Accounting for space in regression models with binary outcomes

Chris Paciorek

October 15, 2004
Department of Biostatistics
Harvard School of Public Health
www.biostat.harvard.edu/~paciorek

Petrochemical exposure in Kaohsiung, Taiwan

$$
n=495
$$

$$
n=433
$$

Petrochemical exposure in Kaohsiung, Taiwan

$$
\begin{aligned}
& n=495 \\
& n_{1}=141
\end{aligned}
$$

$n=433$
$n_{1}=121$

Petrochemical exposure in Kaohsiung, Taiwan

$$
\begin{aligned}
& n=495 \\
& n_{1}=141
\end{aligned}
$$

$n=433$
$n_{1}=121$

Possible approaches for health analysis

- Estimate exposure and use as covariate in health model
- Use distance to exposure source as covariate
- Explicitly include space as a covariate
- Map of risk - exploratory
- Account for spatially-related unmeasured confounders
- Test for spatial effect

Outline

- Motivating example
- Generalized additive model and generalized mixed model approaches
- Difficulties in fitting regression for non-normal outcomes with 2-d smooth terms
- Parameterizations and fitting methods
- Simulations
- binary responses
- Poisson responses
- Revisit the example
- Goals for computational environmetrics

Goals for Computational Environmetrics

- reproducibility and ease of implementation, particularly for Bayesian methods
- modularity
- comparison and evaluation of models and fitting methods

GAM and GLMM frameworks

- basic model

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Ber}\left(p\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{s}_{\boldsymbol{i}}\right)\right) \\
\operatorname{logit}\left(p\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{s}_{\boldsymbol{i}}\right)\right. & =\boldsymbol{x}_{\boldsymbol{i}}{ }^{T} \boldsymbol{\beta}+g_{\theta}\left(\boldsymbol{s}_{\boldsymbol{i}}\right)
\end{aligned}
$$

- basic spatial model for $\boldsymbol{g}_{\theta}^{\boldsymbol{s}}=\left(g_{\theta}\left(\boldsymbol{s}_{\mathbf{1}}\right), \ldots, g_{\theta}\left(\boldsymbol{s}_{\boldsymbol{n}}\right)\right)$
- GAM: $g_{\theta}(\cdot)$ is a two-dimensional smooth term * basis representation, $\boldsymbol{g}_{\theta}^{s}=Z \boldsymbol{u}$
* Gaussian process representation: $g(\cdot) \sim \operatorname{GP}\left(\mu(\cdot), C_{\theta}(\cdot, \cdot)\right) \Rightarrow$ $\boldsymbol{g}_{\theta}^{s} \sim N\left(\boldsymbol{\mu}, C_{\theta}\right)$
- GLMM: $g_{\theta}\left(s_{i}\right)=\boldsymbol{z}_{i}{ }^{T} \boldsymbol{u}$ * correlated random effects, $\boldsymbol{u} \sim N(0, \Sigma)$

Difficulties: speed and mixing

- Gaussian responses: closed form marginal likelihood - estimate $\boldsymbol{\beta}, \theta$
- non-Gaussian: no closed form -> high dimensional estimation estimate $\boldsymbol{\beta}, \theta, \boldsymbol{u}$
- Challenges:
- Classical mixed model: how approximate integral over random effects?
- Bayesian methods: how perform large matrix calculations and avoid poor mixing?

Fitting approaches

- penalized likelihood, $l\left(\boldsymbol{y} ; \boldsymbol{\beta}, \boldsymbol{g}_{\theta}^{s}\right)-\lambda J(\boldsymbol{u})$
- fit by iterative weighted least squares
- Bayesian model for $(\boldsymbol{\beta}, \theta, \boldsymbol{u}): l\left(\boldsymbol{y} ; \boldsymbol{\beta}, \boldsymbol{g}_{\theta}^{s}\right)+\log \pi(\boldsymbol{\beta}, \theta, \boldsymbol{u})$
- fit by MCMC
- implicit Bayesian penalty on complex spatial functions

Goals for implementations

- fast computations, avoiding large matrix calculations
- methods that scale reasonably with n
- reasonable fitting of simple risk surfaces we expect to model
- ease of implementation for applied work

Models and fitting methods considered

- penalized likelihood based on mixed model with REML smoothing (Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]
- penalized likelihood with GCV smoothing (Wood, 2001, 2003, 2004) [PL-GCV]
- Bayesian geoadditive model-style radial basis functions fit by MCMC (Zhao and Wand 2004) [B-Geo]
- Bayesian spectral basis representation fit by MCMC using the FFT (Wikle 2002; Paciorek and Ryan, in prep.) [B-SB]
- Bayesian neural network model fit by MCMC (R. Neal) [B-NN]

Penalized likelihood using GLMM framework with REML [PL-PQL]

- $\boldsymbol{g}^{s}=Z \boldsymbol{u}, Z=\Psi_{n k} \Omega_{k}^{-\frac{1}{2}}, \boldsymbol{u} \sim N\left(0, \sigma_{u}^{2}\right)$ - variance component provides complexity penalty
- Ω contains pairwise spatial covariances between k knot locations and Ψ between n data locations and k knot locations
- potential covariance functions:
- thin plate spline generalized covariance function, $C(\tau)=\tau^{2} \log \tau$
- Matérn correlation function, $R(\tau)=\frac{1}{\Gamma(\nu) 2^{\nu-1}}\left(\frac{2 \sqrt{\nu} \tau}{\rho}\right) K_{\nu}\left(\frac{2 \sqrt{\nu} \tau}{\rho}\right)$, with ρ and ν fixed
- computationally efficient approximation of a Gaussian process representation for \boldsymbol{g}^{s}
- PQL approach - IWLS fitting of $(\boldsymbol{\beta}, \boldsymbol{u})$ with REML estimation of σ_{u}^{2} within the iterations using MM software

GLMM basis functions

- radial basis functions centered at the knots
- 4 of 64 functions displayed:

Penalized likelihood using GCV [PL-GCV]

- thin plate spline basis for $g(\cdot)$
- truncated eigendecomposition of basis matrix increases computational efficiency
- IWLS fitting of $(\boldsymbol{\beta}, \boldsymbol{u})$ with GCV estimation of penalty
- easy implementation using the R mgcv library - gam()

Bayesian geoadditive model [B-Geo]

- Bayesian version of GLMM framework already described
- $\boldsymbol{g}^{s}=Z \boldsymbol{u}, Z=\Psi_{n k} \Omega_{k}^{-\frac{1}{2}}, \boldsymbol{u} \sim N\left(0, \sigma_{u}^{2}\right)$
- natural Bayesian complexity penalty through prior on u
- thin plate spline covariance or Matérn correlation basis construction of Ψ and Ω
- MCMC implementation - ensuring mixing is not simple
- Metropolis-Hastings for u using conditional posterior mean and variance based on linearized observations
- joint proposals for σ_{u}^{2} and \boldsymbol{u} to ensure that \boldsymbol{u} remains compatible with its variance component

Bayesian spectral basis function model [B-SB]

- computationally efficient basis function construction
- $\boldsymbol{g}^{\#}=Z \boldsymbol{u}, \boldsymbol{g}^{s}=\sigma P \boldsymbol{g}^{\#}$ - piecewise constant gridded surface on k by k grid
- Z is the Fourier (spectral) basis and $Z \boldsymbol{u}$ is the inverse FFT
- $Z \boldsymbol{u}$ is approximately a Gaussian process (GP) when...
- spectral density, $\pi_{\theta}(\cdot)$, of GP covariance function defines $\mathrm{V}(\boldsymbol{u})$
- $\boldsymbol{u} \sim N\left(0, \operatorname{diag}\left(\pi_{\theta}(\boldsymbol{\omega})\right)\right)$ for Fourier frequencies, $\boldsymbol{\omega}$

Bayesian spectral basis functions

Comparison with usual GP specification

- usual GP model: $\boldsymbol{g}^{s} \sim N\left(\boldsymbol{\mu}, C_{\theta}\right)$
$-O\left(n^{3}\right)$ fitting: $\left|C_{\theta}\right|$ and C_{θ}^{-1}
- spectral basis uses FFT
- $O\left(k^{2}\right) \log \left(k^{2}\right)$
- fast computation and prediction of surface given coefficients
- a priori independent coefficients give fast computation of prior and help with mixing
- additional observations are essentially free for a fixed grid

Bayesian neural network [B-NN]

- multilayer perceptron with one hidden layer gives basis representation:
$-g\left(\boldsymbol{s}_{\boldsymbol{i}}\right)=\sum_{k} \tanh \left(\boldsymbol{\phi}_{\boldsymbol{k}}{ }^{T} \boldsymbol{s}_{\boldsymbol{i}}\right) u_{k}$
- position and orientation of basis functions change with ϕ_{k}
- implemented with software of R. Neal; somewhat complicated proposal scheme

Simulated datasets

- 3 case-control scenarios: $n_{0}=1,000 ; n_{1}=200 ; n_{\text {test }}=2500$ on 50 by 50 grid
- 1 cohort scenario: $n=10,000 ; n_{\text {test }}=2500$ on 50 by 50 grid

Assessment on 50 simulated datasets

Mixing and speed of Bayesian methods

Example revisited - assessment

Summed test deviance over 10-fold C-V sets

	leukemia	brain cancer
PL-GCV	590.1	529.8
PL-PQL	585.6	529.5
B-Geo	583.3	525.7
B-SB	582.1	525.1
null	581.6	525.5

brain cancer

Simulated count data

- $n=225, n_{\text {test }}=2500$ on 50 by 50 grid

Assessment on count simulations

Methodology lessons

- Effective process parameterization allows for faster Bayesian estimation
- effective for spatial models with thousands of observations
- Natural Bayesian complexity penalty works well; other automatic criteria appear to overfit
- R code for spectral basis model to ease implementation
- Power is an issue with binary observations
- Results hold for count data
- Spectral basis could provide a modular building block in hierarchical models

Suggestions for computational environmetrics

- reproducibility
- requires code and detailed description (supplemental material/web)
- standard computing environment (R) helps
- enabling reproducible MCMC (beyond BUGS)- class structures, templates, and proposal functions for R
- modularity
- spectral basis as modular component
- comparison of methods
- rare
- difficult without reproducibility, particularly with Bayesian methods

Methodological future work

- Importance of basis functions vs. speed/mixing in MCMC vs. penalty estimation method in determining fitting success
- Why don't automatic criteria for penalized likelihood work as well?
- Importance of fitting variance and spatial range parameters - small-sample results (consider effective basis functions) vs. asymptotics (Zhang, 2004)
- Simple approaches for testing necessity of spatial term
- Other process parameterizations allowing fast Bayesian estimation:
- Simple prior structures for wavelet basis coefficient (co)variances?

