Spatial statistics in public health research: methodological opportunities and computational challenges

Chris Paciorek and Louise Ryan

January 14, 2004

Department of Biostatistics

Harvard School of Public Health

www.biostat.harvard.edu/~paciorek

Outline

- explosion of spatial data in health research
- examples of spatial health data
- modelling spatial risk in a case-control study
 - focus on computational efficiency
- methodological and research challenges

Increased attention to spatial analysis in public health

• areal data:

- public databases and geocoding of individuals to areas
- interest in health disparities and social science questions
- focus is on covariates, not spatial structure
- point data
 - geocoding and GPS are mainstream
 - * health outcomes can be assigned point locations
 - GIS software
 - * easy data management and manipulation
 - * graphical presentation
 - * spatially-varying covariate generation
 - strong applied interest in kriging and related smoothing methods
 - opportunities for more sophisticated spatio-temporal modelling, particularly Bayesian models

- environmental exposure modelling
 - * spatial smoothing and additive modelling of monitoring data
- mixed point and area data
 - individual locations plus area-level covariates
- multivariate responses
 - multiple pollutants, multiple health endpoints
 - latent variable modelling, causal relationships

Socioeconomic factors in health outcomes in NSW, Australia

- challenges
 - areal (postcode) units vary drastically in size
 - computational challenge
 - * 650 units, 5 years daily data, 2 sexes, 9 age groups
 - spatial effect and spatially-varying covariates hard to tease apart
 - data misalignment
 - * outcome at postcode, covariate at census analogue
- relate areal data to a latent smooth process (Kelsall & Wakefield, Rathouz)

Combining area and individual-level information

- area-level covariates based on point process data
 - access to contraception at health clinics in Malawi
 - accessibility of liquor retail outlets in Chicago

Observed liquor density rates per census tract, Chicago (per 1,000 population)

- spatial scale of interest is based on outcome
- consider two-stage Bayesian model so smoothing is informed by the health outcome

Spatial variation in allergenic response

- geocoding of new mothers' residences
- measurement of blood serum IgE immune response
- interest in variance partitioning

Exposure estimation in the Nurses' Health Study

- spatial estimation of individual environmental exposures
 - often air pollution
- particulate matter (PM) exposure in large cohort of nurses
 - estimate individual exposure, 1985-2003
 - EPA monitoring for large-scale spatio-temporal heterogeneity
 - spatially-varying covariates for local heterogenity
 - * distance to roads, climate variables, local land use, ...
 - * generated using GIS
 - geocoding of individual residences every two years
 - relate estimated exposure to health outcomes (chronic heart disease)

geocoding and GIS make this possible; spatial statistics provides a rigorous framework

 geocoding and GIS make this possible; spatial statistics provides a rigorous framework for estimation

Challenges for spatio-temporal exposure estimation

- computations: 50,000 monthly pollution measurements over 20 years at 500 monitoring sites
 - kriging is difficult, particularly Bayesian implementations
 - efficient, user-friendly computation is critical (gam() in R)
 - more complicated spatio-temporal structures for better prediction, but ...
 - * Bayesian implementation would require a statistician
 - * more computationally efficient methods needed
- non-standard measurement error results from smoothing
- multivariate, non-Gaussian modelling
 - modelling PM2.5 based on PM10 and on airport visibilility
 - simple multivariate normality not reasonable

Latent variable modelling

- exposure estimation for PM in the Boston area
- which pollutant sources are responsible for health outcomes?
 - traffic is locally heterogeneous, power plant pollutants (e.g., sulfates) are not
- estimate latent traffic exposure and relate to health outcomes
- two surrogates for traffic, elemental carbon and black carbon
- hierarchical Bayesian model with multiple data sources

Petrochemical exposure in Kaohsiung, Taiwan

Possible approaches for health analysis

- Explicitly estimate pollutant exposure difficult retrospectively
- Use distance to exposure source as covariate
- Use a moving window/multiple testing to detect clusters of cases
 - default approach software available
- Include space as a covariate to provide a map of risk

$$Y_i \sim \text{Ber}(p(\boldsymbol{x}_i, \boldsymbol{s}_i))$$
$$\log (p(\boldsymbol{x}_i, \boldsymbol{s}_i)) = \boldsymbol{x}_i^T \boldsymbol{\beta} + g_{\boldsymbol{\theta}}(\boldsymbol{s}_i)$$

Modelling challenges from a Bayesian perspective

- thousands of case-control observations difficult for Bayesian kriging
- non-Gaussian spatial models particularly difficult
 - spatial process cannot be analytically integrated out of the likelihood/posterior
 - MCMC mixing is very slow because of high-level structure
 - * correlation amongst process values and between process values and process hyperparameters

Modelling Framework

$$Y_i \sim \text{Ber}(p(\boldsymbol{x}_i, \boldsymbol{s}_i))$$
$$\log (p(\boldsymbol{x}_i, \boldsymbol{s}_i)) = \boldsymbol{x}_i^T \boldsymbol{\beta} + g_{\boldsymbol{\theta}}(\boldsymbol{s}_i)$$

- basic spatial model for $\boldsymbol{g}_{\theta}^s = (g_{\theta}(\boldsymbol{s_1}), \dots, g_{\theta}(\boldsymbol{s_n}))$
 - GAM: $g_{\theta}(\cdot)$ is a two-dimensional smooth term
 - * basis representation

$$\boldsymbol{g}_{ heta}^{s} = Z \boldsymbol{u}$$

* Gaussian process representation:

$$g(\cdot) \sim \mathsf{GP}(\mu(\cdot), C_{\theta}(\cdot, \cdot)) \Rightarrow \boldsymbol{g}_{\theta}^{s} \sim N(\boldsymbol{\mu}, C_{\theta})$$

- GLMM: $oldsymbol{g}^s_ heta=Zoldsymbol{u}$
 - * correlated random effects, $\boldsymbol{u} \sim N(\boldsymbol{0},\boldsymbol{\Sigma})$

Bayesian spectral basis function model

- computationally efficient basis function construction (Wikle 2002)
- $g^{\#} = Zu$ and $g^s = \sigma Pg^{\#}$
 - piecewise constant gridded surface on k by k grid
 - P maps observation locations to nearest grid point
- Z is the Fourier (spectral) basis and Zu is the inverse FFT
- Zu is approximately a Gaussian process (GP) when...
 - $\boldsymbol{u} \sim N(0, \operatorname{diag}(\pi_{\theta}(\boldsymbol{\omega})))$ for Fourier frequencies, $\boldsymbol{\omega}$
 - spectral density, $\pi_{\theta}(\cdot)$, of GP covariance function defines V($m{u})$

Bayesian spectral basis functions

Comparison with usual GP specification

- usual GP model: $\boldsymbol{g}^s \sim N(\boldsymbol{\mu}, C_{\theta})$
 - $O(n^3)$ fitting: $|C_{\theta}|$ and $C_{\theta}^{-1}g$
- spectral basis uses FFT
 - $O\left((k^2)\log(k^2)\right)$
 - additional observations are essentially free for fixed grid
 - fast computation and prediction of surface given coefficients
 - a priori independent coefficients give fast computation of prior and help with mixing

Other approaches

- penalized likelihood based on mixed model (radial basis functions) with REML smoothing (Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]
- penalized likelihood with GCV smoothing (Wood, 2001, 2003, 2004) [PL-GCV]
- Bayesian mixed model/radial basis functions fit by MCMC (Zhao and Wand 2004) [B-Geo]
- Bayesian neural network model fit by MCMC (R. Neal) [B-NN]

Simulated datasets

- 3 case-control scenarios: $n_0 = 1,000$; $n_1 = 200$; $n_{\text{test}} = 2500$ on 50 by 50 grid
- 1 cohort scenario: n = 10,000; $n_{\text{test}} = 2500$ on 50 by 50 grid

Assessment on 50 simulated datasets

Mixing and speed of Bayesian methods

Taiwan revisited - assessment

Assessment on count simulations

n = 225, $n_{\text{test}} = 2500$ on 50 by 50 grid

Evaluation of methods

- Effective process parameterization = effective Bayesian estimation
 - feasible for spatial models with thousands of observations
- Natural Bayesian complexity penalty works well
 - GP representation zeroes out high-frequency coefficients as appropriate
- Implementation requires MCMC, not very accessible to practicioners
- Power is a real issue with spatial data in general, but particularly with binary observations
- Focused cluster-hunting or distance-based assessment of health risk may provide more power, but without full spatial assessment

Methodology challenges in spatial statistics related to public health

- design and power
 - how do we choose monitoring sites?
 - when we have enough power to estimate spatial features?
 - how do we model spatial processes when monitoring data is at lower resolution than the true surface?
- surveillance and hotspot detection
 - do Bayesian methods have a place in biosurveillance and cluster detection?
 * current applied work focuses on testing not modelling
 - surveillance likely to benefit from a decision theoretic approach that carefully considers both false positives and false negatives
- assigning one location to an individual is problematic
- variance partitioning between spatial terms and spatially-varying covariates
- confidentiality restrictions with respect to point locations and individual privacy

General challenges for spatial statistics in public health research

- computational: big datasets and fitting of complicated models
- collaborative: developing expertise among applied researchers
- leadership
 - statisticians should be at the forefront of analyzing geographicallyindexed health data
 - we shouldn't leave this area to GIS analysts/geographers
 - necessity of providing and publicizing software for rigorous statistical methods
 - * e.g., success of mixed model software PROC MIXED, Ime()
 - evidence of mgcv: public health researchers will learn R if useful model-building tools exist

- reproducibility: difficult to replicate analyses with complicated models, particularly MCMC implementations
 - posting code and releasing software with papers
 - standardized MCMC in R
 - * many models, particularly new methods, can't be implemented in BUGS
 - · e.g., complicated spatio-temporal models
 - * library of MCMC sampling functions with random variable classes
 - Jouni Kerman (Columbia) has an initial implementation for Gibbs and Metropolis sampling (umacs)
 - contributed sampling functions (e.g., slice sampling, Langevin sampling) would make this very powerful
 - reduce bugs, increase portability and reproducibility, optimize mixing