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Environmental exposure and measurement error

Consider a health analysis that focuses on the association of
exposure, X , with a health outcome, Y :

Y = Xβx + Zβz + ε

In environmental, occupational, and other contexts, X is not
known with certainty and often not even measured directly.

Some strategies for estimating exposure:

Central site measurements
Spatial prediction
Exposure regression based on various covariates
Deterministic modeling
Remote sensing proxies
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Spatial modeling example

Exposure data locations (left) and PM2.5 predictions (northeast US
(center) and greater Boston (right))

[Yanosky et al. (2009), Environmental Health Perspectives]
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Types of measurement error

Traditional measurement error types for observed exposure:

Berkson error: unmeasured variability in true exposure

Classical error: noise in the observed exposure

Extension to correlated, heteroscedastic errors in the context of
modeled exposure (Szpiro et al. 2011, Biostatistics):

Berkson-like error: missing components of true exposure

Classical-like error: noise in estimating exposure

Implications for β̂x :

1 Berkson and Berkson-like error increase variance but do not
induce bias (in a linear model).

Caveat: Berkson-like error can cause bias in some
circumstances.

2 Classical and classical-like error induce bias and affect
variance.
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Probabilistic framework

What is random in this context (exposure data => exposure
model => exposure predictions => health model)?

1 Random instrument error?

2 Random exposure surfaces in space-time (e.g., due to random
weather)?

3 Random societal structure (i.e., random sources of pollution)?

4 Random exposure data locations (monitor placement)?

5 Random health outcomes conditioning on individuals in study?

6 Random sampling of individuals in a study?
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Our proposal

Treat exposure surfaces as fixed and monitor placement
(exposure data locations) as random.

Exposure is in principle predictable, but not so in practice
Long-term average air pollution can be viewed as deterministic:

Frequentist interpretation: “how would the results have
changed if I had measured the system differently?”, not “how
would they have changed if the spatial pattern of air pollution
were different?”.

Statistical implications:

“Random X” regression/spatial modeling.
Nonparametric bootstrap (resample monitor locations and
associated observations) follows naturally
Don’t assume a true exposure model; this produces a new
source of measurement error
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“Random X” regression

White (1980; Econometrica, over 12,000 citations!) shows that
“random X” regression gives consistent estimation and β̂ is
asymptotically normal.

Random X regression is not unbiased in finite samples.

E (β̂) may not exist in finite samples.

Sandwich estimation of Var(β̂).

Note that we’ll use this framework in our analysis of the exposure
model, so the “Random X” is the exposure covariates, not the
exposure in the health model.
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A basic two-stage model

Basic health model:

Y = Xβx + Zβz + ε

Exposure decomposition (data generating model):

X (s) = φ(s) + η; η ∼ N (0, σ2η)

Let R(s) (our ’Random X’) be a set of exposure covariates and
spatial basis functions. We DEFINE γ as the projection of φ(s)
onto R(s) with respect to the spatial distribution of health study
participants, G (s):

γ = argminξ

∫
(φ(s)− R(s)ξ)2dG (s)

This gives us the following exposure model:

X (s) = R(s)>γ + UBL(s) + η
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Measurement error decomposition

We estimate γ with γ̂ by OLS regression using the exposure
data, assuming exposure locations come from the spatial
distribution, G (s).

Building on Szpiro et al. (2011), we have the following
decomposition of exposure error:

U(s) = X (s)− R(s)γ̂

= X (s)− φ(s)︸ ︷︷ ︸
Berkson

+φ(s)− R(s)γ︸ ︷︷ ︸
Berkson-like

+R(s)γ − R(s)γ̂︸ ︷︷ ︸
Classical-like
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Berkson-like error

UBL(s) = φ(s)− R(s)γ is the difference between the
potentially predictable variation in exposure and the projection
of that variation onto the chosen basis functions.

This difference is heteroscedastic.

Does the Berkson-like error cause bias in estimating βx?

If we knew γ, we could use White (1980) to show that this
error does not induce bias in β̂x , because UBL is orthogonal to
our ’estimated’ exposure, R(s)γ).

However, there are some complications...
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Compatibility conditions to avoid bias from Berkson-like
error

1 Design your study such that G (s) = H(s):
locations/covariates of people and exposure data should
’match’.

γ is based on G (s), the distribution of study participants.
γ̂ estimates γ∗ = argminξ

∫
(φ(s)− R(s)ξ)2dH(s), which is

based on H(s), the distribution of exposure data locations.
If G (s) 6= H(s), then γ∗ 6= γ, which induces bias.

2 Include spatially-structured components of the health
confounders, Z , in the exposure model.

Why? This ensures that the Berkson-like error term, UBL(s), is
orthogonal to all the terms in the health model.
This is similar to the need to include covariates in regression
calibration.
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Classical-like error

UCL(s) = R(s)γ − R(s)γ̂ is the contribution of exposure
model estimation error to measurement error in the health
model.

This difference is heteroscedastic and correlated.

This error could induce severe bias if our exposure predictions,
R(s)γ̂, are very noisy.

We assess the impacts of classical-like error based on a Taylor
series approximation for β̂x as a function of γ̂ − γ.
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Approximate bias and variance

Define w(s) = R(s)γ and ŵ(s) = R(s)γ̂ as the predictable
exposure and its estimator.

Focus on asymptotics w.r.t. the number of exposure
observations.

Consistency based on first-order Taylor expansion:

β̂x
d→ N

(
βx , β

2
x

∫
w(s1)w(s2)Cov(ŵ(s1), ŵ(s2))dG(s1)dG(s2)

(
∫

(w(s)>w(s))2dG(s))2

)
.

Relative bias based on second-order Taylor expansion:

−
∫
w(s)E(ŵ(s)− w(s))dG(s)∫

(w(s)>w(s))2dG(s)
−

∫
Var(ŵ(s))dG(s)∫

(w(s)>w(s))2dG(s)
+ .

2

∫
w(s1)w(s2)Cov(ŵ(s1), ŵ(s2))dG(s1)dG(s2)

(
∫
(w(s)>w(s))2dG(s))2

where the first term involves the bias of γ̂ (which occurs
because we are in the ’random X’ setting).
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Towards a practical strategy

To minimize bias and account for uncertainty in β̂x induced by
exposure error, we suggest:

1 Try to have the distribution of exposure observations (in
geographic space and covariate space) roughly match the
distribution of health participants.

This will minimize bias from the Berkson-like error.

2 Try to avoid overly-parameterized exposure models to
minimize bias from classical-like error from the exposure
estimation (see Szpiro talk tomorrow)

1 (Optionally) Correct for the bias using our
asymptotically-derived bias estimator.

3 Use the nonparametric bootstrap (resampling exposure
observations and health observations) to estimate Var(β̂x).

Note that the nonparametric bootstrap is fully consistent with
our probabilistic framework.
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Simulation Results

Data: 50000 health observations, 250 exposure observations,
exposure variation based on fitted models from previous NHS work

Exposure model: land-use covariates plus 25 spatial basis functions

Health model: logistic regression

Relative bias % (sim. s.e.)

oracle (B-L error only) no bias corr’n with bias corr’n

Full exposure model 2.6% (1.0) -0.8 % (1.0) 2.1% (1.0)

Small-scale spatial var’n + covariates 2.8% (1.7) -4.1% (1.6) 1.9% (1.7)

Small-scale spatial variation only 11.8% (3.0) -10.0% (2.8) 13.0% (3.7)

Coverage %

oracle (B-L error only) no bias corr’n (boot) with bias corr’n (boot)

Full exposure model 95.7% 94.8% 95.2%

Small-scale spatial var’n + covariates 95.5% 95.7% 96.1%

Small-scale spatial variation only 95.2% 96.9% 96.9%
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Conclusions/Implications

More work remains to wrestle with impact of nonlinear health
models.

Given our results for classical-like error, we hypothesize that
health studies based on limited exposure data may be seriously
biased: bias can be quantified as the ratio of uncertainty in
exposure predictions to true variation in exposure.

Exposure and health stages should be considered jointly to
better understand and minimize the measurement error
impact.

If one uses a deterministic model to predict exposure, we are
in trouble in terms of quantifying the measurement error
implications.
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Conclusions/Implications (f

In pollution studies that examine multiple exposures (e.g.,
pollutants), these issues will be particularly important, as the
amount of measurement error for the different pollutants is
likely to differ.

This framework can help to understand the effects of
measurement error in that context: missing components of
variability in one exposure can play the role of unmeasured
confounders!
See talk by Adam Szpiro in Session 230, tomorrow at 2 pm
(which includes other interesting and related measurement
error talks).
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