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Outline
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• Statistical methods for event attribution
• Sources of uncertainty
• Risk ratio estimation methods
• Methods for quantifying uncertainty
• Recommendations

• Illustration with Texas heatwave of 2011
• Sensitivity analysis with respect to event definition
• Use of climextremes package for risk ratio estimation

• climextremes package
• Features/capabilities
• Illustration on station precipitation data



Event attribution background
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• A standard approach for event attribution involves estimation
of:
• RR =pF / pC , or

• FAR = 1 - pC / pF
where
• pF is for the event under  the “factual” or “all-forcings” 

scenario and
• pC is under the “counterfactual” or “natural-forcings” or

“historical” scenario.
• Observational analyses: generally estimate probabilities in 

recent time relative to probabilities decades ago.
• Model-based analyses, generally use ensembles under

imposed factual and counterfactual forcing scenarios to 
estimate probabilities. 

• The ”event” might be actual event, hypothetical event or 
quantile of an empirical distribution.



Sources of uncertainty in model-based event attribution
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• Sampling uncertainty
• Due to variability in the earth system
• Amenable to frequentist or Bayesian statistical treatment
• Uncertainty decreases with larger ensembles

• Non-sampling uncertainty
• Sources:
• Boundary condition uncertainty
• Model parametric uncertainty
• Model structural uncertainty

• Not amenable to frequentist treatment
• Does not decrease with larger ensembles
• Possibly characterized based on sensitivity analysis or drawing 

from prior distribution over boundary conditions, parameter 
values, models, etc.



Methods to estimate probabilities for risk ratio (RR)
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• Fit a parametric statistical model to climate variable values
• E.g., lognormal or gamma distribution
• Estimate probability of exceeding the event cutoff from fitted distribution
• Strong assumption about appropriateness of the distribution (all data used)

• Count exceedances of event cutoff (binomial sample) amongst climate variable values
• “Nonparametric” – no distributional assumption
• More involved to account for dependence (e.g., daily data)
• High uncertainty when there are very few events, but can be effective for RR if 

event not-too-infrequent for at least one scenario 
• Fit extreme value distribution (e.g., GEV or peaks-over-threshold (POT)

• Theoretically justified when event or threshold is far in tail
• Informed only by extreme values
• Hard to use with seasonal events because of small sample sizes
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Methods to estimate uncertainty in RR
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• Methods for both extreme value analysis and binomial counting
• Asymptotic statistical calculations (delta method / propagation of error)

• Assumption of normality
• Bootstrap 

• Standard statistical bootstrap gives a confidence interval, not a 
Bayesian probability interval

• Estimation of RR in bootstrap samples often fails (lack of EVA 
convergence, zeros in binomial counting approach)

• Likelihood ratio-based interval

• Methods for binomial counting (from epidemiology/biostatistics)
• Wilson’s method
• Koopman’s method
• Wang/Shan method

• All but asymptotic and bootstrap can give interval when RR estimate is 0 or 
Infinity; e.g., (12.8, Infinity)



Simulation study overview
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• Context: evaluate model-based event attribution, focused on 
binomial counting approach

• Frequentist statistical approach:
• RR =pF / pC
• For known values of pF, RR (and therefore pC) generate 

simulated datasets and estimate      i i=1,…,5000
• N=25,50,100,400 ensemble members for each of factual, 

counterfactual scenarios
• Various values of pF, RR (and therefore pC)
• Various statistical methods considered
• Criteria
• Proportion of datasets where interval can be computed
• Statistical coverage of 90% intervals (at both ends)
• Length of intervals (judged by magnitude of lower interval 

endpoint)



RR confidence intervals (binomial counting) simulation results
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RR confidence intervals (binomial counting) simulation results
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Proportion of times lower interval endpoint includes true RR (95% is best)
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RR confidence intervals (binomial counting) simulation results
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Proportion of times upper interval endpoint includes true RR (95% is best)
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RR confidence intervals (binomial counting) simulation results
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Average value of lower endpoint (higher is better)
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Methods to estimate uncertainty in 
binomial-based RR: Conclusions
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• Bootstrap methods
• Often fail to provide an interval
• Poor statistical performance

• Likelihood ratio method
• Reasonably good statistical performance, but coverage 

sometimes too low
• Will work with both extreme value analysis and binomial 

counting
• Epidemiology/biostatistical methods
• Work only for binomial counting
• Koopman and Wang-Shan methods generally perform well

• All methods except Wang-Shan available in climextremes
software package



RR analysis example: Texas 2011 heatwave / drought
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• CAM5.1 ensembles (400-member) for factual and counterfactual
• March-August temperature and rainfall over Texas
• Estimation done using climextremes software
• Temperature: 2/0 is RR count-based estimate 
• Precipitation: 0/0 is RR count-based estimate
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Texas 2011 temperature analysis
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Event Number 
exceedances

RR 
esti-
mate

EVA 
likelihood
ratio CI

Binomial 
likelihood
ratio CI

Binomial 
Koopman CI

2.62 (actual) 2/0 Inf (12.8, Inf) (1.0, Inf) (0.7, Inf)

2.0 43/0 Inf NA (31, Inf) (16, Inf)

1.5 129/3 43 NA (19, 133) (17, 108)

1.03 (20-year event) 245/11 22 NA (14, 38) (14, 36)

0.73 (10-year event) 314/40 7.9 NA (6.2, 10.2) (6.1, 10.1)

0.43 (5-year event) 357/90 4.0 NA (3.4, 4.7) (3.4, 4.6)

Actual event is 2.62 degree anomaly

Notes: EVA not appropriate except for 2.62 event - other definitions not extreme in 
factual scenario.
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Texas 2011 precipitation analysis
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• Recall that actual event (40% of historical average precipitation) has no 
events in factual or counterfactual ensembles
• Extreme value analysis (EVA) gives (0.01, Inf) as interval

• Instead consider variety of less extreme event definitions
• EVA not really appropriate for less extreme events but shown anyway



climextremes software

16

• High-level goals

• Operate from Python or R

• Provide risk ratio calculations and extreme value analysis fitting 

(GEV and POT)

• Handle common situations with climate data

• Designed for both observations and model output

• Technical features

• Use of covariates for any extreme value distribution parameter 

(nonstationary fitting)

• Estimation with uncertainty for risk ratios, return values, return 

periods/probabilities, differences in return values

• Various techniques for estimating uncertainty

• Handles annual/seasonal aggregated data

• Statistically rigorous estimation with model ensembles

• Statistically rigorous treatment of missing values (for POT)

• Allows weighting (e.g., weighting nearby stations)



climextremes example
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• US GHCN Santa Cruz, California daily precipitation
• 1950-2016
• November-May rainy season
• 270 missing days
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climextremes example
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Stationary peaks-over-threshold fit

result = climextremes.fit_pot(numpy.array(exc.y), 
nBlocks = nyears, threshold = threshold, firstBlock = seasonyear[0], 
blockIndex = numpy.array(exc.seasonyear), index = numpy.array(exc.day), 
proportionMissing = numpy.array(prop_missing), 
declustering = 'noruns', returnPeriod = 20, returnValue = 100, 
bootSE = False)

Nonstationary peaks-over-threshold fit 
# linear location trend in time 
# contrast 2015 returnValue and return probability with that for 1950

resultNS = climextremes.fit_pot(numpy.array(exc.y),
x = numpy.array(seasonyear), locationFun = 1, 

nBlocks = nyears, threshold = threshold, firstBlock = seasonyear[0], 
blockIndex = numpy.array(exc.seasonyear), index = numpy.array(exc.day), 
proportionMissing = numpy.array(prop_missing), declustering = 'noruns’, 
xNew = 2015, xContrast = 1950, returnPeriod = 20, returnValue = 100, 
bootSE = False)



climextremes example
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Stationary peaks-over-threshold fit

# 20-year return value and standard error

result['returnValue']

# 120.3 mm

result['se_returnValue']       # return value standard error (asymptotic)

#   7.9 mm

result['logReturnProb']        # log of probability of exceeding 'returnValue=100’

# -1.98

# confidence interval on return probability for 100 mm event

np.exp(result['logReturnProb'] + np.array((-2, 2))*result['se_logReturnProb'])

# (0.0872262, 0.2200104)

Nonstationary fit with location linear in year

# change in return value (2015 - 1950) and standard error of the change

resultNS['returnValueDiff']

# -2.68 mm 

resultNS['se_returnValueDiff']

#  5.37 mm

# risk ratio 2015 / 1950 for 100 mm event with confidence interval

np.exp(resultNS['logReturnProbDiff'])

#  0.88

np.exp(resultNS['logReturnProbDiff'] + np.array((-2, 2))*resultNS['se_logReturnProbDiff'])

# (0.51, 1.49)



References / Links
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• Statistical methods: 
• Paciorek C.J., D.A. Stone, and M.F. Wehner. 2018. Quantifying statistical uncertainty 

in the attribution of human influence on severe weather. Weather and Climate 

Extremes, 20: 69-80.
• https://arxiv.org/abs/1706.03388

• climextremes software (version 0.2.1):

• Available via pip or conda for Python

• pip install climextremes
• conda install –c cascade climextremes

• Available via CRAN for R
• Install.packages(‘climextRemes’)

• Repository: https://bitbucket.org/lbl-cascade/climextremes-dev

https://arxiv.org/abs/1706.03388
https://bitbucket.org/lbl-cascade/climextremes-dev

