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Some Probabilistic Aspects
of Set Partitions

Jim Pitman

1. INTRODUCTION. A partition of the set N, == {1,2,...,n} is an unordered
collection of non-empty subsets of N,. Let P, denote the set of all such partitions,
and let B, = #(P,), the number of partitions of N,. The numbers B, are known
as Bell numbers after E.T. Bell [3, 4, 45]. See Rota [50] and Gardner [24, Chapter 2]
for surveys of their properties and applications. The remarkable Dobiriski formula
(18]

B,=e'Y — (n=1,2,...) (1)
leads [36, 1.9] to the asymptotic evaluation

1
B ~ —‘—)\(I’l)n+l/2 eMmy—n—1 as n — o, (2)

" Vn

where A(n)log(AM(n)) = n. As noted by Comtet [11], for each n the infinite sum in
(1) can be evaluated as the least integer greater than the sum of the first 2» terms.

From a probabilistic perspective, the series on the right side of Dobifiski’s
formula represents the nth moment of the Poisson distribution with mean 1. So
the initially surprising fact that this series yields an integer for all » amounts to the
fact that all positive integer moments of the Poisson(1) distribution are integers. As
explained in Section 2, Dobinski’s formula reduces to the fact that the factorial
moments of the Poisson(1) distribution are identically equal to 1, and this identity
can be understood probabilistically with essentially no calculation.

While such probabilistic interpretations of identities related to set partitions are
the main theme of this paper, Section 1.2 recalls an elementary combinatorial
proof of Dobifiski’s formula.

1.1 Notation. Following the notation of [27], let {Z} denote the number of
partitions of N, into exactly k distinct non-empty subsets, so that

n= L) ®

The {Z are known as the Stirling numbers of the second kind. Let m* denote the

falling factorial with k factors
mt=m(m—1)-(m—-k+1), 4)

which, for positive integers m and k, is the number of permutations of length k of
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m distinct symbols. The formula

= ¥ bt 5)

k=1

decomposes the number m”" of sequences of m distinct symbols of length » as the
sum over k of the number of such sequences that contain exactly k distinct
symbols [54, p. 35]. As an identity of polynomials in m of degree n, this identity

provides an alternative definition of the coefficients {7} for 1 <k <n. See

[11, 47, 48, 54] for background and a wealth of further information about Stirling
numbers.

1.2 A quick proof of Dobinski’s formula. This argument is attributed to Schiitzen-
berger by Foata [22, p. 73]. Divide (5) by m! to obtain for positive integers m
and n

e oo ©

This is the identity of coefficients of A™ in the power series identity

=) mn n © AI
R A [P )
m=1 M! po1 \k j=0 J!
which, upon rearrangement, gives the following horizontal generating function for
the Stirling numbers of the second kind:

n (=] mn

Y {”}Ak =et Y —am (8)

k=1 \K m=1 !
Now take A =1 and use (3) to obtain Dobifiski’s formula (1). The polynomial
appearing in (8) is known as an exponential polynomial. Many other proofs of the
generalization (8) of Dobifiski’s formula are known. See for instance Roman [49,
p. 66] and Wilf [58, p. 106]. Closely related arguments appear in Rota [50], Berge
[5, p. 44], Comtet [11, p. 211], Lupas [37], and Chen-Yeh [10].

2. MOMENTS. For a non-negative integer-valued random variable X with

P(X=m)=p, (m=0,1,...) 9)
and a non-negative function f, let
E[f(X)] = Xpnf(m), (10)

which is the expected value of f(X) for X with distribution (9). See [20, 43] for
background. From (5) and linearity of the expectation operator E, we obtain the
following well-known formula for E[ X"], the nth moment of X, in terms of E[ X%],
the kth factorial moment of X for 1 < k < n [47, 14]:

n
E[x"]= ) {n}E[X’—‘]. (11)
k=1 \K
For A > 0, let X, denote a random variable with the Poisson distribution
)\m
P(X)\=m)=e‘)‘m (m=0,1,...) (12)
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so that
oo Am
E[f(X)] =™ T f(m) (13)

Take f(m) = m" to see that the right side of (8) equals E[X}'], so the identity (8)
amounts to the formula

n
E[Xx!]= ) {”}Ak (n=1,2,...) (14)
k=1 \K

for the moments of the Poisson(A) distribution [46,42]. This formula is the
particular case of (11) for X with Poisson(A) distribution, for it is known [46, 14]
that

E[XE] =A  (k=1,2,...). (15)

Formula (15) follows easily from (13) with f(m) = m* by change of summation
variable from m to j = m — k. In particular, for A = 1 the factorial moments of
the Poisson(1) distribution are identically equal to 1. So Dobifiski’s formula (1) can
be read from (14) for A = 1, which follows as indicated above from (11) and (15).
In essence, this is Rota’s [50] proof of Dobifiski’s formula cast in probabilistic
notation. This argument differs from the proof in Section 1.2 in that it involves
checking (15) for A = 1.

Formula (15) has the following interpretation in terms of a Poisson process
[33, 43]. Let

0< Uy < =+ <Ugx,y<l1 (16)

denote the random locations in (0,1) of the points of a homogeneous Poisson
process on (0,1) with mean intensity measure Adu for 0 <u < 1. For each
k=1,2,... define an associated k-tuple point process, with points in (0, 1), to
have a point at each of the locations (U, ), --.,U,,)) as o ranges over the Xk
different permutations of {1,..., X,} of length k. For distinct u; € (0, 1), indepen-
dence properties of the basic Poisson process on (0,1) imply that the mean

intensity of the k-tuple point process at (u;,...,u,) € (0, 1)* is
P(some Uy, € du; foreach 1 <i <k)  (Adu,) - (Aduy) (17
du, -+ du, B du, - du, =» (7
so the expected number of points in the k-tuple point process is
Kl = 2 (M o (Mdu, = 2F
E[Xx¥] = A fo du, foduk K, (18)

Constantine and Savits [12] derive a generalization of Dobifski’s formula by
consideration of compound nonhomogeneous Poisson processes. See also Stam
[52] and Di Bucchianico [8] for related results. For various applications of Stirling
numbers and their generalizations to the computation of moments of probability
distributions, see [47,9]. Moments of the normal distribution also have interesting
combinatorial interpretations [19,25]. More generally, the idea of representing
combinatorially defined numbers by an infinite sum or an integral, typically with a
probabilistic interpretation, has proved to be a very fruitful one. Other examples
are the representation of n! as a gamma integral, which leads to Stirling’s formula
[7,16,38], and Laplace’s representation of kth differences of powers [35, 14, 30],
which yields an asymptotic formula for the Stirling numbers of the second kind.
See [41] for a recent survey of asymptotic enumeration methods.
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3. VARIATIONS OF DOBINSKI'S FORMULA. The derivation of Dobifiski’s for-
mula given in the previous section yields the following proposition:

Proposition 1. Let X be a random variable with values in {0,1,2, ...} and let n be a
positive integer. The following two conditions are equivalent:

(i) the first n factorial moments of X are identically equal to 1;
(ii) the kth moment of X equals B, for every 1 < k < n.

It is well known that for each A > 0 the Poisson(A) distribution is uniquely
determined by its moments; see for instance [6, Section 30]. The Poisson(1)
distribution is therefore the unique probability distribution whose nth moment
equals B, for every n. But for each fixed »n there are many probability distribu-
tions on {0, 1,2, ...} that have the same first » moments as Poisson(1). It is obvious
that there can be at most one such distribution of X with P(X < n) = 1, because
the moment conditions amount to a system of » linearly independent equations in
n unknowns p,..., p,. Less obvious is the fact that the unique solution of these
equations is such that p, > 0 for 1 <i <n and I, p;, < 1, so that (p,,..., p,) is
the restriction to {1, ..., n} of a unique probability distribution on {0, 1, ..., n}. But
this probability distribution on {0, 1,2, ..., n}, whose first n factorial moments are
identically equal to one, is known to arise in the setting of the classical matching
problem [31,14,20,56]. If M, is the number of fixed points of a uniformly
distributed random permutation of N, then it is easy to show by the method of
indicators that the first n factorial moments of M, are identically equal to 1; see
[14]. The distribution of a random variable X with range {0,1, ..., n} is recovered
from its factorial moments by the classical sieve formula [14]

1 n (-1)"E[Xx¥]
m! =Zm (m —k)!
1fo

P(X=m) = (m=0,1,...,n). (19)

For X = M, with E[M%] = 1 for 0 < k < n, this simplifies to

P(M, =m) = Ly (2l

m! =, !

(m=0,1,...,n). (20)

See [20, Section IV.4] for further discussion. According to Proposition 1, the kth
moment of M, equals B, for every 1 < k < n. That is to say,

‘(1)

s=0

(1<k<n). (21)

mlm

This variation of Dobifiski’s formula is derived in quite a different way by Wilf [58,
p. 22] by substituting the classical formula

fegorty

J

into (3). As observed by Wilf, Dobifiski’s formula (1) follows easily from (21) by
letting n — . See also Lovasz [36, 1.9] for a similar argument, James and Kerber
[32, pp. 227-237] for connections with the representation theory of the symmetric
group, and Diaconis and Shashahani [17] for various generalizations. In Dale and
Skau [13] the Bell numbers appear as the factorial moments of a probability
distribution on the non-negative integers.
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4. THE MOMENT GENERATING FUNCTION. Consider now the moment gener-
ating function (m.g.f.) of the Poisson(A) distribution:

[ee} BnX/\n

Elexp(0X,)] = E[ > ”

|- ey, @

!
n=0 M

where the series converge for all real 6 and the interchange of E and L is easily
justified. See [6] for a modern treatment of m.g.f’s. From (13) with f(m) = e
there is the standard formula

(Ae?)

m!

Elexp(6X,)] =e™ Y = exp(A(e’ — 1)). (24)
m=0
This combines with (8) to yield the following double generating function of the
Stirling numbers of the second kind. This classical formula [11, p. 206] is an
identity between two different expressions for the m.g.f. in 6 of the Poisson(A)
distribution:
)\k n

© n n 0 . eG_
1+n2_:1k§1{k} — = exp(A(e’ ~ 1)). (25)

In particular, for A = 1 this reduces by (3) to Bell’s [3, 4] formula

n

> 0
1+ Y B,— =exp(e’ - 1), (26)
n=1 n:

which gives two expressions for the m.g.f. in 6 of the Poisson(1) distribution.
Equating coefficients of A* in (25) yields the vertical generating function of the
Stirling numbers of the second kind:

n) 0" r o, k
Ek{k}_!:H(e - 1) (k=1,2,...). (27)
See [11,47,54] for alternative derivations of these identities. There are similar
identities for many other arrays of combinatorial numbers, such as the binomial
coefficients and Stirling numbers of the first kind [11, 58], [27, p. 351], most of
which admit probabilistic interpretations. Formulae with binomial coefficients
typically involve independent trials, while those with Stirling numbers of the first
kind typically involve the cycle structure of random permutations [1]. See also [2]
for probabilistic analysis of more general combinatorial structures and further
references.

5. RANDOM PARTITIONS. A random partition of N, is a random variable II
with values in the set P, of partitions of N,. The distribution of Il then refers to
the collection of probabilities P(Il = 7) as 7 ranges over P,. Questions about
enumeration of partitions of N, of various kinds can be phrased probabilistically in
terms of a uniform random partition, that is, a random partition I with the
uniform distribution P(Il = 7) = 1/B, for each partition = € P,. For develop-
ments of this idea see [29, 28, 51,23]. Random partitions with non-uniform distri-
bution also arise naturally in various contexts, so it is useful to have models for
random partitions, both uniform and non-uniform.

The following random allocation scheme provides a basic method of generating
a random partition of N,. See [14, 34,57] for extensive study of this and related
schemes, and further references. Throw n balls labelled by N, into m boxes

1997] SOME PROBABILISTIC ASPECTS OF SET PARTITIONS 205



labelled by N,,, and assume that all m” possible allocations of balls into boxes are
equally likely. Let IT,,, be the partition of balls by boxes. More formally, let X; be
the number of the box containing the ith ball for 1 <i < n. Then the X, are
independent and uniformly distributed on N,,, and II,, is the partition of N,
induced by the random equivalence relation i ~ j if and only if X; = X;. Formally,
the X; can be regarded as coordinate maps defined on (N,)™, and II,,, is then
defined as a map from (N,)™ to P,, the set of partitions of N,. Let #(ar) denote
the number of subsets in a partition 7 € P,. The distribution of II,,, induced by
the uniform distribution P on N,, can be read from formula (5):

P(1,,, = ) = if #(m) = k. (28)

n

The distribution of #(II,,,), the number of occupied boxes when n balls are
thrown into m boxes, is given by the following probabilistic equivalent of (5):

mk

P[#(11,,) = k] ={Z}W (1<k<n). (29)
Because the probability displayed in (28) depends on the number of occupied
boxes k, for n > 3 this random partition II of N, does not have uniform
distribution on P, for any m. However, as observed by Stam [53], for each fixed n
it is possible to generate a uniformly distributed random element of P, by a
suitable randomization of m. The following proposition was suggested by Stam’s
construction, which is described in Corollary 3.

Proposition 2. Let M be a random variable with values in {1,2,...}, and suppose
given M = m that n balls labelled by N, are thrown independently and uniformly at
random into m boxes. Let 11,,,, denote the random partition of N, so generated. The
following two conditions are equivalent:

() I1,,, has uniform distribution over the set P, of all partitions of N, ;
(ii) the distribution of M is of the form

n

m P,

P(M=m) = (m=1,2,...) (30)

n

for some probability distribution (p,) on {0,1,2,...} whose first n factorial
moments are identically equal to 1.

Before the proof, here are two corollaries which follow immediately from the
Proposition and the discussion in Sections 2 and 3:

Corollary 3. [53] If M has the distribution (30) for p,, = e '/m!, then 11 ,, has
uniform distribution on P,,.

Corollary 4. For each n there is a unique distribution of M such that
P(M < n) = 1and I1,,, has uniform distribution on P,.
This distribution of M is defined by (30) for p,, = P(M,, = m) as in (20) with M,, the

number of fixed points of a uniform random permutation of N,,.
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Proof of Proposition 2. By conditioning on M and using (28),
o k

Py, =m)= Y —P(M=m) if#(m) =k, (31)
m=1M
so the distribution of II,,, is uniform on P, if and only if
©  mk 1
mgl —r;;P(M=m) =5 (1 <k <n). (32)
Define
Dm =B,m™"P(M = m) (m=12,...), (33)
so that (32) becomes
Y. mkp, =1 (1<k<n), (34)
m=1

which for k =1 implies that X},_, p,, < X7 _,mp,, = 1. It follows that II,,, is
uniform if and only if (p,) derived from the distribution of M via (33) is the
restriction to {1,2,...} of a probability distribution on {0, 1,2,...} whose first n
factorial moments are equal to 1. This is condition (ii). [ |

As shown by Stam, Corollary 3 allows numerous results regarding the asymp-
totic distribution for large n of a uniform random partition of N, to be deduced
from corresponding results for the classical occupancy problem defined by random
allocations of balls in boxes, for which see [34, 57]. See also [2, 15,23, 26, 28, 29, 51]
for a more detailed account of the asymptotics of uniform random partitions of N,,.

As a variation, the following corollary is easily obtained by a similar argument:

Corollary 5. Suppose that M has the distribution
m"P(X, = m)
()

where X, has the Poisson()) distribution (12), and w,(A) = E(X]' ). Then the
distribution of 11,,, is given by

P(M=m) = m=1,2,...), (35)

/\k
P(Wy = m) = o i #(m) =k, (36)
As a check, (36) implies
)\k
P[#(IL,,,) = k] ={Z}M(A) 1<k <n). (37)

The fact that these probabilities sum to 1 amounts to formula (14) for w,(A). The
distribution of II,,, defined by formula (36) defines a Gibbs distribution on
partitions of N,. See [55,44] for further discussion of such Gibbs distributions on
sets of combinatorial objects. See Nijenhuis and Wilf [39] for a recursive algorithm
to construct a uniform random partition of N, based on the recurrence

n—1
B, =1+ Z(”;l)Bk, (38)
k=1

where the right side counts the number of partitions 7 of N, according to the size
k of the subset in 7 that contains n [36, Problem 1.10]. See [40] for related
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combinatorial algorithms, and [21] for a recent systematic approach to the random
generation of labelled combinatorial structures and further references on this
topic.
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