass measure v on the set of leavesis non-atomic.

2. Theline-breaking construction of the ICRT

This construction generalizes a construction in [2, Process 3], which is the special
case of the present construction with # = 0. The construction is motivated as a
weak limit of a discrete construction, as will become clear in Section 3.2. Our
focusin this paper is on the explicit construction; how it fitsinto the more abstract
framework [3] of continuum random trees will be described briefly in Section 3.3.

Fix 0 := (61,62, ...) € ?anddefinea = 1-3,62.S00 <a < 1L.Ifa > Olet
((U;,V),1 < j < oo) bethe points of a Poisson point process of rate a per unit
areaontheoctant {(u,v) :0 < v < u < oo}, labeledsothat0 < U1 < Uz < ...
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Inthe case a = 0, ignore subsequent mentions of U; and V;. For each i such that
6 > 0,let0 < &1 < &2 < ... bethe points of a Poisson point process on
(0, o0) of rate d; per unit length. The ICRT .7? will be constructed as afunction of
the points of these Poisson processes, which are assumed to be independent. The
congtruction isillustrated in Figures 1-3. In outline, we use the Poisson points to
cut theline [0, co) into finite-length segments, then assembl e the segmentsto form
the branches of atree, where each point of thetreeislabeled by some0 < x < o0;
finally, we pass to a metric space completion. Here are the details.

Call each point U; aO-cutpoint, and say that V; isthe corresponding joinpoint.
Call each point & ; with §; > O and j > 2 (note the 2) an i-cutpoint, and say
that &; 1 is the corresponding joinpoint. Note that there are (with probability 1, a
qualification in effect throughout the construction) only finitely many cutpointsin
any finite interval [0, x], because for i > 1 the mean number of i-cutpoints in
that interval equals 6;x — (1 — exp(—6;x)) < 6%x2. We may therefore order the
cutpointsas0 < n1 < n2 < ..., whereny — oo ask — oo. Figure 1 illustrates a
typical realization of the cutpoints, with each 7, identified assome U; or &; ;.

We build the tree by starting with the branch [0, 1] and then, inductively
on k > 1, attaching the branch (i, ni+1] to the joinpoint »; corresponding to
the cutpoint n,. Figure 2 illustrates the attachment of the first 8 branches, using
the redlization in Figure 1. The reader will find it helpful to work through the
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construction in Figure 2: the sequence of attachments of branchesis
[0, U1], (V1,U2], (V2,&12], (§11,&42], (a1, Us], (V3,&22],
(621, 61.3], (51,1, Ua].

After all the branches (., nx+1] are attached we obtain a tree, say .7 g. By con-
struction, if 6; > 0 then an infinite number of branches (the line segments starting
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ateach & ;, k > 2) areattached at £; ;. Note also that the points (V;, 1 < j < o0)
at which line segments (U; = n, ni+1] areattached areal distinct and are distinct
fromthe &; 1, because V; conditionally given U; isuniformon [0, U;].

Formally, arealization of 7 isjust the halfline [0, co) with an unusual metric
d determined by the realization of the Poisson point processes. To see this, for
x € (0, 00) write x(x) := max{nr < x : ng isacutpoint } and let x*(x) be the
joinpoint corresponding to x (x). Then for each x € [0, oo) the path from x to 0in
the tree consists of branch segments

[x = x0, x(x0)), [x1= x"(x0), x(x1)), [x2 = x"(x1), x (x2)), ...
[xu = X*(xu—l)s x(xy) = O)

where[b, a) for a < b indicatesthat the path traversestheinterval (a, b] from right
to left. So thedistance d(x, 0) equals >, _o(x, — x (x)), and then

d(x,y) = (d(x,0) —d(®,0) + (d(y,0) —d(b,0)

where b isthe branchpoint of the pathsfrom 0 to x and to y. Because aredlization
of 7 g is a metric space, we may define .7¢ to be the completion of the metric
space, and call the elements v of .79 vertices. It isstraightforward to verify directly
the following properties of almost all realizations of 7.

(i) 7 isatreein the sense that there is a unique (non self-intersecting) path
[[v, w]] between each pair v, w of vertices.

(ii) Define the skeleton skel (77%) to be the set of vertices which are interior to
some path [[v, w]]. Then skel (7%) = [0, 0o) \ Ui {n}-

(iii) Lebesgue measure on [0, oo) inducesao -finite length measure £(-) on 779,
which is null outside skel (77%), such that the distance d (v, w) between any pair of
vertices equals the ¢-measure of the path [[v, w]].

(iv) Define the branchpoints br(7?) to be the set of vertices v such that there
exist vertices w1, wp, wa # v such that the paths[[v, w,]], u = 1, 2, 3aredigoint
except for v. Thenbr(77%) = {&1:6; > 0} U{V; : j > 1}.

Thefact that the skeleton isconstructed asasubset of [0, co) israther an artifact
of the construction. To discuss what we regard as more intrinsic properties of 779,
weusearelabeling, illustrated in Figure 3. When 6; > 0, call vertex &; 1 hubi. The
hubs are branchpoints of infinite degree. If a = 0 there are no other branchpoints,
whileifa > Othereareacountably infinitenumber of other branchpointsV;, j > 1,
all of degree 3. Setting o = 0, for each j > Ocall vertex n; sampled leaf j, written
symboalically as j+ to distinguish it from hub j. Motivation for the name comes
from Proposition 5 below.

The construction above requires only that 6 € lf. To complete the construction

of the ICRT .7% we need to specify the mass measure . on arealization of 779,
This specification, which requires § € ®, will be done in Proposition 5, which
describes 1 as the almost sure weak limit of the discrete uniform distribution on
{0+, 1+, ... J+} asJ — oo. The existence of this limit is not easy to prove
directly from the construction above.
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Remark. Abstractly, a continuum tree is a metric space with certain regularity
properties. In this paper we view the line-breaking construction as yielding a (ran-
dom) metrization of [0, co). An aternative formulation ([3] section 2.2) views a
continuum tree as a subset of sequence space I1, built by attaching the successive
line-segments orthogonally. Continuum trees are closely related to objectsin gen-
era topology called dendrites (Nadler [17] Chapter 10), or R-trees (Mayer and
Oversteegen [16]).

2.1. Spaces of trees

For later use we set up notation for spaces of trees. For / > Oand J > 1let T,y
be the space of trees such that

(i) there are exactly J + 1 leaves, labeled 0+, 1+, ..., J+;

(ii) there may be extralabeled vertices, with distinct labelsin {1, ..., I};

(ii1) there may be unlabeled branchpoints, of degree > 3;

(iv) each edge e hasalength /., where [, isastrictly positive real number.
From 7% we can now definea T ;-valued reduced tree r; 7 (77?%) asfollows. First
take the subtree of 7% spanned by 0+, 1+, ..., J+, in other wordsthe part of 779
constructed from theinterval [0, n;]. Then for each hub i appearing in the subtree,
ifi < I weretainthelabd i, andif i > I weremovethelabel. ThusFigure 3 shows
apossiblereaization of 74 g(7?). Toillustrate further, the reader should check that
(@) the corresponding realization of r5g(7 %) will be either the same tree as in
Figure 3 (if £&5.1 > ng) or will have some point in the tree identified as hub 5;

() the corresponding realization of r4,9(.7 %) will be the tree in Figure 3, with an
extraedgeto aleaf 9+.

Later argumentswill use weak convergence for T;;-valued random trees. This
presupposes sometopology on T, ;. Eachtreet € T, hasashape shape(t), which
is the discrete tree obtained by ignoring edge-lengths. The set T?}ape of possible
shapes is finite. One can formally regard t as a vector (shape(t); /., e an edge of
shape(t)) and thereby T ; inherits atopol ogy from the discrete topology on Tf}ape
and the usual product topology on R¢.

While we informally think of .7? as a random element of some space of con-
tinuum trees, it seems complicated to provide a satisfactory formalization of such a
space. For this reason we avoid talking about “the distribution of 77", and instead
make distributional statements about the reduced trees r; ; (779).

3. Birthday trees
3.1. Background results

The material below on discrete trees is developed further in [9], and we give only
what is needed for the present paper.

Letp = (pi,1 < i < o0) be aranked discrete distribution on the positive
integers. Thatis p1 > p> > ... > 0and ), p; = 1. Thesupportof pisS := {i >
1: p; > 0}. Let (Wp, Wy, ...) bei.i.d.(p), that is independent with distribution
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p. Define arandom discretetree 7P := .7 (Wp, W1, ...) to have vertex-set S and
undirected edges

{{Wl’i’lfl’ Wm} : Wm ¢ {W07 ) Wl’Vlfl}?m 2 1}

Here's a mental picture. Mark the vertices s € S as dots on a piece of paper,
and use a pencil to draw edges between the vertices according to the rule

After stepm — 1 the pencil isat vertex W,,_1. If W,,, hasnot been previously
visited, draw an edge from W,,_1 to W,,,; otherwise move the pencil to W,
without drawing an edge.

We are abusing notation by using the same symbol .7~ for the continuum tree 77¢
and for the birthday tree .7 P. But the meaning should be clear from context.
Hereiswhy weareinterestedin.7 P. Totheedgese of .7 P associateindependent
random variables ¢, with distribution U (0, 1), that isuniform ontheinterval (0, 1).
For 0 < ¢ < 1let #P(q) be the forest on vertices S with edge-set {e € 7P :
L. > q}. Let YP(q) be the ranked p-measures of the tree-components of #P(q).
Call YP(.) the fragmentation process associated with .7 P. So YP(g) records the
p-measures of components obtained when each edge is cut with probability g.

Proposition 1. ([13, Construction 5]) Define XP(¢) = YP(e™"), 0 < t < oo. Then
(XP(r), 0 < t < 00) isan additive coalescent with initial state p.

The state space of XP(r) or YP(gq) isthe set A at (1), equipped with the topology
it inherits as a subset of /1. Foundational aspects of the additive coal escent are dis-
cussedin[13], but all wereally need isProposition 1 and the Feller property quoted
in Section 5 below. Proposition 1 gives an explicit construction of the additive co-
alescent as a A-valued process, starting at time O from an arbitrary point p € A.
But such a“discrete” construction will not serveto construct an additive coal escent
starting at time —oo. To do the | atter we need to passto alimit continuum tree, and
thisisthe central idea of the paper.

A convenient way of studying asymptotic behavior of random treesis by study-
ing subtrees spanned by arandom finite set of vertices. Thenext propositionimplies
that such subtrees appear automatically within the construction above. For k > 1
let R, be the index of the k’th repeat in the sequence (W,,,), in other words the
smallest r such that {Wg, W1, ..., W,} containsexactly 1+ r — k distinct vertices.

Proposition 2. ([9, Theorem 2],[18, Lemma 11]) The subsequence (Wo, Wg, —1,
Wg,—1,...) is i.i.d.(p) and this subsequence is independent of 7P :=
T (Wo, Wq, ...

In[9, Theorem 2] itisshown that thetree 7 (Wgp, W1, ...), whenregarded asatree
rooted at Wy, isindependent of the subsequence (Wg, -1, Wg,—1, .. .). Proposition
2 combines this result with the fact [18, Lemma 11] that Wy is independent of
I (Wo, W1, .. .) regarded as an unrooted tree.

According to Proposition 2, the tree generated by the pencil construction up to
step Ry, has the distribution of the subtree of .7 P spanned by & + 1 vertices picked
independently of 7P with distribution p. Proposition 5 will give an analogous
result for the ICRT 77°.
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3.2. Weak convergence of hirthday trees

We now work toward Proposition 3, which gives one sense in which 7% is alimit
of birthday trees. Fix I > 0, J > 1. Recall the earlier definition of the space T ; of
trees. We shall define areduced tree r; (7 P) using only part of the construction
of 7P = 7 (Wp, W1, ...). We would like to say that r;;(7P) takes values in
T;s, and we handle this by appending to T;; aconventiona state 0 and declaring
r17(7P) = d whenitisnotinT;;. First, consider the subtree of .7 P obtained by
stopping drawing edges at the time R of the J'th repeat. This subtree has edges

{Wn—1, Wi} : Wy ¢ {(Wo, ..., Wp_1}, 1 <m < R;}.

Make this subtree into a “tree with edge-lengths’ by assigning length o to each

edge, where
o= lZ piz. 2

Relabel vertex Wp asvertex 0+ and, for each 1 < j < J, relabel vertex Wg;—18s
vertex j+. Of the remaining vertices, those with labels 1 < i < [ retain the label,
and the others are unlabeled. Finally, unlabeled vertices of degree 2 are deleted.
More precisely, asillustrated in Figure 4, each maximal /-edge path joining such
verticesis replaced by a single edge of length /o

Call theresulting tree r; 7 (7 P). As mentioned above, the tree might not satisfy the
requirements of T, (e.g. vertices may be multiply labeled, or some j+ might not
be aleaf), in which case we set r;;(7P) = 9. Note that r;; (7 P) is actualy a
function not just of .7 P but also of the variables Wy and Wgi—aforl <j<1J,
which according to Proposition 2 arei.i.d.(p) independent of 7P.

Foreachn = 1,2,...letp, := (pni,1 < i < o0) be aranked discrete
probability distribution, and write W,,,,,, Rk, 7P = T (W,0, Wy, ...) for the
associated quantitiesfrom Section 3.1. We shall be concerned throughout the paper
with the asymptotic regime

lim o, =0, lim 2 —¢, i > 1, whereo, = /E p2. ©)
n—o00 n—00 oy, -
L

Note that 0 = (9;) isautomatically aranked vector with ) "; el? < 1,and soweare
in the setting of Section 2 and the ICRT 7% exists. In fact the construction of the
ICRT was motivated by the following result.

beooom
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Proposition 3. ([9, Corollary 15]) FixI > 0, J > 1. Under the asymptotic regime
(€

d
rp(TPY S (T onTyy.

Part of the assertion of Proposition 3 isthat

d
onRuy — 1.
Due to obvious geometric bounds on the distribution of R, it follows that also
on,ER,; — Eny. 4

Proposition 3 may beunderstood asfollows. Theconstructionof .7 P (with edges
rescaledto havelength o) from (W, W1, Wo, .. .) canbepictured asaline-breaking
construction, based on the marked point process in which the point in [0, co) at
position mo is given mark W,,,. Under the asymptotic regime (3), the Poisson(6;)
processes (& x, k > 1) and ((U;, V;),i > 1) featuring in the construction of 779
arise as weak limits of &' k=1 and (U], V"), i > 1), where

&', = position of k"th occurrence of mark i derived from (Wy,,, u > 1)
(U, v!') are the positions of pairs (u, v) such that W, = Wy, > m(n)
andv < u, orderedsothat (U, i > 1) isincreasing, form(n) — oo slowly
enough that [im,, 0o Y7 % (pui Jon)? = ¥, 62.

L ater we shall use Proposition 3 to derive propertiesof .7, so we need to check
that approximating sequences (p,,) exist.

Lemmad4. Foreach € lf there exists (p,,, n > 1) satisfying (3) with limit 6.

Proof. The following construction works only for 8 € ®, which isthe case needed
later. The case 0 € /5 \ © issimpler and left to the reader.

Define m, = max{i : ; > n~/2}. Because 0 < 7", 62 < 1 (the upper
bound by definition of ®) thereis a positive solution z,, of

my

z,% =n+ zf 291‘2
i=1

and nl/? < z, < 00. S0 z,6; > 1fori < m,. We may therefore define a ranked
probability measure p, by

P = znbi/sn, L<i <my
m /sy, my <i <my+n

wheres, 1=z, Y ;" 6; +n. S0

1

1
— 2 _
owim L=
i




Inhomogeneous continuum random trees 465

Wefirst need to show that o,, — 0, equivalently that

Sn n
— = Zei + — — o0.
Zn -1 Zn

But if ), 61.2 = 1 the first term — oo by definition of ®, and if not then z,, =
0 (nY/?) by definition of z,, and so the second term — oo. Finally, note that

Pni | 0, 1<i<m,
1/z,, my <i <m, +n.

Op

For each i with 6; > 0 we have m,, > i ultimately, so (since z, — o0) we see
Pni/on — 6; Vi, establishing (3).

3.3. The mass measureon 79

Fundamental to this paper istheideathat for 0 € ® there exists amass measure u
on 7%, which we view informally asalimit of the probability measuresp,, on 7
in the setting of Proposition 3. But thislimit relationship is not easy to formulate or
prove starting from Proposition 3, because the p,-measure of the vertices of .7 P
involvedinr;; (7 P) isasymptotically negligible. Instead, we use existing general
CRT theory to establish existence of 1 (Proposition 5). The asymptotic relationship
appearsimplicitly later, in Proposition 13.

Associated with a realization of 7 is the probability measure ; on 7°
(considered as a metric space) defined to be the discrete uniform distribution on
the J + 1vertices0+, 1+, ..., J+.

Proposition 5. Let 6 € B.

(a) For almost all realizations of 7, there exists a probability measure ;. on 7
suchthat ©; — u weaklyasJ — oo.

(b) For each I > 0, J > 1, the reduced tree r; ; (7 %) has the same unconditional
distribution as the T;;-valued random tree defined as follows. Given ¢ and p,
let {Ox, 1x, ..., Jx} be J 4+ 1 vertices chosen independently from distribution .,
take the spanning subtree of {Ox, 1x, ..., J*} and remove any labelsi > 1.

Part (b) motivates our “sampled leaves’ terminology for the vertices j+.

To see why we need 0 € ©® in Proposition 5, consider the particular case
0=(1,0,0,...).Inthiscase.7 " containshub 1 and, foreach0 < j < oo, sampled
vertex j+ islinked to hub 1 by a different edge whose length has exponential (1)
distribution, independently for each ;. Clearly Proposition 5(a) fails for this 6.

The proof of Proposition 5 occupies the remainder of this section. We start with
atechnical lemma, which is the first place where the definition of ® comes into
play. Recall d(-) isdistance on 779,

Lemma6. (a) Let @ € ©. For almost all realizations of 7,

inf  d(0+, j+) = 0. ()
1<j<oo
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(b)Let lf\@. For almost all realizationsof 7, theintersectionN j>1[[0+, j+]]
of the paths from 0+ to j+ has strictly positive £-measure.

Proof. (a) Recall the construction of 7%, Fix ¢ > 0. It is enough to prove that
there exists (almost surely) an interval (i7;, ;1] of length < & which gets joined
to some point in the interval [0, ]. In the case @ > O thisis clear, because the
desired event will occur whenever the Poisson point process on the octant contains
points (U, Vi), (Un+1, Vine1) WithUy,11 < Uy, + ¢ and V,,, < . Now consider
the case « = 0. By definition of ® we have )", 6; = oo, and so we can define
some (random) hub i as the smallest i such that ;1 < ¢. For 2 < k < oo the
branches (¢, x = nq,, n4,+1] are attached to hub i, so it is enough to show that the
lengths L; of these branches satisfy Ly —p 0. (We write — p for convergence
in probability.) But conditional on all the £é-valuesin [0, &; «], the distribution of
Ly is stochastically smaller than exponential (sy), where sy = > {0 1 &j1 < & }.
Clearly sy —p ocoandso L, —p 0asrequired.
For (b), by assumptiona = 0and )_; 6; < co. From the construction of 77,

(N;jz1[[0+, j+]D > :Qfl & 1.

But the right side has exponential (rate ) ; 6;) distribution and henceisas. strictly
positive. 0

For apermutation  of {0, 1, ..., J}, the operation “for each j, relabel leaf j+
asleaf 7 (j)+" definesamap from T;; to T;;. (Declare the map to take the con-
ventional state d to itself.) Call aprobability distribution on T ; leaf-exchangeable
if it isinvariant under this map, for each 7. Proposition 2 easily implies

Corollary 7. r;;(7P) has leaf-exchangeable distribution, for any birthday tree
TP,

Theinvariance property ispreserved under weak convergence, so Proposition 3 and
Lemma 4 imply that Corollary 7 can be passed to the limit:

Corollary 8. r;;7(7?) hasleaf-exchangeable distribution, for any 0 e lf.

Note that this property is not at all obvious from the construction of 7. Note
aso that for fixed I the family (r;;(7%), J > 1) has a consistency property: the
subtree of r; 7 (7%) spanned by leaves {0+, 1+, ..., (J — 1)+}isr; y—1(7%). We
now appeal to a genera result on CRTs. Recall that, asin Section 2, aredlization
of aCRT isametric space. There are minor differences between the hypotheses on
trees in this paper and in [3] (we may have vertices of degree greater than 3, and
we have the additional structure of labeled hubs), but these differences make no
essential change to the proof.

Theorem 9 ([3] Theorem 3and Lemma 7). Fix I > 0. Let (vy, J > 1) beleaf-
exchangeabl e probability distributionson T ; satisfying the consistency condition

for each J > 1 the subtree of a v;-distributed tree spanned by
verticesO+, 1+, ..., (J — 1)+ isdistributed asv;_.
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Suppose also that property (5) holds.

(a) There existsa CRT .7, and a probability measure 1« on each realization of 7,
suchthat for each J > 1thesubtreeof .7 spanned by Vg, V1, ..., V; hasuncondi-
tional distribution vy, where Vg, V1, ..., V; are(conditionally on .7") independent
with distribution w. (b) Let 1, be the empirical distribution of {Vg, V1, ..., V;}.
For almost all realizations of 7,

wy — wweaklyasJ — oo. (6)

The argument in [3] uses the line-breaking construction for a general family sat-
isfying the consistency condition (in [3] we viewed a continuum tree as a subset
of sequence space /1, obtained by attaching the successive line-segments orthogo-
nally, but we may re-interpret the argument in terms of a metrization of [0, c0)).
With this re-interpretation, the continuum tree obtained by applying Theorem 9(a)
to the consistent family in Corollary 8 is 7. Then Proposition 5(a) follows from
Theorem 9(b).

4. Thefragmentation process

Analogous to the fragmentation process YP(q) associated with the birthday tree
(Section 3.1) istheidea of cutting the ICRT .7 ¢ according to a Poisson(i) process
of cuts along its skeleton. Recall that associated with a realization of 77 is the
o-finite length measure ¢ on its skeleton. So for 0 < A < oo we can construct
a Poisson point process (and call the points “cuts’) of mean measure A£(-). The
cuts partition the tree 77 into a forest # (1) in which vertices v, w are in the
same tree-component if the path [[v, w]] does not contain any cut point. Define
Y?G) = (YP(A).i = 1) to be the ranked p-masses of the tree-components. For
now we can assert only that Y?(1) takes valuesin

AZ:{(xl,xz,...)lezxzz...zo,zxifl}DA

L

because in principle there might be uncountably many components, each of -
mass 0; Lemma 12 will show that in fact Y?(1) is A-valued. We now define the
fragmentation process (Y?(1), 0 < A < oo) of the ICRT 77 by coupling the cut-
processes in the natural way. That is, we use a marked point process on skel (7%),
with mark-space [0, oo), which is Poisson with mean intensity £(-) x (Lebesgue
measure); then in the definition of % (1) we require that the path [[v, w]] does not
contain any cut with mark i which is strictly less than . This convention will give
the desired path-continuity property — see end of section 4.3. We wish to use weak
convergence techniques to deduce the continuum analog of Proposition 1.

Theorem 10. For each 0 € O let (Y’(1),0 < 1 < oo) be the fragmenta-
tion process of the ICRT 79, Define X%(1) = Y%(™), —oco < t < oo. Then
(X0(1), —oco < t < 00) isan additive coalescent.

Theorem 10 generalizes the & = 0 case which was the focus of [7]. The proof is
given in Section 4.3, after recalling some background theory in the next section.
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Weareabusing notation by using thesame symbols (.7~ and Y) for thecontinuum
tree 79 and its fragmentation process Y?(-) as we used for the birthday tree 7P
and its fragmentation process YP(-). But the meaning should be clear from context.

4.1. Exchangeable random partitions

Anequivalencerelation~ ontheset {0, 1, 2, ...} canbeidentifiedwithapartition of
the set into equival ence classes. So arandom equivalence rel ation may beidentified
with a random partition. Write IT for such a random partition, and IT; for its
restriction to {0, 1, ..., J}. Thereis a natural notion of an exchangeable random
partition (the distribution of IT; isinvariant under permutations of {0, 1, ..., J},
for each J) going back to Kingman [15]. Kingman [15] essentialy established
the following results, in slightly different language (he gives (iii) in the context of
A-valued frequencies, but the more general setting is similar).

Theorem 11 ([15]). (i) Let IT be an exchangeable random partition. Then the lim+
iting ranked frequencies
sizeof i'th largest class of T,

F; = lim ,i=12,...
J—00 J+1

exist a.s. and (F;, i > 1) isarandom element of A.
(ii) P((F;,i = 1) e A) =1iff P({0} isaclassof IT) = 0.
(iii) Let (IT", 1 < n < 00) be a sequence of exchangeabl e random partitions. Then
asn — oo
I < 15 for each J

if and only if

(F'.i>0)% (F®,i>0o0nA
where A is given the topology of co-ordinatewise convergence.

Thissetup providesadifferent way of viewing thefragmentation process. Fix 0 € [ f

and 0 < A < oo, and consider the ICRT .7 with a Poisson process of cuts with
rate A per unit £-length. Define arandom equivalencerelation on {0, 1, 2, ...} by:

i ~ j iff thereisno cut on the path from i+ to j+ in .7°. @

By |eaf-exchangeability (Corollary 8) the associated partition I1? into equivalence
classes is an exchangeable random partition. The vector

sizeof i'th largest classof T1; . 192
,1=12,...
J+1

isthe ranked vector
(us(A) : A atree-component of 7%(1))

for s theempirical distribution on {0+, 1+, ..., J+}. By Proposition 5(a), when
0 ¢ © we have P(u;y — pweakly) = 1, and it easily follows that we can
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identify the limit ranked frequenciesin Theorem 11(i) asthe vector Y?(1) of ranked
p-masses in the fragmentation of 77¢.

Remark. Infact wecould avoidintroducing u by taking thislimit to bethe definition
of Y%(1), and indeed for 0 ¢ © we use this definition in the following lemma.
Avoiding discussion of © would make the argument shorter, but introducing n
makes the fragmentation process easier to visualize.

Lemmal2. P(Y?(h) € A) = 1iff 0 € ©.

Proof. Because P(0 ~ j) = exp(—Ad(0+, j+)), Lemma6 implies
P({0}isaclassof [1%) = 0iff 0 € ©.

Apply Theorem 11(iii). O

We can make anal ogous exchangeabl e random partitionsin the discrete setting
of Section 3.1. Fix p and g. Recall that #P(q) is the random forest obtained by
independently cutting each edge of the birthday tree .7 P with probability ¢. Recall
alsothei.i.d.(p) sequence of verticas(WRj,l, 0 < j < o0),with Rg = 1, featuring
in Proposition 2. Write TP for the exchangeable random partition associated with
the equivalence relation

i ~ j iff thereisno cut edge on the path from W, _1 to Wg-1 ing7?,

Thelimit ranked frequencies are now the vector YP(q) inthe discrete fragmentation
process.

4.2. \\eak convergence with mass measures

Now consider a sequence (p,,) of discrete probability distributions satisfying the
asymptotic regime (3), that is

lim o, =0, lim 2% =6, i>1 whereo, = > p2.
n—00 n—o0o g, -
l

Applying Proposition 3 with I = 0 (the hub-labels are irrelevant here) gives

d -
ros (TP = 1oy (7% onToy.

Recall we have fixed A, and take g, such that ¢, /o, — A. Consider the discrete
fragmentation YP: (g,,). The Bernoulli (rate g, per edge of length o,,) process of
cuts of the edges of rg; (7 ") converges to the Poisson (rate A per unit £-length)

process of cuts of ro; (77?). It followsthat 17" 4 MY asn — oo. Theorem 11(jii)

then implies YP: (g,,) 4 Yo(1) on A. If @ € © then Lemma 12 shows Y?()) is
A-valued, implying that in fact convergence holds on A. We have thus proved the
first assertion of the following Proposition; the second assertion is similar, using
coupled Bernoulli processes of cuts converging to coupled Poisson processes of
cuts.
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Proposition 13. Under the asymptotic regime (3) with 0 € ©, if ¢, /0, — X €
(0, 00) then YP(¢,) LY Y1) on A. More generally, if 0 < A1 < A2 < ... <

rq and g, /o, — A; foreach 1 < i < d then (YP(g,1), ..., YP(gs.4)) 4
YO0, ..., Y ).

A converse to Proposition 13 will be needed in Section 5.3.

Lemma 14. Suppose (p,) satisfies the asymptotic regime (3) for some 0 < lf.
Suppose, for some ¢, — 1,

YPu (p,00) Ly (say) on A.
Then 6 € B.

Proof. Asin the argument above, I17" 4 1% asn — oo, and then Theorem 11(jii)
impliesthat Y is the vector of ranked frequencies of the classes of I1%. Since Y is
A-valued, Theorem 11(ii) shows P ({0} isaclassof I1%) = 0. Then Lemma 6(b)
impliesf € ©. O

4.3. Proof of Theorem 10.

Fix 6 € ©. By Lemma 4 there exists a sequence (p,) satisfying the asymptotic
regime (3) with limit 0. Proposition 13 implies that

(YPr (o). 0 < A < 1/0,) > (Y1), 0< & < 00) ®

in the sense of convergence of f.d.d.’s. Proposition 1 showed that, for any ranked
p, (YP(e™),0 < t < 00) isthe additive coalescent started at state p at time 0. So
(YP (e "0,), logo, <t < oo) isthe additive coal escent started at state p,, at time
—2logn.logo,. Notethatlogo, — —oo. Thenby (8) and the Feller property ([13]
Theorem 10) of the additive coal escent, thelimit process X’ (1) = Y?(e™"), —oc0 <
t < oo isindeed an additive coalescent. Using the “strictly less” convention in the
definition of #%(1), it isnot hard to check that, after modifying on a null set, the
sample paths . — Y?()) are |eft-continuous with right limits. In other words

the sample paths 1 — X’(¢) are cadlag. 9)
5. Theentrance boundary of the additive coal escent

Call an additive coaescent defined for —oo < ¢ < oo eternal. Genera Markov
process theory (see e.g. [12, 810] for a concise treatment) says that any eternal
additive coalescent is a mixture of extreme eternal additive coalescents, and the
extreme ones (which form the entrance boundary) are characterized by the property
that the tail o-field at time —oo is trivial. Our main theorem gives a complete
description of theentranceboundary. Thefirst part repeatstheassertionsof Theorem
10, with the extra assertion of extremality.
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Theorem 15. For each 6 € O let (Y?(1),0 < A < oo) be the fragmentation
process of the ICRT 7. Define X?(r) = Y%(e™"), —oo < t < oo. Then for each
real 1o the process (X’(t — 19), —o0 < t < o0) is an extreme additive coal escent.

Conversely, if X = (X(t), —0o < t < o0) is an extreme additive coal escent

then either X < X0t — tg), —00 <t < 00) for somef € ® and —oo < fg < 00
or else X isthe constant process X(z) = (1,0, 0, ...) Vz.

Remarks. Evans and Pitman [13] show that the additive coalescent can be taken
to be a cadlag process, while (9) shows that the fragmentation construction of X?
in Theorem 15 gives a cadlag version. So we may just assume processes in Section
5 are cadlag.

The proof of Theorem 15 rests upon an analysis of the t — —oo behavior of
X?(t) using explicit calculations in Section 5.1, and an analysis of thet — —oo
behavior of a genera additive coalescent using stochastic calculus in Section 5.2.
The proof is completed in Section 5.3.

5.1. Behavior of the fragmentation processas A — oo

Recall Y}’(A) is the ith largest 1-measure of the components of #%(1); we may
also write Y(‘j) (1) for the y-measure of the component of (1) containing hub ;.
Recall — p denotes convergence in probability.

Proposition 16. For each 6 € ©

@2r2Y;(¥? ()2 —»p lasr — oo;

(o) AY(‘j)(x) —p 6; aSh — oo.

(c) Writing Qx (1) for the largest ;.-measure of a component of 7 ¢(i) which does
not contain hub i for any 1 <i <k,

l[im limsup P(AQr (1) > ¢) =0, ¢ > 0.

k=00 ) 500

Since any two different hubs are ultimately (as A — oo) in different components,
(b) and (c) easily imply

AY?(M) —p G ash — .

For future reference we rewrite thisin terms of the associated additive coal escent
X0(t) :=Y0e™).
Corollary 17.

e % Z(Xf(r))z —p last —» —o0

1

iy 0
e 'X!(t) —>p 6;ast > —o00.

The proof of Proposition 16 occupies the rest of the section. We need a few pre-
liminaries. First, an easy lemmain anaysis.
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Lemma18. Let f : [0, c0) — [0, co) be measurablewith [~ f(1)dt < oc.
@ oS %e‘*“f(t +u) dt du ~ 1274 [§° f(t)dt as ) — oc.

(b) If  iscontinuousat O then /3° ';—Te_)"‘f(u)du ~ 291 f0)asr — o0, g =
1,2, ....

Next we describe aprobability law (Figure 5 and (10)) which will arise later as
alimit (specifically, asalimit of the distance between branchpointsin the spanning
treeon {0+, 14, 24, 3+}: see Figures 6 —8). For distinct i, j > 1 write ;;(¢) for
the density function of the distance between hub i and hub j in 7%, Write hg; (t)
for the density function of the distance between sampled leaf 0+ and hub ¢, and
write hoo(¢) for the density function of the distance between sampled leaf 0+ and
sampled leaf 1+. Recall that the mass measure . assigns no massto the hubs of 779
(else sampl ed |eaves woul d coincide with hubswith non-zero probability). Because
a+Y; 0% = 1, we can define anew probability law v on each redlization of 7%
by: v isthe superposition of au(-) and the measure putting mass Ol.z oneachhubi.
Now consider picking independently two pointsfrom law v on the samerealization
of 77, noting whether the points are hubs or unlabeled vertices, and drawing the
spanning tree on these two points with the first-picked point on the left. Figure
5 illustrates the possibilities: ¢ denotes the edge-length and the formulas give the
probability density functions (in the last case, the probability).

By construction thisis a probability law, that is

o0 o0 o0
Yoy / 070%h;(Hdr+2) / ab?ho; (t)di+ f a’hoo(t)dt +y 0} = 1.
0 0 0

i>1j>1,j#i i>1 i>1
(10)
Now define
H(t) = e~ @°/2 H (e 1 +6i)) (12)
i>1
d 62
W)= ——H@) = |a+ 2,: o | tHO). (12)

O——@®  #8h)
—————@ aefho,(t)
O—— ab2hoi(t)

a2h00(t)

® G

Fig. 5. (the edge haslength 1)
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From the line-breaking construction (Section 2) of the ICRT .77, the distance (11
in the construction) between sampled leaves 0+ and 1+ has distribution function
1 — H(t) and thus has density function hgo(¢) = h(t). More generaly, it can be
deduced from [1, Corollary 3 and Proposition 14] that the density function A;; (t)
for the distance between hubsi and j is

_ 1 0; 0
M= Troana+on (r0+ (e + oot ) HO) - (13

and this formula gives also the densities hg; and hqg involving sampled leaves, by
setting g = 0.

Turning to the proof of Proposition 16(a), write S(A) = >, (¥; (1))2. We want
to prove

A2S(A) —p lash — oo. (14)

Write Ag1(A) for the event that sampled leaves 0+ and 1+ are in the same com-
ponent of the forest % (1) underlying Y (1), and write A3(A) for the event that
sampled leaves 2+ and 3+ are in the same component of that forest. Using Propo-
sition 5(b) we see

ES(.) = P(Ao1(%))
ES%(.) = P(Ao (1) N Az(M)).

In terms of the distance d(0+, 1+) between sampled leaves 0+ and 1+,
P(Ao1(A) = E exp(—Ad(0+, 1+))

00 s 00 Y 02 5
=/ e ’h(t)dt:/ te a+ E g7 | H®dt ~ 2"“H(0+)
0 0 - !
1

=2 2asA - oo,

the asymptotic equivalence by Lemma 18(b).
Thus to prove (14) via Chebyshev’s inequality, it is enough to prove

P(Agi(M) N Azz(M) ~ A4 ash — oo. (15)

Consider the spanning tree on sampled leaves {0+, 1+, 2+, 3+}. Figure 6 illus-
trates two possible shapes for this spanning tree.

[0+] [2+] [0+] [1+]

tl t3
Ci ___t_@ s=t+t +ty+1t3+ 2 @___.‘@
t2 t4

[1+] [34] [2+4] [3+]

Fig. 6.
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On the sets of trees with these shapes, we can cal culate the density function for
edge-lengths (¢, 11, 12, 13, 14) fromtheline-breaking construction. To get thetreeon
the left side of Figure 6 we need (in the notation of Section 2)

§i1=1n, §io=n+n §1=t1+0+1, §jo=n+n+1t+13 (16)
min(Uy, & 3,€; 3, Emo2,m #i, j) =s. (17)

The density functionis

91_26—9,-s 9]26—9'5

2
i eas/ZX

(as +6; +6,) ]_[ (6795 (1 + Os)) + Z 02se 0 ]—[ (e 1+ 69))| -
m=i, j ki, j m#i, j,k
Here the first line is the density corresponding to (16) and the event
min(Uy, & 3, &;3) > s and the second line is the conditional density of (17): the
term (as + 6; + 6;) reflects the possibility that the minimum is attained by Uz or
£ 3 Or £ 3, while the term 62se %" reflects the possibility that the minimum is
attained by & ». Rewriting this density in terms of H gives

92 92

i J
— +06; +0; + H(s).
1+6;s 1+6;s “ k;} T (<)
Comparing this with the formula (12) for A(t), and noting that ¢ — 7 jcs = Tres
we can rewriteit as
92 9?

2,2
1+6is 1+9 s (h(s) + <1+95 + 1+9s)H( )> = 0705hi;(s)

for h;;(s) at (13). Now consider the contributionto P (Ag1 (1) N A23(1)) from trees
of this shape. The events happen if none of the four edges to the leaves contain a
point from the Poisson()) process of cuts, and so the contribution is

/ . / eXp(—A(t1 + 12 + 13 + 14)) 9,.29]211,7 (t + 11 4 t2 + 13 + 14) dtdnrdtydizdis

=9i292// *“‘h”(t+u) dudt ~ r~%0%0 /h,,(t) dt by Lemma 18.

If the spanning tree has the shape on the right side of Figure 6, then it would be
required that none of the five edges contains a cut, and this chance works out as
O(rL79).

Thus our strategy for proving (15) isto show that the coefficients of =% in the
contributionsto P (Ag1(A) N A23(A)) from different shapes of the spanning tree on
sampled leaves {0+, 14, 2+, 3+} aretheterms of the probability law (10), arising
from the different possibilities for the “edge between branchpoints’ in Figure 5.
The argument above shows that, for spanning trees with the shape shown in Figure
6, the coefficient is as stated in the top line of Figure 5. Minor modifications of the
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—(D)
5]
[0+]
t
Et4 ) tS‘r—_—, S=t 4ty 541t
3+ \IJ 2+ — 1 2 3 4
2

Fig. 8.

argument above show that, for spanning trees with the shapes shown in Figure 7,
the coefficients are as stated in the middle three lines of Figure 5.
The remaining case is as shown in Figure 8.

Here the density function on edge-lengths turns out to be f (1 + 2 + t3 + t4) for

3

6; |
1) = 175 (10 + i HO).

So the contribution to P (Ao (1) N A23())) from trees of this shapeis

/ - / e Mitiztiatia) f(t1 + t2 + t3 + 14) dtrdtodtzdiy

- f L f(uye ™M du ~ 274 £(0) = 6/2.7* by Lemma 18 .
This matches the corresponding term in (10), completing the proof of part (a) of
Proposition 16.
The proof of part (b) issimilar but easier; we just give an outline.
EY(A) = Eexp(—Ad(0+, 1))
= / e Mhoi (t)dt

~ )»_lhol' 0 = 91')»_1.
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To prove (b) via Chebyshev’sinequality, the required variance cal cul ation becomes
the following. Writing L for the length of the spanning tree on sampled leaves 0+
and 1+ and hub i, we need to show

E exp(—AL) ~ 6?12,
To prove thisit sufficesto show
P(L<t,9Q) ~6%%/2ast — 0 (18)
P(L <t Q) =o0t% ast— 0 (19)

where Q isthe event that the path from 0+ to 1+ goes through hub i. Proving (18)
is straightforward, because the line-breaking construction gives a formula for the
density P(L € dt, Q). For (19), on Q¢ the spanning tree on sampled leaves 0+ and
1+ and hub i has a branchpoint; write L for the distance from the branchpoint to
hub i. Because

PAO+,14+) <) =1-H(1) ~ i?ast - 0
to prove (19) it suffices to prove
P(L <5, Qd0+,14) <1) — / h(u) du ast — 0 (20)
0
for some sub-probability density /. But we can take this limit within the line-
breaking construction. There d(0+, 1+) = n1 andast — 0
Pm =Uilni=1) - a
P =E&jalm =1 — 6%
It is not hard to deduce that (20) holds with
h= ahgo + Z@fhoj.
J#i
To prove (c), observe first that
EQR(1) < P(Br(1))
where By (1) isthe event

0+ and 1+ and 2+ are in the same component of the forest # (1), but this
component does not contain hub i forany 1 <i < k.

In the notation of the line-breaking construction of 779,

o
P = Eep(—) 107z < in 60 = [ e Havio
where I (-) denotes indicator r.v. and

Ve(@) :=P(n2 <t,m2 < min & 1).
1<i<k
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Then
Vi(t) < P(U <t)+ P(Up <t, milgs,-,z <t)+ P(mi;js;,s <t)
1> 1>
< @?/2 + (ar®/2)Y 04 + > 633
i>k i>k
= 6+ 0@*ast 0.
i>k
Then
P(Bir()) = [e—“dvk(z) = A/e—“vk(t)dt =0(073) 0} ash— oo
i>k
So

lim limsup22EQ3 () =0

k=00 )00

establishing part (c).
5.2. Stochastic analysis of eternal additive coalescents

Thissection givesa“ stochastic calculus’ analysis of an eternal additive coal escent,
analogous to (but technically simpler than) the analysis of eternal multiplicative
coalescentsin [6, 83].

Notation. Write E(dZ(t)|%(t)) = a(t)dt and var (dZ(1)|%(t)) = b(t)dt to
mean M(t) = Z(t) — fé a(s)ds is an %(r)—martingale with quadratic variation
(M(t), M(t)) = fé b(s)ds. We may also write for instance var (dZ(t)|%(t)) <
B(t)dt to indicate that var (dZ(¢)|%9(t)) = b(t)dt for some b(t) withQ < b(r) <
B(1).

We quote a version of the L2 convergence theorem for (reversed) martingales.
Lemmal19. Let (Z(r); —oo < t < 0) be a cadlag process adapted to (%4(¢)) and
satisfying

|EMZ®)|9 )| < a(r)dr, var (dZ(1)|9(1)) < B(r) dt.

0 0
/ a(t) dt <ooas and / B(t) dt < ooas.

—0o0
thenlim,_, _ Z(¢) existsand isfinite a.s.

Write X (1) = (X;(¢),i > 1) for aranked additive coalescent parameterized
by ¢ in some interval I and let (%(¢),t € I) denote the filtration generated by
(X(@),t € I). Write

Q) =) X7

S3(t) =Y X3
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Lemma 20. Writing Y (¢) for the size of cluster containing a specified atom,

E@dQO®)|%9(t)) = 2(Q(t) — S3(t)) dt (21)
E(@Y)|%(t) = (Y (1) + Q(t) — 2Y?(1)) dt (22)
var (dQ(1)|%(1)) < 40Q(1)S3(¢) dt (23)
var (dY ()|%(t)) < (Y () Q(?) + S3(t)) dt (24

Proof. The argument is similar to argumentsin [13, Section 6.2]. Because coal es-
cence of clusters of massesx and y causes Q(-) to increase by 2xy,

EdQ®)|9(1)) =YY @Xi()X;(1)) (Xi(t) + X;(1)) dt
i j>i
=2> > XP0)X;(1) dt
i i
=23 X211 - Xi(1)) dt

giving (21). And

var (dQI%9(1)) =YY X)X, (1) (Xi(t) + X (1)) dt
i j>i
= 42 Z X3 (1) X5(t) dt
i ji
< 483(1)Q(1) dt

giving (23). Similar calculations give (22,24). |

By combining the estimates in Lemma 20 with the convergence criteria in
Lemma 19 we shall prove

Proposition 21. Let (X(z), —oo < t < 00) bean extreme eternal additive coales-
cent which is not the constant process X(¢) = (1,0,0, ...). Thenast - —o0

e X21) > n°as. (25)

e 'X;(t) > n;as,eachi > 1 (26)
wheren > Oandny > n2 > ... > Oareconstantsand ) ; r;iz <n? < oo.

Proof. We will prove thisfor possibly random limits n, n;, but then by extremality
the n’s must be constants.

Any jump AQ@) = Q@) — Q(t—) satisfiesAQ(¢) < 2X§(t—) <20(t—).It
follows that

AQ() AQM) (AQ(r)>2 2

Al
0o = A0 =5 =\ 5uD
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for some constant c. Now consider
Z(t) = -2t +1og Q(1).
Combining (27) with (21) and the bound S3(z) < X1(z) Q(¢) gives
0> EWdZ®)|%(t)) = —2X1(t) dt — cR(¢t) dt

where R(r) is the contribution from the (-)2 term of (27). And

1
RO = 520 DY XX ()7 (Xi() + X(1))
i j>i
1
< 5o 45000 < 4%,
So
0> EWdZ®)|9()) > —(24+4c)X1(¢) dt. (28)
And using (23)

var (Q(1)|9(1))
02(1)
Now by Lemma 19, to prove (25) it is enough to prove

var (dZ(1)|%(t)) < < 4X1(t) dt. (29)

0
/ X1(t) dt < oo as. (30)

By (22), the size of cluster containing a specified atom satisfies
E@Y(D)|%(t)) = (Y(1) — Y2(1)) dt = (1—a)Y (1) dt on{Y (¢) < a}

for fixed 0 < a < 1. A moment’s thought indicates that X(z) must satisfy the
same inequality. By nontriviality, lim,_, o, X1(t) = @’ as. forsome0 < a’ < 1,
Choosea > a’ andconsider T = inf{r : X1(¢) > a} > —oo as. Then

T T

EdX1(1)|%9(t)) dt > (1—a)E/ X1(t) dt

—0o0

12EX1(T)—a’:E/

—00

establishing (30).
To prove (26), the essential idea (see discussion later) is to show that the size
Y (¢) of cluster containing any specified atom satisfies

e 'Y(t) - nyas. ast - —o0 (31)
for some 1, > 0. Write Z(¢) = e~ 'Y (¢). Then by (22)

EdZ®O|%9(1) <e'(YO)+ Q) dt —e 'Y () dt < e ' Q(t) dt

EWdZ(1)|%1)) > —2¢"Y?(1) dt.
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And by (23)

var (dZ(1)|9(t)) = e 2var dy®|%@))
< e (O + S3(1) dt
< 272 Q(t)X1(¢) dt.

By (25) we have Q(r) = O(e%) and X1(t) = O(e') as. ast — oo, so the bounds
on E(dZ(t)|%(t)) andvar (dZ(t)|%(t)) are O(e'), and Lemma 19 implies (31).
Thisisn’t quiterigorous, becauseit’shard to make precisetheideaof “ selecting
an atom at time —oo” . But we may rephrase as follows. Fix ig. Write (Y;(¢), ¢t >
to,1 < i < ipg) for the post-tg evolution of the ig largest clusters at time 7g. By
applying the argument above with a quantitative version of Lemma 19, then letting
to — —oo, we establish (26) for i < ig. Details of this argument are written out in
[6, 83.4], whereexactly thesameissue arises. Once (26) isestablished, thefact 1 >
n2 > ... > 0holds by ranking and thefact ) _, ’7i2 < n? holds by Fatou's lemma.

5.3. Proof of Theorem 15

Suppose (X (1), —o0 < t < 00) isanon-constant extreme additive coalescent. The
limitsin Proposition 21 are constants, so after replacing X (¢) by X (¢ — ro) for some
1p, 88t — —0o0

e % inz(f) — las (32)

e 'X;(t) > 6;as,eachi > 1 (33)
where 0 = (6;) € lf. We want to apply Lemma 14 and Proposition 13 to

Pr=X(=n), oy = [> X2(=n), ¢y =" /oy

for which we have p,; /o, — 6; as., 0, — 0as. and ¢, — 1as. (Lemmal4d
and Proposition 13 were stated for deterministic p,,, but extend unchanged to the
present random setting). By Proposition 1 the associated fragmentation processes
(YPr(g),0 < g < 1) have

YP (gn0,) = YPr(e™") £ X(0)

and so Lemma 14 implies 6 € ®. Now, as in the proof of Theorem 10, apply
Proposition 13 to this sequence (p,,). Proposition 13 shows

(YPr o), 0< 2 < L) 5 (Y(), 0< A < 00)

Ontn

in the sense of convergence of f.d.d’s. The left sideis (YP:(Le™),0 < A <€),
so setting A = ™!

X(1), —n <t < 00) 5> (XO(1), —00 < 1 < 00).

We deduce that X < X?, for 0 defined by (33).
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It remainsto provethat each X? isextreme. If X were not extreme, thenitwould

have adecomposition asamixture of extreme processes, that is X?(-) 4 xor (-—10)
for some random (6™, o). But then we can apply Corollary 17 to both sides and the
conclusion of that corollary implies o = 0 and 0* = 0 a.s.. In other words, X is
extreme.

6. Final remarks
6.1. Comparisons with the standard multiplicative coalescent

In many ways, the treatment of the standard additive coalescent in [7] and the
entrance boundary in this paper parallel the treatment of the standard multiplica-
tive coalescent in [4] and its entrance boundary in [6]. One difference is that the
multiplicative coalescent takes valuesin o rather than /1 itstotal massisinfinite.
Herewe proved the additive coal escent entrance boundary was essentially (neglect-
ing the distinction between /7 and ©) parametrized by R x /2; in [6] it is shown
that (with similar neglect) the multiplicative coal escent entrance boundary was es-
sentially parametrized by R x Rt x (3. Our discrete construction (Proposition
1) of the additive coalescent is analogous to the “random graph” construction of
the multiplicative coalescent. The broad outline of the proof of Theorem 15 (the
weak convergencein Proposition 13 and the stochastic calculusin Proposition 21) is
paralleled by Propositions 7 and 18 of [6]. Despitethese parallels, we know of no ar-
gument which allowsresultsfor one processto be deduced from resultsfor the other
process. A final distinction isthat thereis no “multiplicative’ analog of the central
fact that the whole additive coalescent can be obtained by fragmenting the ICRT.

6.2. Other representations of the ICRT

Given an “excursion” function f : [0, 1] — [0, co) satisfying certain conditions,
one can define an associated continuum tree . . Theorem 15 of [3] givesintrinsic
conditions under which a CRT may be obtained as %’ ¢ for some random function
f. Thisis a very useful way of looking at the & = 0 case of 7, in which case
therandom function is (up to ascaling constant) just standard Brownian excursion.
The hypotheses of ([3] Theorem 15) alow only degree-3 branchpoints, but one
could modify the result to allow more general branchpoints, and then show that for
genera 0 € © the ICRT 7Y can be represented by some random excursion-type
function fy. In general there seems no simple description of fy, so we have not
pursued the general case.

6.3. The additive coalescent with immigration

Consider the setting of Proposition 13, but take 8 = (1,0, 0,0, ...) (cf. remark

below Proposition 5). In this case, instead of convergence YP (g,) 4 yo (M) onA
we have only coordinatewise convergence, and thelimit isthe deterministic process
Y(L) = (¢7*,0,0,...) with corresponding X(t) = (exp(—e~),0,0,...). We
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have not pursued the details, but it seemsthat for general 6 lf \ © thereisaprocess

X(t) whose total mass increases from 0to 1 over —oo < ¢ < oo. Informally, this
process evolves as the additive coalescent, but instead of the unit total mass of
infinitesimally small clustersbeing all present at time —oo, the mass“immigrates’
over time (—oo, 0o) according to some density function. See Pitman [20, §3.7] for
an example of asimilar phenomenon involving another coalescent process.
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