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ABSTRACT

We introduce a class of nonstationary covariance functions for Gaussian

process (GP) regression. Nonstationary covariance functions allow the

model to adapt to functions whose smoothness varies with the inputs. The

class includes a nonstationary version of the Matérn stationary covariance,

in which the differentiability of the regression function is controlled by a

parameter, freeing one from fixing the differentiability in advance. In

experiments, the nonstationary GP regression model performs well when

the input space is two or three dimensions, performing comparably to a

Bayesian neural network and outperforming an optimized neural network

model and Bayesian free-knot spline models. In one dimension, it is

outperformed by a state-of-the-art Bayesian free-knot spline model and

by the Bayesian neural network model. The model readily generalizes to

non-Gaussian data. Use of computational methods for speeding GP fitting

allows for implementation of the method on somewhat larger datasets.
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THE GENERAL PROBLEM OF VARIABLE SMOOTHNESS
For functions whose smoothness varies with the input values, most nonparametric methods,

including Gaussian process (GP) regression with a stationary covariance function, will

oversmooth in some regions and undersmooth in others. Below I show the posterior mean

regression function from a GP regression implementation with two different fixed values

(blue and red lines) of the correlation scale hyperparameter. The top panels are for 100 data

points using Gaussian error around the true function (black line) while the bottom panels are

for 500 data points.
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CURRENT APPROACHES
• Many other approaches to this problem have been presented, but good approaches for

multivariate features and comparison amongst the approaches are still needed. Some
current approaches are:

❖ Free-knot regression spline models: number and location of knots optimized, with
more knots in locations where function varies more quickly

✦ Bayesian Adaptive Regression Splines (BARS) (DiMatteo, Genovese, and
Kass 2002) (single feature only)

✦ Bayesian Multivariate Adaptive Regression Splines (BMARS) (Denison,
Mallick, and Smith 1998) and Bayesian Multivariate Linear Splines (BMLS)
(Holmes and Mallick 2001) (multiple features)

❖ Adaptive penalty smoothing spline models (MacKay and Takeuchi 1995)

❖ Neural network models (Neal, etc.)

❖ Mixtures of stationary Gaussian processes (Tresp 2001; Rasmussen and
Ghahramani 2002)

❖ Stationary Gaussian process regression in a deformed feature space (Damian,
Sampson, and Guttorp 2001, Schmidt and O’Hagan 2000) (used for spatial
features)

• In this poster and accompanying paper, we describe an approach to the variable
smoothness problem using Gaussian process regression with nonstationary covariance
functions.
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STATIONARY CORRELATION FUNCTIONS

Here are two stationary correlation functions, with examples of the correlation function

(left) and sample functions drawn from a Gaussian process parameterized by the correlation

function (right). The squared exponential correlation function (top) gives sample functions

with infinitely many derivatives, while the Mat́ern correlation function (bottom) gives

sample functions whose number of derivatives varies with ν: dν − 1e derivatives. For

ν → ∞, one recovers the squared exponential form.
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A NONSTATIONARY COVARIANCE FUNCTION

• Higdon, Swall, and Kern (1999) (HSK) introduced the following

nonstationary correlation function, where cij is a normalizing term

and ki(u) is a function (called the kernel function) centered at xi.

RNS(xi, xj) = cij

∫

<P ki(u)kj(u)du

• Guaranteed positive definite

• Using Gaussian kernels, one gets a closed form for the correlation:

ki(u) ∝ exp
(

−(u − xi)
T Σ−1

i (u − xi)
)

RNS(xi, xj) = cij exp

(

−(xi − xj)
T

(

Σi + Σj

2

)−1

(xi − xj)

)

Gibbs (1997) gave a special case with diagonal Σi, Σj

• f(·) ∼ GP(µ, σ2RNS(·, ·; Σ(·))) is a nonstationary Gaussian process

6



NONSTATIONARY GPS IN 1D
Here are four sample functions (right) drawn from a nonstationary Gaussian process

distribution whose Gaussian kernels are defined based on their standard deviation (left).

Note that the sample functions are more wiggly in the left part of the input space where the

kernels are less broad.
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NONSTATIONARY GPS IN 2D
Here (right) is one sample function (of two inputs) from a nonstationary Gaussian process

distribution whose Gaussian kernels are depicted using ellipses of constant density (left).

Note the smoothness of the function where the kernels are large and the directionality of the

smoothness where the kernels have strong directionality.
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GENERALIZING THE HSK KERNEL METHOD

• The stationary squared exponential form (left) has the same form as the HSK

nonstationary covariance (right):

exp

(

−

(

τ

κ

)2
)

cij exp

(

−(xi − xj)
T

(

Σi + Σj

2

)−1

(xi − xj)

)

❖ The HSK nonstationary covariance merely replaces Euclidean distance

with a quadratic form in the exponential.

❖ Gaussian process distributions with this nonstationary covariance have

infinitely-differentiable sample paths if Σ(·) vary smoothly.

• Consider the following ‘distance measures’ (the nonstationary one does not

satisfy the triangle inequality):

τ2
ij = (xi − xj)

T (xi − xj)

τ∗2
ij = (xi − xj)

T Σ−1(xi − xj)

Qij = (xi − xj)
T

(

Σi + Σj

2

)−1

(xi − xj)

isotropy

anisotropy

nonstationarity

• Can we replace τ 2
ij with Qij in other stationary correlation functions and still

retain positive definiteness?
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GENERALIZED NONSTATIONARY COVARIANCE

• Theorem 1 (Paciorek 2003): if a stationary correlation function,

R(τ), is positive definite for <P , P = 1, 2, . . ., then

RNS(xi, xj) =
|Σi|

1

4 |Σj |
1

4

∣

∣

∣

Σi+Σj

2

∣

∣

∣

1

2

R
(

√

Qij

)

is positive definite for <P , P = 1, 2, . . .

• Theorem 2 (Paciorek 2003): Smoothness (differentiability) properties

of original stationary correlation R(τ) are retained if elements of

Σ(·) vary smoothly in the feature space.
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PROOF OF THEOREM 1 (SKETCH)

• If R(τ) is positive definite for <P , P = 1, 2, . . ., then

R(τ) =

∫ ∞

0

exp(−τ2w)h(w)dw (Schoenberg 1938)

• Reexpress the proposed nonstationary correlation function:

RNS(xi, xj) =
2

P
2 |Σi|

1

4 |Σj |
1

4

|Σi + Σj |
1

2

∫ ∞

0

exp(−Qijw)h(w)dw

=
2

P
2 |Σi|

1

4 |Σj |
1

4

|Σi + Σj |
1

2

·
∫ ∞

0

exp

(

−
1
2
(xi − xj)

T
(

Σi+Σj

2w

)−1

(xi − xj)

)

h(w)dw

=

∫ ∞

0

∫

<P

ki,w(u)kj,w(u)duh(w)dw
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• Now check the definition of positive definiteness directly:

n
∑

i=1

n
∑

j=1

aiajC(xi, xj) =
n
∑

i=1

n
∑

j=1

aiaj

∫ ∞

0

∫

<P

ki,w(u)kj,w(u)duh(w)dw

=

∫ ∞

0

∫

<P

n
∑

i=1

aiki,w(u)

n
∑

j=1

ajkj,w(u)duh(w)dw

=

∫ ∞

0

∫

<P

(

n
∑

i=1

aiki,w(u)

)2

duh(w)dw ≥ 0.

• The key is that the covariance must depend only on location-specific

kernels
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NONSTATIONARY MATÉRN COVARIANCE

• A particular nonstationary covariance of interest is a Matérn form,

which satisfies the conditions of Theorem 1.

1

Γ(ν)2ν−1

(

2
√

ντ

κ

)ν

Kν

(

2
√

ντ

κ

)

⇒ 1

Γ(ν)2ν−1

(

2
√

νQij

)ν

Kν

(

2
√

νQij

)

• Provided Σ(·) varies smoothly, by Theorem 2, this form will give

sample functions whose differentiability varies with ν. By not

constraining the differentiability, this gives a more flexible form of

the correlation function than the original HSK nonstationary

correlation, and has asymptotic advantages (Stein 1999).

stationary form nonstationary form
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A BAYESIAN NONSTATIONARY GP REGRESSION MODEL

• Bayesian model•

Yi ∼ N(f(xi), η
2), xi ∈ <P

f(·) ∼ GP(µ, σ2RNS(·, ·; Σ(·), ν))

❖ Let RNS be the nonstationary Matérn correlation

❖ Kernels, Σ(·), are constructed based on stationary GP priors, as

described next.
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SMOOTHLY-VARYING KERNEL MATRICES

• Goals:

❖ Define multiple kernel matrices, Σi

one for each training observation and test/prediction observation

❖ Matrix elements should be smoothly-varying in input space

❖ Matrices must be positive definite

• Use spectral decomposition (Σi = ΓT
i ΛiΓi)

❖ Eigenvector matrix, Γi, is parameterized as first eigenvector plus
successive orthogonal vectors in reduced-dimension subspaces

✦ stationary GP priors on unnormalized eigenvector coordinates
[(ai, bi) in 2-d cartoon ]

❖ Eigenvalue matrix, Λi, parameterized by diagonal elements

✦ stationary GP priors on logarithms of diagonal elements
(log λ1,i, log λ2,i in 2-d cartoon)

❖ gets unwieldy and highly-parameterized for large P

ai bi,

λ1,i
λ2, i

xi
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EFFICIENT REPRESENTATIONS OF STATIONARY GPS

• Let Φ be a vector of process values

1. Matérn basis functions (Kammann and Wand 2003)

❖ Φ = µ + σZΩ− 1

2 w

✦ Z = (C(‖ xi − κk ‖)) ,1≤i≤n,1≤k≤K

✦ Ω = (C(‖ κj − κk ‖)) ,1≤j≤K,1≤k≤K

✦ C(·) a stationary covariance function

❖ matrix operations based on K knots, {κk}, so more efficient

❖ motivation: if {κk} = {xi}, Cov(Φ) = C(·)
❖ When sample hyperparameters in MCMC, sample process as

well:
Φ = µ + σZΩ− 1

2 w
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2. Fourier basis functions (Wikle 2002)

❖ Φdat = µ + σAΦgrid (Φdat is process values at data locations)

❖ Φgrid = Ψw (Φgrid is discretized process on a grid)

❖ w elements are independent, complex-valued RVs

✦ their variance is based on spectral density of stationary C(·)
❖ Ψw is the inverse FFT (Ψ are Fourier basis vectors)

❖ propose blocks of values of w with focus on low-frequency

coefficients

❖ motivation: Cov(Φ) = C(·) asymptotically as grid gets finer

❖ When sample hyperparameters in MCMC, sample process as

well:

Φdat = µ + σAΨw
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NONPARAMETRIC REGRESSION COMPARISON - 1D

• Compare to:

❖ stationary GP

❖ free-knot regression spline model (BARS) (DiMatteo et al. 2002)

❖ neural network (with number of hidden units that give best result)

(R nnet library)

❖ Bayesian neural network (R. Neal software as implemented by A.

Vehtari)

• Simulate 50 datasets and fit each model to each dataset

• Compare results based on mean squared error (relative to true

function)
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REGRESSION RESULTS - 1D
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Method Function 1 Function 2 Function 3

BARS .0081 (.0071,.0092) .012 (.011,.013) .0050 (.0043,.0056)

Bayesian neural network .0082 (.0072,.0093) .011 (.010,.014) .015 (.014,.016)

Nonstat. GP .0083 (.0073,.0093) .015 (.013,.016) .026 (.021,.030)

Stat. GP .0083 (.0073,.0093) .026 (.024,.029) .071 (.067,.074)

neural network .0108 (.0095,.012) .013 (.012,.015) .0095 (.0086,.010)

• Free-knot spline (BARS) performs best, followed by Bayesian neural

network and nonstationary GP

• Most methods are similar on smoothly varying Function 1
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NONPARAMETRIC REGRESSION COMPARISON - 2/3D
• Compare to:

❖ stationary GP

❖ free-knot regression spline with tensor products of univariate

splines (BMARS) (Denison et al. 1998)

❖ free-knot regression spline with multivariate linear splines

(BMLS) (Holmes and Mallick 2001)

❖ neural network (optimal number of hidden units)(R nnet library)

❖ Bayesian neural network (R. Neal software as implemented by A.

Vehtari)
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EXAMPLES

• 1.) Simulated dataset with 2 inputs: P = 2, n = 225

❖ simulate 50 datasets and compare using MSE (relative to true function)
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• 2.) Real dataset of Dec. 1993 mean temperatures in Americas, n = 109

❖ P = 2: longitude, latitude

❖ MSE based on 50-fold cross-validation (MSE relative to test data)

• 3.) Real dataset of daily ozone in NY, n = 111

❖ P = 3: radiation, temperature, wind speed

❖ MSE based on 50-fold cross-validation (MSE relative to test data)
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MEAN SQUARED ERROR

Method Function with 2 inputs Temp. data Ozone data

Bayesian neural network .020 (.019,.022) .35 .32

Nonstat. GP .023 (.020,.026) .36 .29

Stat. GP .024 (.021,.026) .46 .33

BMARS .076 (.065,.087) .53 .33

BMLS .033 (.029,.038) .78 .33

neural network .040* (.033,.047) .60 .34

* Holmes and Mallick (2001) report a value of .07 for a neural network

• Bayesian neural network and nonstationary Gaussian process appear

to outperform other approaches.
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GENERALIZED NONPARAMETRIC REGRESSION

• Model:

❖ Yi ∼ D(g(f(xi)))

❖ f(·) ∼ GP(µ, σ2RNS(·, ·; Σ(·), ν))

❖ D is a probability distribution and g(·) is a link function

• Examples:

✦ count data (D = Poisson, g−1 = log)

✦ binary data (D = Bernoulli, g−1 = logit)
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TOKYO RAINFALL DATA EXAMPLE

Data are presence/absence of rainfall for the calendar days, 1983-1984 (Yi ∈ {0, 1, 2}). Top

panel shows posterior mean probability of rainfall as a function of calendar day, with

pointwise 95% uncertainty intervals, and bottom panel shows standard deviation of the

Gaussian kernels as a function of calendar day. The probability of rainfall appears to be

more variable toward the end of the year.
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CONCLUSIONS

We introduce a class of nonstationary covariance functions that can be used in Gaussian

process regression (and classification) models and allow the model to adapt to variable

smoothness in the unknown function. The nonstationary GPs improve on stationary GP

models on several test datasets. In test functions on one-dimensional spaces, a

state-of-the-art free-knot spline model and Bayesian neural network outperform the

nonstationary GP, but in higher dimensions, the nonstationary GP outperforms two free-knot

spline approaches and a non-Bayesian neural network while being comparable to a Bayesian

neural network. The nonstationary GP may be of particular interest for data indexed by

spatial coordinates.

Unfortunately, the nonstationary GP requires many more parameters than a stationary GP,

particularly as the dimension grows, losing the attractive simplicity of the stationary GP

model. Use of stationary GP priors in the hierarchy of the model to parameterize the

nonstationary covariance results in slow computation. More efficient representations of

these stationary GPs improves efficiency but still limits the model to approximately

n < 1000. The slow part of the computation for Gaussian data is that calculating the

marginal likelihood requires the Cholesky decomposition of an n by n matrix. Our approach

provides a general modelling framework; other low-rank approximations to the covariance

matrix (e.g., Smola and Bartlett 2001; Seeger and Williams 2003) may further speed fitting.
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