Spatial Statistics and Spatial Scales in Environmental Health

Chris Paciorek Department of Statistics; University of California, Berkeley and Department of Biostatistics; Harvard School of Public Health

www.biostat.harvard.edu/~paciorek

April 14, 2010

Spatial Statistics in Environmental Health

- Estimation of chronic health effects generally relies on cross-sectional variation in the exposure of interest.
- Often this variation is correlated over space, and we want to use this fact to help us estimate variation in exposure amongst individuals.
- Spatial statistical methods can help to
 - Estimate exposure based on available data,
 - Consider measurement error (exposure misclassification) arising from this estimation, and
 - Account for spatial correlation in the health outcome data.
- Applications include air pollution, climate, built environment, infectious disease.

伺 ト イヨト イヨト

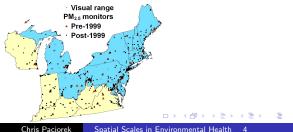
Exposure Estimation Methods for Air Pollution

Often researchers estimate ambient concentrations and use these as a proxy for exposure.

- Methods Using Monitoring Data
 - Nearest Monitor
 - Local Averaging
 - Inverse-Distance Weighted Averaging
 - Kriging
 - Land Use Regression
 - Spatio-temporal Statistical Models
- Other Sources of Information
 - Remote Sensing
 - Atmospheric Modeling
- The Future: Atmospheric models that assimilate data and provide uncertainty estimation?

Exposure Estimation and Spatial Scales

- We'd like to exploit as much of the true exposure variation as possible, at all scales.
 - This can help improve precision in health analyses.
 - Exposure at different scales may provide different information about health effects (e.g., PM components).
 - Ontrasts at different scales may be differently affected by unmeasured confounding.
- Example: estimate PM₁₀ and PM_{2.5} concentrations monthly at Nurses' Health Study residences.



Spatio-temporal Statistical Modeling

- A spatio-temporal statistical model (Yanosky et al. 2009; Paciorek et al. 2009):
 - First stage for monthly spatial variation:

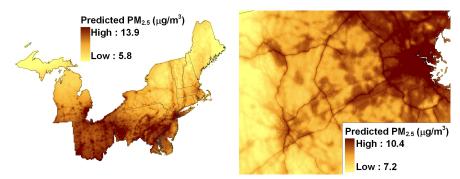
$$\log \mathsf{PM}_{it} = \mu_i + W_{it}B_W + p_t(s_i) + \epsilon_{it}$$

• Second stage model for spatial-only effects:

$$\mu_i = Z_i B_Z + p_\mu(s_i) + \delta_i$$

- W's are temporally-varying predictors, while Z's vary only spatially. Either might provide fine-scale exposure information.
- Spatio-temporal $(p_t(s))$ and spatial (p(s)) terms act as in kriging (distance-weighted averaging).

PM Predictions (Ambient Exposure Estimates)



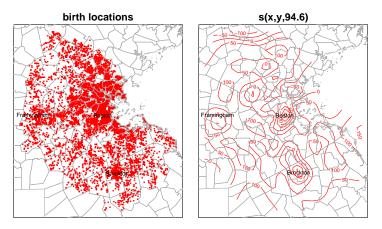
 $PM_{2.5}$ predictions: northeast US (left) and greater Boston (right)

Spatial Confounding in Air Pollution Epidemiology

- Estimates of chronic health effects of air pollution are identified from cross-sectional (i.e. spatial) variation in exposure.
 - E.g., Puett et al. (2008, 2009) fit Cox survival models to estimate effects of PM exposure on mortality and coronary heart disease.
- Hypothesis: large-scale exposure variation is more prone to confounding than smaller-scale variation.
 - regional variation in diet, exercise, cultural factors, socioeconomic status
 - E.g., if regions with less healthy diets or lower income are regions with higher pollution, you would expect spatial confounding bias from unmeasured spatially-varying confounders.

Birthweight and Traffic Pollution in Eastern Massachusetts

All births in eastern Massachusetts, 1996-2001



For comparison, sex effect is ~130 g, black carbon estimate of ~7 g.

Chris Paciorek Spatial Scales in Environmental Health 8

Spatially-correlated Residuals

 $Y \sim \mathcal{N}(\mathcal{X}\beta, \Sigma)$

What do we know?

• Under known correlation structure:

- GLS $(\hat{\beta} = (\mathcal{X}^T \Sigma^{-1} \mathcal{X})^{-1} \mathcal{X}^T \Sigma^{-1} Y)$ is more efficient than OLS for estimating exposure effect, β_x .
- **2** Standard OLS variance estimator $(\hat{\sigma}^2 (\mathcal{X}^T \mathcal{X})^{-1})$ is incorrect.
- **③** Estimating the correlation structure complicates matters.

What don't we know?

- If the residual is correlated with the exposure (X), what can we say about bias in $\hat{\beta}_x$?
- How does the spatial scale of the residual affect bias, efficiency, and variance estimation?
- How does the spatial scale of the exposure affect matters?

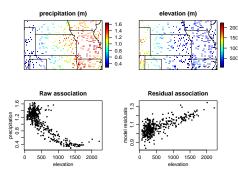
The Core Issue

- Is the spatial residual structure correlated with the exposure?
 - The spatial structure may be caused by unmeasured confounders.
 - Even without clear potential confounders, if exposure and residual have large-scale variation, dependence/concurvity seem likely.
- A typical approach would be to model the residual spatial variation, e.g., using spatial random effects.
- But the association violates a key assumption of standard random effects models, including kriging models.
- So can a spatial health model really help us?

< 回 > < 回 > < 回 >

Scale Matters How does elevation affect precipitation in the central United States?

• Large-scale negative association, but elevation is not the causal effect.



A spatial model y_i = β₀ + β_xx_i + g(s_i) + ε_i can (mostly) isolate the elevation effect to a positive effect of elevation at small scales.

< ロ > < 同 > < 回 > < 回 >

A Simple Modeling Framework

Consider the linear model with correlated residuals:

 $Y \sim \mathcal{N}(\mathcal{X}\beta, \Sigma).$

This can be obtained using a simple mixed model,

$$Y_i \sim \mathcal{N}(eta_0 + eta_x X(s_i) + g(s_i), au^2)$$

with spatially-correlated, normally-distributed random effects,

$$g \sim \mathcal{N}(0, \sigma_g^2 R(\theta_g)).$$

The mixed model is equivalent to the GLS approach (by marginalizing over g):

$$Y \sim \mathcal{N}(\beta_0 1 + \beta_x X, \sigma_g^2 R(\theta_g) + \tau^2 I).$$

Our interest is in situations where X is also spatially correlated.

Spatial Confounding Bias

- What if X and g are dependent?
- Letting $\epsilon_i^* = g(s_i) + \epsilon_i$, we have the model $Y_i = \beta_0 + \beta_x X(s_i) + \epsilon_i^*$.
 - The usual regression model assumes the Xs and the error term are independent.
 - Violating this assumption induces bias.
- A different perspective is to consider the difficulty in separating the influence of the two spatial effects in

$$Y_i = \beta_0 + \beta_x X(s_i) + g(s_i) + \epsilon_i.$$

General Analytic Framework

• Suppose there is an unmeasured spatially-varying confounder, Z(s). Let the data generating mechanism be

$$Y_i = \beta_0 + \beta_x X(s_i) + \beta_z Z(s_i) + \epsilon_i, \ \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau^2).$$

Suppose that X(s) and Z(s) are Gaussian (spatial) processes and that at a given location $Corr(X(s_i), Z(s_i)) = \rho$.

 The value of ρ indexes the magnitude of the association (concurvity) between X and Z.

Bias Implications (1) Known variance parameters, single scale

Suppose X(s) and Z(s) share the same scale of spatial correlation, θ_c, then

$$\begin{aligned} \mathsf{E}(\hat{\beta}_{x}^{\mathsf{GLS}}|X) &= \beta_{x} + \left[(\mathcal{X}^{\mathsf{T}} \Sigma^{-1} \mathcal{X})^{-1} \mathcal{X}^{\mathsf{T}} \Sigma^{-1} \mathsf{E}(Z|X) \beta_{z} \right]_{2} \\ &= \beta_{x} + \rho \frac{\sigma_{z}}{\sigma_{x}} \beta_{z}. \end{aligned}$$

- The bias, $\rho \frac{\sigma_z}{\sigma_x} \beta_z$, is the same as if the covariates were not spatially structured.
- Heuristic: the model attributes variability from the confounder to the covariate of interest.

Bias Implications (2)

Known parameters, multi-scale

Let $X(s) = X_c(s) + X_u(s)$ where only X_c is correlated with Z and has the same scale of spatial correlation, θ_c , while X_u is independent of Z and has spatial scale θ_u :

$$E(\hat{\beta}_{x}^{\mathsf{GLS}}|X) = \beta_{x} + \left[(\mathcal{X}^{\mathsf{T}} \Sigma^{*-1} \mathcal{X})^{-1} \mathcal{X}^{\mathsf{T}} \Sigma^{*-1} M(X - \mu_{x} 1) \right]_{2} p_{c} \rho \frac{\sigma_{z}}{\sigma_{c}} \beta_{z}$$
$$= \beta_{x} + k(X) \rho \frac{\sigma_{z}}{\sigma_{c}} \beta_{z}$$

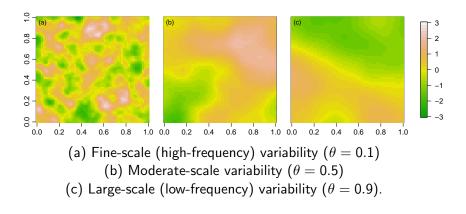
where

$$\Sigma^* \equiv \frac{\beta_z^2 \sigma_z^2 R(\theta_c) + \tau^2 I}{\beta_z^2 \sigma_z^2 + \tau^2} = ((1 - p_z)I + p_z R(\theta_c))$$

and

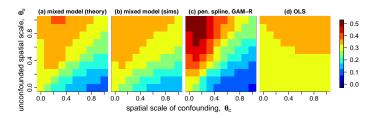
$$M \equiv (p_c I + (1 - p_c) R(\theta_u) R(\theta_c)^{-1})^{-1}.$$

Detour: Spatial processes



Bias Implications (3): Simulation Results

• Reducing bias requires the covariate of interest to have a spatial scale at which it is unconfounded, and that scale must be smaller than the scale at which confounding operates.



- Either (b) a mixed model/kriging/GLS approach or (c) using a spline term for the spatial term, g(s), reduce but not eliminate bias.
- In all approaches, we must choose a parameter that determines how much smoothing we do in estimating g(s).

Using Splines

• Let's consider fitting

$$Y_i = \beta_0 + \beta_x X(s_i) + g(s_i) + \epsilon_i$$

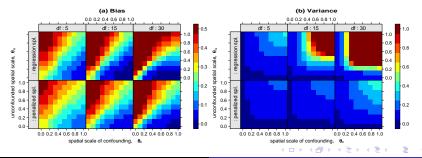
using a spline term to represent g(s) := Bu.

- A regression spline is just like ordinary regression but with spatial 'covariates', *B*.
- A penalized spline is like a regression spline but the magnitude of the *u* values is penalized, shrinking the *û* values toward 0. Mixed models are closely related to penalized splines.
- The effective degrees of freedom (df) quantify the complexity of g(s) and thereby determine how much smoothing of the data is done.

・ 同 ト ・ ヨ ト ・ ヨ ト

Bias-Variance Tradeoff

- Peng et al. (2006) and Zeger et al. (2007) suggest fixing the df and assessing sensitivity to different df values.
 - If there is unconfounded small-scale variation, choosing a df that captures the large-scale variation should reduce bias.
- Regression splines show less bias (but much higher variance) than penalized splines with equivalent df.

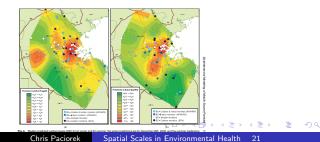


• Why? Regression spline conditioning is as in OLS.

Chris Paciorek

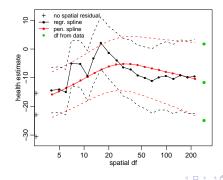
Birthweight Analysis

- Exposure: 9-month black carbon as predicted from Gryparis et al. (2007) spatio-temporal/land use model. (See also Bliznyuk et al.)
- Covariates: mother's age, mother's race, gestational age, mother's cigarette use, mother's health conditions, previous preterm birth, previous large birth, sex of baby, year of birth, index of prenatal care, maternal education, census tract income.
- Gryparis et al. (2009) found a black carbon effect of -7.27 g (s.e. 3.78) per μ g/m³ black carbon.



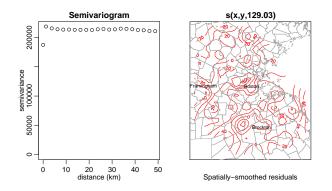
Naive Analysis Assume individual covariates largely unavailable

- Exposure: 9-month black carbon as predicted from Gryparis et al. (2007) spatio-temporal/land use model.
- Covariates: mother's age, gestational age, sex of baby, year of birth.
- Model: $y_i = \mathcal{X}_i \beta + g(s_i; df) + \epsilon_i$.



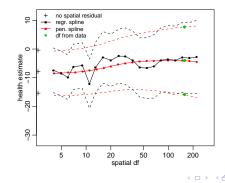
Residual Assessment in Full Model

Question: is there residual spatial correlation and does accounting for potential spatial confounding affect epidemiological results?



Sensitivity Analysis Could published results be affected by spatial confounding?

- Exposure: 9-month black carbon as predicted from Gryparis et al. (2007) spatio-temporal/land use model.
- Covariates: full set of covariates.
- Model: $y_i = \mathcal{X}_i \beta + g(s_i; df) + \epsilon_i$.



Spatial Exposure Measurement Error

- Spatial exposure models can much more readily distinguish large-scale than small-scale variation, unless there are good predictors that vary at small scales.
- This suggests that in attempting to reduce large-scale confounding bias by relying on small-scale variation, we pay a price in terms of increased measurement error.
 - Also know as exposure misclassification in epidemiology/environmental health.
- What might be the effects of this?

Generic Measurement Error

• A basic regression model:

$$Y_i \sim \beta_0 + \beta_X X_i + \epsilon_i$$

Regressing on $\hat{X}_i \neq X_i$ affects statistical properties of $\hat{\beta}_X$.

• Classical error:

$$W_i = X_i + U_i$$

If you regress on W rather than X, $\hat{\beta}_W$ is biased, potentially badly. • Berkson error:

$$X_i = W_i + V_i$$

If you regress on W here, $\hat{\beta}_W$ is not biased but is more variable than the estimate $\hat{\beta}_X$ from regressing on X.

With Berkson error, you miss components of the variation in the exposure.

Exposure Measurement Error and Scales

- We've shown that estimating exposure using methods such as land use regression and kriging are a form of regression calibration, which in principle leads to a Berkson-like formulation with limited health effects bias (Gryparis et al. 2009).
- However, uncertainty in the exposure model parameters can induce bias (Szpiro et al. 2009).
- Fine-scale variation is hard to estimate well.
 - We hypothesize that attempts to use exposure estimates of fine-scale variability may induce classical-like exposure error that could induce bias in health effects estimation.

Exposure Measurement Error Strategies

- Gryparis et al. (2009) also show that:
 - Bayesian approaches hold promise, but are often computationally expensive and potentially sensitive to model misspecification.
 - Basing health effects estimates on simulating multiple exposure estimates can be seriously biased.
- Ongoing work involves bootstrap methods to account for both Berkson-like and classical-like measurement error.
- Exposure error in multi-pollutant health analyses is a major open issue.

∃ ► < ∃ ►</p>

Conclusions: Scale is Critical

- Exposure Estimation
 - Spatial statistics methods provide a way to estimate larger-scale variation in exposure.
 - Leveraging fine-scale predictors and (hopefully) atmospheric models and remote sensing can help with finer-scale variation.
- Spatial Confounding Bias:
 - Large-scale exposure variation only: little ability to reduce bias.
 - Small-scale exposure variation present: large-scale confounding bias can be reduced.
 - Use fixed df spatial terms to assess the bias-variance tradeoff.
- Exposure Measurement Error
 - Reliance on small-scale exposure variation carries measurement error risks.
 - The impacts of such measurement error and methods for accounting for it are unsettled territory.

References

- Core material on spatial confounding:
 - Paciorek. 2010. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. In review, Statistical Science.
- Other references
 - Bliznyuk, Paciorek, and Coull. Spatio-temporal modeling of mobile source particles with temporal change of support. In preparation.
 - Gryparis, Paciorek, Zeka, Schwartz, and Coull. 2009. Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 10:258-274.
 - Gryparis, Coull, Schwartz, and Suh. 2007. Semiparametric latent variable regression models for spatio-temporal modeling of mobile source particles in the greater Boston area. Applied Statistics 56: 183-209.
 - Paciorek, Yanosky, Puett, Laden, and Suh. 2009. Practical large-scale spatio-temporal modeling of particulate matter concentrations. Annals of Applied Statistics 3:370-397.

Other References (cont'd)

- Peng, Dominici, and Louis. 2006. Model choice in time series studies of air pollution and mortality. Journal of the Royal Statistical Society Series A 169: 179-203.
- Puett, Schwartz, Hart, Yanosky, Speizer, Suh, Paciorek, Neas, and Laden. 2008. Chronic particulate exposure, mortality and cardiovascular outcomes in the Nurses' Health Study. AJE 168:1161-1168.
- Puett, Hart, Yanosky, Paciorek, Schwartz, Suh, Speizer, and Laden. 2009. Chronic fine and coarse particulate exposure, mortality and coronary heart disease in the Nurses' Health Study. EHP 117:1697-1701.
- Szpiro, Sheppard, and Lumley. 2009. Efficient measurement error correction with spatially misaligned data. Univ. Washington Biostatistics Tech Report 350.
- Yanosky, Paciorek, and Suh. 2009. Predicting chronic fine and coarse particulate exposures using spatio-temporal models for the northeastern and midwestern US. EHP, 117:522-529.
- Zeger, Dominici, McDermott, and Samet. 2007. Mortality in the Medicare population and chronic exposure to fine particulate air pollution. Johns Hopkins Biostatistics Tech Report 133.