Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Chris Paciorek

March 11, 2005

Department of Biostatistics

Harvard School of Public Health

www.biostat.harvard.edu/~paciorek

Increased attention to spatial analysis in public health

- data availability: geocoding and GPS for assigning point locations to individuals and monitors
- GIS software:
 - easy data management and manipulation
 - graphical presentation
 - spatially-varying covariate generation
- interest amongst researchers:
 - strong applied interest in kriging and related smoothing methods
 - opportunities for more sophisticated spatio-temporal modelling, particularly Bayesian hierarchical modelling

Petrochemical exposure in Kaohsiung, Taiwan

Possible approaches for health analysis

- Explicitly estimate pollutant exposure difficult retrospectively
- Use distance to exposure source as covariate
- Use a moving window/multiple testing to detect clusters of cases
 - default approach software available
- Include space as a covariate to provide a map of risk

$$H_i \sim \text{Ber}(p(\boldsymbol{x}_i, \boldsymbol{s}_i))$$
$$\text{logit}(p(\boldsymbol{x}_i, \boldsymbol{s}_i)) = \boldsymbol{x}_i^T \boldsymbol{\beta} + g_{\boldsymbol{\theta}}(\boldsymbol{s}_i)$$

Particulate matter exposure in the Nurses' Health Study

- estimate individual exposure, 1985-2003
 - EPA monitoring for large-scale spatio-temporal heterogeneity
 - spatially-varying covariates for local heterogenity
 - * distance to roads, climate variables, local land use, ...
 - * generated using GIS
- basic additive exposure model:

$$\log E_i \sim \mathsf{N}(f(\boldsymbol{x_i}, \boldsymbol{s_i}), \eta^2)$$
$$f(\boldsymbol{x_i}, \boldsymbol{s_i}) = \sum_p h_p(x_i) + g_{\boldsymbol{\theta}}(\boldsymbol{s_i})$$

- geocoding of individual residences every two years
 - relate estimated exposure to health outcomes (chronic heart disease)

geocoding and GIS make this possible; spatial statistics provides a rigorous framework

Health outcomes by postcode in NSW, Australia

- methodological challenges
 - areal (postcode) units vary drastically in size
 - data misalignment
- relate areal data to a latent smooth process, $g_{\theta}(\cdot)$ (Kelsall & Wakefield, Rathouz)
- computational challenges: 650 units, 5 years daily data, 2 sexes, 9 age groups

Outline

- Motivating examples
- Introduction to Gaussian processes (GPs)
- Fast Gaussian process modelling
- Flexible Gaussian process modelling
- Bayes and overfitting
- The future: flexibility + efficiency + hierarchical modelling

Kriging as a GP model

 $Y_i \sim \mathsf{N}(g(\boldsymbol{s}_i), \eta^2)$ $g(\cdot) \sim \mathsf{GP}(\mu, C(\cdot; \boldsymbol{\theta}))$

- Bayesian model specifies prior distributions for θ (Bayesian kriging)
- Empirical Bayes/marginal likelihood (i.e., kriging)
 - integrate $g_{\text{train}} = (g(s_1), \dots, g(s_n))$ out of model
 - estimate θ
 - * maximizing marginal posterior
 - * maximizing marginal likelihood
 - * fitting variogram model for $C(\cdot; \boldsymbol{\theta})$
 - point estimate for spatial process:
 - $E(\boldsymbol{g}_{test}|\boldsymbol{Y}, \tilde{\boldsymbol{\theta}})$ based conditional normal calculations

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $g(x), x \in \mathcal{X}$:
 - ♦ Example: $g(\cdot)$ a spatial process, $\mathcal{X} = \Re^2$
 - $\label{eq:g_states} \label{eq:g_states} \mbox{ } \mbox{ } g(\cdot) \sim \mathrm{GP}(\mu(\cdot), C(\cdot, \cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - ✤ stationary, isotropic
 - ✤ stationary, anisotropic
 - ✤ nonstationary

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $g(x), x \in \mathcal{X}$:
 - ♦ Example: $g(\cdot)$ a spatial process, $\mathcal{X} = \Re^2$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - ✤ stationary, isotropic
 - ✤ stationary, anisotropic
 - ✤ nonstationary

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $g(x), x \in \mathcal{X}$:
 - ♦ Example: $g(\cdot)$ a spatial process, $\mathcal{X} = \Re^2$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - ✤ stationary, isotropic
 - ✤ stationary, anisotropic
 - \diamond nonstationary

Stationary Correlation Functions

Matérn form

•
$$R(\tau) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{2\sqrt{\nu}\tau}{\rho}\right)^{\nu} K_{\nu}\left(\frac{2\sqrt{\nu}\tau}{\rho}\right); \nu > 0, \ \rho > 0$$

- Differentiability controlled by ν , asymptotic advantages (Stein)
- Familiar exponential ($\nu = 0.5$) and squared exponential (Gaussian) ($\nu \rightarrow \infty$) correlations as special and limiting cases

Computational challenges of GPs

• even marginal likelihood in normal error model is intensive:

$$g(\cdot) \sim \mathsf{GP}(\mu(\cdot), C_{\theta}(\cdot, \cdot)) \Rightarrow \mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, C_{\theta} + \eta^2 I)$$

- $O(n^3)$ fitting: $|C_{\theta} + \eta^2 I|$ and $(C_{\theta} + \eta^2 I)^{-1}(Y \mu \mathbf{1})$
- non-Gaussian spatial models particularly difficult
 - spatial process can't be integrated out
 - MCMC mixing is very slow because of high-level structure
 - correlation amongst process values and between process values and process hyperparameters

Petrochemical exposure in Kaohsiung, Taiwan

Modelling Framework

$$H_{i} \sim \text{Ber}(p(\boldsymbol{x}_{i}, \boldsymbol{s}_{i}))$$
$$= \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} + g_{\boldsymbol{\theta}}(\boldsymbol{s}_{i})$$

- basic spatial model for $\boldsymbol{g}_{\boldsymbol{\theta}}^s = (g_{\boldsymbol{\theta}}(\boldsymbol{s_1}), \dots, g_{\boldsymbol{\theta}}(\boldsymbol{s_n}))$
 - GAM: $g_{\theta}(\cdot)$ is a two-dimensional smooth term
 - * basis representation

$$g_{\theta}^{s} = Zu$$

* Gaussian process representation:

$$g(\cdot) \sim \mathsf{GP}(\mu(\cdot), C_{\theta}(\cdot, \cdot)) \Rightarrow \boldsymbol{g}_{\boldsymbol{\theta}}^{s} \sim N(\boldsymbol{\mu}, C_{\boldsymbol{\theta}})$$

- GLMM: $\boldsymbol{g}_{\boldsymbol{\theta}}^s = Z \boldsymbol{u}$
 - * correlated random effects, $\boldsymbol{u} \sim N(\boldsymbol{0},\boldsymbol{\Sigma})$

Approaches

- Bayesian spectral basis model fit by MCMC (Wikle, 2002) [B-SB]
- penalized likelihood based on mixed model (radial basis functions) with REML smoothing (Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]
- penalized likelihood with GCV smoothing (Wood, 2001, 2003, 2004) [PL-GCV]
- Bayesian mixed model/radial basis functions fit by MCMC (Zhao and Wand 2004) [B-Geo]

Bayesian spectral basis function model

- computationally efficient basis function construction (Wikle 2002)
- $g^{\#} = Zu$ and $g^s = \sigma Pg^{\#}$
 - piecewise constant gridded surface on k by k grid
 - *P* maps observation locations to nearest grid point
- Z is the Fourier (spectral) basis and Zu is the inverse FFT
- Zu is approximately a Gaussian process (GP) when...
 - $\boldsymbol{u} \sim N(0, \operatorname{diag}(\pi_{\theta}(\boldsymbol{\omega})))$ for Fourier frequencies, $\boldsymbol{\omega}$
 - spectral density, $\pi_{\theta}(\cdot)$, of GP covariance function defines V($m{u})$

Bayesian spectral basis functions

Comparison with usual GP specification

- spectral basis uses FFT
 - $O\left((k^2)\log(k^2)\right)$
 - additional observations are essentially free for fixed grid
 - fast computation and prediction of surface given coefficients
 - a priori independent coefficients give fast computation of prior and help with mixing

Penalized likelihood using GLMM framework with REML [PL-PQL]

• $g^s = Z u, Z = \Psi_{nk} \Omega_{kk}^{-\frac{1}{2}}, u \sim N(0, \sigma_u^2)$ - variance component provides complexity penalty

- Ω contains pairwise spatial covariances between k knot locations and Ψ between n data locations and k knot locations
- potential covariance functions:
 - thin plate spline generalized covariance function, $C(\tau)=\tau^2\log\tau$
 - Matérn correlation function, $R(\tau) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{2\sqrt{\nu\tau}}{\rho}\right)^{\nu} K_{\nu} \left(\frac{2\sqrt{\nu\tau}}{\rho}\right)$, with ρ and ν fixed
- computationally efficient approximation of a Gaussian process representation for g^s
- PQL approach IWLS fitting of (β, u) with REML estimation of σ_u^2 within the iterations using MM software

GLMM basis functions

- radial basis functions centered at the knots
- 4 of 64 functions displayed:

Penalized likelihood using GCV [PL-GCV]

- thin plate spline basis for $g(\cdot)$
- truncated eigendecomposition of basis matrix increases computational efficiency
- IWLS fitting of (β, u) with GCV estimation of penalty
- easy implementation using the R mgcv library gam()

Bayesian geoadditive model [B-Geo]

• Bayesian version of GLMM framework already described

-
$$\boldsymbol{g}^s = Z \boldsymbol{u}, Z = \Psi_{nk} \Omega_{kk}^{-\frac{1}{2}}, \boldsymbol{u} \sim N(0, \sigma_u^2)$$

- natural Bayesian complexity penalty through prior on \boldsymbol{u}
- thin plate spline covariance or Matérn correlation basis construction of Ψ and Ω
- MCMC implementation ensuring mixing is not simple
 - Metropolis-Hastings for u using conditional posterior mean and variance based on linearized observations
 - joint proposals for σ_u^2 and u to ensure that u remains compatible with its variance component

Simulated datasets

- 3 case-control scenarios: $n_0 = 1,000$; $n_1 = 200$; $n_{\text{test}} = 2500$ on 50 by 50 grid
- 1 cohort scenario: n = 10,000; $n_{\text{test}} = 2500$ on 50 by 50 grid

Assessment on 50 simulated datasets

Mixing and speed of Bayesian methods

Taiwan revisited - assessment

Assessment on count simulations

 $n = 225, n_{\text{test}} = 2500 \text{ on 50 by 50 grid}$

Penalization in the spectral approach

- GP representation zeroes out high-frequency coefficients as appropriate
- Spatial hyperparameter controls coefficient variances

$$g(\cdot) \sim \mathsf{GP}(\mu(\cdot), \sigma^2 R(\cdot, \cdot; \rho, \nu))$$

Heterogeneous penalties

- spatially-varying penalties are one option (e.g., Lang & Brezger 2004; Crainiceanu et al. 2004)
- spatially-varying ρ in a GP context is another

Outline

- Motivating examples
- Introduction to Gaussian processes (GPs)
- Fast Gaussian process modelling
- Flexible Gaussian process modelling
- Why Bayes works for smoothing
- The future: flexibility + efficiency + hierarchical modelling

A nonstationary covariance

• Higdon, Swall, and Kern (1999) model:

$$C^{NS}(\boldsymbol{x_i}, \boldsymbol{x_j}) = \int_{\Re^p} k_{\boldsymbol{x_i}}(\boldsymbol{u}) k_{\boldsymbol{x_j}}(\boldsymbol{u}) d\boldsymbol{u}$$

- guaranteed positive definite
- Gaussian kernels give closed form:

$$k_{\boldsymbol{x_i}}(\boldsymbol{u}) \propto \exp\left(-(\boldsymbol{u}-\boldsymbol{x_i})^T \Sigma_i^{-1} (\boldsymbol{u}-\boldsymbol{x_i})\right)$$
$$R^{NS}(\boldsymbol{x_i}, \boldsymbol{x_j}) = c_{ij} \exp\left(-(\boldsymbol{x_i}-\boldsymbol{x_j})^T \left(\frac{\Sigma_i+\Sigma_j}{2}\right)^{-1} (\boldsymbol{x_i}-\boldsymbol{x_j})\right)$$

•
$$g(\cdot) \sim \operatorname{GP}(\mu, \sigma^2 R^{NS}(\cdot, \cdot; \Sigma(\cdot)))$$

Nonstationary GPs in 1-D

Nonstationary GPs in 2-D

Sample function

 $\mathbf{X}_{\mathbf{1}}$

Generalizing the kernel convolution approach

• Squared exponential form:

$$\exp\left(-\left(\frac{\tau_{ij}}{\rho}\right)^2\right) \Rightarrow c_{ij} \exp\left(-(\boldsymbol{x_i} - \boldsymbol{x_j})^T \left(\frac{\Sigma_i + \Sigma_j}{2}\right)^{-1} (\boldsymbol{x_i} - \boldsymbol{x_j})\right)$$

infinitely-differentiable sample paths

• 'Distance measures':

$$\begin{array}{ll} \text{isotropy} & \tau_{ij}^2 = (\boldsymbol{x_i} - \boldsymbol{x_j})^T (\boldsymbol{x_i} - \boldsymbol{x_j}) \\ \text{anisotropy} & \tau_{ij}^{*2} = (\boldsymbol{x_i} - \boldsymbol{x_j})^T \Sigma^{-1} (\boldsymbol{x_i} - \boldsymbol{x_j}) \\ \text{nonstationarity} & Q_{ij} = (\boldsymbol{x_i} - \boldsymbol{x_j})^T \left(\frac{\Sigma_i + \Sigma_j}{2}\right)^{-1} (\boldsymbol{x_i} - \boldsymbol{x_j}) \end{array}$$

• Can we replace τ_{ij}^2 with Q_{ij} in other stationary correlation functions?

A class of nonstationary covariance functions

• Theorem 1: if $R(\tau)$ is positive definite for \Re^P , P = 1, 2, ..., then

$$R^{NS}(\boldsymbol{x_i}, \boldsymbol{x_j}) = c_{ij} R(\sqrt{Q_{ij}})$$

is positive definite for \Re^P , P = 1, 2, ...

- Theorem 2: smoothness (differentiability) properties of the original stationary correlation retained
- Specific case of Matérn nonstationary covariance:

$$\frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{2\sqrt{\nu}\tau}{\rho}\right)^{\nu} K_{\nu}\left(\frac{2\sqrt{\nu}\tau}{\rho}\right) \Rightarrow \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(2\sqrt{\nu}Q_{ij}\right)^{\nu} K_{\nu}\left(2\sqrt{\nu}Q_{ij}\right)$$

 advantages: more flexible form, differentiability not constrained, possible asymptotic advantages

Exponential and Matérn sample functions (stationary)

 $\nu = 0.5$

 $\nu = 4$

X₁

37

A basic Bayesian nonstationary spatial model

• Bayesian nonstationary kriging model

$$Y_{i} \sim \mathbf{N}(g(\boldsymbol{x}_{i}), \eta^{2}), \, \boldsymbol{x}_{i} \in \Re^{2}$$
$$g(\cdot) \sim \mathbf{GP}(\mu, \sigma^{2} R^{NS}(\cdot, \cdot; \nu, \Sigma(\cdot)))$$

- Let R^{NS} be the nonstationary Matérn correlation
- Kernels (Σ_x) constructed based on stationary GP priors
 - define multiple kernel matrices, $\Sigma_{\boldsymbol{x}}, \, \boldsymbol{x} \in \mathcal{X}$
 - smoothly-varying (element-wise) in domain
 - positive definite
- Fit via MCMC, including parameters determining $\Sigma(\cdot)$

Smoothly-varying kernel matrices

Spectral decomposition for each $\Sigma_{x} = \Gamma_{x}^{T} \Lambda_{x} \Gamma_{x}$

- in \Re^2 , parameterize each kernel using unnormalized eigenvector coordinates (a_x, b_x) and the second eigenvalue $(\log \lambda_{2,x})$
- define stationary GP priors for $\Phi(\cdot) \in \{(a(\cdot), b(\cdot), \log(\lambda_2(\cdot)))\}$
- efficiently parameterize each GP using basis function approximation (Zhao & Wand, 2004)

Colorado precipitation characterization

Estimating Colorado precipitation

Why doesn't Bayes overfit?

- Fourier basis involves k^2 (=4096, e.g.) coefficients
- Nonstationary covariance involves very highly-parameterized covariance structure
- No direct penalty on complicated spatial functions

What does a Bayesian approach give us?

- ability to create rich hierarchical models that reflect our understanding of the system
- in environmental health applications
 - the ability to incorporate time, latent variables, misaligned data
- a natural penalty on overfitting
- a recipe (perhaps slow) for estimation
- proper characterization of the uncertainty
- challenge lies less on the modelling side than with computations, model comparison and evaluation, and reproducibility

Future methodological work

- collaborative work on spatio-temporal modelling
 - computational approaches for applying existing methodological ideas to real health data
- GP computations and parameterization: flexibility + efficiency + hierarchical modelling
 - computational tricks for the nonstationary covariance; e.g., knotbased approaches for faster computation
 - use of a wavelet basis with irregular spatial data in a similar framework as the spectral basis
- combining deterministic and stochastic models, e.g. for air pollution
- useful, practical methods for designing spatial monitoring networks and determining power