
The Annals of Probability
1997, Vol. 25, No. 2, 855–900

THE TWO-PARAMETER POISSON–DIRICHLET
DISTRIBUTION DERIVED FROM

A STABLE SUBORDINATOR1

By Jim Pitman and Marc Yor

University of California, Berkeley

The two-parameter Poisson–Dirichlet distribution, denoted PD�α� θ�,
is a probability distribution on the set of decreasing positive sequences with
sum 1. The usual Poisson–Dirichlet distribution with a single parameter
θ, introduced by Kingman, is PD�0� θ�. Known properties of PD�0� θ�, in-
cluding the Markov chain description due to Vershik, Shmidt and Ignatov,
are generalized to the two-parameter case. The size-biased random permu-
tation of PD�α� θ� is a simple residual allocation model proposed by Engen
in the context of species diversity, and rediscovered by Perman and the au-
thors in the study of excursions of Brownian motion and Bessel processes.
For 0 < α < 1, PD�α�0� is the asymptotic distribution of ranked lengths
of excursions of a Markov chain away from a state whose recurrence time
distribution is in the domain of attraction of a stable law of index α. For-
mulae in this case trace back to work of Darling, Lamperti and Wendel
in the 1950s and 1960s. The distribution of ranked lengths of excursions
of a one-dimensional Brownian motion is PD�1/2�0�, and the correspond-
ing distribution for a Brownian bridge is PD�1/2�1/2�. The PD�α�0� and
PD�α� α� distributions admit a similar interpretation in terms of the ranked
lengths of excursions of a semistable Markov process whose zero set is the
range of a stable subordinator of index α.
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1. Introduction. The subject of this paper is a two-parameter family of
probability distributions for a sequence of random variables

�Vn� = �V1�V2� � � �� with V1 > V2 > · · · > 0 and
∑
n

Vn = 1 a.s.(1)

This family extends the one-parameter family of Poisson–Dirichlet distribu-
tions, introduced by Kingman [38] and denoted here by PD�0� θ�, θ > 0, which
arises from the study of asymptotic distributions of random ranked relative
frequencies in a variety of contexts including number theory [6, 65], combi-
natorics [66, 1, 27], Bayesian statistics [22] and population genetics [72, 20].
Study of an enlarged family, involving another parameter α with 0 ≤ α < 1,
is motivated by parallels between PD�0� θ� and the asymptotic distributions
of ranked relative lengths of intervals derived in renewal theory from lifetime
distributions in the domain of attraction of a stable law of index α [42, 74].
As explained in Section 1.2, this family of asymptotic distributions for �Vn�
as in (1), denoted here by PD�α�0�, 0 < α < 1, can be interpreted in terms of
ranked lengths of excursion intervals between zeros of B, where B is Brown-
ian motion for α = 1/2, or a recurrent Bessel process of dimension 2 − 2α for
0 < α < 1. By a change of measure relative to PD�α�0�, with a density de-
pending on θ described in Proposition 14, we can define PD�α� θ� for arbitrary
0 < α < 1 and θ > −α, then recover Kingman’s Poisson-Dirichlet distribution
PD�0� θ� for θ > 0 as the weak limit of PD�α� θ� as α ↓ 0. We prefer, however,
to present a unified definition of PD�α� θ� as follows.

1.1. The size-biased permutation of PD�α� θ�. The following definition orig-
inates from the application of random discrete distributions to model the di-
vision of a large population into a large number of possible species or types. A
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ranked sequence of random frequencies �Vn� as in (1) represents the structure
of an idealized infinite population which has been randomly partitioned into
various species. Then Vn represents the proportion of the population that be-
longs to the nth most common species. See [17, 38, 20, 56] for background and
further references to such applications. The size-biased permutation of �Vn�
is the sequence of proportions of species in their order of appearance in a pro-
cess of random sampling from the population. This notion is made precise as
follows. For �Vn� as in (1), call a random variable Ṽ1 a size-biased pick from
�Vn� if

P�Ṽ1 = Vn
V1�V2� � � �� = Vn �n = 1�2� � � ���(2)

Here Ṽ1 may be already defined on the same probability space as �Vn� or
constructed by additional randomization on an enlarged probability space.
Call �Ṽ1� Ṽ2� � � �� a size-biased permutation of �Vn� if Ṽ1 is a size-biased pick
from �Vn�, and for each n = 1�2� � � � and j = 1�2� � � �,

P�Ṽn+1 = Vj
Ṽ1� � � � � Ṽn�V1�V2� � � �� =
Vj1�Vj 
= Ṽi for all 1 ≤ i ≤ n�

�1 − Ṽ1 − · · · − Ṽn�
�

Following Engen [17] and Perman, Pitman and Yor [51], we make the fol-
lowing definition in terms of independent beta random variables. See also
Appendixes A.1 and A.2 for further motivation. Recall that for a > 0, b > 0,
the beta�a� b� distribution on �0�1� has density

��a+ b�
��a���b�x

a−1�1 − x�b−1 �0 < x < 1��(3)

Definition 1. For 0 ≤ α < 1 and θ > −α, suppose that a probability Pα�θ
governs independent random variables Ỹn such that Ỹn has beta�1−α� θ+nα�
distribution. Let

Ṽ1 = Ỹ1� Ṽn = �1 − Ỹ1� · · · �1 − Ỹn−1�Ỹn �n ≥ 2�(4)

and let V1 ≥ V2 ≥ · · · be the ranked values of the Ṽn. Define the Poisson–
Dirichlet distribution with parameters �α� θ�, abbreviated PD�α� θ�, to be the
Pα�θ distribution of �Vn�.

Results of [51] show that this definition of PD�α� θ� agrees with the previous
descriptions of PD�0� θ� and PD�α�0� and yield the following result.

Proposition 2 [48, 51, 56]. Under Pα�θ governing �Ỹn�, �Ṽn� and �Vn� as
in Definition 1, the sequence �Vn� is such that V1 > V2 > · · · > 0 and

∑
n Vn =

1 almost surely, and �Ṽn� is a size-biased permutation of �Vn�.

To put the result of Proposition 2 another way, suppose that �Vn� is any
sequence of random variables with PD�α� θ� distribution for some 0 ≤ α < 1,
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θ > −α, that �Ṽn� is a size-biased permutation of �Vn� and let

Ỹn = Ṽn/�Ṽn + Ṽn+1 + · · ·��(5)

Then these three sequences �Vn�, �Ṽn� and �Ỹn� have the same joint distribu-
tion as those in Definition 1. In particular Proposition 2 implies the following
corollary.

Corollary 3 [48, 17, 51, 56]. For 0 ≤ α < 1 and θ > −α, if Ṽ1 is a size-
biased pick from �Vn� with PD�α� θ� distribution, then Ṽ1 has beta�1−α� θ+α�
distribution.

As a consequence of Corollary 3,

Eα�θ

∞∑
n=1

f�Vn� = Eα�θ
[
f�Ṽ1�
Ṽ1

]

= ��θ+ 1�
��θ+ α���1 − α�

∫ 1

0
duf�u��1 − u�α+θ−1

uα+1
�

(6)

where we revert to the setting of Definition 1, with Eα�θ denoting expectation
with respect to the probability distribution Pα�θ.

The result of Proposition 2 for α = 0 is due to McCloskey [48]. Ewens [20]
called the P0� θ distribution of �Ṽn� defined by (4) the GEM distribution, af-
ter Griffiths, Engen and McCloskey. Engen [17] considered also the residual
allocation model (4) for �Ṽn� for 0 ≤ α < 1 and θ > 0, and he established Corol-
lary 3 for this range of parameters. The particular choice of beta distributions
for Ỹn in Definition 1, and the consequent parameter set �0 ≤ α < 1� θ > −α�
for the two-parameter Poisson–Dirichlet distribution, is dictated by the follow-
ing result, which generalizes a well known characterization of PD�0� θ� due to
McCloskey [48].

Proposition 4 [56]. For �Vn� with V1 > V2 > · · · > 0 and
∑
n Vn = 1

almost surely, a size-biased random permutation �Ṽn� of �Vn� admits the ex-

pression (4) for a sequence of independent random variables �Ỹn� iff the dis-

tribution of the Ỹn is of the form assumed in Definition 1, that is, iff �Vn� has
PD�α� θ� distribution for some 0 ≤ α < 1 and θ > −α.

1.2. Interval lengths derived from a subordinator. Following Lamperti [42,
43], Wendel [74], Kingman [38] and Perman, Pitman and Yor [50, 51, 59],
consider the sequence

V1�T� ≥ V2�T� ≥ · · · ≥ 0(7)

of ranked lengths of component intervals of the set �0�T�\Z, where Z is a
random closed subset of �0�∞� with Lebesgue measure 0, and T is a strictly
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positive random time. Suppose Z is the closure of the range of a subordi-
nator �τs� s ≥ 0�, that is, an increasing process with stationary independent
increments. Assume that �τs� has no drift component, so

E�exp�−λτs�� = exp
(
−s

∫ ∞

0
�1 − exp�−λx����dx�

)
�(8)

where the Lévy measure � on �0�∞� is the intensity measure for the Poisson
point process of jumps �τs − τs−� s ≥ 0�. Call �τs� a gamma subordinator if
��dx� = x−1e−x dx� x > 0, that is, if τs has the gamma�s� distribution

P�τs ∈ dx� = ��s�−1xs−1e−x dx �x > 0�(9)

for each s > 0. There is the following well known representation of PD�0� θ�.

Proposition 5 [48, 22, 38]. If �τs� is a gamma subordinator, then for every
θ > 0 the sequence(

V1�τθ�
τθ

�
V2�τθ�
τθ

� � � �

)
has PD�0� θ� distribution(10)

and is independent of τθ.

Let 0 < α < 1. Call �τs� a stable �α� subordinator if � = �α, where

�α�x�∞� = Cx−α �x > 0�(11)

for some constant C > 0. That is, from (8), for λ > 0,

E�exp�−λτs�� = exp�−sKλα�� where K = C��1 − α��(12)

The following companion of Proposition 5 plays a key role in this paper.

Proposition 6 [51, 59]. If �τs� is a stable �α� subordinator for some 0 <
α < 1 then for every s > 0,(

V1�τs�
τs

�
V2�τs�
τs

� � � �

)
has PD�α�0� distribution(13)

and also for every fixed t > 0,(
V1�t�
t

�
V2�t�
t

� � � �

)
has PD�α�0� distribution.(14)

The equality in distribution of the two sequences displayed in (13) and (14)
was established in [59], while the connection with Definition 1 was made in
[51]. See Section 8.2 of this paper for a characterization of the laws of the
sequences displayed in (13) and (14) for a more general subordinator �τs�,
and [5, 59, 71, 60] regarding the relation between description of PD�α�0� in
Proposition 6 and the generalized arcsine laws of Lamperti [41].

In contrast to Proposition 5, the random variable τs is not independent of
the PD�α�0� distributed sequence displayed in (13). On the contrary, results
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of [38, 59] reviewed in Section 2 show that the random variable τs is almost
surely equal to a measurable function of this sequence. Results of Perman [50]
describe the family of conditional distributions of the sequence in (13) given
τs = t for t > 0; see Section 8.1. A result of [51] reviewed in Section 3 shows
that for 0 < α < 1 and θ > −α the distribution PD�α� θ� is obtained by mixing
these conditional distributions derived from the stable �α� subordinator �τs�
according to the probability measure with density proportional to t−θ relative
to P�τs ∈ dt�.

Since the zero set Z of a standard one-dimensional Brownian motion B is
the closure of the range of a stable �1/2� subordinator [46], (14) shows that
PD�1/2�0� is the distribution of the ranked lengths of the excursions of B
away from 0 during the time interval �0�1�. Note that these excursion lengths
include the length 1 −G1 of the final meander interval, where

Gt = sup��0� t� ∩Z� = sup�s� s < t�Bs = 0��(15)

Similarly, PD�α�0� can be interpreted in terms of the ranked lengths of excur-
sion intervals if the Brownian motion B is replaced by a suitable semistable
Markov process [44], for example, a Bessel process of dimension δ = 2 − 2α
[43, 49] or, for 0 < α < 1/2, a stable Lévy process of index 1/�1 − α� [23].

The PD�α� α� distribution arises naturally as the distribution of ranked
lengths of excursions of a semistable Markov bridge derived from a Markov
process whose zero set is the range of a stable �α� subordinator [74, 59, 51].
It is well known that such a bridge can be derived from the unconditioned
process on interval �0�Gt� by appropriate scaling. So as a companion to (13)
and (14), in the same setting we have for each fixed t > 0,(

V1�Gt�
Gt

�
V2�Gt�
Gt

� � � �

)
has PD�α� α� distribution(16)

independently of Gt. In particular, we note the following proposition:

Proposition 7 [51, 59]. If Vn is the length of the nth longest excursion of
B away from 0 over the time interval �0�1�, then

�Vn� has PD�1/2�0� distribution if B is Brownian motion;(17)

�Vn� has PD�1/2�1/2� distribution if B is Brownian bridge.(18)

Stepanov [64] encountered asymptotics involving PD�1/2�1/2� in the study
of the asymptotic distribution of the sizes of tree components in a random
mapping. The connection with the Brownian bridge in this setting is explained
in Aldous and Pitman [3]. See [58, 18] for recent developments in this vein.

The PD�α�0� distribution also arises as the asymptotic distribution of(
V1�T�
T

�
V2�T�
T

� � � �

)
(19)
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either for nonrandom T as T→ ∞, or for T = τs as s→ ∞, for any subordina-
tor �τs� such that ��x�∞� = x−αL�x� as x→ ∞ for a slowly varying function
L�x�. Similarly, PD�α�0� is the asymptotic distribution as n→ ∞ of

(
X�n�1�
Sn

�
X�n�2�
Sn

� � � � �
X�n�n�
Sn

)
(20)

for X�n�1� ≥ X�n�2� ≥ · · · ≥ X�n�n� the order statistics of i.i.d. positive ran-
dom variables X1� � � � �Xn with sum Sn, assuming P�Xi ≥ x� = x−αL�x� as
x→ ∞. Related results have been studied by many authors: see, for instance,
[12, 4, 42, 31, 32, 61, 76]. Many limit distributions found in these papers are
the exact distributions of appropriate functions of a PD�α�0� sequence. For
instance, Darling [12] found the characteristic function of the limiting dis-
tribution of Sn/X�n�1� in (20). This is the characteristic function of 1/V1 for
a PD�α�0� sequence �Vn�. Lamperti [42] derived the corresponding Laplace
transform, given by (38) of this paper with n = 1, from the asymptotic dis-
tribution as n→ ∞ of the maximum up to time n of the age process derived
from a discrete renewal process with lifetime distribution in the domain of
attraction of a stable law of index α. That the same transform appears in both
Darling’s and Lamperti’s works amounts to the equality in distribution of the
first components in (13) and (14). The equality in distribution of the first n
components in (13) and (14) can be interpreted similarly as an asymptotic
result in renewal theory.

1.3. Organization of the paper. We develop various results for PD�α� θ� in
the general two-parameter case. Most of these results were previously known
in either of the special cases α = 0 or θ = 0. Many results acquire their
simplest form for PD�α�0� with 0 < α < 1. These results for PD�α�0� are
presented in Section 2, followed by results for PD�α� θ� in Section 3. These
two sections will also serve as a guide to the rest of the paper, which contains
proofs of the results in Sections 2 and 3, and various further developments.

2. Main results for PD(�, 0). Results stated in this section are proved
in Section 4.

Proposition 8. Suppose �Vn� has PD�α�0� distribution for some 0 <
α < 1. Let

Rn = Vn+1

Vn

�(21)

Then Rn has beta�nα�1� distribution, that is,

P�Rn ≤ r� = rnα �0 ≤ r ≤ 1�(22)

and the Rn are mutually independent.
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Since �Vn� can be recovered from �Rn� as

V1 = 1
1 +R1 +R1R2 +R1R2R3 + · · · �

Vn+1 = V1R1R2 · · ·Rn �n ≥ 1��
(23)

the following simple construction of PD�α�0�is an immediate corollary of
Proposition 8.

Corollary 9. Suppose �Rn� is a sequence of independent random vari-
ables such that Rn has beta�nα�1� distribution, for some 0 < α < 1. Then
�Vn� defined by (23) has PD�α�0� distribution.

The next proposition summarizes and sharpens some results from [38, 59].
The abbreviation “PRM �” will be used for “Poisson random measure with
intensity measure �.”

Proposition 10. Suppose �Vn� has PD�α�0� distribution for some 0 <
α < 1.

(i) The limit

L �= lim
n→∞nV

α
n(24)

exists both almost surely and in pth mean for all p ≥ 1.
(ii) Let

+ �= �L/C�−1/α� ,n �= Vn+�(25)

Then + has the same stable �α� distribution as τ1 in (12), the ,n are the ranked
points of a PRM �α on �0�∞�, where �α�x�∞� = Cx−α for x > 0, and �Vn�
may be represented as

Vn = ,n/+ where + = ∑
n

,n�(26)

(iii) Let

Xn �= �α�,n�∞� = C,−α
n = LV−α

n �(27)

Then the X1 < X2 < · · · are the points of a PRM �dx� on �0�∞�; that is,

Xn = ε1 + · · · + εn�(28)

where the εi are independent standard exponential variables and �Vn� may be
represented in terms of �Xn� as

Vn = X
−1/α
n∑

mX
−1/α
m

�(29)

Note how in the representation (26), which is a variation of (13), the
PD�α�0� distributed sequence �Vn� is not independent of the sum + of the
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Poisson points ,n. On the contrary, + and hence all the ,n are recovered as
functions of �Vn� via (24) and (25). Compare with the corresponding variation
of (10): if the ,n are the ranked points of a PRM � for ��dx� = θx−1e−x dx,
then �Vn� defined by (26) has PD�0� θ� distribution independent of +. This
independence is characteristic of the gamma Lévy measure, due to Lukacs’
characterization of the gamma distribution [47] and Kallenberg’s representa-
tion of the subordinator [35].

Recall that in the setting of Section 1.2, Vn = Vn�1� is the nth longest
subinterval in the complement of �0�1�\Z, where Z is the zero set of a semi-
stable Markov process X, and L is a multiple of the local time of X at zero
up to time 1. So we call the random variable L introduced in (24) the local
time derived from �Vn�. See [60] for further discussion of results with Vn =
Vn�T�/T for suitable random T. The distribution of L = C+−α is determined
by its moments

E�Lp� = CpE�+−αp� = ��p+ 1�
��pα+ 1���1 − α�−p �p > −1��(30)

So ��1 − α�L has the Mittag–Leffler �α� distribution [23, 49, 7, 51]. The joint
distribution of L and V1� � � � �Vn can be read from that of + and V1� � � � �Vn,
which is described in Proposition 47. In formula (29), which serves to construct
a PD�α�0� sequence �Vn� from a sequence of independent standard exponen-
tial variables �εn�, the denominator has a stable �α� distribution. This method
of constructing a random variable with an infinitely divisible distribution from
the ranked jumps of its Poisson representation, originally due to Lévy, has
been exploited in several contexts [70, 45].

The next proposition exposes some results underlying the following formula
(38) for the Laplace transform of 1/Vn. This formula was obtained in different
settings by Darling [12] and Lamperti [42] for n = 1 and Wendel [74] for
n = 2�3� � � � � See also Horowitz [32], Kingman [38] and Resnick [61].

Proposition 11. Suppose �Vn� has PD�α�0� distribution for some 0 < α <
1. Let A0 = 0 and for n = 1�2� � � � define random variables An and +n by

An �= V1 +V2 + · · · +Vn

Vn+1
= 1
Rn

+ 1
RnRn−1

+ · · · + 1
RnRn−1 · · ·R1

�(31)

+n �= Vn+1 +Vn+2 + · · ·
Vn

= 1 −V1 − · · · −Vn

Vn

= Rn +RnRn+1 +RnRn+1Rn+2 + · · · �
(32)

where Rn = Vn+1/Vn as in Proposition 8. For λ ≥ 0 let

φα�λ� �= α
∫ ∞

1
dxe−λxx−α−1�(33)

ψα�λ� �= 1 + α
∫ 1

0
dx �1 − e−λx�x−α−1 = ��1 − α�λα +φα�λ�(34)
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Then

1
Vn

= 1 +An−1 + +n�(35)

where:

(i) An−1 is distributed as the sum of n− 1 independent copies of A1, with

E�exp�−λAn−1�� = φα�λ�n−1�(36)

(ii) +n is distributed as the sum of n independent copies of +1 with

E�exp�−λ+n�� = ψα�λ�−n�(37)

(iii) An−1 and +n are independent.

Corollary 12 [12, 42, 74]. If �Vn� has PD�α�0� distribution, then the dis-
tribution of Vn is determined by the Laplace transform

E�exp�−λ/Vn�� = exp�−λ�φα�λ�n−1ψα�λ�−n�(38)

For Vn = Vn�1� derived from the interval lengths Vn�t� generated by the
range of a stable �α� subordinator, Wendel [74] obtained (38) by considering
the random times

Hn �= inf�t� Vn�t� = 1�(39)

for n = 1�2� � � � � and using the identity in distribution

Vn =d 1/Hn�(40)

which follows by scaling from the equality of events �Hn > t� = �Vn�t� <
1�. While both �H−1

n � and �Vn� are decreasing random sequences and �H−1
n �

has the same one-dimensional distributions as �Vn�, this identity does not
extend even to two-dimensional distributions, due to the fact that

∑
n Vn = 1

while there is no such constraint on
∑
nH

−1
n . However, comparison of Wendel’s

argument with our derivation of Proposition 11 reveals a remarkable extension
of the identity in distribution (40).

Proposition 13. For each n = 1�2� � � � �(
V1�Hn�
Hn

�
V2�Hn�
Hn

� � � �

)
has PD�α�0� distribution.(41)

See also [60] for some generalizations of Propositions 6 and 13.
Several authors have studied questions related to the a.s. limiting behavior

of Vn�t� as t→ ∞ for Vn�t� derived from the range of a stable subordinator.
See, for example, Chung and Erdös [10], Csaki, Erdös and Revesz [11]. See
Hu and Shi [33] for a number of refinements obtained using results of this
paper.
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3. Main results for PD (�, �). Results stated in this section are proved
in Section 5 except where otherwise indicated. For 0 ≤ α < 1 and θ > −α let
Eα�θ denote expectation with respect to the probability Pα�θ governing �Ṽn�
and �Vn� as in Definition 1. So the Pα�θ distribution of �Vn� is PD�α� θ�.

3.1. Change of measure formulae. The basis for most of our computations
for PD�α� θ� with 0 < α < 1 is the following Proposition, according to which
the PD�α� θ� distribution admits a density relative to the PD�α�0� distribution
that is just a constant times Lθ/α, where L is the local time variable introduced
in Proposition 10.

Proposition 14 [51]. Let 0 < α < 1 and θ > −α. For every nonnegative
product measurable function f,

Eα�θ�f�V1�V2� � � ��� = Cα�θEα�0�Lθ/α f�V1�V2� � � ����(42)

where L �= limn→∞ nVα
n as in (24) and

Cα�θ =
1

Eα�0�Lθ/α�
= ��θ+ 1�
���θ/α� + 1���1 − α�θ/α�(43)

This proposition is a re-expression in terms of this paper of Corollary 3.15 of
[51] (which contains misprints which should be corrected as follows: replace
the first, third and fourth occurrences of Bn∗p by Bnp). The constant Cα�θ is
determined by (30). See also [59, 52] for various alternative expressions for L.

Proposition 14 can be reformulated in various ways using different descrip-
tions of PD�α�0�. For example, in the setting of Proposition 6, with Vn�τ1� the
nth largest jump of a stable �α� subordinator �τs� over 0 ≤ s ≤ 1, we obtain

Eα�θ�f�V1�V2� � � ��� = cα� θE
[
τ−θ1 f

(
V1�τ1�
τ1

�
V2�τ1�
τ1

� � � �

)]
�(44)

where cα� θ = Cθ/αCα� θ for Cα�θ as in (43).
Proposition 14 shows that for fixed α with 0 < α < 1 the PD�α� θ� distribu-

tions are mutually absolutely continuous as θ varies. By contrast, for α = 0
it is well known that the PD�0� θ� distributions are mutually singular as θ
varies. Due to the way the definition of the local time variable L depends on
α, the PD�α�0� distributions are mutually singular as α varies, hence so too
are the PD�α� θ� distributions for any fixed θ.

In Section 7 we obtain the following result, which generalizes both the
Markov chain description of PD�0� θ� due to Vershik and Shmidt [66, 67] and
Ignatov [34], and Proposition 8 for PD�α�0�. Note the parallel between (4)
and (46).

Theorem 15. Let

Yn = Vn/�Vn +Vn+1 + · · ·��(45)

so

V1 = Y1� Vn = �1 −Y1� · · · �1 −Yn−1�Yn �n ≥ 2��(46)



866 J. PITMAN AND M. YOR

Let Rn = Vn+1/Vn. For 0 ≤ α < 1, θ > −α, let Pα�θ govern �Vn� according
to the PD�α� θ� distribution and let P∗

α� θ govern �R1�R2� � � �� as a sequence of
independent random variables, such that Rn has beta �θ+nα�1� distribution.
Then

Eα�θ�f�Y1�Y2� � � ��� = cα� θE∗
α� θ�Yθ1f�Y1�Y2� � � ���(47)

for a constant Kα�θ. Both Pα�θ and P∗
α� θ govern �Yn� as a Markov chain with

the same forward transition probabilities.

The chain �Yn� is stationary and homogeneous underP∗
0� θ, but for 0 < α < 1

the chain is nonhomogeneous, and the distribution of Yn depends on n, in a
manner described precisely in Section 7.

According to Proposition 8, under Pα�0 for 0 < α < 1 the ratios Rn �=
Vn+1/Vn are mutually independent. Under Pα�θ for θ 
= 0 this is no longer
true. However, it follows from Theorem 15 that under Pα�θ the Rn are asymp-
totically independent for large n with beta�θ + nα�1� distributions. There is
also the following formula for the joint density of R1� � � � �Rn:

Proposition 16. Suppose 0 < α < 1, θ > −α and θ 
= 0. For 0 < ri < 1,
i = 1, 2� � � � � n,

Pα�θ�R1 ∈ dr1� � � � �Rn ∈ drn�
dr1 · · ·drn

= Cα�θ αn2α
(
n+ θ

α
� θ� an

) n∏
i=1

riα−1
i �

where

an = 1
rn

+ 1
rn rn−1

+ · · · + 1
rn · · · r1

and the function 2α is defined by

2α�3� ξ� a� �=
��3+ 1�
��ξ�

∫ ∞

0
dt tξ−1e−t−atψα�t�−3−1

= Eα�0

[
L3V

ξ−α3
1

�1 + aV1�ξ
]
�

(48)

3.2. One-dimensional distributions. As an application of Proposition 14 we
obtain the following formula for moments of the one-dimensional marginals
of a PD�α� θ� distributed sequence:

Proposition 17. For 0 < α < 1, θ > −α, p > 0, n = 1, 2 � � � �

Eα� θ�Vp
n� = ��1 − α�θ/α

��n�
��θ+ 1�
��θ+ p�

��θ/α+ n�
��θ/α+ 1�

×
∫ ∞

0
dt tp+θ−1e−tφα�t�n−1ψα�t�−θ/α−n�

(49)

where φα�t� and ψα�t� are as in (33) and (34).
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The following asymptotics as n→ ∞ are consequences of (24): for 0 < α < 1,
θ > −α, p > 0,

np/α Eα�θ�Vp
n� →

Cα�θ
Cα� θ+p

�(50)

where Cα�θ is defined by (43) and the right-hand side of (50) is the pth moment
of the Pα�θ almost sure limit of n1/αVn, that is, L1/α. Note from (42) that the
Pα�θ distribution of L has a strictly positive density fα�θ on �0�∞� given by
fα�θ�3� = Cα�θ3

θ/αfα�0�3� where fα�0�3� is the Mittag–Leffler density of the
Pα�0 distribution of ��1 − α�L, as discussed below (30).

By passage to the limit as α ↓ 0 (see Section 5.2), we recover from (49) the
following known formula for PD�0� θ�:

Corollary 18 [63, 73, 25, 50].

E0� θ�Vp
n� =

��θ�
��θ+ p�

θn

��n�
∫ ∞

0
dt tp−1e−tE�t�n−1e−θE�t��(51)

where E�t� = ∫∞
t x−1e−x dx.

The Pα�θ distribution of Vn on �0�1� is not easy to describe explicitly. There
is, however, the following implicit description for n = 1:

Proposition 19. The Pα�θ density of V1 is uniquely determined for all
0 ≤ α < 1 and θ > −α by the identity

Pα�θ�V1 ∈ dx�
dx

= ��θ+ 1�
��θ+ α���1 − α�x

−α−1�1 − x�α+θ−1

×Pα�α+θ
(
V1 <

x

1 − x
)
�

(52)

The special case of (52) with α = 0 and θ = 1 appears as equation (3) of
Vershik [65], attributed to Dickman [13]. See also [72, 26, 50] for alternative
approaches to computation of the distribution of V1 for PD�0� θ� and Lamperti
[42] for a different functional equation that determines the distribution of
1/V1 for PD�α�0�. In Section 8.1 a formula of Perman [50] is applied to obtain
an expression for the Pα�θ joint density of V1� � � � �Vn for 0 < α < 1, θ > −α,
which is analogous to known results for PD�0� θ� [6, 66, 34]. In particular, this
approach yields the following extension of results in Section 4 of [50] for the
cases θ = 0 and θ = α. To simplify notation, let ū = 1 − u.

Proposition 20. For all 0 ≤ α < 1 and θ > −α,

Pα�θ�V1 ∈ du�
du

=
∞∑
1

�−1�n+1cn�α� θ
ūα+θ−1

uα+1
In�α� θ�u� �0 < u < 1��(53)
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where In�α� θ�u� = 0 if u > 1/n, so all but the first n terms of the sum are zero if
u > 1/�n+ 1�, I1� α� θ�u� = 1 and, for n = 2, 3� � � � and 0 < un ≤ 1/n, In�α� θ�un�
is the �n− 1�-fold integral

In�α� θ�un� =
∫
· · ·

∫ n−1∏
i=1

ū
�n+1−i�α+θ−1
i

uα+1
i

1
(
ui+1

ūi+1
≤ ui ≤

1
i

)
dui(54)

and cn�0� θ = θn while for 0 < α < 1, θ > −α

cn�α� θ =
��θ+ 1���θ/α+ n�αn−1

��θ+ nα���θ/α+ 1���1 − α�n �(55)

For 1/2 < u < 1 there is only one positive term in (53) and the formula
reduces to (52). For 1/3 < u ≤ 1/2 there are two nonzero terms in (53). This
formula appears in the bridge case θ = α at the bottom of page 278 of [50],
but with a typographical error: 2α��α� should be replaced by 2α2��α�.

To illustrate using Proposition 7, for α = θ = 1/2, Proposition 20 describes
the density of the length V1 of the longest excursion of a Brownian bridge.
Explicit integration is possible in this case at least for n = 1�2�3 to obtain

P1/2�1/2�V1 ∈ du�/du = q1�u� − q2�u� + q3�u� for 1/4 < u < 1�(56)

where the qn�u� are given for 0 < u < 1 and n = 1�2�3 by

q1�u� = 1
2u

−3/2�(57)

q2�u� = 1
(
u ≤ 1

2

)
1
π
u−3/2

(
−π + 2

√
1 − 2u
u

+ 2 arcsin
√

u

1 − u
)
�(58)

q3�u� = 1
(
u≤ 1

3

)
3

4π
u−3/2

(
2+2π+ 2

u
−8

√
1−2u
u

−8 arcsin
√

u

1 − u
)
�(59)

See also Wendel [74] for another expression for the Pα�α distribution of V1
based on a method of Rosén, and see [39] for related results.

3.3. A subordinator representation for 0 < α < 1, θ > 0. In view of Propo-
sitions 5 and 6, it is natural to look for a representation of PD�α� θ� as the
distribution of the sequence(

V1�T�
T

�
V2�T�
T

� � � �

)
(60)

derived as in (7) from the ranked lengths Vn�T� of component intervals of the
set �0�T�\Z, where Z is the closure of the range of a suitable subordinator
�τs� s ≥ 0� and T is a suitably defined random time. Such a representation
is provided by the following Proposition. We write τ�s� instead of τs when
typographically convenient.
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Proposition 21. Fix α with 0 < α < 1 and C > 0. Let �τs� s ≥ 0� be a
subordinator with Lévy measure αCx−α−1e−x dx� Independent of �τs� s ≥ 0�,
let �γ�t�� t ≥ 0� be a gamma subordinator as defined below (8). For θ > 0 let

Sα�θ =
γ�θ/α�
C��1 − α� �(61)

Then for T = τ�Sα�θ� the sequence (60) has PD�α� θ� distribution, indepen-
dently of T, which has the same gamma�θ� distribution as γ�θ�.

Notice that in contrast to the formula of Proposition 14, all objects appear-
ing in Proposition 21 have sensible limits as α → 0 for fixed θ. Take C so
that αC → 1 as α → 0. Then as α → 0, the Lévy measure αCx−α−1e−x dx
of the subordinator �τs� approaches the Lévy measure x−1e−x dx of a gamma
process, while Sα�θ converges in probability to the constant θ by the law of
large numbers. So in the limit as α→ 0 we recover Kingman’s representation
of PD�0� θ� stated in Proposition 5.

Proposition 21 is closely related to the following result, originally obtained
by an entirely different argument. See also Proposition 33 below.

Proposition 22 [53]. For 0 < α < 1 and θ > 0, suppose �Un� has PD�0� θ�
distribution, and independent of �Un� let �Vmn�, m = 1�2 � � � � be a sequence
of independent copies of �Vn� with PD�α�0� distribution. Let �Wn� be defined
by ranking the collection of products �UmVmn�m ∈ N� n ∈ N�. Then �Wn� has
PD�α� θ� distribution.

4. Development for PD(�, 0).

4.1. Proofs of the main results. We will prove Proposition 10 first, then
Proposition 8. Otherwise the proofs are in the same order as the propositions.

Proof of Proposition 10. It is enough to establish the assertions (i), (ii)
and (iii) of the proposition for any particular sequence �Vn� with PD�α�0�
distribution. We use Vn �= Vn�τ1�/τ1 for a stable �α� subordinator �τs� as in
(13). We first verify a modified form of the assertions (i),(ii) and (iii) in this
case, with the definitions (25) replaced by

L �= Cτ−α1 � + �= τ1� ,n �= Vn�τ1��(62)

The modified form of (ii) follows from the fact that the Vn�τ1� are the ranked
points of a PRM �α�dx� on �0�∞�. The modified form of (iii) follows by the
usual change of variables to reduce the inhomogeneous PRM �α�dy� on �0�∞�
to a homogeneous PRM dx on �0�∞�. Now (24) with a.s. convergence and
L = Cτ−α1 follows because Xn/n → 1 a.s. by the law of large numbers. (This
argument is due to Kingman [38]: our formula (24) is his (68)). See Section
4.3 for justification of the convergence (24) in pth mean. Tracing back through
these definitions shows that the random variables defined in (62) can be recov-
ered a.s. from L via (25). Thus (i),(ii) and (iii) hold for any �Vn� with PD�α�0�
distribution. ✷
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Proof of Proposition 8. By definition of Rn and the notation in Propo-
sition 10,

Rn �= Vn+1

Vn

= ,n+1

,n
=

(
Xn

Xn+1

)1/α

�(63)

Thus Proposition 8 reduces by a simple change of variables to the following
elementary property of the points 0 < X1 < X2 < · · · of a homogeneous
Poisson process on �0�∞�: the Xn/Xn+1 are mutually independent beta�n�1�
variables. ✷

We record for later use the following result, which is easily obtained by
examination of the above proof:

Corollary 23. In the setting of Proposition 10, for each n = 1�2� � � �
the random vector �R1� � � � �Rn� is independent of the random sequence
�Xn+1�Xn+2� � � ��.

The following lemma serves as a basis for further calculations.

Lemma 24. Let ,1 > ,2 > · · · be the ranked points of a PRM �α�dx� on
�0�∞�, where �α�x�∞� = Cx−α for some α > 0 and C > 0. Then:

(i) C,−α
n has gamma�n� distribution;

(ii) for n ≥ 2 the n− 1 ratios

,1

,n
>
,2

,n
> · · · > ,n−1

,n

are distributed like the order statistics of n− 1 independent random variables
with common distribution C−1�α�dx�1�x > 1�, independently of ,n�,n+1� � � �;

(iii) conditionally given ,1� � � � � ,n for n ≥ 1, the

,n+1

,n
>
,n+2

,n
> · · ·

are the ranked points of a PRM ,−α
n �α�dx�1�x < 1��

Proof. Basic properties of Poisson processes imply that conditionally
given ,n = a, for n ≥ 2 and a > 0, the ,1 > ,2 > · · · > ,n−1 are distributed
like the order statistics of n− 1 independent random variables with common
distribution �α�a�∞�−1�α�dx�1�x > a�; and conditionally given ,1� � � � � ,n
for n ≥ 1 with ,n = a, the ,n+1 > ,n+2 > · · · are the ranked points of a PRM
�α�dx�1�x > a�� Since under the transformation u = x/a the image of the
measure �α�dx� is a−α�α�du�, the assertions of the lemma follow easily. ✷

Proof of Proposition 11. Represent the PD�α�0� distributed sequence
�Vn� in terms of the points ,n of a PRM �α as in Proposition 10. So

1
Vn

= ,1 + · · · + ,n−1

,n
+ ,n
,n

+ ,n+1 + ,n+2 + · · ·
,n

= An−1 + 1 + +n�(64)
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For n ≥ 2 there is the representation

An−1 = ,1

,n
+ ,2

,n
+ · · · + ,n−1

,n
�(65)

where the �,i/,n�1 ≤ i ≤ n− 1� are distributed as the ranked values of n− 1
independent random variables with the same distribution as A1. Thus An−1
is distributed like the sum of n− 1 independent copies of A1 �= ,1/,2, which
has distribution

P�A1 ∈ dx� = C−1�α�dx�1�x > 1� = αx−α−1dx1�x > 1��(66)

This yields part (i). Consider now +n defined by (32). Part (iii) of Lemma 24
represents +n conditionally given ,1� � � � � ,n as the sum of points of a PRM
,−α
n �α�dx�1�x < 1�, whence

E�exp�−λ+n�
,1� � � � � ,n� = exp
(
−,−α

n

∫ 1

0
�1 − exp�−λu���α�du�

)
�(67)

Integration with respect to the gamma�n� distribution of C,−α
n yields (37),

which establishes (ii). Finally, the independence claimed in part (iii) follows
easily from the independence of the Rn. ✷

Remark 25. The previous argument shows that for all α > 0 formula (36)
gives the Laplace transform of An defined by the last expression in (31) for
a sequence of independent beta�nα�1� distributed random variables �Rn�, or
by (65) in terms of ,n as in Lemma 24. However, the distribution of +n is of
interest only for 0 < α < 1, as it is easily seen that +n = ∞ a.s. for α ≥ 1.

The following conditional form of Wendel’s formula (38) proves useful in
later calculations.

Proposition 26. Suppose �Vn� has PD�α�0� distribution. Let �Xn�, �Rn�
and �An� be derived from �Vn� as in (27), (21) and (31). The conditional law
of Vn given R1� � � � �Rn−1 and Xn is characterized by

E

[
exp

(
− λ

Vn

)∣∣∣∣R1� � � � �Rn−1�Xn

]

= exp�−λ�1 +An−1�� exp�−Xn�ψα�λ� − 1���
(68)

Proof. Represent �Vn� in terms of the points �,n� of a PRM �α as in
(26). Note that σ�R1� � � � �Rn−1�Xn� = σ�,1� � � � � ,n� and use (35), (67) and
,−α
n =Xn/C. ✷

Consider now Hn derived as in (39) from the range of a stable �α� subordi-
nator. Note that at time Hn the nth longest excursion interval that currently
has length 1 is necessarily the meander interval. That is to say, GHn

=Hn−1,
where for t ≥ 0 we set

Gt = sup�Z ∩ �0� t��� Dt = inf �Z ∩ �t�∞���(69)
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Notice that Hn is just the nth instant t such that t−Gt = 1, so

0 < GH1
< DH1

< GH2
< DH2

< · · · < GHn−1
< DHn

< GHn+1

and there is the natural decomposition

Hn =
n∑
j=1

�GHj
−DHj−1

� +
n−1∑
j=1

�DHj
−GHj

� + �Hn −GHn
��(70)

where DH0
= 0 by convention, and the last term is Hn −GHn

= 1. As shown
by Wendel, formula (38) follows from the identity in distribution (40) and the
observation that the first sum on the right-hand side of (70) is a sum of n
independent terms with

GHj
−DHj−1

=d GH1
=d +1 �1 ≤ j ≤ n��(71)

while the n− 1 terms of the second sum in (70) are independent with

DHj
−GHj

=d A1 �1 ≤ j ≤ n− 1��(72)

where +1 and A1 are as in Proposition 11. These observations can be checked
by repeated application of the strong Markov property at the times HDj

, and
the Poisson character of excursion interval lengths. Note that the Vj�Hn� for
1 ≤ j ≤ n− 1 are the ranked values of the i.i.d. interval lengths DHj

−GHj
,

1 ≤ j ≤ n− 1, while Vn�Hn� = 1.

Proof of Proposition 13. Let �St� t ≥ 0� denote the continuous local time
process that is the inverse of the underlying stable �α� subordinator. The Pois-
son character of the interval lengths on the local time scale implies that for
each fixed n the distribution of �Vm�Hn��m = 1�2� � � �� can be described as
follows:

(i) Vn�Hn� = 1;
(ii) for 0 < m < n the Vm�Hn� are distributed like the order statis-

tics of m − 1 independent random variables with common distribution
C−1�α�dx�1�x > 1�;

(iii) independent of the Vm�Hn� for 0 < m < n, the multiple of the local
time CSHn

has a gamma�n� distribution;
(iv) given SHn

and the Vm�Hn� for 0 < m < n, the Vm�Hn� for n < m <∞
are distributed as the ranked points of a PRM SHn

�α�dx�1�x < 1�.

On the other hand, Lemma 24 shows that the same four statements hold
if the following substitutions are made:

replace Vm�Hn� by ,m/,n and replace SHn
by ,−α

n �

where the ,n are the ranked points of a PRM �α�dx�. Therefore, for each fixed
n = 1�2� � � �, (

Vm�Hn�
Vn�Hn�

�m = 1�2� � � �
)
=d

(
,m
,n
�m = 1�2� � � �

)
�(73)
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The distribution of the sequence in (41) is now identified as PD�α�0� using
Proposition 10(ii). ✷

4.2. A differential equation related to φα and ψα. A proof of (36) can also
be obtained using the recurrence relation

An = �1 +An−1�/Rn�(74)

together with the independence of An−1 and Rn, the beta�nα�1� distribution
of Rn and the fact that

exp�λ�φα�λ� = E
[
exp

(−λ(R−1
1 − 1

))]
(75)

solves the differential equation

α = �α+ λ�f�λ� − λf′�λ��(76)

Another solution of (76) is the function

exp�λ�ψα�λ� = �E�exp�−λ/V1���−1�(77)

In fact, all solutions of (76) are given by the formula

f�λ� = λαeλ
[
c+ α

∫ ∞

λ

dx e−x

xα+1

]
�(78)

where c = limλ→∞ λ−αe−λf�λ� is an arbitrary constant. Hence, eλφα�λ� is
the solution of (76) with c = 0, whereas eλψα�λ� is the solution of (76) with
c = ��1 − α�, in agreement with formula (34). It can also be checked that the
fact that eλψα�λ� solves (76), together with the recurrence

+n = Rn�1 + +n+1��(79)

where Rn and +n+1 are independent, is in agreement with formula (37). How-
ever, in contrast with the situation for (36), it seems difficult to prove (37)
from this approach.

4.3. Some absolute continuity relationships. For X1 < X2 < · · · the points
of a homogeneous Poisson process on �0�∞� with rate 1, there is the elemen-
tary absolute continuity relation

E�f�Xm+1�Xm+2� � � ��� =
1
m!
E�Xm

1 f�X1�X2� � � ����(80)

where f is a generic positive measurable function of its arguments. For Rn as
in (63), a change of variables yields

E�f�Rm+1�Rm+2� � � ��� =
1
m!
E�Xm

1 f�R1�R2� � � ����(81)
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where by a paraphrase of (24),

X1 = lim
n→∞n�R1R2 · · ·Rn�α a.s.(82)

On the other hand, a direct calculation of the density ratio using Proposition 8
shows that

E�f�Rm+1�Rm+2� � � � �Rm+n��

=
(
n+m
m

)
E��R1R2 · · ·Rn�mαf�R1�R2� � � � �Rn���

(83)

Comparison of (81) and (83) shows that

E

(
Xm

1

m!

∣∣∣∣R1�R2� � � � �Rn

)
=

(
n+m
m

)
�R1R2 · · ·Rn�mα�(84)

SinceX1/�R1R2 · · ·Rn�α =Xn+1 this amounts to the consequence of Corollary
23 and (63) that Xn+1 is independent of �R1�R2� � � � �Rn� and is distributed
as gamma�n+ 1�. Since X1 has finite moments of all orders, martingale con-
vergence shows that the a.s. convergence in (82) takes place also in pth mean
for every p ≥ 1. It follows easily that the same is true of the a.s. convergence
in (24).

5. Development for PD(�, �).

5.1. Proofs of some results.

Proof of Proposition 17. Combine Proposition 14 and the following
lemma. ✷

Lemma 27. Suppose �Vn� has PD�α�0� distribution and let L = limn nV
α
n

as in (24). Then for all real 3 > −1 and p > 0, and n = 1, 2 � � � �

E�L3 Vp
n� =

��3+ n�
��n���p+ 3α�

∫ ∞

0
dt tp+3α−1e−tφα�t�n−1ψα�t�−3−n�(85)

Proof. We will use the following expression for negative moments of a
positive random variable X in terms of its Laplace transform:

E�X−p � = 1
��p�

∫ ∞

0
dt tp−1E� e−tX � �p > 0��(86)

Combined with Wendel’s formula (38), this immediately yields the special case
of (85) with 3 = 0. Recall that Xn �= LV−α

n , so the left-hand side of (85) is

E�X3
n V

p+3α
n � = E

[
X3
n

��p+ 3α�
∫ ∞

0
dt tp+3α−1E

[
exp

(
− t

Vn

)∣∣∣∣Xn

]]
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by (86). Now use (68) and the fact that Xn has gamma�n� distribution inde-
pendent of An−1 to obtain by elementary integration

E�L3 Vp
n�

= 1
��n���p+ 3α�

∫ ∞

0
dt tp+3α−1 exp�−t���3+ n�ψα�t�−3−nE�exp�−tAn−1���

Here, for n = 1, A0 = 0. Now use (36) to obtain (85). ✷

Remark 28. Consider (85) for p = 0� 3 > 0. Since the left-hand side does
not depend on n, neither does the right, something which is not evident a
priori. This can be shown to be equivalent to the Wronskian identity

�φαψ′
α − ψαφ′

α��t� = α��1 − α�e−ttα−1�(87)

which follows from the description of φα and ψα in terms of the differential
equation (76).

Further moment formulae. Suppose �Vn� has PD�α�0� distribution. Let L,
Xn, Rn, An and +n be the random variables defined in terms of �Vn� as in
(24), (27), (21), (31) and (32).

As a first variant of (85), we can compute similarly

E

[
L3 Vp

n exp
(
− λ

Vn

)]
= E

[
X3
n V

p+3α
n exp

(
− λ

Vn

)]

= E
[

X3
n

��p+ 3α�
∫ ∞

0
dt tp+3α−1E

[
exp

(
−�t+ λ�

Vn

)∣∣∣∣Xn

]]
�

Using (68) and then (36) again, with t+ λ instead of λ, yields

E

[
L3 Vp

n exp
(
− λ

Vn

)]

= ��3+ n�
��n���p+ 3α�

∫ ∞

0
dt tp+3α−1 exp�−t− λ�φα�t+ λ�n−1ψα�t+ λ�−3−n�

(88)

Proof of Proposition 16. This follows easily from Propositions 8 and 14
using the following lemma, which states another variant of (85):

Lemma 29. Suppose �Vn� has PD�α�0� distribution. Let L �= limn→∞ nVα
n

as in (24) and let Rn �= Vn+1/Vn. For all real 3 > −1 and γ > 0, and n =
0�1�2� � � � �

E�L3 Vγ−α3
1 
 R1� � � � �Rn� =

1
n!

( n∏
j=1

Rj

)3α−γ
2α�3+ n� γ�An�(89)

for An as in (31) and 2α�3� γ� a� as in (48).
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Proof. Let �n = σ�R1� � � � �Rn�. Elementary manipulations show that

E�L3 Vγ−α3
1 
�n� =

( n∏
j=1

Rj

)3α−γ
E��L/Vα

n+1�3 Vγ
n+1
�n��(90)

Now use (86) for p = γ and X = 1/Vn+1 to express the right-hand side of (90)
as ( n∏

j=1

Rj

)3α−γ 1
��γ�

∫ ∞

0
dt tγ−1�· · ·��

where

�· · ·� = E��L/Vα
n+1�3 E�exp�−t/Vn+1�
�n�Xn+1� 
 �n�

and Xn+1 �= LV−α
n+1. Now use formula (68) to show that

�· · ·� = E�X3
n+1 exp�Xn+1�1 − ψα�t���� exp�−t�1 +An��

= exp�−t�1 +An��
��n+ 3�
n!

ψα�t�−�3+n+1�

by the independence of An and Xn+1 [see Corollary 23 and (31)] and elemen-
tary integration with respect to the gamma�n+ 1� distribution of Xn+1. This
yields formula (89) with 2α defined by (48). The second equality in (48) is
easily obtained by another manipulation like (86). ✷

Remark 30. It is also possible to derive (89), with2α defined by the second
expression in (48), by starting from Perman’s formula for the joint density
of +, V1� � � � �Vn+1 stated in Proposition 47, and making suitable changes of
variables and integrating out + and V1.

Proof of Proposition 19. For �Ṽn� the size-biased permutation of �Vn�
as in Definition 1 and Proposition 2, we can compute Pα�θ�V1 ∈ dx�V1 = Ṽ1�
in two different ways. First, by conditioning on V1 and using (2):

Pα�θ�V1 ∈ dx�V1 = Ṽ1� = xPα�θ�V1 ∈ dx��(91)

However, conditioning instead on Ṽ1 and using the consequence of (4) that the
Pα�θ distribution of �Ṽ2� Ṽ3� � � ��/�1−Ṽ1� is identical to the Pα�α+θ distribution
of �Ṽ1� Ṽ2� � � �� yields

Pα�θ�V1 ∈ dx�V1 = Ṽ1�
= Pα�θ�Ṽ1 ∈ dx�max

n≥2
Ṽn < x�

= Pα�θ�Ṽ1 ∈ dx�Pα�θ
(

max
n≥2

Ṽn

1 − Ṽ1

<
x

1 − x

∣∣∣∣Ṽ1 = x
)

= ��θ+ 1�
��θ+ α���1 − α�x

−α�1 − x�α+θ−1 dxPα�α+θ

(
V1 <

x

�1 − x�
)
�

(92)
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Now comparison of (91) and (92) yields (52). For 1/2 < x < 1 it is obvious that
Pα�α+θ�V1 < x/�1−x�� = 1, so (52) determines the Pα�θ density of V1 at x for
1/2 < x < 1. [This case of (52) can also be read from (6)]. Recursive application
of (52) now determines the Pα�θ density of V1 at x for 1/�n + 1� < x < 1/n,
n = 2, 3� � � � � ✷

Proof of Proposition 21. Let K = C��1 − α�. Let �σs� be a stable �α�
subordinator with E�exp�−λσs�� = exp�−Kλαs�. The Lévy measure of �τs�
has density e−x relative to the Lévy measure of �σs�, which implies (see, e.g.,
[40]) that for each s > 0 and every positive measurable functional F,

E�F�τt�0 ≤ t ≤ s� � = exp�Ks�E�F�σt�0 ≤ t ≤ s� exp�−σs���(93)

Let �V1�V2� � � �� denote a sequence with PD�α� θ� distribution. Let L be the
local time variable derived from �V1�V2� � � �� as in (24) and + = �C/L�1/α.
From Propositions 14 and 10, the conditional law of �V1�V2� � � �� given + = t
does not depend on θ. Call it PD�α
 t�, say:

PD�α
 t� = the conditional law of
(
,1

σ1
�
,2

σ1
� � � �

)
given σ1 = t�(94)

where ,1 > ,2 > · · · are the ranked jumps of �σs�0 ≤ s ≤ 1�. Then from (44),

PD�α� θ� = cα� θ
∫ ∞

0
PD�α
 t�t−θP�σ1 ∈ dt��(95)

The finite-dimensional distributions of PD�α
 t� are described by Perman’s for-
mula (153), but this description is not required in the following argument.

Let

Ws =
(
V1�τs�
τs

�
V2�τs�
τs

� � � �

)
�

From (93) and scaling properties of �σs� we learn that if ζ is a positive random
variable independent of �τs� s ≥ 0�, then

the conditional law of Wζ given ζ and τζ is PD�α
 τζ/ζ1/α�(96)

no matter what the distribution of ζ. Consequently

ζ and Wζ are conditionally independent given τζ/ζ1/α.(97)

From (95) and (97), it now suffices to show that for ζ =K−1γ�θ/α� the follow-
ing three things are true:

P�τζ/ζ1/α ∈ dt � = cα�θ t−θP�σ1 ∈ dt��(98)

τζ has gamma�θ� distribution�(99)

τζ/ζ
1/α and τζ are independent.(100)

However, (98), (99) and (100) follow at once from the next lemma applied with
h�z� = czb for b = θ/α and a constant c.
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Lemma 31. Let �τs� s ≥ 0� be as in Proposition 21 and let ζ be a random
variable independent of �τs� s ≥ 0� with density of the form

P�ζ ∈ dz� = h�z� exp�−Kz� dz
z

(101)

for some function h�z�. Then for t > 0, u > 0,

P

(
τζ ∈ du�

τζ
ζ1/α

∈ dt
)
= αe−uh

((
u

t

)α) du
u
P�σ1 ∈ dt��(102)

Proof. Conditioning on ζ = z, there is the following identity for all posi-
tive measurable functions f and g:

E�f�τζ�g
(
τζ
ζ1/α

)∣∣∣∣ζ = z � = E�f�τz�g�τz/z1/α��

= exp�Kz�E�f�z1/ασ1�g�σ1� exp�−z1/ασ1��
by (93) and the scaling property of the stable subordinator �σs� s ≥ 0�. Inte-
grate with respect to the distribution (101) of ζ to obtain

E

[
f�τζ�g

(
τζ
ζ1/α

)]
=

∫ ∞

0

dz

z
h�z�E�f�z1/ασ1�g�σ1� exp�−z1/ασ1��

= E
[∫ ∞

0

du

u
α exp�−u�h

((
u

σ1

)α)
f�u�g�σ1�

](103)

by Fubini’s theorem and the change of variable

u = z1/ασ1� z = �u/σ1�α�
dz

z
= du

u
�

Now (103) amounts to (102). ✷

Remark 32. Conversely, formula (102) shows that if any of (98), (99) or
(100) holds, the function h�z� introduced in (101) must be of the form h�z� =
czb, that is, Kζ must have gamma�b� distribution for some b > 0. Consider
for instance (100). From (102), for (100) to be satisfied, it is necessary that

h�u/v� = j�u�k�v� a.e. with respect to dudv

for some functions j and k, hence that

h�uw� = ch�u�h�w� a.e. with respect to dudw�

which forces h�u� = cub for some c and b.

Proof of Proposition 22. Proposition 22 follows from Proposition 21 and
the next proposition, which in fact allows either of Propositions 22 or 21 to be
derived easily from the other.
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Proposition 33. In the setting of Proposition 21, let ζt = K−1γ�t�, where
K = C��1 − α�, and let S1 > S2 > · · · denote the ranked values of the jumps
of �ζt�0 ≤ t ≤ θ/α�, say Si = ζτi − ζτi−, where τi is the time of the jump of
magnitude Si. Let Ti = τ�ζτi� − τ�ζτi−� Then:

(i) the �Si�Ti�� i = 1�2 � � � � are the points of a PRM with intensity measure

M�ds�dt� = θ

α

ds

s
fs�t�e−t dt = θ

dt

t
e−tgt�s�ds�(104)

where fs�t� = P�σs ∈ dt�/dt and gt�s� = P�St ∈ ds�/ds, where �St� t ≥ 0� is
the inverse of the stable �α� subordinator �σs� s ≥ 0�.

(ii) Let Tπ�i� be the ith largest of the jumps Ti, i = 1, 2� � � � � Then(
Tπ�i�
τ�ζθ/α�

� i = 1�2� � � �
)

has PD�0� θ� distribution

independently of the gamma�θ� variable
∑
i Ti = τ�ζθ/α�.

(iii) if ,i1 > ,i2 > · · · are the ranked jumps of �τs� incurred over the s-
interval whose length is Sπ�i�, then for each i the sequence(

,ij

Tπ�i�
� j = 1�2� � � �

)
has PD�α�0� distribution�

Moreover these sequences are mutually independent as i varies and indepen-
dent also of the sequence �Tπ�i�, i = 1, 2� � � ��, where

Tπ�i� = ,i1 + ,i2 + · · · and τ�ζθ/α� =
∑
i

Tπ�i� =
∑
i

∑
j

,ij

and the Vn�ζθ/α� featured in Proposition 21 are the ranked values of the ,ij.

Proof. Due to the Poisson character of the jumps of the two independent
subordinators, the points �Si�Ti�, i = 1, 2 � � � � are the points of a PRM with
intensity measure

M�ds�dt� = θ

α

ds

s
exp�−Ks�P�τs ∈ dt��(105)

which can be expressed as in (104) using (93) and the formula fs�t� =
αsgt�s�/t, which is a consequence of the identity in distribution St/tα =d s/σαs
(see, e.g., Section 7 of [59]). This yields (i). Since

∫∞
0 gt�s�ds = 1, the Ti are

the points of a PRM θt−1e−t dt over t > 0. So (ii) follows from Proposition
5. Turning to (iii), the last expression for M�ds�dt� in (105), combined with
standard facts about Poisson processes, shows that conditionally given all the
Tπ�i�, the corresponding jumps Sπ�i� of the gamma process �ζt�0 ≤ t ≤ θ/α�
are mutually independent, with

P�Sπ�i� ∈ ds 
Tπ�i� = t� = gt�s�ds�
Now (iii) follows using (96) and (95) for θ = 0. ✷
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5.2. Limits as α → 0. Let � denote the space of probability measures
on �0�1� × �0�1� × · · · and give � the topology of weak convergence of finite
dimensional distributions. It is immediate from Definition 1 that the Pα�θ
distribution of �Ṽn� defines a continuous map from ��α� θ�� 0 ≤ α < 1� θ > −α�
to � . As a consequence [16], the same is true of the Pα�θ distribution of �Vn�.
That is to say, PD�α� θ� is continuous in �α� θ�. In particular, for each θ > 0 the
limit of PD�α� θ� as α ↓ 0 is PD�0� θ�. That is, for every bounded continuous
function f defined on �0�1�n,

lim
α↓0
Eα�θ�f�V1� � � � �Vn�� = E0� θ�f�V1� � � � �Vn���(106)

Proposition 21 provides a setting in which (106) follows from weak convergence
as α ↓ 0 of a subordinator with Lévy measure x−α−1e−x dx to a gamma process
with Lévy measure x−1e−x dx. See [68] for further discussion and [9] for other
aspects of the asymptotic behavior of a stable �α� subordinator as α ↓ 0.

To illustrate (106), we now derive the known formula forE0� θ�Vp
n� for p > 0

given in Corollary 18 from the corresponding formula for Eα�θ�Vp
n� with 0 <

α < 1 stated in Proposition 17.

Derivation of Corollary 18 from Proposition 17. The evaluation of the limit
is justified by the following asymptotics as α ↓ 0:

��1 − α�θ/α ∼ �1 + γα�θ/α → eθγ�(107)

where a�α� ∼ b�α� means a�α�/b�α� → 1 as α ↓ 0,

γ = −�′�1�(108)

is Euler’s constant and

��θ/α+ n�
��θ/α+ 1� ∼ θn−1

αn−1
�(109)

The factor αn−1 in the denominator is asymptotically cancelled inside the in-
tegral by the factor

φα�t�n−1 =
(
αtα

∫ ∞

t
dxx−α−1e−x

)n−1

∼ αn−1E�t�n−1�(110)

Finally, in view of (108) and (110) for n = 2, formula (34) implies

ψα�t� − 1 ∼ α�E�t� + γ + log�t��(111)

and consequently

ψα�t�−n−�θ/α� → exp�−θ�E�t� + γ + log�t���
= t−θ exp�−γθ� exp�−θE�t���

(112)
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It is easily argued that these limiting operations can be switched with the
integral in (49), and (51) results after some cancellation. ✷

6. Sampling from PD(�, �). Applications of a random discrete distribu-
tion �Vn� often involve a sample from �Vn�, that is, a random variable N such
that the conditional distribution of N given �Vn� is given by

P�N = n
V1�V2� � � �� = Vn �n = 1�2� � � ���(113)

Then VN is a size-biased pick from �Vn�, as in (2). See for instance [73, 25] for
a nice interpretation ofN in the application of PD�0� θ� to population genetics.

6.1. Deletion and insertion operations. Given a sequence �vn� and an index
N, say �v′n� is derived from �vn� by deletion of vN if

v′n = vn1�n < N� + vn+11�n ≥N��

The next proposition follows immediately from Proposition 2:

Proposition 34. Let N be a sample from �Vn� with PD�α� θ� distribution,
where 0 ≤ α < 1 and θ > −α. Let �V′

n� be derived from �Vn� by deletion of
VN, and let V′′

n = V′
n/�1 − VN�, n = 1, 2� � � � � Then �V′′

n� has PD�α� θ + α�
distribution, independently of VN, which has beta�1 − α� θ+ α� distribution.

In particular the PD�0� θ� distribution is invariant under this operation of
size-biased deletion and renormalization, a result which is a known charac-
terization of PD�0� θ� [48, 29].

Suppose a PD�α�0� distributed sequence �Vn� has been constructed by any
of the methods described in Section 2. By the operation of size-biased deletion
and renormalization as above, we obtain a sequence with PD�α� α� distribu-
tion. Repeating the operation yields sequences with distributions PD�α�2α�,
PD�α�3α�� � � � �

This result about deletion can be rephrased as a result about insertion:
given �v′1 ≥ v′2 ≥ · · ·� and a real number v > infn v′n, say �vn� is derived from
�v′n� by insertion of v if

vn = v′n1�n < N� + v1�n =N� + v′n+11�n > N��

where N − 1 = ∑∞
n=1 1�v′n > v� is the number of terms of �v′n� that strictly

exceed v. Note that vN = v by definition.

Proposition 35. Fix 0 ≤ α < 1 and θ > −α. Let �V′′
n� have PD�α� α + θ�

distribution. Independent of �V′′
n� let X have beta�1 − α� θ + α� distribution.

Let �Vn� be defined by insertion of X into ��1−X�V′′
n� n = 1�2� � � ��. Then �Vn�

has PD�α� θ� distribution and X = VN, where N is a sample from �Vn�.
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6.2. Distribution of a sample from PD�α� θ�. Immediately from (113), the
unconditional distribution of a sampleN from �Vn� with PD�α� θ� distribution
is given by Pα�θ�N = n� = Eα�θ�Vn� as specified in formulae (49) and (51) for
p = 1. For PD�0� θ� this result is due to Griffiths [25]. Inspection of formula
(51) for p = 1 shows that Griffiths’ result can be restated as follows:

for N a sample from PD�0� θ�, the distribution of N − 1 is a mix-
ture of Poisson �µ� distributions, with the parameter µ distributed
as θ��T�∞�, where ��dx� = x−1e−xdx is the Lévy measure of a
gamma subordinator, and T is a standard exponential variable.

This result can be understood probabilistically as follows, by application of
Propositions 5 and 35. Take �V′′

n� in Proposition 35 to be the PD�0� θ� sequence
V′′
n = Vn�τθ�/τθ derived from a gamma subordinator �τs�0 ≤ s ≤ θ� as in (10).

Let X = T/�T+ τθ� for T a standard exponential independent of �τs� and let
�Vn� be constructed as in Proposition 35. Let N be the rank of X in �Vn�.
According to Proposition 35, N is a sample from the PD�0� θ� sequence �Vn�.
However, by construction, N − 1 is the number of n such that Vn�τθ� > T,
and given T this number has Poisson distribution with mean θ��T�∞�.

The analog for 0 < α < 1 of the above result for PD�0� θ� is the subject of
the next proposition.

Proposition 36. For each 0 < α < 1� θ > −α� the Pα�θ distribution of
N−1 is an integral mixture of negative binomial distributions with parameters
θ/α + 1 and p, with a mixing distribution over p which depends only on α.
More precisely, for each m = 0, 1� � � � �

Pα� θ�N− 1 =m� = Eα�θ�Vm+1�

=
∫ ∞

0
P�Z1−α ∈ dz�

(
θ/α+m
m

)
�1 − pα�z��mpα�z�θ/α+1�

(114)

where Z1−α has gamma�1 − α� distribution and

pα�z� =
ψα�z� −φα�z�

ψα�z�
= ��1 − α�zα

ψα�z�
(115)

is such that 0 < pα�z� < 1 for all 0 < α < 1 and z > 0.

Proof. This can be obtained either by manipulation of formula (49) for
p = 1, or more probabilistically by application of Proposition 35, as in the
case α = 0 discussed above, using the construction of Proposition 21 instead
of Proposition 5. ✷

From (114) and the formula r�1−p�/p for the mean of the negative binomial
�r�p� distribution, for 0 < α < 1, θ > −α, there is the following formula for
the mean of N:

Eα�θ�N� = 1 +
(

1 + θ

α

)
��1 − α�−2

∫ ∞

0
dzz−2αe−zφα�z��(116)
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which is linear in θ for fixed α < 1/2 and infinite for all θ > −α if α ≥ 1/2.
Formulae for higher moments of N follow similarly, while asymptotics for
Pα�θ�N = n� and Pα�θ�N ≥ n� for large n are immediate from (50).

The next two sections illustrate two interesting special cases of Proposition
36 with natural interpretations in terms of excursions of a Brownian motion
or Bessel process. We thank Yuval Peres and Steve Evans for a conversation
which helped us develop these interpretations.

6.3. The rank of the excursion in progress. Consider the setup of Section
1.2, with Z the range of a stable �α� subordinator, and Vn�t� the length of
the nth longest interval component of �0� t�\Z. So Z could be the zero set
of Brownian motion �α = 1/2� or a recurrent Bessel process of dimension
2 − 2α for 0 < α < 1. Let Nt be the rank of the meander length t − Gt in
the sequence of excursion lengths V1�t� > V2�t� > · · ·, so t − Gt = VNt

�t�.
According to Theorem 1.2 of [59], for each fixed time t the random variable
Nt is a sample from �Vn�t�/t�. Combined with (14), this shows that the joint
law of Nt and the sequence �Vn�t�/t� is given by the formula

E

[
1�Nt = n�f

(
V1�t�
t

�
V2�t�
t

� � � �

)]
= Eα�0�Vnf�V1�V2� � � ���(117)

for all n = 1�2 � � � and all nonnegative product measurable functions f. Here
E denotes expectation relative to P governing the stable �α� subordinator �τs�,
and Eα�0 denotes expectation relative to Pα�0 governing �Vn� with PD�α�0�
distribution. In particular, from Proposition 36 for 0 < α < 1 and θ = 0 we
obtain for all t > 0,

P�Nt = n� =
∫ ∞

0
dz e−zφα�z�n−1ψα�z�−n�(118)

This is a companion of a result of Scheffer [62], which can be expressed in
present notation as

P�NDt
= n� = α

∫ ∞

0
dzz−1�1 − e−z�φα�z�n−1ψα�z�−n�(119)

Here, Nt − 1 is the number of excursions completed by time t whose lengths
exceed t−Gt, while NDt

− 1 is the smaller number of such excursions whose
lengths exceed the length Dt − Gt of the excursion straddling time t, for Gt
and Dt defined in (69). Formula (119) is a consequence of the following analog
of (117), established in [60]

E

[
1�NDt

= n�f
(
V1�Dt�
Dt

�
V2�Dt�
Dt

� � �

)]

= Eα�0�−α log�1 −Vn�f�V1�V2� � � ����
(120)

which for f = 1 gives

P�NDt
= n� = Eα�0�−α log�1 −Vn�� = α

∞∑
p=1

1
p
Eα�0�Vp

n��(121)
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Evaluating Eα�0�Vp
n� using (49) now yields (119). Using (121) and (50) we

obtain the following asymptotic formulae as n→ ∞:

P�NDt
= n� ∼ αP�Nt = n� ∼ α��1/α+ 1�

��1 − α�1/α

1
n1/α

�(122)

where a�n� ∼ b�n� means a�n�/b�n� → 1 as n → ∞. To illustrate, in the
Brownian case �α = 1

2� the numerical values in Table 1 were obtained using a
four line Mathematica program which evaluated the integrals (118) and (119)
numerically after definition of φα and ψα in terms of Mathematica’s incomplete
gamma function. The numerical values for NDt

agree with those of Scheffer
[62]. The asymptotic formulae as n → ∞ are read from (122). For n = 4 the
asymptotic formula gives the approximations 0�0398 and 0�0199, which are
already very close to the values of P�Nt = 4� and P�NDt

= 4� shown in
Table 1.

A simplified approach to (118) and (119), which gives a probabilistic inter-
pretation of the integrals in these formulae, can be made as follows. Let T be
an exponential variable with rate 1 independent of the subordinator �τs�. It
is clear by scaling that Nt for each t has the same distribution as NT, so it
is enough to establish the formulae with T instead of t. By consideration of a
Poisson process of marked excursions as in Section 3 of [59], it is found that
T −GT has gamma�1 − α� distribution, and given T −GT = z that NT has
geometric distribution with parameter pα�z� as in (115). That is to say,

P�T−GT ∈ dz�NT = n� = 1
��1 − α� z

−αe−z dz �1 − pα�z��n−1pα�z��(123)

which gives a natural disintegration of (118) with t replaced by T. A similar
argument with DT −GT instead of T−GT yields

P�DT −GT ∈ dz�NDT
= n�

= α

��1 − α�z
−α�1 − e−z�dz�1 − pα�z��n−1pα�z��

(124)

which is the corresponding disintegration of (119). To summarize, the distri-
butions of Nt and NDt

are two different integral mixtures of geometric�p�
distributions on �1�2� � � ��; the mixing distribution is that of pα�T − GT� in
the case of Nt, and that of pα�DT −GT� in the case of NDt

.

Table 1
Distribution of Nt and NDt

for Brownian motion

n 1 2 3 4 … →→→�

P�Nt = n� 0.6265 0.1430 0.0630 0.0356 · · · ∼ 2/�πn2�
P�NDt

= n� 0.8003 0.0812 0.0334 0.0185 · · · ∼ 1/�πn2�
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6.4. Interpretation in the bridge case θ = α. In the case θ = α, correspond-
ing to a Brownian or Bessel bridge, the distribution ofN described in (114) can
be understood as follows. Starting with a �2 − 2α�-dimensional Bessel bridge
of length 1, whose ranked excursion lengths are V1 > V2 > · · ·, let U be uni-
form on �0�1� independent of the bridge and let VN = DU−GU be the length
of the excursion interval �GU�DU� that contains time U. So VN is a length-
biased pick from the sequence of lengths �Vn�. Then, as shown in Aldous and
Pitman [3] for α = 1/2, and in [52] for 0 < α < 1, the joint distribution of
�GU�DU − GU�1 − DU� is Dirichlet with parameters �α�1 − α� α�, and con-
ditionally given �GU�DU −GU�1 −DU� the process B decomposes into three
independent components: two bridges of lengths GU and 1−DU and an excur-
sion of lengthDU−GU. LetV′

1 > V
′
2 > · · · denote the ranked excursion lengths

up to time GU, and let V′′
1 > V′′

2 > · · · denote the ranked excursion lengths
derived from the interval �DU�1�. Note that the sequence V1 > V2 > · · · is
obtained by ranking the set of lengths V′

1�V
′
2� � � � �VN�V

′′
1�V

′′
2� � � � and that

N− 1 =N′ +N′′�

whereN′ is the number of i such thatV′
i > VN andN′′ is the number of i such

that V′′
i > VN. Now, if we introduce a gamma�1 + α� random variable Z1+α

independent of the bridge, then Z1+αGU, Z1+αVN and Z1+α�1−DU� are three
independent gamma variables with parameters α, 1 − α and α, respectively,
and the three random components Z1+α�V′

1�V
′
2� � � ��, Z1+α�V′′

1�V
′′
2� � � �� and

Z1+αVN are mutually independent. Moreover, the two infinite sequences are
identically distributed and the joint law of either of these sequences with
Z1+αVN is identical to the joint law of �V1�GT��V2�GT�� � � �� with T−GT as
considered in the previous section for an unconditioned Bessel process and an
independent standard exponential variableT. It now follows from the previous
discussion that the formula N−1 =N′ +N′′ presents N−1 as the sum of two
random variables which givenZ1+αVN = z are i.i.d. geometric with parameter
pα�z�. Thus we recover the result (114) in the bridge case θ = α.

7. The Markov chain derived from PD(���). Starting from any
ranked sequence of random variables V1 > V2 > · · · > 0 with

∑
n Vn = 1,

define new variables Rn and Yn as in (21) and (45). Note the relations (23)
and (46), which allow any one of the sequences �Vn�, �Yn� and �Rn� to be
recovered from any of the others. Note also the relations

Yn = �1 +Rn +RnRn+1 + · · ·�−1 = Yn+1

Yn+1 +Rn
�

Rn = Yn+1�1 −Yn�
Yn

(125)

and the a priori constraints

0 < Rn < 1� 1 +R1 +R1R2 + · · · <∞�
0 < Yn+1 < Yn/�1 −Yn��

(126)
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7.1. The cases of PD�α�0� and PD�0� θ�. The following elementary propo-
sition was suggested by results of Vervaat [69, 70] and Vershik [65].

Proposition 37. Suppose that R1�R2� � � � are independent, and satisfy
(126) a.s. Then �Yn� is a Markov chain, typically with inhomogeneous transi-
tion probabilities. If the Rn are identically distributed, then �Yn� is stationary,
with homogeneous transition probabilities. If Rn has density

P�Rn ∈ dr� = fn�r�dr�(127)

then �Yn� has co-transition probabilities

P�Yn ∈ dyn
Yn+1 = yn+1�
dyn

= 1
(

0 < yn+1 <
yn
ȳn

)
fn

(
yn+1ȳn
yn

)
yn+1

y2
n

�(128)

where ȳn = 1 − yn.

Proof. Since from (125), Yn+k is a function of Rn+1�Rn+2� � � � � it is
immediate that Yn = Yn+1/�Yn+1 +Rn� is conditionally independent of
Yn+1�Yn+2� � � � given Yn+1. This yields the Markov property in reverse time.
The formula for the co-transition probabilities is immediate by change of
variable. Clearly, �Yn� is stationary if �Rn� is i.i.d. ✷

Recall that Pα�θ governs �Vn� according to the PD�α� θ� distribution. Ac-
cording to Theorem 8, under Pα�0 for 0 < α < 1, the Rn are independent with
beta�nα�1� distributions. Thus Proposition 37 implies that under Pα�0 the se-
quence �Yn� is Markov with inhomogeneous co-transition probabilities which
can be read from the proposition. The transition probabilities in the forward
direction can then be written down using Bayes’ rule, in terms of the density
functions pα�0� n�u�, where for general �α� θ� we define

pα�θ�n�u� = Pα�θ�Vn ∈ du�/du�(129)

These densities are fairly complicated however. See Section 8.1.
This result under PD�α�0� for 0 < α < 1 is analogous to the following result

of Vershik and Shmidt [67] and Ignatov [34]: under PD�0� θ� for θ > 0, the
sequence �Yn� is Markov with homogeneous transition probabilities

P0� θ�Yn+1 ∈ dy
Yn = x�
dy

= 1
(

0 < y <
x

x̄
∧ 1

)
θx−1x̄θ−1 p0�θ�1�y�

p0�θ�1�x�
�(130)

While in the PD�0� θ� case the transition probabilities of the chain �Yn� are
homogeneous, the chain is not stationary. According to [67, 34], the stationary
probability density for this chain is given by

p∗
0� θ�x� =K−1

0� θx
−θp0� θ�1�x��(131)

where K0� θ is a normalization constant. As shown by Ignatov [34], results of
Vervaat [69] and Watterson [72] imply that

K0� θ = ��θ+ 1�eθγ�(132)
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where γ = −�′�1� = 0�5771 · · · is Euler’s constant, and that

p∗
0� θ�x� = P∗

0� θ�V1 ∈ dx�/dx�(133)

where P∗
0� θ makes �Rn� a sequence of i.i.d. beta�θ�1� random variables and

V1 = �1 +R1 +R1R2 + · · · +R1R2R3 + · · ·�−1�(134)

The densities p0� θ�1�x� and p∗
0� θ�x� are then determined by the P∗

0� θ distribu-
tion of +1 �= �1 −V1�/V1, which is the infinitely divisible law with Laplace
transform

E∗
0� θ�exp�−λ+1�� = exp

(
−θ

∫ 1

0
dx

�1 − e−λx�
x

)
�(135)

Most of these results were obtained earlier in the special case θ = 1, which
arises in applications to combinatorics and number theory (see [13], [63], [24],
[6], [65–67] and [15]).

It is easily verified using Proposition 37 that P∗
0� θ makes �Yn� a stationary

Markov chain with the same homogeneous transition probabilities as those
displayed in (130) under P0� θ. Consequently, the above results are largely
summarized by the following identity: for all positive product measurable func-
tions f,

E0� θ�f�Y1�Y2� � � �� � =K0� θE
∗
0� θ�Yθ1f�Y1�Y2� � � ����(136)

Note that sinceV1 = Y1 and the �Vn� sequence can be recovered from the �Yn�
sequence and vice versa, formula (136) holds just as well with Yn replaced
everywhere by Vn. The same is true of formula (137) below.

7.2. Extension to PD�α� θ�. The following theorem, which is an amplifica-
tion of Theorem 15, generalizes the entire collection of results described in the
previous section to the full two-parameter family PD�α� θ�.

Theorem 38. Let sequences �Vn�, �Rn� and �Yn� be related by (21), (45)
and (125). For 0 ≤ α < 1, θ > −α, let Pα�θ govern �Vn� with PD�α� θ� distri-
bution and let P∗

α� θ govern �R1�R2� � � �� as a sequence of independent random
variables, such that Rn has beta�θ+ nα�1� distribution. Then:

(i) for every product measurable function f,

Eα�θ�f�Y1�Y2� � � �� � =Kα�θE
∗
α� θ�Yθ1f�Y1�Y2� � � ����(137)

where K0� θ is given in (132) and

Kα�θ = ��θ+ 1���1 − α�θ/α �0 < α < 1� θ > −α��(138)

(ii) Both P = Pα�θ and P = P∗
α� θ govern �Yn� as a Markov chain with the

same forward transition probabilities, given by (130) for α = 0 and as follows
for 0 < α < 1:

P�Yn+1 ∈ dyn+1
Yn = yn�
dyn+1

= y−α−1
n �1 − yn�nα+θ−1 r�α� θ+ nα�yn+1�

r�α� θ+ nα− α�yn�
(139)
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for 0 < yn < 1, 0 < yn+1 < yn/�1 − yn� and 0 otherwise, where

r�α� θ� y�dy = ��θ/α+ 1�yθP∗
α� θ�V1 ∈ dy� = C−1

α� θPα� θ�V1 ∈ dy�(140)

for Cα�θ as in (43) and V1 = Y1.
(iii) The P∗

α� θ distribution of +1 �= �1 −V1�/V1 is infinitely divisible, with
Laplace transform given for α = 0� θ > 0 by (135), and for 0 < α < 1, θ > −α
by

E∗
α� θ�exp�−λ+1�� =

(
1

ψα�λ�
)θ/α+1

(141)

for ψα as in (34).

Remark 39. For 0 < α < 1, the function r�α� θ� y� is determined by the
first equality in (140) and the Laplace transform (141). The last expression
in (140) and Proposition 47 in the next section yield alternative formulae for
r�α� θ� y�. For α = 0, the chain �Yn� is stationary and homogeneous under
P∗

0� θ, whereas in the case 0 < α < 1 the chain is nonhomogeneous and the dis-
tribution of Yn depends on n. See Section 7.3 below regarding the asymptotic
distribution of Yn as n→ ∞.

Remark 40. Since the results for α = 0 are known, we shall assume for
the proof that 0 < α < 1. We note however that the results for α = 0 can be
recovered by passage to the limit as α ↓ 0 for fixed θ, using (106).

Proof of Theorem 38. Let 0 < α < 1.

(i) From the absolute continuity relation (42), for all measurable f ≥ 0,

Eα�θ�f�Y1�Y2� � � ��� = Cα�θEα�0�Lθ/αf�Y1�Y2� � � ����(142)

where L is the local time variable, which can be expressed from (24) as

L = Yα1 lim
n→∞ n�R1 · · ·Rn�α �Pα�θ a.s., for all θ > −α��(143)

On the other hand, since both P∗
α�θ and Pα�0 make R1� � � � �Rn a sequence of

independent beta variables, calculating the ratio of the two product densities
gives

E∗
α� θ�f�R1� � � � �Rn��

= ��θ/α+ n+ 1�
��θ/α+ 1���n+ 1�Eα�0��R1 · · ·Rn�θf�R1� � � � �Rn���

(144)

Passage to the limit as n→ ∞, using ��θ/α+n+1�/��n+1� ∼ nθ/α, martingale
convergence and (143) yields

E∗
α� θ�f�R1�R2� � � ��� = ��θ/α+ 1�−1Eα�0�Lθ/αY−θ

1 f�R1�R2� � � ����(145)

a formula which holds just as well with f�Y1�Y2� � � �� instead of f�R1�R2� � � ��,
due to (125). Comparison of (142) and (145) yields (137).
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(ii) According to Proposition 37, �Yn� is a Markov chain under P∗
α� θ with

transition probabilities which can be read from (128) and the prescribed beta
density of Rn, which is fn�x� = �θ + nα�xθ+nα−1 for 0 < x < 1. Bayes’ rule
then yields the forward transition probabilities of the form (139), for r�α� θ� y�
defined by the first equality in (140), after using the formula

P∗
α� θ�Yn ∈ dy� = P∗

α� θ+�n−1�α�Y1 ∈ dy��(146)

This follows from (125), since by definition the P∗
α� θ distribution of Rn,

Rn+1� � � � is the P∗
α� θ+�n−1�α distribution of R1, R2� � � � � The second equality in

(140) for r�α� θ� y� is immediate from (137) and the formula (30) for Cα�θ in
(42). Since the density factor dP∗

α� θ/dPα�θ = Kα�θY
θ
1 is a function of Y1, it is

clear without further calculation that �Yn� must be Markov under Pα�θ with
the same transition probabilities as under P∗

α� θ.
(iii) To obtain the formula (141) for the Laplace transform of +1 �= �1 −

V1�/V1 use (145) to compute

E∗
α� θ�exp�−λ+1�� = ��θ/α+ 1�−1Eα�0�Xθ/α

1 exp�−λ+1���(147)

where X1 = LV−α
1 has exponential distribution with rate 1. However, from

(68),

Eα�0�exp�−λ+1�
X1� = exp�−X1�ψα�λ� − 1��
and using this expression in (147) yields (141). ✷

Immediately from the above theorem, we derive the formula of the following
corollary, which extends formulae of Vershik and Shmidt [67], and Ignatov [34]
in the case α = 0. The Markov property of �Yn� under Pα�θ is evident by in-
spection of this formula. This formula can also be derived by suitable changes
of variables and integration from Proposition 47, after changing variables and
integrating out t. Combined with Proposition 37, this gives an alternative
approach to the previous theorem.

Corollary 41. The Pα�θ joint density of Y1� � � � �Yn is given by the for-
mula

Pα�θ�Y1 ∈ dy1� � � � �Yn ∈ dyn�/Ini=1dyi

= Cα�θαn−1In−1
i=1 �y−α−1

i �1 − yi�iα+θ−11�yi+1 < yi/�1 − yi���
× r�α�nα− α+ θ� yn�

for r�α� θ� y� defined by (140).

Remark 42. SincePα�0 = P∗
α�0 for all 0 < α < 1, the special case 0 < α < 1,

θ = 0 of formula (146) allows computation of the Pα�0 distribution of Yn:

Pα�0�Yn ∈ dy� = 1
�n− 1�!y

−�n−1�α r�α�nα− α�y�dy�(148)
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This result can also be read from formula (81). In particular, the moments of
Yn derived from PD�α�0� are given by the expression

Eα�0Y
p
n = 1

�n− 1�!Eα�0�V
p−�n−1�α
1 Ln−1��(149)

which can be evaluated using (85).

Remark 43. Note that if �Ỹn� are the independent factors as in (4) derived
from the size-biased permutation �Ṽn� of a PD�α� θ� sequence �Vn�, then for
each k = 1�2 � � � the sequence �Ỹn+k� n = 1�2� � � �� has the same distribution
as the independent factors derived similarly from the size-biased presentation
of PD�α� θ + kα�. On the other hand, the sequence �Yn+k� n = 1�2� � � �� is
Markovian with the same sequence of inhomogeneous transition probabilities
as �Yn� derived from PD�α� θ + kα�, but the initial distribution is different.
This distinction appears already for α = 0: then �Yn� has stationary transition
probabilities, but the distribution of Yn varies with n, only approaching the
stationary distribution in the limit as n→ ∞.

To illustrate by a concrete example, �Y2�Y3� � � �� derived from excursions of
an unconditioned Bessel process is a Markov chain with exactly the same inho-
mogeneous transition function as �Y1�Y2� � � �� derived from the corresponding
bridge. However Y2 for the unconditioned process does not have the same law
as Y1 for the bridge.

7.3. Asymptotic behavior of the PD�α� θ� chain. It was shown by Vershik
and Shmidt [67] for θ = 1 and Ignatov [34] for general θ > 0 that the P0� θ
distribution of Yn converges to the stationary distribution (131) of the Markov
chain. For 0 < α < 1, θ > −α, the asymptotic behavior of the distribution ofYn
can be derived as follows from the relationYn = 1/�1++n� and the description
of the Pα�0 distribution of +n provided by Proposition 11(ii). According to that
proposition, under Pα�0 the random variable +n is the sum of n independent
copies of +1, which has finite moments of all orders, obtained by successive
differentiations of its Laplace transform (37). In particular

Eα�0�+1� =
α

1 − α
and a strong law of large numbers implies that

+n
n

→ α

1 − α� Pα�0 a.s.�

hence also Pα�θ a.s. for all θ > −α by Proposition 14. Similarly, the central
limit theorem implies that the Pα�0 distribution of

√
n

(
+n
n

− α

1 − α
)

converges to the normal distribution with mean 0 and variance

Varα�0�+1� =
α

�2 − α��1 − α�2
�
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A standard argument shows that this limit law under Pα�0 is mixing in the
sense of [2]. That is to say, the same limit distribution is obtained after a
change of measure to any distribution Q that is absolutely continuous with
respect to Pα�0, in particular, for Q = Pα�θ for all θ > −α. Translating these
results in terms of Yn = 1/�1 + +n� yields the following proposition.

Proposition 44. Under Pα�θ for all 0 < α < 1 and θ > −α,

nYn → 1 − α
α

a.s.(150)

and the distribution of

√
n

(
nYn −

1 − α
α

)
(151)

converges to the normal distribution with mean 0 and variance α−2�2 − α�−2.

These asymptotics for Yn may be compared with the corresponding behav-
ior of the independent factors �Ỹn� as in (4). From the beta�1 − α� θ + nα�
distribution of Ỹn under Pα�θ, one gets

Eα�θ�Ỹn� =
1 − α

1 + θ+ �n− 1�α�

For 0 < α < 1, θ > −α, this makes

Eα�θ�nỸn� →
1 − α
α

as n→ ∞�

More precisely, the asymptotic distribution of αnỸn is gamma�1 − α�. So Yn
and Ỹn are both of order 1/n for large n, their means are asymptotically the
same, but their asymptotic distributions are different.

8. Some results for a general subordinator. We collect in this section
some results regarding interval lengths Vn�t� derived for a general subordi-
nator �τs� as in Section 1.2, which in the stable and gamma cases are related
to PD�α� θ�.

8.1. Perman’s formula. Let ,1 ≥ ,2 ≥ · · · be the ranked jumps up to time
1 of a drift-free subordinator �τs� s ≥ 0�. Put Vn = ,n/τ1. Perman [50] found
a formula for the �n+ 1�-dimensional joint density

pn�t� v1� � � � � vn� = P�τ1 ∈ dt�V1 ∈ dv1� � � � �Vn ∈ dvn�/dtdv1 · · ·dvn(152)

assuming the Lévy measure � of �τs� has a density h with respect to Lebesgue
measure on �0�∞�. Perman’s formula is as follows. For n ≥ 2,

pn�t� v1� v2� � � � � vn� =
tn−1h�tv1�h�tv2� · · ·h�tvn−1�

ṽn
p1

(
tṽn�

vn
ṽn

)
(153)
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for t > 0 and 0 < v1 < v2 < · · · < vn < 1,
∑
i vi < 1, where

ṽn = 1 − v1 − v2 − · · · − vn−1

and

p1�t� v� = P�τ1 ∈ dt�V1 ∈ dv�/dtdv(154)

is the unique solution of the integral equation

p1�t� v� = th�tv�
∫ v/�1−v�∧1

0
p1�t�1 − v�� u�du(155)

for t > 0 and v ∈ �0�1�.

Proposition 45. Let f�t� �= P�τ1 ∈ dt�/dt denote the density of τ1, and
define a sequence of nonnegative functions fn�t� u�, t > 0, 0 < u < 1, induc-
tively as

f1�t� u� = th�tu�f�tū��(156)

where ū = 1 − u and for n = 1, 2� � � � �

fn+1�t� u� = 1�u ≤ 1/n�th�tu�
∫ 1

u/ū
dvfn�tū� v��(157)

The joint density p1�t� v� appearing in (154) and (153) is given by the formula

p1�t� v� =
∞∑
1

�−1�n+1fn�t� v��(158)

where all but the first n terms of the sum are zero if v > 1/�n+ 1�.

Proof. This is straightforward by induction on n, using Perman’s integral
equation (155).

Remark 46. Integrating formula (158) from u to 1 gives a series expansion
forP�V1 > u, τ1 ∈ dt). It can be shown by induction that this series is identical
to that obtained by Perman by a different method in formula (8) of [50].

Suppose for the rest of this section that �τs� is a stable subordinator of index
α, as in (12). Then the density h�x� of the Lévy measure is

h�x� = αCx−α−1 �x > 0�(159)

and from (30) the density fα�t� of τ1 is characterized by its negative moments
via the following formula: for all real θ > −α,∫ ∞

0
t−θfα�t�dt = E�τ−θ1 � = 1

Cθ/αCα� θ
= ��θ/α+ 1�

��θ+ 1�
1

�C��1 − α��θ/α �(160)
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Proposition 47. Let �Vn� have PD�α�0� distribution and let + be defined
as in (25), so + is the sum of the points ,n of the PRM �α derived from �Vn�.
Then the joint density of �+�V1� � � � �Vn� is the function pn�t� v1� v2� � � � � vn�
given by Perman’s formula (153) with h�x� defined by (159) and p1�t� v� de-
rived as in Proposition 45 from f�x� = fα�x� defined by (160). For �Vn� with
PD�α� θ� distribution, for 0 < α < 1, θ > −α, the corresponding joint density is
cα� θ t

−θpn�t� v1� v2� � � � � vn�, where cα� θ = Cθ/αCα� θ.

Proof. This is an immediate consequence of Propositions 10, 45 and 14. ✷

Integrating out t in the above �n + 1�-dimensional joint density gives an
expression for the n-dimensional joint density of �V1� � � � �Vn� for a PD�α� θ�
distributed sequence �Vn�. In particular, for n = 1 we obtain Proposition 20
as follows:

Proof of Proposition 20. Proposition 47 combined with Proposition 45
yields formula (53) with the nth term of the sum replaced by the expression
�−1�n+1cα� θ

∫∞
0 t−θfn�α�t� u�dt, where fn�α�t� u� is the fn�t� u� defined induc-

tively by Proposition 45 starting from f�t� = fα�t� as in (160). Chasing these
definitions yields the expression (54) by making a suitable change of variable
to simplify the integral with respect to t using (160). ✷

8.2. Laplace transforms for some infinite products. Let Vn�T� be derived
as in (7) from the closed range Z of a subordinator �τs� with Lévy measure
� as in (8). The formulae of the following proposition serve to characterize
the laws of the sequences �Vn�s�� and �Vn�τt�/τt� for all s > 0 and t > 0.
A formula like (161) involving just V1�s� appears as Theorem 2.1 of Knight
[39]. See also formula (76) of Kingman [38] for an expression similar to (163)
related to V1�τt�/τt.

Proposition 48. For each measurable function g� �0�∞� → �0�1� such that∫∞
0 ��dv��1 − g�v�� <∞ and λ ≥ 0,

∫ ∞

0
ds e−λsE

[∏
n

g�Vn�s��
]
=

∫∞
0 due−λu��u�∞�g�u�∫∞
0 ��dv��1 − e−λvg�v�� �(161)

∫ ∞

0
ds exp�−λs�E

[∏
n

g

(
sVn�τt�
τt

)]
(162)

=
∫ ∞

0
du

(
t
∫ ∞

0
��dv� exp�−λuv�g�uv�v

)

× exp
(
−t

∫ ∞

0
��dw��1 − exp�−λuw�g�uw�

)
�

(163)
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Proof. By considering these identities with e−λsg�s� instead of g�s� it is
enough to prove them for λ = 0. The left-hand side of (161) then equals

E

[∑
u>0

∫ τu
τu−
ds

(∏
m

g�Vm�τu−��
)
g�s− τu−�

]
�

which, using the basic compensation formula of excursion theory, equals

E

[∫ ∞

0
du

(∏
m

g�Vm�τu−��
)](∫ ∞

0
dv��v�∞�g�v�

)
�

Now (161) follows easily after evaluating the expectation above using Fubini’s
theorem and the formula

E

[∏
n

g�Vn�τu−��
]
= E

[∏
n

g�Vn�τu��
]

= exp
(
−u

∫ ∞

0
��dx��1 − g�x��

)
�

(164)

which expresses the fact that the Vn�τu� are the points of a PRM �u�� ([37],
(3.35)). Turning to (162), the change of variables s = uτt allows (162) for λ = 0
to be rewritten as ∫ ∞

0
duE

[
τt

∏
n

g�uVn�τt��
]
�

The integrand can be evaluated using (164) with t instead of u and g�ux�e−λx
instead of g�x�, by differentiation with respect to λ at λ = 0. The result is
(163). ✷

For a stable �α� subordinator with � = �α as in (12), it is easily verified
that the expression in (163) equals the right-hand side of the expression in
(161), which proves the identity in law of the two sequences featured in Propo-
sition 6. Note also that (164) and hence (161) can be verified also for measur-
able g: �0�∞� → �0�∞� such that 0 <

∫∞
0 ��dv��1 − g�v�� < ∞ provided the

integral is absolutely convergent. Thus we obtain the following corollary re-
garding the expectation of an infinite product derived from �Vn� with PD�α�0�
distribution.

Corollary 49. For 0 < α < 1 and g� �0�∞� → �0�∞� such that

0 <
∫ ∞

0

dv

vα+1
�1 − g�v�� <∞(165)

and the integral is absolutely convergent, define

Kg�α� λ� �=
∫ ∞

0

dv

vα+1
�1 − e−λvg�v���(166)

K′
g�α� λ� �=

d

dλ
Kg�α� λ� =

∫ ∞

0

dv

vα
e−λvg�v��(167)
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Then ∫ ∞

0
ds e−λsEα�0

[∏
n

g�sVn�
]
= K′

g�α� λ�
αKg�α� λ�

�(168)

To illustrate, taking g�x� = exp�−κxp� for κ > 0 and p > 1 gives a double
Laplace transform which determines the distribution of

∑
n V

p
n for a PD�α�0�

distributed �Vn�. Unfortunately, such transforms seem difficult to invert. For
g a polynomial with nonnegative coefficients, say

g�x� = 1 +
k∑
j=1

ajx
j�

we find that

Kg�α� λ� =
��1 − α�

α
λα −

k∑
j=1

aj��j− α�λα−j�

Hence, the Laplace transform in (168) is

K′
g�α� λ�

αKg�α� λ�
= 1
λ

(
1 +

∑k
j=1 j��j− α�ajλk−j

��1 − α�λk − α∑k
j=1 ��j− α�ajλk−j

)
�(169)

In particular cases, this transform can be inverted to obtain, for example,

Eα�0

[∏
n

�1 + aVp
n�
]
= 1 + p

α

∞∑
k=1

1
�pk�!

(
α��p− α�
��1 − α�

)k
ak�(170)

which for p = 1 and p = 2 becomes

Eα�0

[∏
n

(
1 + aVn

)]
= 1 + 1

α
�eαa − 1��(171)

Eα�0

[∏
n

(
1 + aV2

n

)]
= 1 + 2

α

(
cosh

(√
α�1 − α�a− 1

))
�(172)

Examination of the coefficients of ak on both sides of (170) shows that (170)
amounts to the following identity: for all positive integers k and p,

Eα�0

[ ∑
1≤n1<···<nk

Vp
n1

· · ·Vp
nk

]
= p

α

1
�pk�!

(
α��p− α�
��1 − α�

)k
�(173)

This is a special case of formula (178). Taking

θ = 0� n = pk� mp = k� mj = 0 for j 
= p�
in (178) and multiplying both sides by k! yields (173). Also from (178) or by
variations of the above argument one can read analogs of (173) and (170) for
PD�α� θ� and results for other polynomials. For instance, (168) can be inverted
explicitly for g�v� = 1 + av+ bv2.

To conclude this section, we record the following analog of Corollary 49 for
PD�α� θ� instead of PD�α�0�.
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Corollary 50. For 0 < α < 1, θ > 0, λ > 0 and g and Kg�α� λ� as in
Corollary 49,∫ ∞

0
ds e−λs

sθ−1

��θ�Eα�θ
[∏
n

g�sVn�
]
=

(
��1 − α�
αKg�α� λ�

)θ/α
�(174)

Proof. This can be obtained from the previous results using formula (44),
but we prefer the following derivation starting from Proposition 21. Replacing
g�v� by ev−λvg�v�, it suffices to establish the formula for λ = 1. Let Vn�T�
be derived from �τs� and T = τ�Sα�θ� as in Proposition 21. By application of
that Proposition, E�∏n g�Vn�T��� equals the left-hand side of (174) for λ = 1.
However, evaluating this expectation by conditioning on Sα�θ and using (164)
yields the right-hand side of (174) for λ = 1. ✷

APPENDIX

Here, we mention some known results which provide motivation for the
definition and study of PD�α� θ�.

A.1. The finite Poisson–Dirichlet distribution. If the convention is made
that the beta�a� b� distribution is a unit mass at 1 for a > 0, b = 0, then for
�α� θ� in the range

α = −κ and θ =mκ for some κ > 0 and m ∈ �2�3� � � ���(175)

Definition 1 prescribes a joint distribution of a finite sequence �Ṽ1� � � � � Ṽm�
with Ṽi ≥ 0 and

∑m
i=1 Ṽi = 1. The distribution of the corresponding ranked

sequence �V1� � � � �Vm�0�0� � � �� with V1 ≥ · · ·Vm ≥ 0 and
∑m
i=1Vi = 1

may still be called PD�α� θ�. It is known that for �α� θ� = �−κ�mκ� in this
range, �Ṽ1� � � � � Ṽm� may be constructed as the size-biased permutation of
�W1� � � � �Wm�, where �W1� � � � �Wm� has symmetric Dirichlet distribution
obtained by setting Wi = Xi/�X1 + · · · +Xm� for i.i.d. Xi with gamma�κ�
distribution, so �V1� � � � �Vm� can be obtained by ranking �W1� � � � �Wm�. See
[37], Section A.6, for a proof and references. As shown by Kingman [38],
as κ = −α ↓ 0 and m ↑ ∞ for fixed θ = mκ, PD�α� θ� converges weakly to
PD�0� θ�. It is easily verified that the formulae in this paper which follow
directly from Proposition 2, in particular, (6) (52) and (178), hold also for
�α� θ� in the range (175). See also [25] for some moment formulae for the
finite Poisson–Dirichlet distribution in the vein of (51).

A.2. The partition structure derived from PD�α� θ�. In a random sample of
size n from a population with random frequencies �V1�V2� � � �� and a vector of
nonnegative integers �m1� � � � �mn� with +imi = n, the probability that there
are m1 species with a single representative in the sample and m2 species with
two representatives in the sample and so on, is given by the formula

p�m1� � � � �mn� =
n!∏n

i=1�i!�mimi!
µ�m1� � � � �mn�(176)
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with

µ�m1� � � � �mn� = E
[∑ n∏

i=1

mi∏
j=1

Vi
n�i� j�

]
�(177)

where the summation ranges over all choices of distinct n�i� j� with

i = 1� � � � � n� j = 1� � � � �mi�

See Kingman [37], where the expectation (177) is evaluated for �Vn� with
PD�0� θ� distribution to obtain the formula for p�m1� � � �mn� in this case, which
is the Ewens sampling formula [19–21]. Proposition 9 of Pitman [54] gives
the generalization of the Ewens formula for PD�α� θ�, which can be stated as
follows. For real numbers x and a and nonnegative integer m, let

�x�m�a =
{

1� for m = 0�

x�x+ a� · · · �x+ �m− 1�a�� for m = 1�2� � � � �

and let �x�m = �x�m�1. Note that �1�m =m!.

Proposition 51 [54]. For �Vn� with PD�α� θ� distribution, (176) and (177)
hold with µ�m1� � � � �mn� = µα�θ�m1� � � � �mn� given by the formula

µα�θ�m1� � � � �mn� =
�θ+ α�k−1� α

�θ+ 1�n−1

n∏
j=1

(
�1 − α�j−1

)mj

�(178)

See [52–55, 36] for various developments and applications of this formula.
As a consequence of Proposition 51, the urn scheme for generating PD�0� θ�
studied by various authors [8, 28, 30, 14] also admits a two-parameter gener-
alization [54, 57], whose simple form provides another characterization of the
two-parameter family [75].
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